1
|
Li M, Wu W, Gu M, Su C, Wang X, Pan D, Xu Y, Wang L, Chen C, Yang M, Yan J. Purification-Free Bortezomib-Drug Conjugates Optimize Drug Economy and Cancer Therapeutic Synergy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23691-23706. [PMID: 40203453 DOI: 10.1021/acsami.5c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
As a promising candidate in overcoming resistance, providing synergy, and developing treatments, conjugated combination drugs mostly prevail over drug cocktails in establishing prodrugs and precisely codelivering multiple drugs for combination chemotherapies. However, current drug-drug conjugation methods (e.g., esterification, amidation, etherification, etc.) do not allow quantitative drug conversion and require necessary purification of crude products, resulting in a limited economy of initial drugs. Meanwhile, practical stimulus concentration in vivo usually fails to efficiently activate parent drug release from drug conjugates in target sites, which diminishes their efficacy. Herein, we report a click conjugation strategy based on boronic acid-cis diol complexation, realizing a fast (<30 min), quantitative, and purification-free conjugation of bortezomib (BTZ) and azacytidine (AZA) or capecitabine or doxifluridine. Notably, the BTZ-AZA conjugate spontaneously self-assembles into nanomedicine and exhibits enhanced synergistic efficacy. Furthermore, BTZ and AZA could be conjugated into a polyprodrug with controlled size and composition, and different organelle uptakes augment the synergy of BTZ-AZA conjugate by approximately 1000-fold versus free BTZ toward A549 adenocarcinoma cells (IC50: 0.55 nM versus 536.7 nM). This click strategy would expand the vision for developing smart combination drugs.
Collapse
Affiliation(s)
- Meng Li
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Wei Wu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Gu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xinyu Wang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chongyang Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Junjie Yan
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| |
Collapse
|
2
|
Rani S, Gupta S, Tejavath KK, Gupta U. Effect of combination of polyphenols, polysaccharide, and sodium selenite on bortezomib anti-cancer action. Int J Biol Macromol 2025; 289:138809. [PMID: 39694374 DOI: 10.1016/j.ijbiomac.2024.138809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/22/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Combinatorial drug delivery has shown promising results over single drug for cancer therapy. Here, we aimed to explore combination of proteasome inhibitor; bortezomib (BTZ) with natural antioxidants (AOs); polyphenols like caffeic acid (CFA), resveratrol (RES), fucoidan (FD), and synthetic AO; sodium selenite (Na2SeO3) for cellular cytotoxicity in breast cancer cell lines; MCF-7 and MDA MB-231. The combination of RES + BTZ, FD + BTZ, and Na2SeO3 + BTZ showed synergism while CFA showed antagonism with BTZ. The EC50 values of different combinations were found to be significantly less than the individual AOs in ABTS and DPPH assay. Furthermore, the effect of combination of drugs on migratory properties of MCF-7 cells were evaluated by in-vitro wound healing assay, resulting in the reduction of such behavior. In support of this, RT-qPCR was performed to analyze differential gene expressions of apoptotic and Epithelial-Mesenchymal Transition (EMT) markers with and without treatment. In results, the combination of Na2SeO3 + BTZ reduced the expression of Bcl-XL and N-Cad causing cytotoxicity and suggested that the combination of Na2SeO3 + BTZ (IC50 = 1.40 ± 0.45 μM) could be a better option among other combinations for breast cancer therapy. Overall, the outcome indicates that the combination of BTZ with AOs may yield potential therapeutic benefit.
Collapse
Affiliation(s)
- Sarita Rani
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, HYDERABAD METROPOLITAN REGION (HMR) TELANGANA 508126.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
3
|
Balasubramaniam AK, Elangovan A, Rahman MA, Nayak S, Richards A, Swain D. Purple Tea (Camellia sinensis var. assamica) Leaves and Obesity Management: A Review of 1,2-Di-Galloyl-4,6-Hexahydroxydiphenoyl-β-D-Glucose's (GHG) Potential Health Benefits, and Future Prospects. Cureus 2024; 16:e75055. [PMID: 39759725 PMCID: PMC11698542 DOI: 10.7759/cureus.75055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Purple tea (Camellia sinensis var. assamica) is a distinct variety of Camellia sinensis known for its bioactive compounds, including caffeine, catechins, and a unique compound called 1,2-di-Galloyl-4,6-Hexahydroxydiphenoyl-β-D-Glucose, (GHG) found predominantly in purple tea leaves, which shows potential in obesity management. Studies have indicated that these bioactive compounds play a significant role in reducing BMI and body weight among obese patients. This review focuses on how GHG impacts body weight and BMI in obese patients. A comprehensive literature review was conducted using Science Direct, Semantic Scholar, Wiley, PubMed, and Google Scholar databases up to 2024. The search employed both single keywords (e.g., 'purple tea', 'GHG', 'obesity') and multiple keyword combinations (e.g., 'purple tea and obesity', 'GHG and weight loss') related to purple tea, GHG, obesity, BMI, and clinical studies. The database search yielded 246 articles, with 173 articles retained after removing duplicates and studies published before 1999. This systematic approach aimed to gather comprehensive data on the phytochemistry, pharmacology, and potential therapeutic applications of purple tea. The investigation revealed that GHG operates through multiple mechanisms, such as inhibiting pancreatic lipase to reduce fat absorption, suppressing adipogenesis and lipogenesis, and preventing fatty tissue formation. Clinical investigations demonstrated significant reductions in BMI, waist circumference, and body weight among individuals consuming purple tea extracts with high GHG levels. Additional metabolic benefits include increased energy expenditure, improved insulin sensitivity, and enhanced glucose metabolism regulation. While more comprehensive research is needed to fully elucidate the optimal dosage and long-term effects, current evidence suggests that GHG from purple tea could be a valuable natural intervention in the multifaceted approach to obesity management.
Collapse
Affiliation(s)
- Arun Kumar Balasubramaniam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, USA
| | - Ashmitha Elangovan
- Department of Zoology, PSGR Krishnammal College for Women, Coimbatore, IND
| | | | - Subhendu Nayak
- Probiotics and Supplements, Vidya Herbs USA, Bunnell, USA
| | | | - Durga Swain
- Pharmaceutical Biotechnology and Microbiology, Vidya Herbs USA, Bunnell, USA
| |
Collapse
|
4
|
Ramsridhar S, Rajkumar C, Balasubramaniam M, Anandan S, Sabesan M, Jayamani L. The Promising Role of Plant-Derived Lectins in Oral Cancer Therapeutics: A Systematic Review. Cureus 2024; 16:e75910. [PMID: 39830560 PMCID: PMC11739538 DOI: 10.7759/cureus.75910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Oral cancer (OC) continues to pose a significant global health challenge, marked by high morbidity and mortality rates despite advances in diagnosis and treatment. Numerous novel potential anticancer drugs have been evaluated, many of which are derived from natural sources, such as microorganisms, plants, and animals. Among these, plant lectins - a distinctive group of proteins and glycoproteins with strong biological activity - have garnered considerable attention over the years. Several plant lectins can trigger selective apoptotic cancer cell death or possess antiproliferative properties. The objective of this systematic review was to provide insight into the potential applications of plant lectins in the treatment of OC. Plant lectins suppress cancer cells by inducing apoptosis and/or autophagy by modulating various signalling pathways such as the caspase family, mitochondrial-mediated ROS-p38-p53 pathway, PI3K/Akt, and Wnt/β-catenin to inhibit OC. Multiple lectins have been shown to exhibit anticancer properties in cell cultures and in vivo. Polygonatum cyrtonema lectin, Maackia amurensis seed lectin, abrus agglutinin, wheat germ agglutinin, mistletoe lectin, and concanavalin A are among the plant lectins with the highest potential for anticancer activities. This review provides an overview of the current understanding of the role of lectins in cancer diagnosis and therapy, highlighting their potential applications and underlying mechanisms.
Collapse
Affiliation(s)
- Saranya Ramsridhar
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Chennai, IND
| | - Chandini Rajkumar
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Chennai, IND
| | | | - Soumya Anandan
- Department of Oral Pathology and Microbiology, Sri Ramachandra Dental College, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Mythili Sabesan
- Department of Oral Pathology and Microbiology, Sri Ramachandra Dental College, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Logeswari Jayamani
- Department of Oral Pathology, Meenakshi Ammal Dental College, Chennai, IND
| |
Collapse
|
5
|
Zheng Y, Chen X, Wang Y, Chen Z, Wu D. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy. J Zhejiang Univ Sci B 2024; 25:890-913. [PMID: 39420524 PMCID: PMC11494163 DOI: 10.1631/jzus.b2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 10/19/2024]
Abstract
Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
- Zhejiang Rehabilitation Medical Center, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310009, China. ,
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
6
|
Ge J, Li M, Yao J, Guo J, Li X, Li G, Han X, Li Z, Liu M, Zhao J. The potential of EGCG in modulating the oral-gut axis microbiota for treating inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155643. [PMID: 38820660 DOI: 10.1016/j.phymed.2024.155643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 06/02/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic intestinal disorder that includes ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis involves intricate interactions between pathogenic microorganisms, native intestinal microorganisms, and the intestinal immune system via the oral-gut axis. The strong correlation observed between oral diseases and IBD indicates the potential involvement of oral pathogenic microorganisms in IBD development. Consequently, therapeutic strategies targeting the proliferation, translocation, intestinal colonization and exacerbated intestinal inflammation of oral microorganisms within the oral-gut axis may partially alleviate IBD. Tea consumption has been identified as a contributing factor in reducing IBD, with epigallocatechin gallate (EGCG) being the primary bioactive compound used for IBD treatment. However, the precise mechanism by which EGCG mediates microbial crosstalk within the oral-gut axis remains unclear. In this review, we provide a comprehensive overview of the diverse oral microorganisms implicated in the pathogenesis of IBD and elucidate their colonization pathways and mechanisms. Subsequently, we investigated the antibacterial properties of EGCG and its potential to attenuate microbial translocation and colonization in the gut, emphasizing its role in attenuating exacerbations of IBD. We also elucidated the toxic and side effects of EGCG. Finally, we discuss current strategies for enhancing EGCG bioavailability and propose novel multi-targeted nano-delivery systems for the more efficacious management of IBD. This review elucidates the role and feasibility of EGCG-mediated modulation of the oral-gut axis microbiota in the management of IBD, contributing to a better understanding of the mechanism of action of EGCG in the treatment of IBD and the development of prospective treatment strategies.
Collapse
Affiliation(s)
- Jiaming Ge
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengyuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingwen Yao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinling Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiankuan Li
- Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiangli Han
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin 300450, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ming Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China.
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Van TTT, Chang HS, Wu HC, Lu CK, Huang HC, Korinek M, Hsiao HH, Yen CH. The SAR analysis of dietary polyphenols and their antagonistic effects on bortezomib at physiological concentrations. Front Pharmacol 2024; 15:1403424. [PMID: 39119616 PMCID: PMC11306019 DOI: 10.3389/fphar.2024.1403424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Bortezomib (BTZ), a primary treatment for MM, but its effectiveness can be reduced by interactions with vicinal diol moieties (VDMs) in polyphenols. Despite this, it's debated whether BTZ therapy necessitates avoiding polyphenol-rich products, given the low bioavailability of polyphenols. Additionally, it remains unclear whether the structure of polyphenols contributes to their BTZ antagonism. Therefore, our study aims to unravel the structure-activity relationship of dietary polyphenols and their BTZ antagonism at daily diet-achievable physiological concentrations. Methods: We assessed the antagonistic effects of 25 polyphenols against BTZ using cell viability assays in RPMI 8226 cells. ChemGPS-NP helped analyze the structural similarity. Additionally, long-term cytotoxicity assays evaluated these effects at physiologically relevant concentrations. Results: By cell viability assays, we found a positive correlation between the number of VDMs in gallotannins and their BTZ antagonism. Moreover, the origin and configuration of VDMs, rather than the total VDM concentration, play a pivotal role in the combined antagonistic effects against BTZ in gallotannins. Additionally, ChemGPS-NP analysis indicated that the aromaticity and C-3 hydroxyl group in flavonoids' C-rings enhance their BTZ antagonism. Finally, long-term cytotoxicity assays reveal that gallic acid (GA), epigallocatechin (EGC), and epigallocatechin gallate (EGCG), at their physiological concentrations-attainable through tea consumption-significantly and synergistically antagonize BTZ. Conclusion: Due to the potential for these polyphenols to reduce the effectiveness of BTZ, it is advisable for MM patients undergoing BTZ treatment to reduce their consumption of foods high in VDM-containing polyphenols.
Collapse
Affiliation(s)
- Tran Tran Thi Van
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ho-Cheng Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, College of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Chi Huang
- School of Chinese Medicine and Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Hua Hsiao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Oyanna VO, Bechtold BJ, Lynch KD, Ridge Call M, Graf TN, Oberlies NH, Clarke JD. Green Tea Catechins Decrease Solubility of Raloxifene In Vitro and Its Systemic Exposure in Mice. Pharm Res 2024; 41:557-566. [PMID: 38302834 PMCID: PMC10939713 DOI: 10.1007/s11095-024-03662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE Green tea is a widely consumed beverage. A recent clinical study reported green tea decreased systemic exposure of raloxifene and its glucuronide metabolites by 34-43%. However, the underlying mechanism(s) remains unknown. This study investigated a change in raloxifene's solubility as the responsible mechanism. METHODS The effects of green tea extract, (-)-epigallocatechin gallate (EGCG), and (-)-epigallocatechin (EGC) on raloxifene's solubility were assessed in fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluids (FeSSIF). EGCG and EGC represent green tea's main bioactive constituents, flavan-3-gallate and flavan-3-ol catechins respectively, and the tested concentrations (mM) match the µg/mg of each compound in the extract. Our mouse study (n = 5/time point) evaluated the effect of green tea extract and EGCG on the systemic exposure of raloxifene. RESULTS EGCG (1 mM) and EGC (1.27 mM) decreased raloxifene's solubility in FaSSIF by 78% and 13%, respectively. Micelle size in FaSSIF increased with increasing EGCG concentrations (> 1000% at 1 mM), whereas EGC (1.27 mM) did not change micelle size. We observed 3.4-fold higher raloxifene solubility in FeSSIF compared to FaSSIF, and neither green tea extract nor EGCG significantly affected raloxifene solubility or micelle size in FeSSIF. The mice study showed that green tea extract significantly decreased raloxifene Cmax by 44%, whereas EGCG had no effect. Green tea extract and EGCG did not affect the AUC0-24 h of raloxifene or the metabolite-to-parent AUC ratio. CONCLUSIONS This study demonstrated flavan-3-gallate catechins may decrease solubility of poorly water-soluble drugs such as raloxifene, particularly in the fasted state.
Collapse
Affiliation(s)
- Victoria O Oyanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Baron J Bechtold
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - M Ridge Call
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Tyler N Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - John D Clarke
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA.
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, WA, USA.
| |
Collapse
|
9
|
Andreazzoli F, Levy Yurkovski I, Ben-Arye E, Bonucci M. Conceptualizing an Integrative Multiple Myeloma Care: The Role of Nutrition, Supplements, and Complementary Modalities. Nutrients 2024; 16:237. [PMID: 38257130 PMCID: PMC10818534 DOI: 10.3390/nu16020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple Myeloma (MM) is the second most prevalent hematologic malignancy, and its incidence has been increasing enormously in recent years. The prognosis of MM has changed radically with the introduction of new drugs that have improved life expectancy; recurrences are a common occurrence during the course of the disease and are characterized by an increase in refractory to treatment. Moreover, MM patients are challenged by quality of life-related concerns while limited conventional therapy may be offered. This includes bone pain and dialysis due to the complications of acute renal failure. We, therefore, believe that it is very important to add new treatment modalities, including supplements, nutritional modifications, acupuncture, and mind-body therapies, with the goal of improving treatment tolerance, effectiveness, and patients' quality of life. Moreover, many patients use some of these supplements on their own, in the hope of reducing the side effects, so it is even more important to know their action and potential. The purpose of this review is to illustrate all these strategies potentially available to enrich our approach to this, to date, incurable disease.
Collapse
Affiliation(s)
- Francesca Andreazzoli
- Department of Hematology, Versilia’s Hospital, Viale Aurelia, 335, 55049 Camaiore, Italy
| | - Ilana Levy Yurkovski
- Hematology Unit, Bnai Zion Medical Center, Haifa 3339419, Israel
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
- Complementary and Integrative Medicine Service, Bnai Zion Medical Center, Haifa 3339419, Israel
| | - Eran Ben-Arye
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
- Integrative Oncology Program, The Oncology Service, Lin Carmel, and Zebulun Medical Centers, Clalit Health Services, Haifa 3535152, Israel
| | - Massimo Bonucci
- Artoi Foundation, Via Ludovico Micara, 73, 00165 Rome, Italy;
| |
Collapse
|
10
|
Rezaie M, Nasehi M, Shimia M, Ebrahimnezhad M, Yousefi B, Majidinia M. Polyphenols Modulate the miRNAs Expression that Involved in Glioblastoma. Mini Rev Med Chem 2024; 24:1953-1969. [PMID: 38639278 DOI: 10.2174/0113895575304605240408105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Glioblastoma multiforme (GBM), a solid tumor that develops from astrocytes, is one of the most aggressive types of brain cancer. While there have been improvements in the efficacy of treating GBM, many problems remain, especially with traditional therapy methods. Therefore, recent studies have extensively focused on developing novel therapeutic agents for combating glioblastoma. Natural polyphenols have been studied for their potential as chemopreventive and chemotherapeutic agents due to their wide range of positive qualities, including antioxidant, antiinflammatory, cytotoxic, antineoplastic, and immunomodulatory activities. These natural compounds have been suggested to act via modulated various macromolecules within cells, including microRNAs (miRNAs), which play a crucial role in the molecular milieu. In this article, we focus on how polyphenols may inhibit tumor growth by influencing the expression of key miRNAs that regulate oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center, Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Shimia
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Ebrahimnezhad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Grădinaru TC, Vlad A, Gilca M. Bitter Phytochemicals as Novel Candidates for Skin Disease Treatment. Curr Issues Mol Biol 2023; 46:299-326. [PMID: 38248322 PMCID: PMC10814078 DOI: 10.3390/cimb46010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Skin diseases represent a global healthcare challenge due to their rising incidence and substantial socio-economic burden. While biological, immunological, and targeted therapies have brought a revolution in improving quality of life and survival rates for certain dermatological conditions, there remains a stringent demand for new remedies. Nature has long served as an inspiration for drug development. Recent studies have identified bitter taste receptors (TAS2Rs) in both skin cell lines and human skin. Additionally, bitter natural compounds have shown promising benefits in addressing skin aging, wound healing, inflammatory skin conditions, and even skin cancer. Thus, TAS2Rs may represent a promising target in all these processes. In this review, we summarize evidence supporting the presence of TAS2Rs in the skin and emphasize their potential as drug targets for addressing skin aging, wound healing, inflammatory skin conditions, and skin carcinogenesis. To our knowledge, this is a pioneering work in connecting information on TAS2Rs expression in skin and skin cells with the impact of bitter phytochemicals on various beneficial effects related to skin disorders.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| |
Collapse
|
12
|
Wang L, Du Z, Xu M, Dai Q, Guo QY, Fan B, Tang W. Multi-Stimuli-Responsive Nanoparticles Formed of POSS-PEG for the Delivery of Boronic Acid-Containing Therapeutics. Biomacromolecules 2023; 24:5071-5082. [PMID: 37691317 DOI: 10.1021/acs.biomac.3c00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Polymeric vehicles often exhibit batch-to-batch variations due to polydispersity, limiting their reproducibility for biomedical applications. In contrast, polyhedral oligomeric silsesquioxane (POSS) has emerged as an attractive candidate for drug delivery due to its precise chemical structure and rigid molecular shape. A promising strategy to enhance drug efficacy while reducing systemic toxicity is the development of multi-stimuli-responsive delivery systems capable of targeted drug release at a disease site. Herein, we developed a drug delivery platform based on POSS-polymer conjugates. By functionalizing the POSS with amino groups and establishing B-N coordination with boronic acids, the nanoparticles (NPs) exhibit responsive behavior to stimuli, including adenosine-5'-triphosphate (ATP), acidic pH, and nucleophilic reagents. We successfully encapsulated two boronic acid-containing molecules: tetraphenylethylene (TPE), serving as a fluorescent probe, and bortezomib (BTZ), an anticancer drug. The TPE@NPs were employed to visualize the cellular uptake of NPs by tumor cells, while the BTZ@NPs exhibited increased cytotoxicity in tumor cells compared with normal cells. This POSS-PEG conjugate offers a nanoparticle platform for encapsulating versatile boronic acid-containing molecules, thereby enhancing drug efficacy while minimizing systemic toxicity. Given the wide-ranging applications of boronic acid-containing molecules in biomedicine, our platform holds significant promise for the development of intelligent drug delivery systems for diagnostics and therapeutics.
Collapse
Affiliation(s)
- Lan Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhen Du
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mengmeng Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Qiuju Dai
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Qing-Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Baoer Fan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Kegyes D, Gulei D, Drula R, Cenariu D, Tigu B, Dima D, Tanase A, Badelita S, Buzoianu AD, Ciurea S, Ghiaur G, Terpos E, Ciechanover A, Einsele H, Tomuleasa C. Proteasome inhibition in combination with immunotherapies: State-of-the-Art in multiple myeloma. Blood Rev 2023; 61:101100. [PMID: 37291017 DOI: 10.1016/j.blre.2023.101100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Multiple myeloma (MM) is a malignant plasma cell disorder accounting for around 1.8% of all neoplastic diseases. Nowadays, clinicians have a broad arsenal of drugs at their disposal for the treatment of MM, such as proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, bispecific antibodies, CAR T-cell therapies and antibody-drug conjugates. In this paper we briefly highlight essential clinical elements relating to proteasome inhibitors, such as bortezomib, carfilzomib and ixazomib. Studies suggest that the early use of immunotherapy may improve outcomes significantly. Therefore, in our review we specifically focus on the combination therapy of proteasome inhibitors with novel immunotherapies and/or transplant. A high number of patients develop PI resistance. Thus, we also review new generation PIs, such as marizomib, oprozomib (ONX0912) and delanzomib (CEP-18770) and their combinations with immunotherapies.
Collapse
Affiliation(s)
- David Kegyes
- Medfuture Research Center for Advanced Medicine / Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine / Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Rares Drula
- Medfuture Research Center for Advanced Medicine / Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Diana Cenariu
- Medfuture Research Center for Advanced Medicine / Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Bogdan Tigu
- Medfuture Research Center for Advanced Medicine / Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Alina Tanase
- Department of Hematology and Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Sorina Badelita
- Department of Hematology and Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Anca-Dana Buzoianu
- Department of Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Stefan Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, CA, United States
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine / Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Aaron Ciechanover
- Medfuture Research Center for Advanced Medicine / Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hermann Einsele
- Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine / Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
| |
Collapse
|
14
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Sahin TK, Bilir B, Kucuk O. Modulation of inflammation by phytochemicals to enhance efficacy and reduce toxicity of cancer chemotherapy. Crit Rev Food Sci Nutr 2023; 63:2494-2508. [DOI: https:/doi.org/10.1080/10408398.2021.1976721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Birdal Bilir
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Wang L, Li P, Feng K. EGCG adjuvant chemotherapy: Current status and future perspectives. Eur J Med Chem 2023; 250:115197. [PMID: 36780831 DOI: 10.1016/j.ejmech.2023.115197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The resistance of cancer cells to chemotherapeutic drugs greatly reduces the therapeutic effect in cancer patients, and the toxic side effects caused by chemotherapy also seriously affect the quality of life of patients. The combination of epigallocatechin-3-gallate (EGCG), the main active ingredient in tea, with cisplatin, 5-FU, doxorubicin and paclitaxel enhances their sensitizing effect on tumors and combats the drug resistance of cancer cells. These effects seem to be mediated by a variety of mechanisms, including combating drug resistance mediated by cancer stem cells, enhancing drug sensitivity, inducing cell cycle arrest and apoptosis, and blocking angiogenesis. In addition, EGCG can suppress a series of adverse effects caused by chemotherapy, such as gastrointestinal disorders, nephrotoxicity and cardiotoxicity, through its anti-inflammatory and antioxidant effects and improve the quality of life of patients. However, the low bioavailability and off-target effects of EGCG and its reactivity with some chemotherapeutic agents limit its clinical application. The nanomodification of EGCG and chemotherapeutic drugs not only enhances the antitumor activity but also prolongs the survival time of tumor-bearing mice, and has the advantage of low toxicity. Therefore, this review aims to discuss the current status and challenges regarding the use of EGCG in combination with chemotherapy drugs in the treatment of cancer. In general, EGCG is a promising adjuvant for chemotherapy.
Collapse
Affiliation(s)
- Lin Wang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China
| | - Penghui Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Feng
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China.
| |
Collapse
|
17
|
Ambrosio FA, Costa G, Gallo Cantafio ME, Torcasio R, Trapasso F, Alcaro S, Viglietto G, Amodio N. Natural Agents as Novel Potential Source of Proteasome Inhibitors with Anti-Tumor Activity: Focus on Multiple Myeloma. Molecules 2023; 28:molecules28031438. [PMID: 36771100 PMCID: PMC9919276 DOI: 10.3390/molecules28031438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is an aggressive and incurable disease for most patients, characterized by periods of treatment, remission and relapse. The introduction of new classes of drugs, such as proteasome inhibitors (PIs), has improved survival outcomes in these patient populations. The proteasome is the core of the ubiquitin-proteasome system (UPS), a complex and conserved pathway involved in the control of multiple cellular processes, including cell cycle control, transcription, DNA damage repair, protein quality control and antigen presentation. To date, PIs represent the gold standard for the treatment of MM. Bortezomib was the first PI approved by the FDA, followed by next generation of PIs, namely carfilzomib and ixazomib. Natural agents play an important role in anti-tumor drug discovery, and many of them have recently been reported to inhibit the proteasome, thus representing a new potential source of anti-MM drugs. Based on the pivotal biological role of the proteasome and on PIs' significance in the management of MM, in this review we aim to briefly summarize recent evidence on natural compounds capable of inhibiting the proteasome, thus triggering anti-MM activity.
Collapse
Affiliation(s)
- Francesca Alessandra Ambrosio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (G.C.); (N.A.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Campus “S. Venuta”, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (G.C.); (N.A.)
| |
Collapse
|
18
|
Wiese F, Kutschan S, Doerfler J, Mathies V, Buentzel J, Buentzel J, Huebner J. Green tea and green tea extract in oncological treatment: A systematic review. INT J VITAM NUTR RES 2023; 93:72-84. [PMID: 33593083 DOI: 10.1024/0300-9831/a000698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose: Teas are an essential part of traditional phytotherapy. The aim of this systematic review is to assess the clinical evidence using green tea catechins in cancer care. Methods: A systematic search was conducted searching five electronic databases concerning the effectiveness and risks of epigallocatechin gallate (EGCG) on cancer patients. Results: Seven studies with 371 patients were included. Patients were mainly suffering from breast and prostate cancer. Dosing ranged from 28 mg to 1600 mg EGCG, intervention time from 7 days to 6 months with different applications (topical 2 studies; oral 5 studies). The studies showed heterogeneous methodological quality and results leading not to conduct a meta-analysis. There was a small decrease in prostate-specific-antigen levels in one study (N=60; T0:(mean±SD) 9.6±5.2 ng/ml, T1: 8.4±4.3 ng/ml vs. T0: 9.9±8.5 ng/ml, T1: 10.0±9.0 ng/ml; p=0.04), whereas in a second study only a trend was seen. Topical green tea was as effective as metronidazole powder in reducing the odor of fungating malignant wounds (1 study; N=30) with a consequent increase in quality of life (QoL) (p<0.001), improvement of appetite (p<0.001), malodorous control (p<0.001), social activities (p<0.001). Radiotherapy-induced diarrhea was lower in the green tea intervention group compared to placebo (1 study; N=42; week 4+5: without diarrhea p=0.002). Conclusions: The studies suggest that EGCG is as effective as a local antibiotic in malodorous control and improvement of QoL of fungating malignant wounds. Green tea could be a possible complementary method for treating acute radiation-induced diarrhea. Due to limitations, further studies with higher methodological quality and larger sample sizes are needed.
Collapse
Affiliation(s)
- Fanny Wiese
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Germany
| | - Sabine Kutschan
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Germany
| | - Jennifer Doerfler
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Germany
| | | | - Jens Buentzel
- Klinik für HNO-Erkrankungen, Kopf-Hals-Chirurgie, Südharz-Klinikum Nordhausen, Germany
| | - Judith Buentzel
- Klinik für Hämatologie und Medizinische Onkologie, Universitätsmedizin Göttingen, Germany
| | - Jutta Huebner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Germany
| |
Collapse
|
19
|
Chimento A, D’Amico M, De Luca A, Conforti FL, Pezzi V, De Amicis F. Resveratrol, Epigallocatechin Gallate and Curcumin for Cancer Therapy: Challenges from Their Pro-Apoptotic Properties. Life (Basel) 2023; 13:life13020261. [PMID: 36836619 PMCID: PMC9962739 DOI: 10.3390/life13020261] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Plant-derived bioactive compounds are gaining wide attention for their multiple health-promoting activities and in particular for their anti-cancer properties. Several studies have highlighted how they can prevent cancer initiation and progression, improve the effectiveness of chemotherapy, and, in some cases, limit some of the side effects of chemotherapy agents. In this paper, we provide an update of the literature on the anti-cancer effects of three extensively studied plant-derived compounds, namely resveratrol, epigallocatechin gallate, and curcumin, with a special focus on the anti-cancer molecular mechanisms inducing apoptosis in the major types of cancers globally.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-0984-496204
| |
Collapse
|
20
|
Andreazzoli F, Bonucci M. Integrative Hematology: State of the Art. Int J Mol Sci 2023; 24:ijms24021732. [PMID: 36675247 PMCID: PMC9864076 DOI: 10.3390/ijms24021732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Blood cancers are a group of diseases with thus far frequently poor prognosis. Although many new drugs, including target therapies, have been developed in recent years, there is still a need to expand our therapeutic armamentarium to better deal with these diseases. Integrative hematology was conceived as a discipline that enriches the patient's therapeutic possibilities with the use of supplements, vitamins and a nutritional approach aiming at improving the response to therapies and the clinical outcome. We will analyze the substances that have proved most useful in preclinical and clinical studies in some of the most frequent blood diseases or in those where these studies are more numerous; the importance of the nutritional approach and the role of the intestinal microbiota will also be emphasized.
Collapse
Affiliation(s)
- Francesca Andreazzoli
- Department of Hematology, Versilia’s Hospital, Viale Aurelia, 335, 55049 Camaiore, Italy
- Correspondence:
| | - Massimo Bonucci
- Association for Research on Integrative Oncology Therapies (ARTOI), Via Ludovico Micara, 73, 00165 Rome, Italy
| |
Collapse
|
21
|
Rani S, Sahoo RK, Kumar V, Chaurasiya A, Kulkarni O, Mahale A, Katke S, Kuche K, Yadav V, Jain S, Nakhate KT, Ajazuddin, Gupta U. N-2-Hydroxypropylmethacrylamide-Polycaprolactone Polymeric Micelles in Co-delivery of Proteasome Inhibitor and Polyphenol: Exploration of Synergism or Antagonism. Mol Pharm 2023; 20:524-544. [PMID: 36306447 DOI: 10.1021/acs.molpharmaceut.2c00752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Breast cancer leads to the highest mortality among women resulting in a major clinical burden. Multidrug therapy is more efficient in such patients compared to monodrug therapy. Simultaneous combinatorial or co-delivery garnered significant interest in the past years. Caffeic acid (CFA) (a natural polyphenol) has received growing attention because of its anticarcinogenic and antioxidant potential. Bortezomib (BTZ) is a proteasome inhibitor and may be explored for treating breast cancer. Despite its high anticancer activity, the low water solubility and chemical instability restrict its efficacy against solid tumors. In the present study, we designed and investigated a HP-PCL (N-2-hydroxypropylmethacrylamide-polycaprolactone) polymeric micellar (PMCs) system for the simultaneous delivery of BTZ and CFA in the treatment of breast cancer. The designed BTZ+CFA-HP-PCL PMCs were fabricated, optimized, and characterized for size, zeta potential, surface morphology, and in vitro drug release. Developed nanosized (174.6 ± 0.24 nm) PMCs showed enhanced cellular internalization and cell cytotoxicity in both MCF-7 and MDA-MB-231 cells. ROS (reactive oxygen species) levels were highest in BTZ-HP-PCL PMCs, while CFA-HP-PCL PMCs significantly (p < 0.001) scavenged the ROS generated in 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. The mitochondrial membrane potential (MMP) assay revealed intense and significant green fluorescence in both types of cancer cells when treated with BTZ-HP-PCL PMCs (p < 0.001) indicating apoptosis or cell death. The pharmacokinetic studies revealed that BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs exhibited the highest bioavailability, enhanced plasma half-life, decreased volume of distribution, and lower clearance rate than the pure combination of drugs. In the organ biodistribution studies, the combination of BTZ+CFA showed higher distribution in the spleen and the heart. Overall findings of in vitro studies surprisingly resulted in better therapeutic efficiency of BTZ-HP-PCL PMCs than BTZ+CFA-HP-PCL PMCs. However, the in vivo tumor growth inhibition study performed in tumor-induced mice concluded that the tumor growth was inhibited by both BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs (p < 0.0001) more efficiently than pure BTZ and the combination (BTZ+CFA), which may be due to the conversion of boronate ester into boronic acid. Henceforth, the combination of BTZ and CFA provides further indications to be explored in the future to support the hypothesis that BTZ may work with polyphenol (CFA) in the acidic environment of the tumor.
Collapse
Affiliation(s)
- Sarita Rani
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| | - Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| | - Vinay Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Sumeet Katke
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab160062, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra424001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh490024, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| |
Collapse
|
22
|
Ding K, Jiang W, Jia H, Lei M. Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib. Biomolecules 2022; 12:1647. [PMID: 36358997 PMCID: PMC9687375 DOI: 10.3390/biom12111647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/02/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell tumor originating from a post-mitotic lymphoid B-cell lineage. Bortezomib(BTZ), a first-generation protease inhibitor, has increased overall survival, progression-free survival, and remission rates in patients with MM since its clinical approval in 2003. However, the use of BTZ is challenged by the malignant features of MM and drug resistance. Polyphenols, classified into flavonoid and non-flavonoid polyphenols, have potential health-promoting activities, including anti-cancer. Previous preclinical studies have demonstrated the anti-MM potential of some dietary polyphenols. Therefore, these dietary polyphenols have the potential to be alternative therapies in anti-MM treatment regimens. This systematic review examines the synergistic effects of flavonoids and non-flavonoid polyphenols on the anti-MM impacts of BTZ. Preclinical studies on flavonoids and non-flavonoid polyphenols-BTZ synergism in MM were collected from PubMed, Web of Science, and Embase published between 2008 and 2020. 19 valid preclinical studies (Published from 2008 to 2020) were included in this systematic review. These studies demonstrated that eight flavonoids (icariin, icariside II, (-)-epigallocatechin-3-gallate, scutellarein, wogonin, morin, formononetin, daidzin), one plant extract rich in flavonoids (Punica granatum juice) and four non-flavonoid polyphenols (silibinin, resveratrol, curcumin, caffeic acid) synergistically enhanced the anti-MM effect of BTZ. These synergistic effects are mediated through the regulation of cellular signaling pathways associated with proliferation, apoptosis, and drug resistance. Given the above, flavonoids and non-flavonoid polyphenols can benefit MM patients by overcoming the challenges faced in BTZ treatment. Despite the positive nature of this preclinical evidence, some additional investigations are still needed before proceeding with clinical studies. For this purpose, we conclude by providing some suggestions for future research directions.
Collapse
|
23
|
Pochet S, Lechon AS, Lescrainier C, De Vriese C, Mathieu V, Hamdani J, Souard F. Herb-anticancer drug interactions in real life based on VigiBase, the WHO global database. Sci Rep 2022; 12:14178. [PMID: 35986023 PMCID: PMC9391489 DOI: 10.1038/s41598-022-17704-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/29/2022] [Indexed: 12/21/2022] Open
Abstract
AbstractCancer patients could combine herbal treatments with their chemotherapy. We consulted VigiBase, a WHO database of individual case safety reports (ICSRs) which archives reports of suspected Adverse Drug Reactions (ADRs) when herbal products are used in conjunction with anti-cancer treatment. We focused on the possible interactions between antineoplastic (L01 ATC class) or hormone antagonists (L02B ATC class) with 10 commonly used herbs (pineapple, green tea, cannabis, black cohosh, turmeric, echinacea, St John’s wort, milk thistle and ginger) to compare ADRs described in ICSRs with the literature. A total of 1057 ICSRs were extracted from the database but only 134 were complete enough (or did not concern too many therapeutic lines) to keep them for analysis. Finally, 51 rationalizable ICSRs could be explained, which led us to propose a pharmacokinetic or pharmacodynamic interaction mechanism. Reports concerned more frequently women and half of the rationalizable ICSRs involved Viscum album and Silybum marianum. 5% of the ADRs described could have been avoided if clinicians had had access to the published information. It is also important to note that in 8% of the cases, the ADRs observed were life threatening. Phytovigilance should thus be considered more by health care professionals to best treat cancer patients and for better integrative care.
Collapse
|
24
|
Ng CX, Affendi MM, Chong PP, Lee SH. The Potential of Plant-Derived Extracts and Compounds to Augment Anticancer Effects of Chemotherapeutic Drugs. Nutr Cancer 2022; 74:3058-3076. [PMID: 35675271 DOI: 10.1080/01635581.2022.2069274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plant extracts comprise a complex mixture of natural compounds with diverse biological activities including anticancer activities. This has made the use of plant extracts a trending strategy in cancer treatment. In addition, plants' active constituents such as polyphenols could confer protective effects on normal cells against damage by free radicals as well as lessen the toxicity of chemotherapeutic drugs. Recently, many emerging studies revealed the combinatory uses of plant extracts and individual therapeutic compounds that could be a promising panacea in hampering multiple signaling pathways involved in cancer development and progression. Besides enhancing the therapeutic efficacy, this has also been proven to reduce the dosage of chemotherapeutic drugs used, and hence overcome multiple drug resistance and minimize treatment side effects. Notably, combined use of plant extracts with chemotherapeutics drugs was shown to enhance anticancer effects through modulating various signaling pathways, such as P13K/AKT, NF-κB, JNK, ERK, WNT/β-catenin, and many more. Hence, this review aims to comprehensively summarize both In Vitro and In Vivo mechanisms of actions of well-studied plant extracts, such as Ganoderma Lucidum, Korean red ginseng, Garcinia sp., curcumin, and luteolin extracts in augmenting anticancer properties of the conventional chemotherapeutic drugs from an extensive literature search of recent publications.
Collapse
Affiliation(s)
- Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Muzaira Mazrul Affendi
- School of Health Sciences, Faculty of Medicine and Health Sciences, International Medical University, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
25
|
Misaka S, Ono Y, Taudte RV, Hoier E, Ogata H, Ono T, König J, Watanabe H, Fromm MF, Shimomura K. Exposure of fexofenadine, but not pseudoephedrine, is markedly decreased by green tea extract in healthy volunteers. Clin Pharmacol Ther 2022; 112:627-634. [PMID: 35678032 PMCID: PMC9540489 DOI: 10.1002/cpt.2682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
Green tea (GT) alters the disposition of a number of drugs such as nadolol and lisinopril. However, it is unknown whether GT affects disposition of hydrophilic anti-allergic drugs. The purpose of this study was to investigate whether pharmacokinetics of fexofenadine and pseudoephedrine are affected by catechins, major GT components. A randomized, open, 2-phase crossover study was conducted in 10 healthy Japanese volunteers. After overnight fasting, subjects were simultaneously administered fexofenadine (60 mg) and pseudoephedrine (120 mg) with an aqueous solution of green tea extract (GTE) containing (-)-epigallocatechin gallate (EGCG) of approximately 300 mg or water (control). In vitro transport assays were performed using human embryonic kidney (HEK) 293 cells stably expressing organic anion transporting polypeptide (OATP)1A2 to evaluate the inhibitory effect of EGCG on OATP1A2-mediated fexofenadine transport. In the GTE phase, the area under the plasma concentration-time curve and the amount excreted unchanged into urine for 24h of fexofenadine were significantly decreased by 70% (P < 0.001) and 67% (P < 0.001), respectively, compared with control. There were no differences in Tmax and the elimination half-life of fexofenadine between phases. Fexofenadine was confirmed to be a substrate of OATP1A2, and EGCG (100 and 1000 μM) and GTE (0.1 and 1 mg/mL) inhibited OATP1A2-mediated uptake of fexofenadine. On the contrary, the concomitant administration of GTE did not influence the pharmacokinetics of pseudoephedrine. These results suggest that intake of GT may result in a markedly reduced exposure of fexofenadine, but not of pseudoephedrine, putatively by inhibiting OATP1A2-mediated intestinal absorption.
Collapse
Affiliation(s)
- Shingen Misaka
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuko Ono
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - R Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Hoier
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hiroshi Ogata
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Ono
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
26
|
Wang ZX, Hu L, Wang WJ, Kong FY, Wei MJ, Fang HL, Li QL, Wang W. One-pot green preparation of deep-ultraviolet and dual-emission carbon nanodots for dual-channel ratiometric determination of polyphenol in tea sample. Mikrochim Acta 2022; 189:241. [PMID: 35648245 DOI: 10.1007/s00604-022-05330-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/08/2022] [Indexed: 01/18/2023]
Abstract
A novel deep-ultraviolet and dual-emission carbon nanodots (DUCDs)-based dual-channel ratiometric probe was prepared by a one-pot environmental-friendly hydrothermal process using guanidine as the only starting material for sensing polyphenol in tea sample (TPPs). Under the exposure to TPPs, the DUCDs not only provided a characteristic colorimetric response to TPPs, but also displayed TPPs-sensitive ratiometric fluorescence quenching. The detection mechanism was proved to be that enrichment-specific hydroxyl sites (e.g., -NH2 and -COOH) of DUCDs can specifically react with phenolic hydroxyl groups of TPPs to generate dynamic amide and carboxylate bonds by dehydration and/or condensation reaction. As a result, a new carbon nanomaterial with decrement of surface passivation groups, inherent light-absorbing, and invalid fluorescence emission was generated. The ratio (FL297nm/FL395nm) of fluorescence intensity at 297 nm and 395 nm of DUCDs excited at 275 nm decreased with increasing TPPs concentration. The linearity range was 5.0 ng/mL to 100 µg/mL with a detection limit (DL) of 3.5 ± 0.04 ng/mL for TPPs (n = 3, 3σ/k). Colorimetry of DUCDs, best measured as absorbance at 320 nm, was increased linearly in the TPP concentration range 200 ng/mL-200 µg/mL with a DL of 94.7 ± 0.04 ng/mL (n = 3, 3σ/k). The probe was successfully applied to the determination of TPPs in real tea samples, showing potential application prospects in food analysis.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Lei Hu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wen-Juan Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mei-Jie Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hai-Lin Fang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qi-Le Li
- School of Science, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
27
|
Persano F, Gigli G, Leporatti S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int J Mol Sci 2022; 23:3360. [PMID: 35328780 PMCID: PMC8955269 DOI: 10.3390/ijms23063360] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
In humans, glioblastoma is the most prevalent primary malignant brain tumor. Usually, glioblastoma has specific characteristics, such as aggressive cell proliferation and rapid invasion of surrounding brain tissue, leading to a poor patient prognosis. The current therapy-which provides a multidisciplinary approach with surgery followed by radiotherapy and chemotherapy with temozolomide-is not very efficient since it faces clinical challenges such as tumor heterogeneity, invasiveness, and chemoresistance. In this respect, natural substances in the diet, integral components in the lifestyle medicine approach, can be seen as potential chemotherapeutics. There are several epidemiological studies that have shown the chemopreventive role of natural dietary compounds in cancer progression and development. These heterogeneous compounds can produce anti-glioblastoma effects through upregulation of apoptosis and autophagy; allowing the promotion of cell cycle arrest; interfering with tumor metabolism; and permitting proliferation, neuroinflammation, chemoresistance, angiogenesis, and metastasis inhibition. Although these beneficial effects are promising, the efficacy of natural compounds in glioblastoma is limited due to their bioavailability and blood-brain barrier permeability. Thereby, further clinical trials are necessary to confirm the in vitro and in vivo anticancer properties of natural compounds. In this article, we overview the role of several natural substances in the treatment of glioblastoma by considering the challenges to be overcome and future prospects.
Collapse
Affiliation(s)
- Francesca Persano
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
28
|
Sak K. Dietary Flavonoids with Catechol Moiety Inhibit Anticancer Action of Bortezomib: What about the other Boronic Acid-based Drugs? Curr Cancer Drug Targets 2022; 22:741-748. [PMID: 35578889 DOI: 10.2174/1568009622666220516102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
Approval of the first boronic acid group-containing drug, bortezomib, in 2003 for the treatment of multiple myeloma sparked an increased interest of medicinal chemists in boronic acidbased therapeutics. As a result, another boronic acid moiety-harboring medication, ixazomib, was approved in 2015 as a second-generation proteasome inhibitor for multiple myeloma; and dutogliptin is under clinical investigation in combination therapy against myocardial infarction. Moreover, a large number of novel agents with boronic acid elements in their structure are currently in intensive preclinical studies, allowing us to suppose that at least some of them will enter clinical trials in the near future. On the other hand, only some years after bortezomib approval, direct interactions between its boronic acid group and catechol moiety of green tea catechins as well as some other common dietary flavonoids like quercetin and myricetin were discovered, leading to the formation of stable cyclic boronate esters and abolishing the anticancer activities. Although highly relevant, to date, no reports on possible co-effects of catechol group-containing flavonoids with new-generation boronic acidbased drugs can be found. However, this issue cannot be ignored, especially considering the abundance of catechol moiety-harboring flavonoids in both plant-derived food items as well as over-thecounter dietary supplements and herbal products. Therefore, in parallel with the intensified development of boronic acid-based drugs, their possible interactions with catechol groups of plant-derived flavonoids must also be clarified to provide dietary recommendations to patients for maximizing therapeutic benefits. If concurrently consumed flavonoids can indeed antagonize drug efficacy, it may pose a real risk to clinical outcomes.
Collapse
|
29
|
Experimental and Compassionate Drug Use During the First Wave of the COVID-19 Pandemic: A Retrospective Single-Center Study. Adv Ther 2021; 38:5165-5177. [PMID: 34424502 PMCID: PMC8381349 DOI: 10.1007/s12325-021-01890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Concomitant experimental/compassionate drug administration has been all-pervasive in the treatment of COVID-19 patients. The objective of this study was to study the relationship between patient severity, the number of experimental/compassionate medications received (main outcome measure), and patient outcomes [survival to hospital discharge and length of hospital stay (LOS)]. METHODS Retrospective analysis of data collected in real time during the first pandemic wave in a tertiary care hospital. Data included patient demographics, comorbidities, admission vital signs, laboratory values, most extreme respiratory intervention during hospitalization, and data regarding treatment with compassionate/experimental drugs during their stay. RESULTS Overall, 292 PCR-confirmed patients with symptoms of COVID-19 were studied (March/April, 2020). Increasing respiratory support correlated with both LOS and mortality. Patients were more likely to receive more than 1 experimental/compassionate drugs as respiratory support escalated, ranging from 3% (n = 4/136) among patients on room air to 77.3% (n = 17/22) of mechanically ventilated/ECMO patients (P < 0.001, linear by linear association). The mean number of experimental/compassionate drugs received also increased with escalating respiratory support (P < 0.001, one-way ANOVA). After adjustment for severity of patient condition, administration of more experimental/compassionate drugs was unrelated to survival (P = 0.24), but was related to increased LOS (P < 0.001). CONCLUSION Patients that were hospitalized in worse condition were more likely to receive more experimental/compassionate drugs. Treatment was unrelated to survival but may have been related to LOS. This finding raises questions regarding the results of studies on medication effects that adjusted for multiple drug administration.
Collapse
|
30
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
31
|
Cancer Therapy Challenge: It Is Time to Look in the "St. Patrick's Well" of the Nature. Int J Mol Sci 2021; 22:ijms221910380. [PMID: 34638721 PMCID: PMC8508794 DOI: 10.3390/ijms221910380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer still remains a leading cause of death despite improvements in diagnosis, drug discovery and therapy approach. Therefore, there is a strong need to improve methodologies as well as to increase the number of approaches available. Natural compounds of different origins (i.e., from fungi, plants, microbes, etc.) represent an interesting approach for fighting cancer. In particular, synergistic strategies may represent an intriguing approach, combining natural compounds with classic chemotherapeutic drugs to increase therapeutic efficacy and lower the required drug concentrations. In this review, we focus primarily on those natural compounds utilized in synergistic approached to treating cancer, with particular attention to those compounds that have gained the most research interest.
Collapse
|
32
|
Sahin TK, Bilir B, Kucuk O. Modulation of inflammation by phytochemicals to enhance efficacy and reduce toxicity of cancer chemotherapy. Crit Rev Food Sci Nutr 2021; 63:2494-2508. [PMID: 34529530 DOI: 10.1080/10408398.2021.1976721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Treatment of cancer with chemotherapeutic drugs is associated with numerous adverse effects as well as the eventual development of resistance to chemotherapy. There is a great need for complementary therapies such as botanicals and nutritional supplements with little or no side effects that prevent resistance to chemotherapy and reduce its adverse effects. Inflammation plays a major role in the development of chemoresistance and the adverse effects of chemotherapy. Phytochemicals have well-established anti-inflammatory effects; thus, they could be used as complementary therapies along with chemotherapy to increase its efficacy and reduce its toxicity. Botanical compounds inhibit the NF-κB signaling pathway, which plays an important role in the generation of inflammation, chemotherapy resistance, and modulation of cell survival and apoptosis. Botanicals have previously been studied extensively for their cancer chemopreventive activities and are generally considered safe for human consumption. The present review focuses on the modulation of inflammation by phytochemicals and their role in increasing the efficacy and reducing the toxicity of cancer chemotherapy.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Birdal Bilir
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Wolf CPJG, Rachow T, Ernst T, Hochhaus A, Zomorodbakhsch B, Foller S, Rengsberger M, Hartmann M, Huebner J. Complementary and alternative medicine (CAM) supplements in cancer outpatients: analyses of usage and of interaction risks with cancer treatment. J Cancer Res Clin Oncol 2021; 148:1123-1135. [PMID: 34228225 PMCID: PMC9016053 DOI: 10.1007/s00432-021-03675-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Purpose The aim of our study was to analyze the use of complementary and alternative medicine (CAM) supplements, identify possible predictors, and analyze and compile potential interactions of CAM supplements with conventional cancer therapy. Methods We included outpatient cancer patients treated at a German university hospital in March or April 2020. Information was obtained from questionnaires and patient records. CAM–drug interactions were identified based on literature research for each active ingredient of the supplements consumed by the patients. Results 37.4% of a total of 115 patients consumed CAM supplements. Potential interactions with conventional cancer treatment were identified in 51.2% of these patients. All types of CAM supplements were revealed to be a potential source for interactions: vitamins, minerals, food and plant extracts, and other processed CAM substances. Younger age (< 62 years) (p = 0.020, φc = 0.229) and duration of individual cancer history of more than 1 year (p = 0.006, φc = 0.264) were associated with increased likelihood of CAM supplement use. A wide range of different CAM supplement interactions were reviewed: effects of antioxidants, cytochrome (CYP) interactions, and specific agonistic or antagonistic effects with cancer treatment. Conclusion The interaction risks of conventional cancer therapy with over-the-counter CAM supplements seem to be underestimated. Supplements without medical indication, as well as overdoses, should be avoided, especially in cancer patients. To increase patient safety, physicians should address the risks of interactions in physician–patient communication, document the use of CAM supplements in patient records, and check for interactions.
Collapse
Affiliation(s)
- Clemens P J G Wolf
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Tobias Rachow
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Pneumologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Thomas Ernst
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Konservative Tagesklinik des UniversitätsTumorCentrums (UTC), Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | | | - Susan Foller
- Klinik für Urologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Matthias Rengsberger
- Klinik und Poliklinik für Frauenheilkunde und Fortpflanzungsmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Michael Hartmann
- Apotheke des Universitätsklinikums, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jutta Huebner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Integrative Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
34
|
Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007356. [PMID: 33876449 DOI: 10.1002/adma.202007356] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polyphenols, the phenolic hydroxyl group-containing organic molecules, are widely found in natural plants and have shown beneficial effects on human health. Recently, polyphenol-containing nanoparticles have attracted extensive research attention due to their antioxidation property, anticancer activity, and universal adherent affinity, and thus have shown great promise in the preparation, stabilization, and modification of multifunctional nanoassemblies for bioimaging, therapeutic delivery, and other biomedical applications. Additionally, the metal-polyphenol networks, formed by the coordination interactions between polyphenols and metal ions, have been used to prepare an important class of polyphenol-containing nanoparticles for surface modification, bioimaging, drug delivery, and disease treatments. By focusing on the interactions between polyphenols and different materials (e.g., metal ions, inorganic materials, polymers, proteins, and nucleic acids), a comprehensive review on the synthesis and properties of the polyphenol-containing nanoparticles is provided. Moreover, the remarkable versatility of polyphenol-containing nanoparticles in different biomedical applications, including biodetection, multimodal bioimaging, protein and gene delivery, bone repair, antibiosis, and cancer theranostics is also demonstrated. Finally, the challenges faced by future research regarding the polyphenol-containing nanoparticles are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Qing Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
35
|
Ghosh S, Kumar V, Mukherjee H, Lahiri D, Roy P. Nutraceutical regulation of miRNAs involved in neurodegenerative diseases and brain cancers. Heliyon 2021; 7:e07262. [PMID: 34195404 PMCID: PMC8225984 DOI: 10.1016/j.heliyon.2021.e07262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/24/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
The human brain is a well-connected, intricate network of neurons and supporting glial cells. Neurodegenerative diseases arise as a consequence of extensive loss of neuronal cells leading to disruption of their natural structure and function. On the contrary, rapid proliferation and growth of glial as well as neuronal cells account for the occurrence of malignancy in brain. In both cases, the molecular microenvironment holds pivotal importance in the progression of the disease. MicroRNAs (miRNA) are one of the major components of the molecular microenvironment. miRNAs are small, noncoding RNAs that control gene expression post-transcriptionally. As compared to other tissues, the brain expresses a substantially high number of miRNAs. In the early stage of neurodegeneration, miRNA expression upregulates, while in oncogenesis, miRNA expression is gradually lost. Neurodegeneration and brain cancer is presumed to be under the influence of identical pathways of cell proliferation, differentiation and cell death which are tightly regulated by miRNAs. It has been confirmed experimentally that miRNA expression can be regulated by nutraceuticals - macronutrients, micronutrients or natural products derived from food; thereby making dietary supplements immensely significant for targeting miRNAs having altered expression patterns during neurodegeneration or oncogenesis. In this review, we will discuss in detail, about the common miRNAs involved in brain cancers and neurodegenerative diseases along with the comprehensive list of miRNAs involved separately in both pathological conditions. We will also discuss the role of nutraceuticals in the regulation of those miRNAs which are involved in both of these pathological conditions.
Collapse
Affiliation(s)
- Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Haimanti Mukherjee
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
36
|
Gougis P, Hilmi M, Geraud A, Mir O, Funck-Brentano C. Potential Cytochrome P450-mediated pharmacokinetic interactions between herbs, food, and dietary supplements and cancer treatments. Crit Rev Oncol Hematol 2021; 166:103342. [PMID: 33930533 DOI: 10.1016/j.critrevonc.2021.103342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022] Open
Abstract
Herbs, food and dietary supplements (HFDS), can interact significantly with anticancer drug treatments via cytochrome p450 isoforms (CYP) CYP3A4, CYP2D6, CYP1A2, and CYP2C8. The objective of this review was to assess the influence of HFDS compounds on these cytochromes. Interactions with CYP activities were searched for 189 herbs and food products, 72 dietary supplements in Web of Knowledge® databases. Analyses were made from 140 of 3,125 clinical trials and 236 of 3,374 in vitro, animal model studies or case reports. 18 trials were found to report direct interactions between 9 HFDS with 8 anticancer drugs. 21 HFDS were found to interact with CYP3A4, a major metabolic pathway for many anticancer drugs. All 261 HFDS were classified for their interaction with the main cytochromes P450 involved in the metabolism of anticancer drugs. We provided an easy-to-use colour-coded table to easily match potential interactions between 261 HFDS and 117 anticancer drugs.
Collapse
Affiliation(s)
- Paul Gougis
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France; CLIP² Galilée, Department of Medical Oncology Pitié-Salpêtrière Hospital, F-75013, Paris, France.
| | - Marc Hilmi
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France
| | - Arthur Geraud
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France; Early Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Olivier Mir
- Department of Ambulatory Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christian Funck-Brentano
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France
| |
Collapse
|
37
|
Interactions in cancer treatment considering cancer therapy, concomitant medications, food, herbal medicine and other supplements. J Cancer Res Clin Oncol 2021; 148:461-473. [PMID: 33864520 PMCID: PMC8800918 DOI: 10.1007/s00432-021-03625-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Purpose The aim of our study was to analyse the frequency and severity of different types of potential interactions in oncological outpatients’ therapy. Therefore, medications, food and substances in terms of complementary and alternative medicine (CAM) like dietary supplements, herbs and other processed ingredients were considered. Methods We obtained data from questionnaires and from analysing the patient records of 115 cancer outpatients treated at a German university hospital. Drug–drug interactions were identified using a drug interaction checking software. Potential CAM-drug interactions and food–drug interactions were identified based on literature research. Results 92.2% of all patients were at risk of one or more interaction of any kind and 61.7% of at least one major drug–drug interaction. On average, physicians prescribed 10.4 drugs to each patient and 6.9 interactions were found, 2.5 of which were classified as major. The most prevalent types of drug–drug interactions were a combination of QT prolonging drugs (32.3%) and drugs with a potential for myelotoxicity (13.4%) or hepatotoxicity (10.1%). In 37.2% of all patients using CAM supplements the likelihood of interactions with medications was rated as likely. Food-drug interactions were likely in 28.7% of all patients. Conclusion The high amount of interactions could not be found in literature so far. We recommend running interaction checks when prescribing any new drug and capturing CAM supplements in medication lists too. If not advised explicitly in another way drugs should be taken separately from meals and by using nonmineralized water to minimize the risk for food–drug interactions.
Collapse
|
38
|
Goudarzi M, Kalantar M, Sadeghi E, Karamallah MH, Kalantar H. Protective effects of apigenin on altered lipid peroxidation, inflammation, and antioxidant factors in methotrexate-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:523-531. [PMID: 33057777 DOI: 10.1007/s00210-020-01991-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Methotrexate (MTX) is used as an effective chemotherapeutic agent against autoimmune diseases and tumors. Oxidative stress and inflammation are involved in the pathogenesis of MTX-induced damage. This study aimed at examining the ameliorating effects of apigenin (API) as a natural antioxidant on MTX-induced hepatotoxicity. The rats were classified into four groups: group I: normal saline-treated, group II: MTX-treated (20 mg/kg, ip, single dose at day 7), group III: MTX + API-treated (20 mg/kg, po), and group IV: API-treated. API was administrated for 9 days. Alanine aminotransferase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST) were used as biochemical factors of MTX-induced hepatic injury. In hepatic tissues, the levels of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), and activities of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) as oxidative stress markers along with inflammatory factors such as tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL-1β) were assessed. Our results showed that MTX administration significantly increased ALP, ASP, ALT, MDA, NO, TNF-α, and IL-1β levels and significantly decreased antioxidant factors such as GSH, CAT, GPx, and SOD. The API pretreatment group showed a significant rise in hepatic antioxidant markers, besides significant reductions in the serum levels of AST, ALT, and ALP and hepatic content of MDA, TNF-α, NO, and IL-1β. In addition, the hepatoprotective effect of API was confirmed by histological evaluation of the liver. API can prevent MTX-induced hepatotoxicity through mitigation of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Kalantar
- Faculty of Medicine, Shoushtar University of Medical Sciences, Shoushtar, Iran
| | - Elahe Sadeghi
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hadi Kalantar
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
39
|
Hackman GL, Collins M, Lu X, Lodi A, DiGiovanni J, Tiziani S. Predicting and Quantifying Antagonistic Effects of Natural Compounds Given with Chemotherapeutic Agents: Applications for High-Throughput Screening. Cancers (Basel) 2020; 12:cancers12123714. [PMID: 33322034 PMCID: PMC7763027 DOI: 10.3390/cancers12123714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Natural products have been used for centuries to treat various human ailments. In recent decades, multi-drug combinations that utilize natural products to synergistically enhance the therapeutic effects of cancer drugs have been identified and have shown success in improving treatment outcomes. While drug synergy research is a burgeoning field, there are disagreements on the definitions and mathematical parameters that prevent the standardization and proper usage of the terms synergy, antagonism, and additivity. This contributes to the relatively small amount of data on the antagonistic effects of natural products on cancer drugs that can diminish their therapeutic efficacy and prevent cancer regression. The ability of natural products to potentially degrade or reverse the molecular activity of cancer therapeutics represents an important but highly under-emphasized area of research that is often overlooked in both pre-clinical and clinical studies. This review aims to evaluate the body of work surrounding the antagonistic interactions between natural products and cancer therapeutics and highlight applications for high-throughput screening (HTS) and deep learning techniques for the identification of natural products that antagonize cancer drug efficacy.
Collapse
Affiliation(s)
- G. Lavender Hackman
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (G.L.H.); (M.C.); (X.L.); (A.L.)
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Meghan Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (G.L.H.); (M.C.); (X.L.); (A.L.)
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Xiyuan Lu
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (G.L.H.); (M.C.); (X.L.); (A.L.)
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (G.L.H.); (M.C.); (X.L.); (A.L.)
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
| | - John DiGiovanni
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (G.L.H.); (M.C.); (X.L.); (A.L.)
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA;
- Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA
- Correspondence: ; Tel.: +1-512-495-4706
| |
Collapse
|
40
|
Scaria B, Sood S, Raad C, Khanafer J, Jayachandiran R, Pupulin A, Grewal S, Okoko M, Arora M, Miles L, Pandey S. Natural Health Products (NHP's) and Natural Compounds as Therapeutic Agents for the Treatment of Cancer; Mechanisms of Anti-Cancer Activity of Natural Compounds and Overall Trends. Int J Mol Sci 2020; 21:E8480. [PMID: 33187200 PMCID: PMC7697102 DOI: 10.3390/ijms21228480] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most cancer therapeutics, such as tubulin-targeting chemotherapy drugs, cause cytotoxic, non-selective effects. These harmful side-effects drastically reduce the cancer patient's quality of life. Recently, researchers have focused their efforts on studying natural health products (NHP's) which have demonstrated the ability to selectively target cancer cells in cellular and animal models. However, the major hurdle of clinical validation remains. NHP's warrant further clinical investigation as a therapeutic option since they exhibit low toxicity, while retaining a selective effect. Additionally, they can sensitize cancerous cells to chemotherapy, which enhances the efficacy of chemotherapeutic drugs, indicating that they can be utilized as supplemental therapy. An additional area for further research is the investigation of drug-drug interactions between NHP's and chemotherapeutics. The objectives of this review are to report the most recent results from the field of anticancer NHP research, and to highlight the most recent advancements in possible supplemental therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada; (B.S.); (S.S.); (C.R.); (J.K.); (R.J.); (A.P.); (S.G.); (M.O.); (M.A.); (L.M.)
| |
Collapse
|
41
|
Zhang S, Cao M, Fang F. The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseases. Med Sci Monit 2020; 26:e924558. [PMID: 32952149 PMCID: PMC7504867 DOI: 10.12659/msm.924558] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tea containing abundant catechins is a popular non-alcoholic beverage worldwide. Epigallocatechin-3-gallate (EGCG) is the predominately active substance in catechins, exhibiting a wide range of functional properties including cancer suppression, neuroprotective, metabolic regulation, cardiovascular protection, stress adjustment, and antioxidant in various diseases. Autophagy, a basic cell function, participates in various physiological processes which include clearing away abnormally folded proteins and damaged organelles, and regulating growth. EGCG not only regulates autophagy via increasing Beclin-1 expression and reactive oxygen species generation, but also causing LC3 transition and decreasing p62 expression. EGCG-induced autophagy is involved in the occurrence and development of many human diseases, including cancer, neurological diseases, diabetes, cardiovascular diseases, and injury. Apoptosis is a common cell function in biology and is induced by endoplasmic reticulum stress (ERS) as a cellular stress response which is caused by various internal and external factors. ERS-induced apoptosis of EGCG influences cell survival and death in various diseases via regulating IRE1, ATF6, and PERK signaling pathways, and activating GRP78 and caspase proteins. The present manuscript reviews that the effect of EGCG in autophagy and ERS-induced apoptosis of human diseases.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Department of Dermatology, Shanghai Xuhui District Central Hospital, Shanghai, China (mainland)
| | - Mengke Cao
- Department of Dermatology, Jinshan Hospital of Fudan University, Shanghai, China (mainland)
| | - Fang Fang
- Department of Dermatology, Shanghai Eighth People's Hospital, Shanghai, China (mainland)
| |
Collapse
|
42
|
Practical Application of "About Herbs" Website: Herbs and Dietary Supplement Use in Oncology Settings. ACTA ACUST UNITED AC 2020; 25:357-366. [PMID: 31567464 DOI: 10.1097/ppo.0000000000000403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Integrative Medicine Service at Memorial Sloan Kettering Cancer Center developed and maintains About Herbs (www.aboutherbs.com), which provides summaries of research data including purported uses, adverse effects, and herb-drug interactions for about 284 dietary supplements. Using Google Analytics, we found the website registered more than 26,317,000 hits since November 2002. The 10 most searched-for herbs/supplements of 2018 are chaga mushroom, turmeric, ashwagandha, reishi mushroom, graviola, Active Hexose-Correlated Compound, boswellia, dandelion, green tea, and Coriolus versicolor. Here we discuss their safety, herb-drug interactions, and appropriate uses in the oncology setting, based on literature searches in PubMed. Over the past 16 years, the evidence for use of these supplements is based mostly on preclinical findings, with few well-designed studies and limited trials conducted in cancer patients. It is important to familiarize health care professionals about popular supplements, so patients can be informed to make decisions that maximize benefits and minimize risks.
Collapse
|
43
|
Qiu H, Zhu X, Wan H, Xu L, Zhang Q, Hou P, Fan Z, Lyu Y, Ni D, Usadel B, Fernie AR, Wen W. Parallel Metabolomic and Transcriptomic Analysis Reveals Key Factors for Quality Improvement of Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5483-5495. [PMID: 32302110 DOI: 10.1021/acs.jafc.0c00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the most popular beverages globally, tea has enormous economic, cultural, and medicinal importance that necessitates a comprehensive metabolomics study of this species. In this study, a large-scale targeted metabolomics analysis on two types of leaf tissues of nine tea cultivars from five representative geographical origins within China was carried out using the liquid chromatography-mass spectrometry technique. RNA-seq-based transcriptomic analysis was in parallel conducted on the same samples, and gene expression and metabolic differentiation between tissues as well as between the multiple tea cultivars were investigated. The data obtained provide an accessible resource for further studies of naturally occurring metabolic variation of tea plants, which will aid in thoroughly interpreting the underlying genetic and molecular mechanisms of biosynthesis of specialized metabolites in this critical species. Candidate genes including a transcription factor (CsMYB5-like), which were highly correlated with both the content of flavonoids and the expression level of genes participating in the phenylpropanoid and flavonoid biosynthesis pathway, were identified as potential targets for quality improvement of tea.
Collapse
Affiliation(s)
- Haiji Qiu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Zhu
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Haoliang Wan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengyi Hou
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Ziquan Fan
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Yi Lyu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Youyi Xilu 127, 710072 Xi'an, Shaanxi, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Björn Usadel
- Institute of Biology 1, BioSC, Rheinisch-Westfaelische Technische Hochschule Aachen, 52056 Aachen, Germany
- IBG-2, Plant Sciences, Forschungszentrum Jülich, Wilhelm Johnen Str, 52024 Jülich, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm 14476, Germany
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Berretta M, Rinaldi L, Taibi R, Tralongo P, Fulvi A, Montesarchio V, Madeddu G, Magistri P, Bimonte S, Trovò M, Gnagnarella P, Cuomo A, Cascella M, Lleshi A, Nasti G, Facchini S, Fiorica F, Di Francia R, Nunnari G, Pellicanò GF, Guglielmino A, Danova M, Rossetti S, Amore A, Crispo A, Facchini G. Physician Attitudes and Perceptions of Complementary and Alternative Medicine (CAM): A Multicentre Italian Study. Front Oncol 2020; 10:594. [PMID: 32411599 PMCID: PMC7202223 DOI: 10.3389/fonc.2020.00594] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose: Complementary and Alternative Medicine (CAM) interventions are widely used by patients with chronic disorders, including cancer, and may interact with cancer treatment. Physicians are often unaware of this, probably due to poor patient-physician communication on CAM. The purpose of this study was to evaluate physicians' knowledge, attitudes and practice patterns regarding CAM in a survey conducted in Italy. Methods: A questionnaire was administered to 438 physicians (11 Italian hospitals) who predominantly treat patients with chronic disease, to collect personal and professional data and information on attitudes toward CAM and its possible role in Conventional Medicine (CM). Results: Of the 438 participants, most were specialists in oncology (18%), internal medicine (17%), surgery (15%), and radiotherapy (11%). Most worked at university (44%) or research hospitals (31%). Forty-two percent of participants believed that CAM could have an integrative role within CM. Oncologists were the physicians who were best informed on CAM (58%). Physicians working at research institutes or university hospitals had a greater knowledge of CAM than those employed at general hospitals (p < 0.0001), and those who were also involved in research activity had a greater knowledge of CAM than those who were not (p < 0.003). Length of work experience was significantly related to CAM knowledge. Moreover, 55% of participants suggest CAM interventions to their patients and 44% discuss CAM with them. The best-known interventions were acupuncture, Aloe vera and high-dose vitamin C. Conclusion: CAM use by patients with chronic disease and/or cancer has become a topical issue for the scientific community and for physicians. Knowing the reasons that prompt these patients to use CAM and guiding them in their decisions would improve treatment and outcomes and also benefit healthcare systems. Our findings contribute to a greater understanding of CAM knowledge, attitudes, and practice among Italian physicians. Further research is needed to identify the more effective CAM treatments and to work toward an integrated healthcare model.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Medical Oncology, Istituto Nazionale Tumori, IRCCS - CRO, Aviano (PN), Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Taibi
- Department of Medical Oncology, Istituto Nazionale Tumori, IRCCS - CRO, Aviano (PN), Italy
| | - Paolo Tralongo
- Division of Medical Oncology, “Umberto I” Hospital, Siracusa, Italy
| | - Alberto Fulvi
- Division of Medical Oncology, “Gemelli” Hospital, Roman, Italy
| | | | - Giordano Madeddu
- Division of Infectious Diseases, University of Sassari, Sassari, Italy
| | - Paolo Magistri
- Department of Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Sabrina Bimonte
- Department of Anaesthesia and Pain Medicine, Istituto Nazionale Tumori “Fondazione G. Pascale” IRCCS, Naples, Italy
| | - Marco Trovò
- Division of Radiotherapy, “Santa Maria della Misericordia” Hospital, Udine, Italy
| | - Patrizia Gnagnarella
- Division of Epidemiology and Biostatistics IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Arturo Cuomo
- Department of Anaesthesia and Pain Medicine, Istituto Nazionale Tumori “Fondazione G. Pascale” IRCCS, Naples, Italy
| | - Marco Cascella
- Department of Anaesthesia and Pain Medicine, Istituto Nazionale Tumori “Fondazione G. Pascale” IRCCS, Naples, Italy
| | - Arben Lleshi
- Department of Medical Oncology, Istituto Nazionale Tumori, IRCCS - CRO, Aviano (PN), Italy
| | - Guglielmo Nasti
- Division of Medical Oncology B, Istituto Nazionale Tumori “Fondazione G. Pascale” IRCCS, Naples, Italy
| | - Sergio Facchini
- Department of Urology, University of Naples “Federico II”, Naples, Italy
| | | | | | - Giuseppe Nunnari
- Division of Infectious Disease, University of Messina, Messina, Italy
| | | | - Aurelio Guglielmino
- Division of Anaesthesia, Policlinico Universitario, University of Catania, Catania, Italy
| | - Marco Danova
- Department of Internal Medicine and Medical Oncology, Vigevano Civic Hospital, ASST of Pavia, Vigevano, Italy
| | - Sabrina Rossetti
- Medical Oncology, Department of Uro-Gynaecological Oncology 'Istituto Nazionale Tumori' 'Fondazione G. Pascale' IRCCS, Naples, Italy
| | - Alfonso Amore
- Division of Surgery Melanoma and Skin Cancer, 'Istituto Nazionale Tumori' 'Fondazione G. Pascale' IRCCS, Naples, Italy
| | - Anna Crispo
- Unit of Epidemiology, 'Istituto Nazionale Tumori' 'Fondazione G. Pascale' IRCCS, Naples, Italy
| | - Gaetano Facchini
- Medical Oncology, Department of Uro-Gynaecological Oncology 'Istituto Nazionale Tumori' 'Fondazione G. Pascale' IRCCS, Naples, Italy
| |
Collapse
|
45
|
Hamed Abdalla MEA, Ali AM, Loong L. The use of complementary and alternative medicine (CAM) among cancer patients at a tertiary hospital in Malaysia. Complement Ther Med 2020; 50:102343. [PMID: 32444037 DOI: 10.1016/j.ctim.2020.102343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/03/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Complementary and alternative medicine (CAM) use among cancer patients is increasing over the years. Some types of CAM may interact with conventional cancer therapy or may cause serious adverse effects. This study was designed to determine the prevalence of CAM use among cancer patients during cancer therapy and to identify CAM users' characteristics, perception, reasoning, expectation and disclosure of CAM use. METHOD This cross-sectional study was conducted between July 2017 to October 2017, on 121 cancer patients in oncology and hematology clinics and daycare of a tertiary hospital in Kuala Lumpur, Malaysia. Study data was collected using a self-administered questionnaire. RESULTS The prevalence of CAM use among cancer patients was found to be 61.2 %. Multivariate logistic regression analysis showed that CAM use was associated with change in outlook on life after development of cancer. The most frequently used types of CAM were vitamins and Islamic medical practices. Majority of patients were guided by family and friends' suggestions towards using CAM. Most patients expected CAM to cure their disease. The percentage of patients who disclosed CAM use to the doctors was slightly higher than those who did not disclose CAM use. CONCLUSION The use of CAM was found to be remarkably high. Rate of non-disclosure of CAM use was high indicating the need for enhancement of doctor- patient relationship for effective patient's care. Future research is needed with large sample of patients to provide better representation of the population and to help understand patients' beliefs and perception more.
Collapse
Affiliation(s)
- Maha Emad Aldin Hamed Abdalla
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adliah Mhd Ali
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Lysia Loong
- Pharmacy Department, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Raimondi L, De Luca A, Giavaresi G, Barone A, Tagliaferri P, Tassone P, Amodio N. Impact of Natural Dietary Agents on Multiple Myeloma Prevention and Treatment: Molecular Insights and Potential for Clinical Translation. Curr Med Chem 2020; 27:187-215. [PMID: 29956610 DOI: 10.2174/0929867325666180629153141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 01/30/2023]
Abstract
Chemoprevention is based on the use of non-toxic, pharmacologically active agents to prevent tumor progression. In this regard, natural dietary agents have been described by the most recent literature as promising tools for controlling onset and progression of malignancies. Extensive research has been so far performed to shed light on the effects of natural products on tumor growth and survival, disclosing the most relevant signal transduction pathways targeted by such compounds. Overall, anti-inflammatory, anti-oxidant and cytotoxic effects of dietary agents on tumor cells are supported either by results from epidemiological or animal studies and even by clinical trials. Multiple myeloma is a hematologic malignancy characterized by abnormal proliferation of bone marrow plasma cells and subsequent hypercalcemia, renal dysfunction, anemia, or bone disease, which remains incurable despite novel emerging therapeutic strategies. Notably, increasing evidence supports the capability of dietary natural compounds to antagonize multiple myeloma growth in preclinical models of the disease, underscoring their potential as candidate anti-cancer agents. In this review, we aim at summarizing findings on the anti-tumor activity of dietary natural products, focusing on their molecular mechanisms, which include inhibition of oncogenic signal transduction pathways and/or epigenetic modulating effects, along with their potential clinical applications against multiple myeloma and its related bone disease.
Collapse
Affiliation(s)
| | | | | | - Agnese Barone
- Hospice Cascina Brandezzata-Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
47
|
Abdelkawy KS, Abdelaziz RM, Abdelmageed AM, Donia AM, El-Khodary NM. Effects of Green Tea Extract on Atorvastatin Pharmacokinetics in Healthy Volunteers. Eur J Drug Metab Pharmacokinet 2020; 45:351-360. [PMID: 31997084 DOI: 10.1007/s13318-020-00608-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Green tea catechins were recently reported to inhibit drug transporters such as organic anion-transporting polypeptides (OATPs) and metabolic enzymes, affecting the bioavailability of many drugs. This study aimed to evaluate the clinical significance of the effects of different doses of green tea extract on the pharmacokinetic parameters of atorvastatin and to rationalize the associated interaction mechanism. METHODS A randomized, double-blind, three-phase crossover study involving 12 healthy volunteers was performed. Participants received a single dose of atorvastatin 40 mg alone (control group), atorvastatin 40 mg plus a capsule containing 300 mg of dry green tea extract, or atorvastatin 40 mg plus a capsule containing 600 mg of dry green tea extract. Plasma samples taken from the volunteers were analyzed for atorvastatin using liquid chromatography-tandom mass spectrometry (LC/MS/MS). RESULTS Compared to atorvastatin alone, the administration of 300 mg or 600 mg of the green tea extract along with atorvastatin decreased the peak plasma concentration (Cmax) of atorvastatin by 25% and 24%, respectively (P < 0.05), and the area under the plasma concentration-time curve (AUC0-∞) of atorvastatin by 24% and 22%, respectively (P < 0.05). Additionally, administration of 300 mg or 600 mg of the green tea extract increased the apparent oral clearance (CL/F) of atorvastatin by 31% and 29%, respectively. The time to Cmax (Tmax) and the elimination half-life (t1/2) of atorvastatin did not differ among the three phases. The effects of 600 mg of the green tea extract on the pharmacokinetic parameters of atorvastatin were not significantly different from the effects of 300 mg of the green tea extract. CONCLUSION Green tea extract decreases the absorption but not the elimination of atorvastatin, possibly by inhibiting OATP, albeit not in a dose-dependent manner. Coadministration of green tea extract with atorvastatin may necessitate the monitoring of the plasma concentration of atorvastatin in clinical practice.
Collapse
Affiliation(s)
- Khaled S Abdelkawy
- Clinical Pharmacy Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh City, Egypt
| | - Reham M Abdelaziz
- Clinical Pharmacy Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh City, Egypt
| | - Ahmed M Abdelmageed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh City, Egypt
| | - Ahmed M Donia
- Pharmaceutical Technology Department, Faculty of Pharmacy, Menofia University, Menofia City, Egypt
| | - Noha M El-Khodary
- Clinical Pharmacy Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| |
Collapse
|
48
|
Sharifi-Rad M, Pezzani R, Redaelli M, Zorzan M, Imran M, Ahmed Khalil A, Salehi B, Sharopov F, Cho WC, Sharifi-Rad J. Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer. Molecules 2020; 25:467. [PMID: 31979082 PMCID: PMC7037968 DOI: 10.3390/molecules25030467] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is the main bioactive component of catechins predominantly present in svarious types of teas. EGCG is well known for a wide spectrum of biological activity as an anti-oxidative, anti-inflammatory, and anti-tumor agent. The effect of EGCG on cell death mechanisms via the induction of apoptosis, necrosis, and autophagy has been documented. Moreover, its anti-proliferative and chemopreventive action has been demonstrated in many cancer cell lines. It was also involved in the modulation of cyclooxygenase-2, in oxidative stress and inflammation of different cell processes. EGCG has been reported as a promising target for plasma membrane proteins, such as epidermal growth factor receptor (EGFR). In addition, it has been demonstrated a mechanism of action relying on the inhibition of ERK1/2, p38 MAPK, NF-κB, and vascular endothelial growth factor (VEGF). EGCG and its derivatives were used in proteasome inhibition and they were involved in epigenetic mechanisms. In summary, EGCG is the most predominant and bioactive constituent of teas and it has a pivotal role in cancer prevention. Its preclinical pharmacological activities are associated with complex molecular mechanisms that involve numerous signaling pathways.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Maira Zorzan
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
49
|
Yerlikaya A, Okur E. An investigation of the mechanisms underlying the proteasome inhibitor bortezomib resistance in PC3 prostate cancer cell line. Cytotechnology 2019; 72:121-130. [PMID: 31863311 DOI: 10.1007/s10616-019-00362-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of acquired resistance to chemotherapeutic agents is a long-standing conundrum in cancer treatment. To help delineate drug resistance mechanisms and pave the way for the development of novel strategies, we generated a PC3 prostate cancer cell line resistant to proteasome inhibitor bortezomib for the first time. The resistant cells were found to have an IC50 value of 359.6 nM, whereas the IC50 value of parental cells was 82.6 nM after 24 h of treatment with varying doses of bortezomib. The resistant cells were also partly cross-resistant to the novel proteasome inhibitor carfilzomib; however, they were not resistant to widely used chemotherapeutic agent vincristine sulfate, indicating that enhanced cellular drug efflux via the multidrug resistance (MDR) transporters is not the molecular basis of the resistance. Since both bortezomib and carfilzomib target and inhibit the chymotrypsin-related activity residing in the β5 subunit of the proteasome (PSMB5), we next examined its expression and found surprisingly no significant alteration in the expression profile of the mature form. However, a significant increase in the accumulation of the precursor form of PSMB5 in response to 100 nM bortezomib was observed in the parental cells without a significant accumulation in the resistant cells. The results presented here thus suggest that the molecular mechanisms causing resistance to proteasome inhibitors need to be examined in-depth to overcome the resistance to ubiquitin-proteasome pathway inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kütahya, Turkey.
| | - Emrah Okur
- Department of Biology, Faculty of Art and Sciences, Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
50
|
Phytochemical analysis, antioxidant, antibacterial and cytotoxicity properties of keys and cores part of Pandanus tectorius fruits. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|