1
|
Shi Z, Li M, Zhang C, Li H, Zhang Y, Zhang L, Li X, Li L, Wang X, Fu X, Sun Z, Zhang X, Tian L, Zhang M, Chen WH, Li Z. Butyrate-producing Faecalibacterium prausnitzii suppresses natural killer/T-cell lymphoma by dampening the JAK-STAT pathway. Gut 2025; 74:557-570. [PMID: 39653411 PMCID: PMC12013593 DOI: 10.1136/gutjnl-2024-333530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Natural killer/T-cell lymphoma (NKTCL) is a highly aggressive malignancy with a dismal prognosis, and gaps remain in understanding the determinants influencing disease outcomes. OBJECTIVE To characterise the gut microbiota feature and identify potential probiotics that could ameliorate the development of NKTCL. DESIGN This cross-sectional study employed shotgun metagenomic sequencing to profile the gut microbiota in two Chinese NKTCL cohorts, with validation conducted in an independent Korean cohort. Univariable and multivariable Cox proportional hazards analyses were applied to assess associations between identified marker species and patient outcomes. Tumour-suppressing effects were investigated using comprehensive in vivo and in vitro models. In addition, metabolomics, RNA sequencing, chromatin immunoprecipitation sequencing, Western blot analysis, immunohistochemistry and lentiviral-mediated gene knockdown system were used to elucidate the underlying mechanisms. RESULTS We first unveiled significant gut microbiota dysbiosis in NKTCL patients, prominently marked by a notable reduction in Faecalibacterium prausnitzii which correlated strongly with shorter survival among patients. Subsequently, we substantiated the antitumour properties of F. prausnitzii in NKTCL mouse models. Furthermore, F. prausnitzii culture supernatant demonstrated significant efficacy in inhibiting NKTCL cell growth. Metabolomics analysis revealed butyrate as a critical metabolite underlying these tumour-suppressing effects, validated in three human NKTCL cell lines and multiple tumour-bearing mouse models. Mechanistically, butyrate suppressed the activation of Janus kinase-signal transducer and activator of transcription pathway through enhancing histone acetylation, promoting the expression of suppressor of cytokine signalling 1. CONCLUSION These findings uncover a distinctive gut microbiota profile in NKTCL and provide a novel perspective on leveraging the therapeutic potential of F. prausnitzii to ameliorate this malignancy.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Li
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
- Chinese PLA General Hospital and Medical School, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongwen Li
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Li Tian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan, China
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Weniger MA, Seifert M, Küppers R. B Cell Differentiation and the Origin and Pathogenesis of Human B Cell Lymphomas. Methods Mol Biol 2025; 2865:1-30. [PMID: 39424718 DOI: 10.1007/978-1-0716-4188-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation in the germinal center reaction. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Most B cell lymphomas require B cell antigen receptor expression, and in several instances chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Most B cell malignancies derive from germinal center B cells, most likely due to the high proliferative activity of these B cells and aberrant mutations caused by their naturally active mutagenic processes.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical School, Düsseldorf, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
3
|
Gunawardana J, Law SC, Sabdia MB, Fennell É, Hennessy A, Leahy CI, Murray PG, Bednarska K, Brosda S, Trotman J, Berkahn L, Zaharia A, Birch S, Burgess M, Talaulikar D, Lee JN, Jude E, Hawkes EA, Jain S, Nath K, Snell C, Swain F, Tobin JWD, Keane C, Shanavas M, Blyth E, Steidl C, Savage K, Farinha P, Boyle M, Meissner B, Green MR, Vega F, Gandhi MK. Intra-tumoral and peripheral blood TIGIT and PD-1 as immune biomarkers in nodular lymphocyte predominant Hodgkin lymphoma. Am J Hematol 2024; 99:2096-2107. [PMID: 39152767 PMCID: PMC11469944 DOI: 10.1002/ajh.27459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024]
Abstract
In classical Hodgkin lymphoma (cHL), responsiveness to immune-checkpoint blockade (ICB) is associated with specific tumor microenvironment (TME) and peripheral blood features. The role of ICB in nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is not established. To gain insights into its potential in NLPHL, we compared TME and peripheral blood signatures between HLs using an integrative multiomic analysis. A discovery/validation approach in 121 NLPHL and 114 cHL patients highlighted >2-fold enrichment in programmed cell death-1 (PD-1) and T-cell Ig and ITIM domain (TIGIT) gene expression for NLPHL versus cHL. Multiplex imaging showed marked increase in intra-tumoral protein expression of PD-1+ (and/or TIGIT+) CD4+ T-cells and PD-1+CD8+ T-cells in NLPHL compared to cHL. This included T-cells that rosetted with lymphocyte predominant (LP) and Hodgkin Reed-Sternberg (HRS) cells. In NLPHL, intra-tumoral PD-1+CD4+ T-cells frequently expressed TCF-1, a marker of heightened T-cell response to ICB. The peripheral blood signatures between HLs were also distinct, with higher levels of PD-1+TIGIT+ in TH1, TH2, and regulatory CD4+ T-cells in NLPHL versus cHL. Circulating PD-1+CD4+ had high levels of TCF-1. Notably, in both lymphomas, highly expanded populations of clonal TIGIT+PD-1+CD4+ and TIGIT+PD-1+CD8+ T-cells in the blood were also present in the TME, indicating that immune-checkpoint expressing T-cells circulated between intra-tumoral and blood compartments. In in vitro assays, ICB was capable of reducing rosette formation around LP and HRS cells, suggesting that disruption of rosetting may be a mechanism of action of ICB in HL. Overall, results indicate that further evaluation of ICB is warranted in NLPHL.
Collapse
Affiliation(s)
- Jay Gunawardana
- Blood Cancer Research Group, Mater Research, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Soi C. Law
- Blood Cancer Research Group, Mater Research, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Muhammed B. Sabdia
- Blood Cancer Research Group, Mater Research, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Éanna Fennell
- School of Medicine, Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Aoife Hennessy
- School of Medicine, Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ciara I. Leahy
- School of Medicine, Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Paul G. Murray
- School of Medicine, Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute, University of Limerick, Limerick, Ireland
- Royal College of Surgeons Ireland, Adliya, Bahrain
| | - Karolina Bednarska
- Blood Cancer Research Group, Mater Research, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Sandra Brosda
- Frazer Institute, University of Queensland, Translational Research Institute Brisbane, Australia
| | - Judith Trotman
- Concord Repatriation General Hospital, University of Sydney, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW
| | - Leanne Berkahn
- Department of Haematology, Auckland City Hospital, Auckland, New Zealand
| | - Andreea Zaharia
- Blood Cancer Research Group, Mater Research, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Simone Birch
- Princess Alexandra Hospital, Brisbane, Australia
| | - Melinda Burgess
- School of Medicine, Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute, University of Limerick, Limerick, Ireland
- Princess Alexandra Hospital, Brisbane, Australia
| | - Dipti Talaulikar
- Haematology Translational Research Unit, ACT Pathology, Canberra Health Services, Canberra, Australia
- College of Health and Medicine, Australian National University, Canberra, Australia
| | - Justina N. Lee
- Blood Cancer Research Group, Mater Research, University of Queensland, Translational Research Institute, Brisbane, Australia
| | | | - Eliza A. Hawkes
- Olivia Newton John Cancer Research and Wellness Centre, Austin Health, Melbourne, Australia
- Transfusion Research Unit, School of Public Health and Preventative Medicine, Monash University, Melbourne Australia
| | - Sanjiv Jain
- Anatomical Pathology Department, The Canberra Hospital, Canberra, Australia
| | - Karthik Nath
- Blood Cancer Research Group, Mater Research, University of Queensland, Translational Research Institute, Brisbane, Australia
- Memorial Sloan Kettering Cancer Center, NY, USA
| | - Cameron Snell
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Mater Pathology, Brisbane, Australia
| | - Fiona Swain
- Royal College of Surgeons Ireland, Adliya, Bahrain
- Princess Alexandra Hospital, Brisbane, Australia
| | - Joshua W. D. Tobin
- Blood Cancer Research Group, Mater Research, University of Queensland, Translational Research Institute, Brisbane, Australia
- Princess Alexandra Hospital, Brisbane, Australia
| | - Colm Keane
- Frazer Institute, University of Queensland, Translational Research Institute Brisbane, Australia
- Princess Alexandra Hospital, Brisbane, Australia
| | - Mohamed Shanavas
- Blood Cancer Research Group, Mater Research, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Emily Blyth
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW
- Department of Haematology, Westmead Hospital, Westmead, NSW, Australia
- Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW
| | | | - Kerry Savage
- British Columbia Cancer Agency, Vancouver, Canada
| | | | | | | | | | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maher K. Gandhi
- Blood Cancer Research Group, Mater Research, University of Queensland, Translational Research Institute, Brisbane, Australia
- Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
4
|
Tolomeo M, Cascio A. STAT4 and STAT6, their role in cellular and humoral immunity and in diverse human diseases. Int Rev Immunol 2024; 43:394-418. [PMID: 39188021 DOI: 10.1080/08830185.2024.2395274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/23/2023] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Signal transducer and activator of transcription (STAT) 4 and STAT6 play a crucial role in immune cells by transducing signals from specific cytokine receptors, and inducing transcription of genes involved in cell-mediated and humoral immunity. These two different defense mechanisms against pathogens are regulated by two specific CD4+ T helper (Th) cells known as Th1 and Th2 cells. Many studies have shown that several diseases including cancer, inflammatory, autoimmune and allergic diseases are associated with a Th1/Th2 imbalance caused by increased or decreased expression/activity of STAT4 or STAT6 often due to genetic and epigenetic aberrances. An altered expression of STAT4 has been observed in different tumors and autoimmune diseases, while a dysregulation of STAT6 signaling pathway is frequently observed in allergic conditions, such as atopic dermatitis, allergic asthma, food allergy, and tumors such as Hodgkin and non-Hodgkin lymphomas. Recently, dysregulations of STAT4 and STAT6 expression have been observed in SARS-CoV2 and monkeypox infections, which are still public health emergencies in many countries. SARS-CoV-2 can induce an imbalance in Th1 and Th2 responses with a predominant activation of STAT6 in the cytosol and nuclei of pneumocytes that drives Th2 polarization and cytokine storm. In monkeypox infection the virus can promote an immune evasion by inducing a Th2 response that in turn inhibits the Th1 response essential for virus elimination. Furthermore, genetic variations of STAT4 that are associated with an increased risk of developing systemic lupus erythematosus seem to play a role in defense against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Infectious Diseases, A.O.U.P. Palermo, Palermo, Italy
| | - Antonio Cascio
- Department of Infectious Diseases, A.O.U.P. Palermo, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, Palermo, Italy
| |
Collapse
|
5
|
Kosydar S, Ansell SM. The biology of classical Hodgkin lymphoma. Semin Hematol 2024:S0037-1963(24)00059-3. [PMID: 38824068 DOI: 10.1053/j.seminhematol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Classical Hodgkin lymphoma (cHL) is distinguished by several important biological characteristics. The presence of Hodgkin Reed Sternberg (HRS) cells is a defining feature of this disease. The tumor microenvironment with relatively few HRS cells in an expansive infiltrate of immune cells is another key feature. Numerous cell-cell mediated interactions and a plethora of cytokines in the tumor microenvironment collectively work to promote HRS cell growth and survival. Aberrancy and constitutive activation of core signal transduction pathways are a hallmark trait of cHL. Genetic lesions contribute to these dysregulated pathways and evasion of the immune system through a variety of mechanisms is another notable feature of cHL. While substantial elucidation of the biology of cHL has enabled advancements in therapy, increased understanding in the future of additional mechanisms driving cHL may lead to new treatment opportunities.
Collapse
Affiliation(s)
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
6
|
Senchenko MA, Konovalov DM. [IgD expression in various immunoarchitectural patterns of nodular lymphocyte predominant Hodgkin lymphoma in children]. Arkh Patol 2024; 86:21-26. [PMID: 38319268 DOI: 10.17116/patol20248601121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
BACKGROUND Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) consist of lymphocyte predominant cell or LP-cell. Despite their origin from active germinal centers, in some cases LP-cells express IgD, which is characteristic of naive B-lymphocytes of the mantle zone. Due to the rarity of NLPHL, assessing the frequency of IgD-positive cases is difficult. This marker can serve not only for differential diagnosis with other diseases, but also indicate the possible heterogeneity of NLPHL, which is currently represented by six immunoarchitectural patterns. OBJECTIVE To determine the frequency of IgD-positive cases of NLPHL in children with subsequent assessment of the association with types of immunoarchitectural patterns. MATERIAL AND METHODS The study included 52 cases of NLPHL, which were divided to typical and atypical patterns. Differences between two groups were compared using Fisher's exact tests. RESULTS IgD expression was found in LP-cells in 26 of 52 cases (50%) and was positively correlated with atypical types (typical - 5/23, 21.7% vs atypical - 21/29, 72.4%, p=0.0003), among which pattern C was most common. CONCLUSION Due to the high incidence of IgD-positive cases in NLPHL, this marker may be useful in differential diagnosis with histologic mimics. At the same time, positive IgD status was associated with atypical patterns, which may likely determine the different biology of neoplastic cells within the same form.
Collapse
Affiliation(s)
- M A Senchenko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - D M Konovalov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
7
|
Gomez F, Fisk B, McMichael JF, Mosior M, Foltz JA, Skidmore ZL, Duncavage EJ, Miller CA, Abel H, Li YS, Russler-Germain DA, Krysiak K, Watkins MP, Ramirez CA, Schmidt A, Martins Rodrigues F, Trani L, Khanna A, Wagner JA, Fulton RS, Fronick CC, O'Laughlin MD, Schappe T, Cashen AF, Mehta-Shah N, Kahl BS, Walker J, Bartlett NL, Griffith M, Fehniger TA, Griffith OL. Ultra-Deep Sequencing Reveals the Mutational Landscape of Classical Hodgkin Lymphoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2312-2330. [PMID: 37910143 PMCID: PMC10648575 DOI: 10.1158/2767-9764.crc-23-0140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Bryan Fisk
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Joshua F. McMichael
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Matthew Mosior
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Jennifer A. Foltz
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Zachary L. Skidmore
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Eric J. Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Christopher A. Miller
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Haley Abel
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Yi-Shan Li
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - David A. Russler-Germain
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Kilannin Krysiak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Marcus P. Watkins
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Cody A. Ramirez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Alina Schmidt
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Fernanda Martins Rodrigues
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lee Trani
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ajay Khanna
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Julia A. Wagner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Robert S. Fulton
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Catrina C. Fronick
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Michelle D. O'Laughlin
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Amanda F. Cashen
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Neha Mehta-Shah
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Brad S. Kahl
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jason Walker
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nancy L. Bartlett
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Malachi Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Todd A. Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Obi L. Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
8
|
Nejati R, Amador C, Czader M, Thacker E, Thakkar D, Dave SS, Dogan A, Duffield A, Goodlad JR, Ott G, Wasik MA, Xiao W, Cook JR. Progression of Hodgkin lymphoma and plasma cell neoplasms: Report from the 2021 SH/EAHP Workshop. Am J Clin Pathol 2023:7135990. [PMID: 37085150 DOI: 10.1093/ajcp/aqad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/20/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVES To summarize cases submitted to the 2021 Society for Hematopathology/European Association for Haematopathology Workshop under the categories of progression of Hodgkin lymphoma, plasmablastic myeloma, and plasma cell myeloma. METHODS The workshop panel reviewed 20 cases covered in this session. In addition, whole-exome sequencing (WES) and whole-genome RNA expression analysis were performed on 10 submitted cases, including 6 Hodgkin lymphoma and 4 plasma neoplasm cases. RESULTS The cases of Hodgkin lymphoma included transformed cases to or from various types of B-cell lymphoma with 1 exception, which had T-cell differentiation. The cases of plasma cell neoplasms included cases with plasmablastic progression, progression to plasma cell leukemia, and secondary B-lymphoblastic leukemia. Gene variants identified by WES included some known to be recurrent in Hodgkin lymphoma and plasma cell neoplasm. All submitted Hodgkin lymphoma samples showed 1 or more of these mutations: SOCS1, FGFR2, KMT2D, RIT1, SPEN, STAT6, TET2, TNFAIP3, and ZNF217. CONCLUSIONS Better molecular characterization of both of these neoplasms and mechanisms of progression will help us to better understand mechanisms of progression and perhaps develop better prognostic models, as well as identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Catalina Amador
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Magdalena Czader
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Devang Thakkar
- Department of Medcine, Duke University School of Medicine, Durham, NC, USA
| | - Sandeep S Dave
- Department of Medcine, Duke University School of Medicine, Durham, NC, USA
| | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amy Duffield
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John R Goodlad
- Department of Pathology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wenbin Xiao
- Department of Medcine, Duke University School of Medicine, Durham, NC, USA
| | - James R Cook
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
9
|
Li Z, Mu W, Xiao M. Genetic lesions and targeted therapy in Hodgkin lymphoma. Ther Adv Hematol 2023; 14:20406207221149245. [PMID: 36654739 PMCID: PMC9841868 DOI: 10.1177/20406207221149245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Hodgkin lymphoma is a special type of lymphoma in which tumor cells frequently undergo multiple genetic lesions that are associated with accompanying pathway abnormalities. These pathway abnormalities are dominated by active signaling pathways, such as the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway and the NFκB (nuclear factor kappa-B) pathway, which usually result in hyperactive survival signaling. Targeted therapies often play an important role in hematologic malignancies, such as CAR-T therapy (chimeric antigen receptor T-cell immunotherapy) targeting CD19 and CD22 in diffuse large B-cell lymphoma, while in Hodgkin lymphoma, the main targets of targeted therapies are CD30 molecules and PD1 molecules. Drugs targeting other molecules are also under investigation. This review summarizes the actionable genetic lesions, current treatment options, clinical trials for Hodgkin lymphoma and the potential value of those genetic lesions in clinical applications.
Collapse
Affiliation(s)
- Zhe Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hankou, Wuhan 430030, China
| |
Collapse
|
10
|
Fei F, Kiruthiga KG, Younes S, Natkunam Y. EBV-positive nodular lymphocyte predominant Hodgkin lymphoma: a single institution experience. Hum Pathol 2022; 129:32-39. [PMID: 35987347 DOI: 10.1016/j.humpath.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The objective of this study is to characterize the clinicopathologic features of Epstein-Barr virus (EBV)-positive nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) at a single institution. A retrospective review of cases diagnosed with EBV-positive NLPHL was performed and the patients' demographic and pathologic features were collected by chart review. In this study, we identified 17 EBV-positive NLPHL patients whose clinicopathologic features are characterized. EBV was positive in lymphocyte predominant (LP) cells in 6 of 17 cases, whereas the remaining cases showed EBV positivity in background small cells. Immunohistochemical analysis showed that LP cells were positive for CD20 (94.1%) in most cases and positive for OCT2 (100%) in all cases with one case showing weak OCT2 expression, whereas PAX5 and CD79a were weak and/or variable in 9 of 12 and 3 of 7 cases, respectively. CD30 was positive in 7 of 17 cases with 5 cases showing only scattered positive cells. In addition, we report a patient who had a history of EBV-negative NLPHL and showed EBV-positive NLPHL at the time of recurrence. Molecular studies performed on the 2 biopsies in the patient indicated EBV infection involving the NF-kB pathway. Our study shows that EBV-positive NLPHL is rare and may be diagnostically challenging because of atypical immunophenotypic features, such as partial expression of CD30, and weak/variable PAX5 and/or CD79a expression. The overall retention of the B-cell phenotype with strong and diffuse expression of CD20 and OCT2 in LP cells supports the diagnosis of EBV-positive NLPHL.
Collapse
Affiliation(s)
- Fei Fei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Sheren Younes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Abstract
Somatic mutations of genes involved in NF-κB, PI3K/AKT, NOTCH, and JAK/STAT signaling pathways play an important role in the pathogenesis of Hodgkin lymphoma (HL). HL tumor cells form only about 5% of the tumor mass; however, it was shown that HL tumor-derived DNA could be detected in the bloodstream. This circulating tumor DNA (ctDNA) reflects the genetic profile of HL tumor cells and can be used for qualitative and quantitative analysis of tumor-specific somatic DNA mutations within the concept of liquid biopsy. Overall, the most frequently mutated gene in HL is STAT6; however, the exact spectrum of mutations differs between individual HL histological subtypes. Importantly, reduction of ctDNA plasma levels after initial treatment is highly correlated with prognosis. Therefore, ctDNA shows great promise as a novel tool for non-invasive tumor genome analysis for biomarker driven therapy as well as for superior minimal residual disease monitoring and treatment resistance detection. Here, we summarize the recent advancements of ctDNA analysis in HL with focus on ctDNA detection methodologies, genetic profiling of HL and its clonal evolution, and the emerging prognostic value of ctDNA.
Collapse
|
12
|
Satou A, Takahara T, Nakamura S. An Update on the Pathology and Molecular Features of Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14112647. [PMID: 35681627 PMCID: PMC9179292 DOI: 10.3390/cancers14112647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hodgkin lymphomas (HLs) include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular findings in HLs have contributed to dramatic changes in the treatment and identification of tumor characteristics. For example, PD-1/PD-L1 blockade and brentuximab vedotin, an anti-CD30 antibody bearing a cytotoxic compound, are now widely used in patients with CHL. Biological continuity between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma has been highlighted. An era of novel therapeutics for HL has begun. The aim of this paper is to review the morphologic, immunophenotypic, and molecular features of CHL and NLPHL, which must be understood for the development of novel therapeutics. Abstract Hodgkin lymphomas (HLs) are lymphoid neoplasms derived from B cells and consist histologically of large neoplastic cells known as Hodgkin and Reed–Sternberg cells and abundant reactive bystander cells. HLs include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular analyses have revealed that an immune evasion mechanism, particularly the PD-1/PD-L1 pathway, plays a key role in the development of CHL. Other highlighted key pathways in CHL are NF-κB and JAK/STAT. These advances have dramatically changed the treatment for CHL, particularly relapsed/refractory CHL. For example, PD-1 inhibitors are now widely used in relapsed/refractory CHL. Compared with CHL, NLPHL is more characterized by preserved B cell features. Overlapping morphological and molecular features between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) have been reported, and biological continuity between these two entities has been highlighted. Some THRLBCLs are considered to represent progression from NLPHLs. With considerable new understanding becoming available from molecular studies in HLs, therapies and classification of HLs are continually evolving. This paper offers a summary of and update on the pathological and molecular features of HLs for a better understanding of the diseases.
Collapse
Affiliation(s)
- Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
- Correspondence: ; Tel.: +81-561-62-3311; Fax: +81-561-61-3811
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya 466-8550, Japan;
| |
Collapse
|
13
|
Karpathiou G, Ferrand E, Papoudou-Bai A, Camy F, Honeyman F, Dumollard JM, Peoc'h M. STAT6 and phosphorylated STAT6 are differentially expressed in lymphomas. Pathol Res Pract 2021; 229:153697. [PMID: 34839096 DOI: 10.1016/j.prp.2021.153697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The STAT6 pathway is implicated in the pathogenesis of various lymphomas; however, its immunohistochemical expression has not been fully investigated. Thus, the aim of this study was to investigate the immunohistochemical expression of the two forms of STAT6, phosphorylated or not, in a series of systemic lymphomas. MATERIALS AND METHODS Immunohistochemical expression of two antibodies, STAT6 (clone YE361) and pSTAT6 (clone Y641), which recognise the phosphorylated form of the molecule was studied in 60 lymphomas. RESULTS STAT6YE361 expression was cytoplasmic, with 23.3% of the cases showing high expression. pSTAT6Y641 expression was mostly nuclear and found in 45% of the cases. pSTAT6Y641 nuclear expression was associated with the lymphoma type (p < 0.0001), as it was seen mostly in follicular, Hodgkin and angioimmunoblastic T cell lymphomas. STAT6YE361 cytoplasmic expression was also associated with lymphoma type (p = 0.001), as it was mostly found in diffuse large B cell and marginal B cell lymphomas. No association with PD-L1 expression, other clinicopathological data or prognosis was found. CONCLUSION The two STAT6 clones are differentially expressed between lymphoma types.
Collapse
Affiliation(s)
| | - Elise Ferrand
- Pathology Department, University Hospital of Saint-Etienne, France
| | | | - Florian Camy
- Pathology Department, University Hospital of Saint-Etienne, France
| | - Fressia Honeyman
- Hematology and Cell Therapy Department, Lucien Neuwirth Cancer Institute, France
| | | | - Michel Peoc'h
- Pathology Department, University Hospital of Saint-Etienne, France
| |
Collapse
|
14
|
Sobah ML, Liongue C, Ward AC. SOCS Proteins in Immunity, Inflammatory Diseases, and Immune-Related Cancer. Front Med (Lausanne) 2021; 8:727987. [PMID: 34604264 PMCID: PMC8481645 DOI: 10.3389/fmed.2021.727987] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cytokine signaling represents one of the cornerstones of the immune system, mediating the complex responses required to facilitate appropriate immune cell development and function that supports robust immunity. It is crucial that these signals be tightly regulated, with dysregulation underpinning immune defects, including excessive inflammation, as well as contributing to various immune-related malignancies. A specialized family of proteins called suppressors of cytokine signaling (SOCS) participate in negative feedback regulation of cytokine signaling, ensuring it is appropriately restrained. The eight SOCS proteins identified regulate cytokine and other signaling pathways in unique ways. SOCS1–3 and CISH are most closely involved in the regulation of immune-related signaling, influencing processes such polarization of lymphocytes and the activation of myeloid cells by controlling signaling downstream of essential cytokines such as IL-4, IL-6, and IFN-γ. SOCS protein perturbation disrupts these processes resulting in the development of inflammatory and autoimmune conditions as well as malignancies. As a consequence, SOCS proteins are garnering increased interest as a unique avenue to treat these disorders.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
15
|
Duan Y, Chen L, Shao J, Jiang C, Zhao Y, Li Y, Ke H, Zhang R, Zhu J, Yu M. Lanatoside C inhibits human cervical cancer cell proliferation and induces cell apoptosis by a reduction of the JAK2/STAT6/SOCS2 signaling pathway. Oncol Lett 2021; 22:740. [PMID: 34466152 DOI: 10.3892/ol.2021.13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer-associated mortality in gynecological diseases and ranks third among female cancers worldwide. Although early detection and vaccination have reduced incidence rates, cancer recurrence and metastasis lead to high mortality due to the lack of effective medicines. The present study aimed to identify novel drug candidates to treat cervical cancer. In the present study, lanatoside C, an FDA-approved cardiac glycoside used for the treatment of heart failure, was demonstrated to have anti-proliferative and cytotoxic effects on cervical cancer cells, with abrogation of cell migration in a dose-dependent manner. Lanatoside C also triggered cell apoptosis by enhancing reactive oxygen species production and reducing the mitochondrial membrane potential, which induced cell cycle arrest at the S and G2/M phases. Furthermore, lanatoside C inhibited the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 6 (STAT6), while inducing the expression of suppressor of cytokine signaling 2, a negative regulator of JAK2-STAT6 signaling. Taken together, the results of the present study suggest that lanatoside C suppresses cell proliferation and induces cell apoptosis by inhibiting JAK2-STAT6 signaling, indicating that lanatoside C is a promising agent for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yingchun Duan
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Li Chen
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Juan Shao
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Cui Jiang
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Yingmei Zhao
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Yanyi Li
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Huihui Ke
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Rui Zhang
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Jianlong Zhu
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Minghua Yu
- Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| |
Collapse
|
16
|
Karpathiou G, Ferrand E, Camy F, Babiuc SM, Papoudou-Bai A, Dumollard JM, Cornillon J, Peoc'h M. Expression of STAT6 and Phosphorylated STAT6 in Primary Central Nervous System Lymphomas. J Neuropathol Exp Neurol 2021; 80:830-834. [PMID: 34388250 DOI: 10.1093/jnen/nlab080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The signal transducer and activator of transcription 6 (STAT6) is implicated in the pathogenesis of some lymphomas including primary central nervous system lymphomas (PCNSLs). The aim of this study was to investigate STAT6 expression and clinicopathologic features in 25 PCNSLs using immunohistochemistry with 2 different anti-STAT6 antibodies. One (YE361) recognizes the C-terminus domain of the STAT6 protein and the other (Y641) recognizes the phosphorylated form of the protein. The phosphorylated STAT6 form was not expressed in any of the cases studied whereas the YE361 STAT6 showed only cytoplasmic expression in 14 (56%) cases. This expression did not correlate with age, prognostic score, multiplicity, invasion of deep structures, response to treatment, disease recurrence, overall survival, or BCL6, BCL2, PD-L1, and CD8 expression. A STAT6 expression score showed a trend for correlating with clinical performance status. It also showed a positive correlation with MYC expression. Thus, the phosphorylated form of STAT6 was not found in the current series, while the YE361 STAT6 showed only cytoplasmic expression and was associated with expression of MYC.
Collapse
Affiliation(s)
- Georgia Karpathiou
- From the Pathology Department, University Hospital of Saint-Etienne, France (GK, EF, FC, JMD, MP); Hematology and Cell Therapy Department, Lucien Neuwirth Cancer Institute, France (S-MB, JC); Pathology Department, University Hospital of Ioannina, Ioannina, Greece (AP-B)
| | - Elise Ferrand
- From the Pathology Department, University Hospital of Saint-Etienne, France (GK, EF, FC, JMD, MP); Hematology and Cell Therapy Department, Lucien Neuwirth Cancer Institute, France (S-MB, JC); Pathology Department, University Hospital of Ioannina, Ioannina, Greece (AP-B)
| | - Florian Camy
- From the Pathology Department, University Hospital of Saint-Etienne, France (GK, EF, FC, JMD, MP); Hematology and Cell Therapy Department, Lucien Neuwirth Cancer Institute, France (S-MB, JC); Pathology Department, University Hospital of Ioannina, Ioannina, Greece (AP-B)
| | - Silvia-Maria Babiuc
- From the Pathology Department, University Hospital of Saint-Etienne, France (GK, EF, FC, JMD, MP); Hematology and Cell Therapy Department, Lucien Neuwirth Cancer Institute, France (S-MB, JC); Pathology Department, University Hospital of Ioannina, Ioannina, Greece (AP-B)
| | - Alexandra Papoudou-Bai
- From the Pathology Department, University Hospital of Saint-Etienne, France (GK, EF, FC, JMD, MP); Hematology and Cell Therapy Department, Lucien Neuwirth Cancer Institute, France (S-MB, JC); Pathology Department, University Hospital of Ioannina, Ioannina, Greece (AP-B)
| | - Jean Marc Dumollard
- From the Pathology Department, University Hospital of Saint-Etienne, France (GK, EF, FC, JMD, MP); Hematology and Cell Therapy Department, Lucien Neuwirth Cancer Institute, France (S-MB, JC); Pathology Department, University Hospital of Ioannina, Ioannina, Greece (AP-B)
| | - Jerome Cornillon
- From the Pathology Department, University Hospital of Saint-Etienne, France (GK, EF, FC, JMD, MP); Hematology and Cell Therapy Department, Lucien Neuwirth Cancer Institute, France (S-MB, JC); Pathology Department, University Hospital of Ioannina, Ioannina, Greece (AP-B)
| | - Michel Peoc'h
- From the Pathology Department, University Hospital of Saint-Etienne, France (GK, EF, FC, JMD, MP); Hematology and Cell Therapy Department, Lucien Neuwirth Cancer Institute, France (S-MB, JC); Pathology Department, University Hospital of Ioannina, Ioannina, Greece (AP-B)
| |
Collapse
|
17
|
Genome-wide transcriptome analysis of the STAT6-regulated genes in advanced-stage cutaneous T-cell lymphoma. Blood 2021; 136:1748-1759. [PMID: 32438399 DOI: 10.1182/blood.2019004725] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
The signal transducer and activator of transcription 6 (STAT6) is a critical up-stream mediator of interleukin-13 (IL-13) and IL-4 signaling and is constitutively activated in malignant lymphocytes from Sezary syndrome (SS) and mycosis fungoides (MF), the most common subtypes of cutaneous T-cell lymphomas. By combining genome-wide expression profiling with pharmacological STAT6 inhibition, we have identified the genes regulated by STAT6 in MF/SS tumors. We found that STAT6 regulates several common pathways in MF/SS malignant lymphocytes that are associated with control of cell-cycle progression and genomic stability as well as production of Th2 cytokines. Using ex vivo skin explants from cutaneous MF tumors as well as Sezary cells derived from the blood of SS patients, we demonstrated that inhibition of STAT6 activation downregulates cytokine production and induces cell-cycle arrest in MF/SS malignant lymphocytes, inhibiting their proliferation but not their survival. Furthermore, we show that STAT6 promotes the protumoral M2-like phenotype of tumor-associated macrophages in the tumor microenvironment of advanced stage MF by upregulating the expression of genes associated with immunosuppression, chemotaxis, and tumor matrix remodeling. Thus, we show STAT6 to be a major factor in the pathogenesis and progression of MF/SS, promoting proliferation and invasion of the malignant lymphocytes while inducing a progressive depression of the antitumor immune response. Together, our results provide new insights into disease pathogenesis and offer new prospective targets for therapeutic intervention.
Collapse
|
18
|
Abstract
Tazemetostat represents the first epigenetic therapy approved for the treatment of follicular lymphoma (FL). It inhibits the activity of the enhancer of zeste homolog 2 (EZH2) histone methyltransferase, the first of a multitude of epigenetic regulators that have been identified as recurrently mutated in FL and germinal center diffuse large B-cell lymphoma. In this review, we discuss the initial discovery and ongoing exploration of the functional role of EZH2 mutations in lymphomagenesis. We also explore the path from the preclinical development of tazemetostat to its approval for the treatment of relapsed FL, and potential future therapeutic applications. We discuss the clinical data that led to the approval of tazemetostat and ongoing research into the function of EZH2 and of tazemetostat in lymphomas that derive from the germinal center, which could increase the applicability of this drug in the future.
Collapse
|
19
|
Follicular lymphoma t(14;18)-negative is genetically a heterogeneous disease. Blood Adv 2021; 4:5652-5665. [PMID: 33211828 DOI: 10.1182/bloodadvances.2020002944] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Fifty-five cases of t(14;18)- follicular lymphoma (FL) were genetically characterized by targeted sequencing and copy number (CN) arrays. t(14;18)- FL predominated in women (M/F 1:2); patients often presented during early clinical stages (71%), and had excellent prognoses. Overall, t(14;18)- FL displayed CN alterations (CNAs) and gene mutations carried by conventional t(14;18)+ FL (cFL), but with different frequencies. The most frequently mutated gene was STAT6 (57%) followed by CREBBP (49%), TNFRSF14 (39%), and KMT2D (27%). t(14;18)- FL showed significantly more STAT6 mutations and lacked MYD88, NOTCH2, MEF2B, and MAP2K1 mutations compared with cFL, nodal marginal zone lymphoma (NMZL), and pediatric-type FL (PTFL). We identified 2 molecular clusters. Cluster A was characterized by TNFRSF14 mutations/1p36 alterations (96%) and frequent mutations in epigenetic regulators, with recurrent loss of 6q21-24 sharing many features with cFL. Cluster B showed few genetic alterations; however, a subgroup with STAT6 mutations concurrent with CREBBP mutations/16p alterations without TNFRSF14 and EZH2 mutations was noted (65%). These 2 molecular clusters did not distinguish cases by inguinal localization, growth pattern, or presence of STAT6 mutations. BCL6 rearrangements were demonstrated in 10 of 45 (22%) cases and did not cluster together. Cases with predominantly inguinal presentation (20 of 50; 40%) had a higher frequency of diffuse growth pattern, STAT6 mutations, CD23 expression, and a lower number of CNAs, in comparison with noninguinal cases (5.1 vs 9.1 alterations per case; P < .05). STAT6 mutations showed a positive correlation with CD23 expression (P < .001). In summary, t(14;18)- FL is genetically a heterogeneous disorder with features that differ from cFL, NMZL, and PTFL.
Collapse
|
20
|
Karpathiou G, Papoudou-Bai A, Ferrand E, Dumollard JM, Peoc'h M. STAT6: A review of a signaling pathway implicated in various diseases with a special emphasis in its usefulness in pathology. Pathol Res Pract 2021; 223:153477. [PMID: 33991851 DOI: 10.1016/j.prp.2021.153477] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
Signal Transducer and Activator of Transcription 6 (STAT6), belonging to a family of seven similar members is primarily stimulated by interleukin(IL)-4 and IL-13, and acts as a T helper type 2 (Th2)-inducing factor. Thus, it is implicated in the pathophysiology of various allergic conditions, such as asthma, atopic dermatitis, eosinophilic esophagitis and food allergies, but also in tumor microenvironment regulation. Furthermore, certain forms of lymphomas, notably the Hodgkin lymphoma group, the primary mediastinal and primary central nervous system lymphoma, as well as some follicular and T cell lymphomas are associated with dysregulation of the STAT6 pathway. STAT6 immunohistochemical expression also serves as a surrogate marker in the diagnosis of solitary fibrous tumor, despite not directly responsible for the tumorigenic effect. These pathophysiological implications of the STAT6 pathway, its diagnostic or prognostic role in pathology, as well its immunohistochemical detection with different antibodies will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Elise Ferrand
- Pathology Department, University Hospital of Saint-Etienne, France
| | | | - Michel Peoc'h
- Pathology Department, University Hospital of Saint-Etienne, France
| |
Collapse
|
21
|
Zahn M, Kaluszniak B, Möller P, Marienfeld R. The PTP1B mutant PTP1B∆2-4 is a positive regulator of the JAK/STAT signalling pathway in Hodgkin lymphoma. Carcinogenesis 2021; 42:517-527. [PMID: 33382412 PMCID: PMC8086765 DOI: 10.1093/carcin/bgaa144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 01/17/2023] Open
Abstract
The neoplastic Hodgkin/Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) depend on chronic activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathways to maintain survival and proliferation. Accumulating reports highlight the importance of the inactivation or reduced expression of negative JAK/STAT regulators such as the protein-tyrosine phosphatase 1B (PTP1B/PTPN1) in this process. Various PTPN1 mRNA variants as well as truncated PTP1B proteins were identified in cHL cell lines and primary cHL tumour samples. These PTPN1 mRNA variants lack either one or several exon sequences and therefore render these PTP1B variants catalytically inactive. Here, we show that one of these mutants, PTP1B∆2-4, is not only a catalytically inactive variant, but also augmented the IL-4-induced JAK/STAT activity similar to the recently reported PTP1B∆6 splice variant. Moreover, while PTP1B∆6 diminished the activity and protein levels of PTP1BWT, PTP1BWT remained unaffected by PTP1B∆2-4, arguing for different molecular mechanisms of JAK/STAT modulation by PTP1B∆6 and PTP1B∆2-4. Collectively, these data indicate that PTPN1 variants missing one or more exon sequences originated either from alternative splicing or from gene mutation, create PTP1B gain-of-function variants with oncogenic potential by augmenting JAK/STAT signalling in cHL.
Collapse
Affiliation(s)
- Malena Zahn
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Bianca Kaluszniak
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Ralf Marienfeld
- Institute of Pathology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| |
Collapse
|
22
|
Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia 2021; 35:968-981. [PMID: 33686198 PMCID: PMC8024192 DOI: 10.1038/s41375-021-01204-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Classical Hodgkin lymphoma (cHL) is unique among lymphoid malignancies in several key biological features. (i) The Hodgkin and Reed-Sternberg (HRS) tumor cells are rare among an extensive and complex microenvironment. (ii) They derive from B cells, but have largely lost the B-cell typical gene expression program. (iii) Their specific origin appears to be pre-apoptotic germinal center (GC) B cells. (iv) They consistently develop bi- or multinucleated Reed-Sternberg cells from mononuclear Hodgkin cells. (v) They show constitutive activation of numerous signaling pathways. Recent studies have begun to uncover the basis of these specific features of cHL: HRS cells actively orchestrate their complex microenvironment and attract many distinct subsets of immune cells into the affected tissues, to support their survival and proliferation, and to create an immunosuppressive environment. Reed-Sternberg cells are generated by incomplete cytokinesis and refusion of Hodgkin cells. Epstein-Barr virus (EBV) plays a major role in the rescue of crippled GC B cells from apoptosis and hence is a main player in early steps of lymphomagenesis of EBV+ cHL cases. The analysis of the landscape of genetic lesions in HRS cells so far did not reveal any highly recurrent HRS cell-specific lesions, but major roles of genetic lesions in members of the NF-κB and JAK/STAT pathways and of factors of immune evasion. It is perhaps the combination of the genetic lesions and the peculiar cellular origin of HRS cells that are disease defining. A combination of such genetic lesions and multiple cellular interactions with cells in the microenvironment causes the constitutive activation of many signaling pathways, often interacting in complex fashions. In nodular lymphocyte predominant Hodgkin lymphoma, the GC B cell-derived tumor cells have largely retained their typical GC B-cell expression program and follicular microenvironment. For IgD-positive cases, bacterial antigen triggering has recently been implicated in early stages of its pathogenesis.
Collapse
Affiliation(s)
- Marc A Weniger
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ralf Küppers
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
23
|
Genomic Landscape of Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13040682. [PMID: 33567641 PMCID: PMC7915917 DOI: 10.3390/cancers13040682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is composed of many reactive and only a few cancer cells, so-called Hodgkin and Reed-Sternberg (HRS) or lymphocyte predominant (LP) cells. Due to the scarcity of these cells, it was difficult to perform high-throughput molecular investigations on them for a long time. With the help of recently developed methods, it is now possible to analyze their genomes. This review summarizes the genetic alterations found in HRS and LP cells that impact immune evasion, proliferation and circumvention of programmed cell death in HL. Understanding these underlying molecular mechanisms is essential, as they may be of prognostic and predictive value and help to improve the therapy especially for patients with recurrent or treatment-resistant disease. Abstract Background: Hodgkin lymphoma (HL) is predominantly composed of reactive, non-neoplastic cells surrounding scarcely distributed tumor cells, that is, so-called Hodgkin and Reed-Sternberg (HRS) or lymphocyte predominant (LP) cells. This scarcity impeded the analysis of the tumor cell genomes for a long time, but recently developed methods (especially laser capture microdissection, flow cytometry/fluorescence-activated cell sorting) facilitated molecular investigation, elucidating the pathophysiological principles of “Hodgkin lymphomagenesis”. Methods: We reviewed the relevant literature of the last three decades focusing on the genomic landscape of classic and nodular lymphocyte predominant HL (NLPHL) and summarized molecular cornerstones. Results: Firstly, the malignant cells of HL evade the immune system by altered expression of PDL1/2, B2M and MHC class I and II due to various genetic alterations. Secondly, tumor growth is promoted by permanently activated JAK/STAT signaling due to pervasive mutations of multiple genes involved in the pathway. Thirdly, apoptosis of neoplastic cells is prevented by alterations of NF-κB compounds and the PI3K/AKT/mTOR axis. Additionally, Epstein-Barr virus infection can simultaneously activate JAK/STAT and NF-κB, similarly leading to enhanced survival and evasion of apoptosis. Finally, epigenetic phenomena such as promoter hypermethylation lead to the downregulation of B-lineage-specific, tumor-suppressor and immune regulation genes. Conclusion: The blueprint of HL genomics has been laid, paving the way for future investigations into its complex pathophysiology.
Collapse
|
24
|
Camus V, Viennot M, Lequesne J, Viailly PJ, Bohers E, Bessi L, Marcq B, Etancelin P, Dubois S, Picquenot JM, Veresezan EL, Cornic M, Burel L, Loret J, Becker S, Decazes P, Lenain P, Lepretre S, Lemasle E, Lanic H, Ménard AL, Contentin N, Tilly H, Stamatoullas A, Jardin F. Targeted genotyping of circulating tumor DNA for classical Hodgkin lymphoma monitoring: a prospective study. Haematologica 2021; 106:154-162. [PMID: 32079702 PMCID: PMC7776248 DOI: 10.3324/haematol.2019.237719] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/12/2020] [Indexed: 11/28/2022] Open
Abstract
The relevance of circulating tumor DNA (ctDNA) analysis as a liquid biopsy and minimal residual disease tool in the management of classical Hodgkin lymphoma (cHL) patients was demonstrated in retrospective settings and remains to be confirmed in a prospective setting. We developed a targeted Next-Generation sequencing (NGS) panel for fast analysis (AmpliSeq® technology) of nine commonly mutated genes in biopies and ctDNA of cHL patients. We then conducted a prospective trial to assess ctDNA follow-up at diagnosis and after two cycles (C2) of chemotherapy. Sixty cHL patients treated by first line conventional chemotherapy (BEACOPPescalated [21.3%], ABVD/ABVD-like [73.5%] and other regimens [5.2%, for elderly patients]) were assessed in this noninterventional study. The median age of the patients was 33.5 years (range: 20-86). Variants were identified in 42 (70%) patients. Mutations of NFKBIE, TNFAIP3, STAT6, PTPN1, B2M, XPO1, ITPKB, GNA13 and SOCS1 were found in 13.3%, 31.7%, 23.3%, 5%, 33.3%, 10%, 23.3%, 13.3% and 50% of patients, respectively. ctDNA concentration and genotype were correlated with clinical characteristics and presentation. Regarding early therapeutic response, 45 patients (83%, not available [NA] =6) had a negative positron emission tomography (PET) after C2 (Deauville Score 1-3). The mean of DeltaSUVmax after C2 was -78.8%. ctDNA after C2 was analysed in 54 patients (90%). ctDNA became rapidly undetectable in all cases after C2. Variant detection in ctDNA is suitable to depict the genetic features of cHL at diagnosis and may help to assess early treatment response, in association with PET. Clinical Trial reference: NCT02815137.
Collapse
Affiliation(s)
- Vincent Camus
- Department of Hematology, Centre Henri Becquerel, University of Rouen, Rouen
| | - Mathieu Viennot
- INSERM U1245, Centre Henri Becquerel, University of Rouen, Rouen
| | | | | | - Elodie Bohers
- INSERM U1245, Centre Henri Becquerel, University of Rouen, Rouen
| | - Lucile Bessi
- INSERM U1245, Centre Henri Becquerel, University of Rouen, Rouen, France
| | - Bénédicte Marcq
- Department of Hematology, Centre Henri Becquerel, University of Rouen, Rouen
| | | | - Sydney Dubois
- University of Rouen and Department of Genetic Oncology, Centre Henri Becquerel, Rouen
| | | | | | - Marie Cornic
- Clinical Research Unit, Centre Henri Becquerel, Rouen
| | - Lucie Burel
- Clinical Research Unit, Centre Henri Becquerel, Rouen, France
| | - Justine Loret
- Clinical Research Unit, Centre Henri Becquerel, Rouen, France
| | - Stéphanie Becker
- Department of Nuclear Medicine and Radiology, Centre Henri Becquerel and QuantIF, Rouen, France
| | - Pierre Decazes
- Department of Nuclear Medicine and Radiology, Centre Henri Becquerel and QuantIF, Rouen
| | - Pascal Lenain
- Department of Hematology, Centre Henri Becquerel, Rouen
| | - Stéphane Lepretre
- Department of Hematology, Centre Henri Becquerel, University of Rouen, Rouen
| | - Emilie Lemasle
- Department of Hematology, Centre Henri Becquerel, Rouen, France
| | - Hélène Lanic
- Department of Hematology, Centre Henri Becquerel, Rouen, France
| | | | | | - Hervé Tilly
- Department of Hematology, Centre Henri Becquerel, University of Rouen, Rouen, France
| | | | - Fabrice Jardin
- Department of Hematology, Centre Henri Becquerel, University of Rouen, Rouen, France
| |
Collapse
|
25
|
Hadjadj J, Castro CN, Tusseau M, Stolzenberg MC, Mazerolles F, Aladjidi N, Armstrong M, Ashrafian H, Cutcutache I, Ebetsberger-Dachs G, Elliott KS, Durieu I, Fabien N, Fusaro M, Heeg M, Schmitt Y, Bras M, Knight JC, Lega JC, Lesca G, Mathieu AL, Moreews M, Moreira B, Nosbaum A, Page M, Picard C, Ronan Leahy T, Rouvet I, Ryan E, Sanlaville D, Schwarz K, Skelton A, Viallard JF, Viel S, Villard M, Callebaut I, Picard C, Walzer T, Ehl S, Fischer A, Neven B, Belot A, Rieux-Laucat F. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat Commun 2020; 11:5341. [PMID: 33087723 PMCID: PMC7578789 DOI: 10.1038/s41467-020-18925-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022] Open
Abstract
Autoimmunity can occur when a checkpoint of self-tolerance fails. The study of familial autoimmune diseases can reveal pathophysiological mechanisms involved in more common autoimmune diseases. Here, by whole-exome/genome sequencing we identify heterozygous, autosomal-dominant, germline loss-of-function mutations in the SOCS1 gene in ten patients from five unrelated families with early onset autoimmune manifestations. The intracellular protein SOCS1 is known to downregulate cytokine signaling by inhibiting the JAK-STAT pathway. Accordingly, patient-derived lymphocytes exhibit increased STAT activation in vitro in response to interferon-γ, IL-2 and IL-4 that is reverted by the JAK1/JAK2 inhibitor ruxolitinib. This effect is associated with a series of in vitro and in vivo immune abnormalities consistent with lymphocyte hyperactivity. Hence, SOCS1 haploinsufficiency causes a dominantly inherited predisposition to early onset autoimmune diseases related to cytokine hypersensitivity of immune cells.
Collapse
Affiliation(s)
- Jérôme Hadjadj
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Carla Noemi Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Marie-Claude Stolzenberg
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Fabienne Mazerolles
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Auto-immunes de l'Enfant (CEREVANCE), CIC 1401, Inserm CICP, Bordeaux, France.,Pediatric Oncology Hematology Unit, University Hospital, place Amélie Raba Léon, CIC 1401, Inserm, CICP, Bordeaux, France
| | | | - Houman Ashrafian
- Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Georg Ebetsberger-Dachs
- Department of Pediatrics, Kepler University Hospital and School of Medicine, Johannes Kepler University, Linz, Austria
| | | | - Isabelle Durieu
- Internal Medicine and Vascular Pathology Department, Adult Cystic Fibrosis Center, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France.,EA 7425 HESPER. Université de Lyon, Lyon, France
| | - Nicole Fabien
- Immunology laboratory; Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Mathieu Fusaro
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yohan Schmitt
- Genomic Core Facility, INSERM UMR1163, Imagine Institute, Paris, France
| | - Marc Bras
- Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jean-Christophe Lega
- Department of Internal and Vascular Medicine, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France.,National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France.,UMR 5558, Equipe Evaluation et Modélisation des Effets Thérapeutiques, Laboratoire de Biométrie et Biologie Evolutive, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon - GHE, and Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Marion Moreews
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Baptiste Moreira
- Immunology Laboratory, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Audrey Nosbaum
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Allergy and Clinical Immunology department, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Matthew Page
- Translational Medicine, UCB Pharma, Braine-l'Alleud, Belgium
| | - Cécile Picard
- Institut de Pathologie Multisite, Groupement Hospitalier Est, Hospices Civils de Lyon, UCBL Lyon 1 University, Lyon, France
| | - T Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Isabelle Rouvet
- Centre de biotechnologie cellulaire et Biothèque, Groupe Hospitalier Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Ethel Ryan
- Department of Paediatrics, University Hospital Galway, Co, Galway, Ireland
| | - Damien Sanlaville
- Service de Génétique, Hospices Civils de Lyon - GHE, and Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Klaus Schwarz
- Institute for Transfusion Medicin, University Ulm and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, 89081, Ulm, Germany
| | - Andrew Skelton
- Translational Medicine, UCB Pharma, Slough, United Kingdom
| | - Jean-Francois Viallard
- Département de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Universitaire Haut Lévêque, Université de Bordeaux, Pessac, France
| | - Sebastien Viel
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Service d'Immunologie Biologique, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Marine Villard
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Imagine institute, laboratory of Iymphocyte activation and susceptibility to EBV, INSERM UMR 1163, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alain Fischer
- Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.,Paediatric Immuno-Haematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France.,Collège de France, Paris, France
| | - Bénédicte Neven
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.,Paediatric Immuno-Haematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France. .,National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France. .,Hospices Civils de Lyon, Paediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital, Bron, France.
| | - Frédéric Rieux-Laucat
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France. .,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.
| |
Collapse
|
26
|
Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv 2020; 3:4065-4080. [PMID: 31816062 DOI: 10.1182/bloodadvances.2019001012] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) is composed of rare malignant Hodgkin Reed-Sternberg (HRS) cells within an extensive, but ineffective, inflammatory/immune cell infiltrate. HRS cells exhibit near-universal somatic copy gains of chromosome 9p/9p24.1, which increase expression of the programmed cell death protein 1 (PD-1) ligands. To define genetic mechanisms of response and resistance to PD-1 blockade and identify complementary treatment targets, we performed whole-exome sequencing of flow cytometry-sorted HRS cells from 23 excisional biopsies of newly diagnosed cHLs, including 8 Epstein-Barr virus-positive (EBV+) tumors. We identified significantly mutated cancer candidate genes (CCGs) as well as somatic copy number alterations and structural variations and characterized their contribution to disease-defining immune evasion mechanisms and nuclear factor κB (NF-κB), JAK/STAT, and PI3K signaling pathways. EBV- cHLs had a higher prevalence of genetic alterations in the NF-κB and major histocompatibility complex class I antigen presentation pathways. In this young cHL cohort (median age, 26 years), we identified a predominant mutational signature of spontaneous deamination of cytosine- phosphate-guanines ("Aging"), in addition to apolipoprotein B mRNA editing catalytic polypeptide-like, activation-induced cytidine deaminase, and microsatellite instability (MSI)-associated hypermutation. In particular, the mutational burden in EBV- cHLs was among the highest reported, similar to that of carcinogen-induced tumors. Together, the overall high mutational burden, MSI-associated hypermutation, and newly identified genetic alterations represent additional potential bases for the efficacy of PD-1 blockade in cHL. Of note, recurrent cHL alterations, including B2M, TNFAIP3, STAT6, GNA13, and XPO1 mutations and 2p/2p15, 6p21.32, 6q23.3, and 9p/9p24.1 copy number alterations, were also identified in >20% of primary mediastinal B-cell lymphomas, highlighting shared pathogenetic mechanisms in these diseases.
Collapse
|
27
|
Abstract
Hodgkin lymphomas (HLs) are lymphoid neoplasms uniquely characterized by a paucity of neoplastic cells embedded in a supportive heterogenous cellular microenvironment. Although first described in the 19th century, systematic biological understanding of HLs has been hindered due to the challenges presented in studying the complex tumor microenvironment and scarce tumorigenic cells. Recent advances in single-cell isolation and characterization, sensitive mutational analytic tools, and multiplex immunohistochemical strategies have allowed further advances in understanding the development and progression of HL. Here we provide a current update on the chromosomal and mutational abnormalities seen in HL, the impact of Epstein-Barr virus infection on driving a subset of HLs, and the possibility of disease monitoring via high-sensitivity detection of genetic aberrations. We also discuss recent developments in understanding the intricate microenvironment through intercellular cross-talk, and describe novel potential biomarkers to aid in distinction of HL from other overlapping entities.
Collapse
|
28
|
Lymphocyte predominant cells detect Moraxella catarrhalis-derived antigens in nodular lymphocyte-predominant Hodgkin lymphoma. Nat Commun 2020; 11:2465. [PMID: 32424289 PMCID: PMC7235000 DOI: 10.1038/s41467-020-16375-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare lymphoma of B-cell origin with frequent expression of functional B-cell receptors (BCRs). Here we report that expression cloning followed by antigen screening identifies DNA-directed RNA polymerase beta’ (RpoC) from Moraxella catarrhalis as frequent antigen of BCRs of IgD+ LP cells. Patients show predominance of HLA-DRB1*04/07 and the IgVH genes encode extraordinarily long CDR3s. High-titer, light-chain-restricted anti-RpoC IgG1/κ-type serum-antibodies are additionally found in these patients. RpoC and MID/hag, a superantigen co-expressed by Moraxella catarrhalis that is known to activate IgD+ B cells by binding to the Fc domain of IgD, have additive activation effects on the BCR, the NF-κB pathway and the proliferation of IgD+ DEV cells expressing RpoC-specific BCRs. This suggests an additive antigenic and superantigenic stimulation of B cells with RpoC-specific IgD+ BCRs under conditions of a permissive MHC-II haplotype as a model of NLPHL lymphomagenesis, implying future treatment strategies. Nodular lymphocyte-predominant Hodgkin lymphoma with IgD+ lymphocyte-predominant (LP) cells is a rare clinical distinct lymphoma subset of B-cell origin. Here the authors show that antigens expressed by Moraxella catarrhalis are recognized by B cell receptors of IgD+ LP cells, suggesting the contribution of chronic antigen stimulation to lymphomagenesis.
Collapse
|
29
|
Diagnostic utility of STAT6 YE361 expression in classical Hodgkin lymphoma and related entities. Mod Pathol 2020; 33:834-845. [PMID: 31822802 PMCID: PMC8191386 DOI: 10.1038/s41379-019-0428-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Although the distinction of classical Hodgkin lymphoma from nodular lymphocyte predominant Hodgkin lymphoma using morphology and immunostains is straightforward in most instances, occasional cases pose diagnostic challenge. We sought to determine the utility of the novel YE361 STAT6 rabbit monoclonal antibody in Hodgkin lymphoma and diagnostically challenging B- and T-cell non-Hodgkin lymphoma entities with Hodgkin-like features. Cases from seven institutions included: 57 classical Hodgkin lymphomas (31% EBV+), 34 nodular lymphocyte predominant Hodgkin lymphomas, 34 mimicking B- and T-cell non-Hodgkin lymphomas, and 7 reactive lymphoproliferations. After review of histology, STAT6YE361 immunostaining was performed. The intensity and spatial localization of immunopositivity was assessed in neoplastic cells. Additional FISH for programmed death ligand-1 (PD-L1) was performed in one patient in paired treatment-naive and relapse biopsy tissues. Two STAT6YE361 immunopositive cases were examined by whole-exome sequencing after flow sorting to assess mutations in STAT6 pathway genes. Most classical Hodgkin lymphomas showed nuclear staining for STAT6YE361 [46/57 cases (80%)] on Hodgkin cells. Staining was exclusively nuclear in a minority [12/46 (26%)], while dual nuclear and cytoplasmic localization was more common [34/46 (74%)]. In contrast, all nodular lymphocyte predominant Hodgkin lymphomas [0/34 (0%)] were negative for nuclear STAT6YE361 staining on the lymphocyte predominant cells. Within B- and T-cell non-Hodgkin lymphomas, nuclear STAT6YE361 was seen in: B-cell lymphoma unclassifiable with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma, and in primary mediastinal large B-cell lymphoma. Strong PD-L1 gene amplification was noted in the paired cHL and relapse B-cell lymphoma unclassifiable with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma, although STAT6YE361 was negative in both biopsies. Whole-exome sequencing identified mutations in B2M, XPO1, and ITPKB as well CISHP213L (in the STAT pathway) in one classical Hodgkin lymphoma patient positive for nuclear STAT6YE361 although no underlying STAT6 mutations were observed in either sample examined. STAT6YE361 nuclear staining has 100% positive predictive value and 85.7% negative predictive value in confirming or excluding classical Hodgkin lymphoma diagnosis in the distinction from nodular lymphocyte predominant Hodgkin lymphoma and other benign and malignant entities.
Collapse
|
30
|
Nodular lymphocyte predominant Hodgkin lymphoma: pathology, clinical course and relation to T-cell/histiocyte rich large B-cell lymphoma. Pathology 2020; 52:142-153. [DOI: 10.1016/j.pathol.2019.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
|
31
|
Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia 2019; 34:151-166. [DOI: 10.1038/s41375-019-0541-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/20/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
|
32
|
Morichika K, Karube K, Kayo H, Uchino S, Nishi Y, Nakachi S, Okamoto S, Morishima S, Ohshiro K, Nakazato I, Fukushima T, Masuzaki H. Phosphorylated STAT3 expression predicts better prognosis in smoldering type of adult T-cell leukemia/lymphoma. Cancer Sci 2019; 110:2982-2991. [PMID: 31237072 PMCID: PMC6726676 DOI: 10.1111/cas.14114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
Abstract
Adult T‐cell leukemia/lymphoma (ATLL) is a mature T‐cell neoplasm, and is divided into 2 indolent (smoldering and chronic) and 2 aggressive (acute and lymphoma) clinical subtypes. Based on previous integrated molecular analyses suggesting the importance of the JAK‐STAT pathway in ATLL, we attempted to clarify the clinicopathological significance of this pathway. Clinical and morphological findings were reviewed in 116 cases with ATLL. The nuclear localizations of phosphorylated STAT3 (pSTAT3), pSTAT5, and pSTAT6 were analyzed by immunohistochemistry. Targeted sequencing was undertaken on the portion of STAT3 encoding the Src homology 2 domain. Expression of pSTAT3 was observed in 43% (50/116) of ATLL cases, whereas pSTAT5 and pSTAT6 were largely undetected. Cases with the lymphoma type showed significantly less frequent pSTAT3 expression (8/45, 18%) than those with the other subtypes (41/66, 62%; P < .001). STAT3 mutations were detected in 36% (10/28) and 19% (12/64) of cases with the smoldering and aggressive types of ATLL, respectively. The correlation between STAT3 mutation and pSTAT3 expression was not significant (P = .07). Both univariate and multivariate analysis revealed that pSTAT3 expression was significantly associated with better overall survival and progression‐free survival in the smoldering type of ATLL, whereas STAT3 mutation was not related to a line of clinical outcome. Collectively, our data show that only the lymphoma type showed a low prevalence of tumor cells positive for pSTAT3 expression, and raises the possibility that pSTAT3 expression is a novel biomarker to predict better prognosis in the smoldering type of ATLL.
Collapse
Affiliation(s)
- Kazuho Morichika
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kennosuke Karube
- Department of Pathology and Cell Biology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Hirona Kayo
- Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Shuta Uchino
- Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Yukiko Nishi
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Sawako Nakachi
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Shiki Okamoto
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kazuiku Ohshiro
- Department of Hematology, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Haebaru, Japan
| | - Iwao Nakazato
- Department of Pathology, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Haebaru, Japan
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
33
|
Saint-Germain E, Mignacca L, Huot G, Acevedo M, Moineau-Vallée K, Calabrese V, Bourdeau V, Rowell MC, Ilangumaran S, Lessard F, Ferbeyre G. Phosphorylation of SOCS1 Inhibits the SOCS1–p53 Tumor Suppressor Axis. Cancer Res 2019; 79:3306-3319. [DOI: 10.1158/0008-5472.can-18-1503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 03/21/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022]
|
34
|
Sharma J, Larkin J. Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Front Pharmacol 2019; 10:324. [PMID: 31105556 PMCID: PMC6499178 DOI: 10.3389/fphar.2019.00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of intracellular proteins has a vital role in the regulation of the immune system and resolution of inflammatory cascades. SOCS1, also called STAT-induced STAT inhibitor (SSI) or JAK-binding protein (JAB), is a member of the SOCS family with actions ranging from immune modulation to cell cycle regulation. Knockout of SOCS1 leads to perinatal lethality in mice and increased vulnerability to cancer, while several SNPs associated with the SOCS1 gene have been implicated in human inflammation-mediated diseases. In this review, we describe the mechanism of action of SOCS1 and its potential therapeutic role in the prevention and treatment of autoimmunity and cancer. We also provide a brief outline of the other JAK inhibitors, both FDA-approved and under investigation.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
35
|
Cyclin D1-positive Mediastinal Large B-Cell Lymphoma With Copy Number Gains of CCND1 Gene. Am J Surg Pathol 2019; 43:110-120. [DOI: 10.1097/pas.0000000000001154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Many B cell lymphomas require B cell antigen receptor expression, and in several instances, chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Many B cell malignancies derive from germinal center B cells, most likely because of the high proliferation rate of these cells and the high activity of mutagenic processes.
Collapse
|
37
|
Schuhmacher B, Bein J, Rausch T, Benes V, Tousseyn T, Vornanen M, Ponzoni M, Thurner L, Gascoyne R, Steidl C, Küppers R, Hansmann ML, Hartmann S. JUNB, DUSP2, SGK1, SOCS1 and CREBBP are frequently mutated in T-cell/histiocyte-rich large B-cell lymphoma. Haematologica 2018; 104:330-337. [PMID: 30213827 PMCID: PMC6355500 DOI: 10.3324/haematol.2018.203224] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/07/2018] [Indexed: 12/24/2022] Open
Abstract
T-cell/histiocyte-rich large B-cell lymphoma is a rare aggressive lymphoma showing histopathological overlap with nodular lymphocyte-predominant Hodgkin lymphoma. Despite differences in tumor microenvironment and clinical behavior, the tumor cells of both entities show remarkable similarities, suggesting that both lymphomas might represent a spectrum of the same disease. To address this issue, we investigated whether these entities share mutations. Ultra-deep targeted resequencing of six typical and 11 histopathological variants of nodular lymphocyte-predominant Hodgkin lymphoma, and nine cases of T-cell/histiocyte-rich large B-cell lymphoma revealed that genes recurrently mutated in nodular lymphocyte-predominant Hodgkin lymphoma are affected by mutations at similar frequencies in T-cell/histiocyte-rich large B-cell lymphoma. The most recurrently mutated genes were JUNB, DUSP2, SGK1, SOCS1 and CREBBP, which harbored mutations more frequently in T-cell/histiocyte-rich large B-cell lymphoma and the histopathological variants of nodular lymphocyte-predominant Hodgkin lymphoma than in its typical form. Mutations in JUNB, DUSP2, SGK1 and SOCS1 were highly enriched for somatic hypermutation hotspot sites, suggesting an important role of aberrant somatic hypermutation in the generation of these somatic mutations and thus in the pathogenesis of both lymphoma entities. Mutations in JUNB are generally rarely observed in malignant lymphomas and thus are relatively specific for nodular lymphocyte-predominant Hodgkin lymphoma and T-cell/histiocyte-rich large B-cell lymphoma at such high frequencies (5/17 and 5/9 cases with JUNB mutations, respectively). Taken together, the findings of the present study further support a close relationship between T-cell/histiocyte-rich large B-cell lymphoma and nodular lymphocyte-predominant Hodgkin lymphoma by showing that they share highly recurrent genetic lesions.
Collapse
Affiliation(s)
- Bianca Schuhmacher
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Julia Bein
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Tobias Rausch
- Genecore, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genecore, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thomas Tousseyn
- Department of Pathology, University Hospitals K.U. Leuven, Belgium
| | - Martine Vornanen
- Department of Pathology, Tampere University Hospital and University of Tampere, Finland
| | - Maurilio Ponzoni
- Unit of Lymphoid Malignancies, Department of Pathology, Scientific Institute San Raffaele, Milan, Italy
| | - Lorenz Thurner
- José Carreras Center for Immuno and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany.,Department of Internal Medicine 2, Hospital of the J. W. Goethe University, Frankfurt am Main, Germany
| | - Randy Gascoyne
- Department of Pathology and Laboratory Medicine and the Centre for Lymphoid Cancer, British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | - Christian Steidl
- Department of Pathology and Laboratory Medicine and the Centre for Lymphoid Cancer, British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany.,Reference and Consultant Center for Lymphoma and Lymph Node Diagnostics, Goethe University, Frankfurt am Main, Germany.,Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany .,Reference and Consultant Center for Lymphoma and Lymph Node Diagnostics, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
38
|
Genetic alterations of 9p24 in lymphomas and their impact for cancer (immuno-)therapy. Virchows Arch 2018; 474:497-509. [DOI: 10.1007/s00428-018-2438-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/25/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022]
|
39
|
Dunleavy K. Primary mediastinal B-cell lymphoma: biology and evolving therapeutic strategies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:298-303. [PMID: 29222270 PMCID: PMC6142582 DOI: 10.1182/asheducation-2017.1.298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Primary mediastinal B-cell lymphoma (PMBCL) is recognized as a distinct clinicopathologic entity that predominantly affects adolescents and young adults and is more common in female subjects. Although PMBCL is considered to be a subtype of diffuse large B-cell lymphoma, its clinical, morphologic, and biological characteristics overlap significantly with those of nodular sclerosing Hodgkin lymphoma (NSHL). Over the past few years, the shared biology of these 2 entities has been highlighted in several studies, and mediastinal gray zone lymphoma, with features intermediate between PMBCL and NSHL, has been recognized as a unique molecular entity. Although there is a lack of consensus about the optimal therapeutic strategy for adolescent and young adult patients newly diagnosed with PMCBL, highly curative strategies that obviate the need for mediastinal radiation are favored by most. Progress in understanding the biology of PMBCL and its close relationship to NSHL have helped pave the way for the investigation of novel approaches such as immune checkpoint inhibition. Other strategies such as adoptive T-cell therapy and targeting CD30 are also being studied.
Collapse
Affiliation(s)
- Kieron Dunleavy
- George Washington University, Washington, DC; and
- Division of Hematology and Oncology, George Washington University Cancer Center, Washington, DC
| |
Collapse
|
40
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
41
|
Amin AD, Peters TL, Li L, Rajan SS, Choudhari R, Puvvada SD, Schatz JH. Diffuse large B-cell lymphoma: can genomics improve treatment options for a curable cancer? Cold Spring Harb Mol Case Stud 2017; 3:a001719. [PMID: 28487884 PMCID: PMC5411687 DOI: 10.1101/mcs.a001719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene-expression profiling and next-generation sequencing have defined diffuse large B-cell lymphoma (DLBCL), the most common lymphoma diagnosis, as a heterogeneous group of subentities. Despite ongoing explosions of data illuminating disparate pathogenic mechanisms, however, the five-drug chemoimmunotherapy combination R-CHOP remains the frontline standard treatment. This has not changed in 15 years, since the anti-CD20 monoclonal antibody rituximab was added to the CHOP backbone, which first entered use in the 1970s. At least a third of patients are not cured by R-CHOP, and relapsed or refractory DLBCL is fatal in ∼90%. Targeted small-molecule inhibitors against distinct molecular pathways activated in different subgroups of DLBCL have so far translated poorly into the clinic, justifying the ongoing reliance on R-CHOP and other long-established chemotherapy-driven combinations. New drugs and improved identification of biomarkers in real time, however, show potential to change the situation eventually, despite some recent setbacks. Here, we review established and putative molecular drivers of DLBCL identified through large-scale genomics, highlighting among other things the care that must be taken when differentiating drivers from passengers, which is influenced by the promiscuity of activation-induced cytidine deaminase. Furthermore, we discuss why, despite having so much genomic data available, it has been difficult to move toward personalized medicine for this umbrella disorder and some steps that may be taken to hasten the process.
Collapse
Affiliation(s)
- Amit Dipak Amin
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Tara L Peters
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Lingxiao Li
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Soumya Sundara Rajan
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ramesh Choudhari
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Soham D Puvvada
- Department of Medicine, Division of Hematology-Oncology, University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85719, USA
| | - Jonathan H Schatz
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
42
|
Hartmann S. [Nodular lymphocyte-dominant Hodgkin's lymphoma : LP cells show recurrent mutations in DUSP2, SGK1 and JUNB]. DER PATHOLOGE 2017; 38:154-157. [PMID: 28879465 DOI: 10.1007/s00292-017-0335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S Hartmann
- Dr. Senckenbergisches Institut für Pathologie, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.
| |
Collapse
|
43
|
Jiang M, Zhang WW, Liu P, Yu W, Liu T, Yu J. Dysregulation of SOCS-Mediated Negative Feedback of Cytokine Signaling in Carcinogenesis and Its Significance in Cancer Treatment. Front Immunol 2017; 8:70. [PMID: 28228755 PMCID: PMC5296614 DOI: 10.3389/fimmu.2017.00070] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/16/2017] [Indexed: 01/30/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins are major negative feedback regulators of cytokine signaling mediated by the Janus kinase (JAK)-signal transducer and activator of transcription signaling pathway. In particular, SOCS1 and SOCS3 are strong inhibitors of JAKs and can play pivotal roles in the development and progression of cancers. The abnormal expression of SOCS1 and SOCS3 in cancer cells is associated with the dysregulation of cell growth, migration, and death induced by multiple cytokines and hormones in human carcinomas. In addition, the mechanisms involved in SOCS1- and SOCS3-regulated abnormal development and activation of immune cells in carcinogenesis, including T cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, are still unclear. Therefore, this study aims to further discuss the molecules and signal pathways regulating the expression and function of SOCS1 and SOCS3 in various types of cancers and elucidate the feasibility and efficiency of SOCS-based target therapeutic strategy in anticancer treatment.
Collapse
Affiliation(s)
- Mengmeng Jiang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wen-Wen Zhang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostic Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin , China
| | - Wenwen Yu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ting Liu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinpu Yu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Cancer Molecular Diagnostic Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
44
|
Lennerz JK, Hoffmann K, Bubolz AM, Lessel D, Welke C, Rüther N, Viardot A, Möller P. Suppressor of cytokine signaling 1 gene mutation status as a prognostic biomarker in classical Hodgkin lymphoma. Oncotarget 2016; 6:29097-110. [PMID: 26336985 PMCID: PMC4745714 DOI: 10.18632/oncotarget.4829] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/07/2015] [Indexed: 12/22/2022] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) mutations are among the most frequent somatic mutations in classical Hodgkin lymphoma (cHL), yet their prognostic relevance in cHL is unexplored. Here, we performed laser-capture microdissection of Hodgkin/Reed-Sternberg (HRS) cells from tumor samples in a cohort of 105 cHL patients. Full-length SOCS1 gene sequencing showed mutations in 61% of all cases (n = 64/105). Affected DNA-motifs and mutation pattern suggest that many of these SOCS1 mutations are the result of aberrant somatic hypermutation and we confirmed expression of mutant alleles at the RNA level. Contingency analysis showed no significant differences of patient-characteristics with HRS-cells containing mutant vs. wild-type SOCS1. By predicted mutational consequence, mutations can be separated into those with non-truncating point mutations (‘minor’ n = 49/64 = 77%) and those with length alteration (‘major’; n = 15/64 = 23%). Subgroups did not differ in clinicopathological characteristics; however, patients with HRS-cells that contained SOCS1 major mutations suffered from early relapse and significantly shorter overall survival (P = 0.03). The SOCS1 major status retained prognostic significance in uni-(P = 0.016) and multivariate analyses (P = 0.005). Together, our data indicate that the SOCS1 mutation type qualifies as a single-gene prognostic biomarker in cHL.
Collapse
Affiliation(s)
- Jochen K Lennerz
- Ulm University, Institute of Pathology, Ulm, Germany.,Massachusetts General Hospital/Harvard Medical School, Department of Pathology, Center for Integrated Diagnostics, Boston, MA, USA
| | - Karl Hoffmann
- Ulm University, Institute of Pathology, Ulm, Germany.,Department of Dermatology and Venerology, University of Freiburg Medical Center, Freiburg, Germany
| | | | - Davor Lessel
- Ulm University, Institute of Human Genetics, Ulm, Germany.,University Medical Center Hamburg-Eppendorf, Institute of Human Genetics, Hamburg, Germany
| | - Claudia Welke
- Comprehensive Cancer Center, Ulm University, Ulm, Germany
| | - Nele Rüther
- Ulm University, Institute of Pathology, Ulm, Germany
| | - Andreas Viardot
- Ulm University, Department of Internal Medicine III, Ulm, Germany
| | - Peter Möller
- Ulm University, Institute of Pathology, Ulm, Germany
| |
Collapse
|
45
|
Otto C, Scholtysik R, Schmitz R, Kreuz M, Becher C, Hummel M, Rosenwald A, Trümper L, Klapper W, Siebert R, Küppers R. NovelIGHandMYCTranslocation Partners in Diffuse Large B-Cell Lymphomas. Genes Chromosomes Cancer 2016; 55:932-943. [DOI: 10.1002/gcc.22391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Claudia Otto
- Institute of Cell Biology (Cancer Research); University of Duisburg-Essen, Medical School; Essen Germany
| | - René Scholtysik
- Institute of Cell Biology (Cancer Research); University of Duisburg-Essen, Medical School; Essen Germany
| | - Roland Schmitz
- Institute of Cell Biology (Cancer Research); University of Duisburg-Essen, Medical School; Essen Germany
| | - Markus Kreuz
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE); University of Leipzig; Leipzig Germany
| | - Claudia Becher
- Institute of Human Genetics; Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein; Kiel Germany
| | | | | | - Lorenz Trümper
- Department of Hematology/Oncology; University Hospital Göttingen; Göttingen Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry; University Hospital Schleswig-Holstein, Campus Kiel/Christian-Albrechts-University; Kiel Germany
| | - Reiner Siebert
- Institute of Human Genetics; Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein; Kiel Germany
- Institute of Human Genetics; University of Ulm; Ulm Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research); University of Duisburg-Essen, Medical School; Essen Germany
| | | |
Collapse
|
46
|
Abstract
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare subtype of Hodgkin lymphoma with distinct clinicopathologic features. It is typified by the presence of lymphocyte predominant (LP) cells, which are CD20(+) but CD15(-) and CD30(-) and are found scattered amongst small B lymphocytes arranged in a nodular pattern. Despite frequent and often late or multiple relapses, the prognosis of NLPHL is very favorable. There is an inherent risk of secondary aggressive non-Hodgkin lymphoma (NHL) and studies support that risk is highest in those with splenic involvement at presentation. Given disease rarity, the optimal management is unclear and opinions differ as to whether treatment paradigms should be similar to or differ from those for classical Hodgkin lymphoma (CHL). This review provides an overview of the existing literature describing pathological subtypes, outcome and treatment approaches for NLPHL.
Collapse
Affiliation(s)
- Kerry J Savage
- Department of Medical Oncology, Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | - Anja Mottok
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | |
Collapse
|
47
|
Abstract
The Hodgkin and Reed-Sternberg (HRS) tumor cells of classical Hodgkin lymphoma (HL), as well as the lymphocyte predominant (LP) cells of nodular lymphocyte predominant HL (NLPHL), are derived from mature B cells. However, HRS cells have largely lost their B-cell phenotype and show a very unusual expression of many markers of other hematopoietic cell lineages, which aids in the differential diagnosis between classical HL (cHL) and NLPHL and distinguishes cHL from all other hematopoietic malignancies. The bi- or multinucleated Reed-Sternberg cells most likely derive from the mononuclear Hodgkin cells through a process of incomplete cytokinesis. HRS cells show a deregulated activation of numerous signaling pathways, which is partly mediated by cellular interactions in the lymphoma microenvironment and partly by genetic lesions. In a fraction of cases, Epstein-Barr virus contributes to the pathogenesis of cHL. Recurrent genetic lesions in HRS cells identified so far often involve members of the nuclear factor-κB (NF-κB) and JAK/STAT pathways and genes involved in major histocompatibility complex expression. However, further lead transforming events likely remain to be identified. We here discuss the current knowledge on HL pathology and biology.
Collapse
Affiliation(s)
- Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine, and Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt/Main, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
48
|
Augmented efficacy of brentuximab vedotin combined with ruxolitinib and/or Navitoclax in a murine model of human Hodgkin's lymphoma. Proc Natl Acad Sci U S A 2016; 113:1624-9. [PMID: 26811457 DOI: 10.1073/pnas.1524668113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite relative success of therapy for Hodgkin's lymphoma (HL), novel therapeutic agents are needed for patients with refractory or relapsed disease. Recently, anti-PD1 immunotherapy or treatment with the anti-CD30 toxin conjugate brentuximab vedotin (BV) have been associated with remissions; however, the median responses of complete responses (CRs) with the latter were only 6.7 mo. To obtain curative therapy, other effective agents, based on HL biology, would have to be given in combination with BV. Hodgkin's Reed-Sternberg (HRS) cells secrete cytokines including IL-6 and -13, leading to constitutive activation of JAK/STAT signaling. In the present study the JAK1/2 inhibitor ruxolitinib reduced phosphorylation of STAT3 and STAT6 and expression of c-Myc in the HL cell line HDLM-2. These changes were enhanced when, on the basis of a matrix screen of drug combinations, ruxolitinib was combined with the Bcl-2/Bcl-xL inhibitor Navitoclax. The combination augmented expression of Bik, Puma, and Bax, and attenuated Bcl-xL expression and the phosphorylation of Bad. The use of the two-agent combination of either ruxolitinib or Navitoclax with BV or the three-agent combination strongly activated Bax and increased activities of cytochrome c and caspase-9 and -3 that, in turn, led to cleavage of poly(ADP ribose) polymerase and Mcl-1. Either ruxolitinib combined with Navitoclax or BV alone prolonged survival but did not cure HDLM-2 tumor-bearing mice, whereas BV combined with ruxolitinib and/or with Navitoclax resulted in a sustained, complete elimination of the HDLM-2 HL. These studies provide scientific support for a clinical trial to evaluate BV combined with ruxolitinib in select patients with HL.
Collapse
|
49
|
Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma. Leukemia 2015; 30:844-53. [DOI: 10.1038/leu.2015.328] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022]
|
50
|
Mottok A, Woolcock B, Chan FC, Tong KM, Chong L, Farinha P, Telenius A, Chavez E, Ramchandani S, Drake M, Boyle M, Ben-Neriah S, Scott DW, Rimsza LM, Siebert R, Gascoyne RD, Steidl C. Genomic Alterations in CIITA Are Frequent in Primary Mediastinal Large B Cell Lymphoma and Are Associated with Diminished MHC Class II Expression. Cell Rep 2015; 13:1418-1431. [PMID: 26549456 DOI: 10.1016/j.celrep.2015.10.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/17/2015] [Accepted: 10/04/2015] [Indexed: 02/06/2023] Open
Abstract
Primary mediastinal large B cell lymphoma (PMBCL) is an aggressive non-Hodgkin's lymphoma, predominantly affecting young patients. We analyzed 45 primary PMBCL tumor biopsies and 3 PMBCL-derived cell lines for the presence of genetic alterations involving the major histocompatibility complex (MHC) class II transactivator CIITA and found frequent aberrations consisting of structural genomic rearrangements, missense, nonsense, and frame-shift mutations (53% of primary tumor biopsies and all cell lines). We also detected intron 1 mutations in 47% of the cases, and detailed sequence analysis strongly suggests AID-mediated aberrant somatic hypermutation as the mutational mechanism. Furthermore, we demonstrate that genomic lesions in CIITA result in decreased protein expression and reduction of MHC class II surface expression, creating an immune privilege phenotype in PMBCL. In summary, we establish CIITA alterations as a common mechanism of immune escape through reduction of MHC class II expression in PMBCL, with potential implications for future treatments targeting microenvironment-related biology.
Collapse
Affiliation(s)
- Anja Mottok
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Bruce Woolcock
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Fong Chun Chan
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Bioinformatics Training Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
| | - King Mong Tong
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lauren Chong
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Bioinformatics Training Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Adèle Telenius
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Elizabeth Chavez
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Suvan Ramchandani
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Marie Drake
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lisa M Rimsza
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Randy D Gascoyne
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, Department of Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|