1
|
Xu Z, Ponek A, Thomas J, Qyang Y. Generation of Orthogonal Gradients of the Matrix Stiffness and Chemotactic Cues in a Suspended Array of Hydrogel to Study hMSCs Migration. ACS Sens 2025; 10:1722-1728. [PMID: 40021359 DOI: 10.1021/acssensors.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Stem cell migration is a tightly regulated process in vivo, orchestrated by a collection of mechanical and chemotactic cues via concentration gradients. A variety of in vitro assays have been developed to facilitate cell migration studies; however, very few assays allow the investigation of both matrix stiffness and chemotactic cues on cell migration within a single device, especially in a three-dimensional (3D) environment. Here, we develop a microfluidic device that can produce 3D orthogonal gradients of matrix stiffness and chemotactic cues with varied steepness in a suspended array of hydrogel cylinders. The device's working principle is the formation of diffusion-driven concentration gradients within a suspended array of hydrogel cylinders between a source and a sink. Device fabrication is based on poly(dimethylsiloxane) (PDMS) replica molding, followed by assembly on a glass substrate. To validate this device, we study the migration of human mesenchymal stem cells (hMSCs) in response to orthogonal gradients of matrix stiffness and stromal cell-derived factor 1 alpha (SDF-1α). This technology has the potential to be applied to various cell types, facilitating exploration in different cellular contexts.
Collapse
Affiliation(s)
- Zhen Xu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06511,United States
- Yale Stem Cell Center, New Haven, Connecticut 06520, United States
| | - Anna Ponek
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06511,United States
| | - Jordan Thomas
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06511,United States
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06511,United States
- Yale Stem Cell Center, New Haven, Connecticut 06520, United States
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06519, United States
| |
Collapse
|
2
|
Garcia‐Aponte OF, Kahlenberg S, Kouroupis D, Egger D, Kasper C. Effects of Hydrogels on Mesenchymal Stem/Stromal Cells Paracrine Activity and Extracellular Vesicles Production. J Extracell Vesicles 2025; 14:e70057. [PMID: 40091440 PMCID: PMC11911545 DOI: 10.1002/jev2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a valuable source of paracrine factors, as they have a remarkable secretory capacity, and there is a sizeable knowledge base to develop industrial and clinical production protocols. Promising cell-free approaches for tissue regeneration and immunomodulation are driving research towards secretome applications, among which extracellular vesicles (EVs) are steadily gaining attention. However, the manufacturing and application of EVs is limited by insufficient yields, knowledge gaps, and low standardization. Facing these limitations, hydrogels represent a versatile three-dimensional (3D) culture platform that can incorporate extracellular matrix (ECM) components to mimic the natural stem cell environment in vitro; via these niche-mimicking properties, hydrogels can regulate MSCs' morphology, adhesion, proliferation, differentiation and secretion capacities. However, the impact of the hydrogel's architectural, biochemical and biomechanical properties on the production of EVs remains poorly understood, as the field is still in its infancy and the interdependency of culture parameters compromises the comparability of the studies. Therefore, this review summarizes and discusses the reported effects of hydrogel encapsulation and culture on the secretion of MSC-EVs. Considering the effects of cell-material interactions on the overall paracrine activity of MSCs, we identify persistent challenges from low standardization and process control, and outline future paths of research, such as the synergic use of hydrogels and bioreactors to enhance MSC-EV generation.
Collapse
Affiliation(s)
- Oscar Fabian Garcia‐Aponte
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Simon Kahlenberg
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Diabetes Research Institute & Cell Transplant Center, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Dominik Egger
- Institute of Cell Biology and BiophysicsLeibniz University HannoverHannoverGermany
| | - Cornelia Kasper
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
3
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Mei R, Wan Z, Yang C, Shen X, Wang R, Zhang H, Yang R, Li J, Song Y, Su H. Advances and clinical challenges of mesenchymal stem cell therapy. Front Immunol 2024; 15:1421854. [PMID: 39100671 PMCID: PMC11294097 DOI: 10.3389/fimmu.2024.1421854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
In recent years, cell therapy has provided desirable properties for promising new drugs. Mesenchymal stem cells are promising candidates for developing genetic engineering and drug delivery strategies due to their inherent properties, including immune regulation, homing ability and tumor tropism. The therapeutic potential of mesenchymal stem cells is being investigated for cancer therapy, inflammatory and fibrotic diseases, among others. Mesenchymal stem cells are attractive cellular carriers for synthetic nanoparticles for drug delivery due to their inherent homing ability. In this review, we comprehensively discuss the various genetic and non-genetic strategies of mesenchymal stem cells and their derivatives in drug delivery, tumor therapy, immune regulation, tissue regeneration and other fields. In addition, we discuss the current limitations of stem cell therapy and the challenges in clinical translation, aiming to identify important development areas and potential future directions.
Collapse
Affiliation(s)
- Ruiyan Mei
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiangjing Shen
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haihua Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Rui Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
Zhang J, Zhang W, Sun T, Wang J, Li Y, Liu J, Li Z. The Influence of Intervertebral Disc Microenvironment on the Biological Behavior of Engrafted Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:8671482. [PMID: 36387746 PMCID: PMC9663214 DOI: 10.1155/2022/8671482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2024] Open
Abstract
Intervertebral disc degeneration is the main cause of low back pain. Traditional treatment methods cannot repair degenerated intervertebral disc tissue. The emergence of stem cell therapy makes it possible to regenerate and repair degenerated intervertebral disc tissue. At present, mesenchymal stem cells are the most studied, and different types of mesenchymal stem cells have their own characteristics. However, due to the harsh and complex internal microenvironment of the intervertebral disc, it will affect the biological behaviors of the implanted mesenchymal stem cells, such as viability, proliferation, migration, and chondrogenic differentiation, thereby affecting the therapeutic effect. This review is aimed at summarizing the influence of each intervertebral disc microenvironmental factor on the biological behavior of mesenchymal stem cells, so as to provide new ideas for using tissue engineering technology to assist stem cells to overcome the influence of the microenvironment in the future.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Ying Li
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| | - Jing Liu
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| |
Collapse
|
6
|
Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022; 13:179. [PMID: 35505419 PMCID: PMC9066724 DOI: 10.1186/s13287-022-02858-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Wei Y, Wang B, Jia L, Huang W, Xiang AP, Fang C, Liang X, Li W. Lateral Mesoderm-Derived Mesenchymal Stem Cells With Robust Osteochondrogenic Potential and Hematopoiesis-Supporting Ability. Front Mol Biosci 2022; 9:767536. [PMID: 35573747 PMCID: PMC9095820 DOI: 10.3389/fmolb.2022.767536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are among the most promising cell sources for the treatment of various diseases. Nonetheless, the therapeutic efficacy in clinical trials has been inconsistent due to the heterogeneity of MSCs, which may be partially attributed to their undefined developmental origins. The lateral mesoderm is also a developmental source of MSCs that constitute appendicular skeletal elements in the developing vertebrate embryo. However, it is difficult to isolate homogeneous lateral mesoderm (LM)-derived MSCs from bone tissues or bone marrow due to the lack of understanding of their characteristics. Herein, we successfully established an efficient differentiation protocol for the derivation of MSCs with a LM origin from human pluripotent stem cells (hPSCs) under specific conditions. LM-MSCs resembled bone marrow-derived MSCs (BMSCs) with regard to cell surface markers, global gene profiles, and immunoregulatory activity and showed a homeodomain transcription factor (HOX) gene expression pattern typical of skeletal MSCs in long bones. Moreover, we demonstrated that LM-MSCs had an increased osteogenic/chondrogenic differentiation capacity and hematopoietic support potential compared to BMSCs. These homogeneous LM-MSCs may serve as a powerful tool for elucidating their precise role in bone formation and hematopoiesis and could be a potentially ideal cell source for therapeutic applications.
Collapse
Affiliation(s)
- Yili Wei
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Bin Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Lei Jia
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Cong Fang
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Xiaoyan Liang, ; Weiqiang Li,
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Xiaoyan Liang, ; Weiqiang Li,
| |
Collapse
|
8
|
Chiang MC, Chern E. Current Development, Obstacle and Futural Direction of Induced Pluripotent Stem Cell and Mesenchymal Stem Cell Treatment in Degenerative Retinal Disease. Int J Mol Sci 2022; 23:ijms23052529. [PMID: 35269671 PMCID: PMC8910526 DOI: 10.3390/ijms23052529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Degenerative retinal disease is one of the major causes of vision loss around the world. The past several decades have witnessed emerging development of stem cell treatment for retinal disease. Nevertheless, sourcing stem cells remains controversial due to ethical concerns and their rarity. Furthermore, induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are both isolated from patients’ mature tissues; thus, issues such as avoiding moral controversy and adverse events related to immunosuppression and obtaining a large number of cells have opened a new era in regenerative medicine. This review focuses on the current application and development, clinical trials, and latest research of stem cell therapy, as well as its limitations and future directions.
Collapse
|
9
|
Atkinson SP. A preview of selected articles. Stem Cells 2021. [DOI: 10.1002/stem.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials 2020; 268:120572. [PMID: 33285439 DOI: 10.1016/j.biomaterials.2020.120572] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/04/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Mechanobiology, translating mechanical signals into biological ones, greatly affects cellular behavior. Steering cellular behavior for cell-based regenerative medicine approaches requires a thorough understanding of the orchestrating molecular mechanisms, among which mechanotransducive ones are being more and more elucidated. Because of their wide use and highly mechanotransduction dependent differentiation, this review focuses on mesenchymal stromal cells (MSCs), while also briefly relating the discussed results to other cell types. While the mechanotransduction pathways are relatively well-studied in 2D, much remains unknown of the role and regulation of these pathways in 3D. Ultimately, cells need to be cultured in a 3D environment to create functional de novo tissue. In this review, we explore the literature on the roles of different material properties on cellular behavior and mechanobiology in 2D and 3D. For example, while stiffness plays a dominant role in 2D MSCs differentiation, it seems to be of subordinate importance in 3D MSCs differentiation, where matrix remodeling seems to be key. Also, the role and regulation of some of the main mechanotransduction players are discussed, focusing on MSCs. We have only just begun to fundamentally understand MSCs and other stem cells behavior in 3D and more fundamental research is required to advance biomaterials able to replicate the stem cell niche and control cell activity. This better understanding will contribute to smarter tissue engineering scaffold design and the advancement of regenerative medicine.
Collapse
|
11
|
Wang S, Huang S, Johnson S, Rosin V, Lee J, Colomb E, Witt R, Jaworski A, Weiss SJ, Si M. Tissue-specific angiogenic and invasive properties of human neonatal thymus and bone MSCs: Role of SLIT3-ROBO1. Stem Cells Transl Med 2020; 9:1102-1113. [PMID: 32470195 PMCID: PMC7445019 DOI: 10.1002/sctm.19-0448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/05/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022] Open
Abstract
Although mesenchymal stem/stromal cells (MSCs) are being explored in numerous clinical trials as proangiogenic and proregenerative agents, the influence of tissue origin on the therapeutic qualities of these cells is poorly understood. Complicating the functional comparison of different types of MSCs are the confounding effects of donor age, genetic background, and health status of the donor. Leveraging a clinical setting where MSCs can be simultaneously isolated from discarded but healthy bone and thymus tissues from the same neonatal patients, thereby controlling for these confounding factors, we performed an in vitro and in vivo paired comparison of these cells. We found that both neonatal thymus (nt)MSCs and neonatal bone (nb)MSCs expressed different pericytic surface marker profiles. Further, ntMSCs were more potent in promoting angiogenesis in vitro and in vivo and they were also more motile and efficient at invading ECM in vitro. These functional differences were in part mediated by an increased ntMSC expression of SLIT3, a factor known to activate endothelial cells. Further, we discovered that SLIT3 stimulated MSC motility and fibrin gel invasion via ROBO1 in an autocrine fashion. Consistent with our findings in human MSCs, we found that SLIT3 and ROBO1 were expressed in the perivascular cells of the neonatal murine thymus gland and that global SLIT3 or ROBO1 deficiency resulted in decreased neonatal murine thymus gland vascular density. In conclusion, ntMSCs possess increased proangiogenic and invasive behaviors, which are in part mediated by the paracrine and autocrine effects of SLIT3.
Collapse
Affiliation(s)
- Shuyun Wang
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Shan Huang
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Sean Johnson
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Vadim Rosin
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Jeffrey Lee
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Eric Colomb
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Russell Witt
- Department of General SurgeryBrigham and Women's HospitalMassachusettsUSA
| | | | - Stephen J. Weiss
- Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Ming‐Sing Si
- Department of Cardiac Surgery, Section of Pediatric Cardiovascular SurgeryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
12
|
Human Schlafen 5 regulates reversible epithelial and mesenchymal transitions in breast cancer by suppression of ZEB1 transcription. Br J Cancer 2020; 123:633-643. [PMID: 32488136 PMCID: PMC7435190 DOI: 10.1038/s41416-020-0873-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human Schlafen 5 (SLFN5) has been reported to inhibit or promote cell invasion in tumours depending on their origin. However, its role in breast cancer (BRCA) is undetermined. METHODS Differential expression analyses using The Cancer Genome Atlas (TCGA) data, clinical samples and cell lines were performed. Lentiviral knockdown and overexpression experiments were performed to detect changes in cell morphology, molecular markers and invasion. Chromatin immunoprecipitation-sequencing (ChIP-Seq) and luciferase reporter assays were performed to detect the SLFN5-binding motif. RESULTS TCGA, clinical samples and cell lines showed that SLFN5 expression was negatively correlated with BRCA metastasis. SLFN5 knockdown induced epithelial-mesenchymal transition (EMT) and enhanced invasion in BRCA cell lines. However, overexpression triggered mesenchymal-epithelial transition (MET). SLFN5 inhibited the expression of ZEB1 but not ZEB2, SNAI1, SNAI2, TWIST1 or TWIST2. Knockdown and overexpression of ZEB1 indicated that it was a mediator of the SLFN5-governed phenotype and invasion changes. Moreover, SLFN5 inhibited ZEB1 transcription by directly binding to the SLFN5-binding motif on the ZEB1 promoter, but a SLFN5 C-terminal deletion mutant did not. CONCLUSION SLFN5 regulates reversible epithelial and mesenchymal transitions, and inhibits BRCA metastasis by suppression of ZEB1 transcription, suggesting that SLFN5 could be a potential target for BRCA therapy.
Collapse
|
13
|
Ros E, Encina M, González F, Contreras R, Luz-Crawford P, Khoury M, Acevedo JP. Single cell migration profiling on a microenvironmentally tunable hydrogel microstructure device that enables stem cell potency evaluation. LAB ON A CHIP 2020; 20:958-972. [PMID: 31990283 DOI: 10.1039/c9lc00988d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell migration is a key function in a myriad of physiological events and disease conditions. Efficient, quick and descriptive profiling of migration behaviour in response to different treatments or conditions is highly desirable in a series of applications, ranging from fundamental studies of the migration mechanism to drug discovery and cell therapy. This investigation applied the use of methacrylamide gelatin (GelMA) to microfabricate migration lanes based on GelMA hydrogel with encapsulated migration stimuli and structural stability under culture medium conditions, providing the possibility of tailoring the microenvironment during cell-based assays. The actual device provides 3D topography, cell localization and a few step protocol, allowing the quick evaluation and quantification of individual migrated distances of a cell sample by an ImageJ plugin for automated microscopy processing. The detailed profiling of migration behaviour given by the new device has demonstrated a broader assay sensitivity compared to other migration assays and higher versatility to study cell migration in different settings of applications. In this study, parametric information extracted from the migration profiling was successfully used to develop predictive models of immunosuppressive cell function that could be applied as a potency test for mesenchymal stem cells.
Collapse
Affiliation(s)
- Enrique Ros
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Matías Encina
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Fabián González
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Rafael Contreras
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile and Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| | - Juan Pablo Acevedo
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile and Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
14
|
Hardy E, Fernandez-Patron C. Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases. Front Physiol 2020; 11:47. [PMID: 32116759 PMCID: PMC7013034 DOI: 10.3389/fphys.2020.00047] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is a dynamic organ that undergoes constant remodeling, an energetically costly process by which old bone is replaced and localized bone defects are repaired to renew the skeleton over time, thereby maintaining skeletal health. This review provides a general overview of bone’s main players (bone lining cells, osteocytes, osteoclasts, reversal cells, and osteoblasts) that participate in bone remodeling. Placing emphasis on the family of extracellular matrix metalloproteinases (MMPs), we describe how: (i) Convergence of multiple protease families (including MMPs and cysteine proteinases) ensures complexity and robustness of the bone remodeling process, (ii) Enzymatic activity of MMPs affects bone physiology at the molecular and cellular levels and (iii) Either overexpression or deficiency/insufficiency of individual MMPs impairs healthy bone remodeling and systemic metabolism. Today, it is generally accepted that proteolytic activity is required for the degradation of bone tissue in osteoarthritis and osteoporosis. However, it is increasingly evident that inactivating mutations in MMP genes can also lead to bone pathology including osteolysis and metabolic abnormalities such as delayed growth. We argue that there remains a need to rethink the role played by proteases in bone physiology and pathology.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Metalloproteases: On the Watch in the Hematopoietic Niche. Trends Immunol 2019; 40:1053-1070. [DOI: 10.1016/j.it.2019.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/15/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
|
16
|
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76:3323-3348. [PMID: 31055643 PMCID: PMC11105258 DOI: 10.1007/s00018-019-03125-1] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues-adult bone marrow and adipose tissues and neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation ability and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe degenerative and/or inflammatory diseases, including Crohn's disease and graft-versus-host disease, alone or in combination with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative and/or inflammatory diseases.
Collapse
Affiliation(s)
- Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Benoit Favier
- CEA, DRF-IBFJ, IDMIT, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Paris-Sud University, Fontenay-aux-Roses, France
| | - Frédéric Deschaseaux
- STROMALab, Etablissement Français du Sang Occitanie, UMR 5273 CNRS, INSERM U1031, Université de Toulouse, Toulouse, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, IRSL, UMRS 976, Paris, France
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
17
|
MT1-MMP-dependent cell migration: proteolytic and non-proteolytic mechanisms. Biochem Soc Trans 2019; 47:811-826. [PMID: 31064864 PMCID: PMC6599156 DOI: 10.1042/bst20180363] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a type I transmembrane proteinase that belongs to the matrix metalloproteinase (MMP) family. It is a potent modifier of cellular microenvironment and promotes cell migration and invasion of a wide variety of cell types both in physiological and pathological conditions. It promotes cell migration by degrading extracellular matrix on the cell surface and creates a migration path, by modifying cell adhesion property by shedding cell adhesion molecules to increase cell motility, and by altering cellular metabolism. Thus, MT1-MMP is a multifunctional cell motility enhancer. In this review, we will discuss the current understanding of the proteolytic and non-proteolytic mechanism of MT1-MMP-dependent cell migration.
Collapse
|
18
|
Abstract
Mesenchymal stem cells (MSCs) are multipotent tissue stem cells that differentiate into a number of mesodermal tissue types, including osteoblasts, adipocytes, chondrocytes and myofibroblasts. MSCs were originally identified in the bone marrow (BM) of humans and other mammals, but recent studies have shown that they are multilineage progenitors in various adult organs and tissues. MSCs that localize at perivascular sites function to rapidly respond to external stimuli and coordinate with the vascular and immune systems to accomplish the wound healing process. Cancer, considered as wounds that never heal, is also accompanied by changes in MSCs that parallels the wound healing response. MSCs are now recognized as key players at distinct steps of tumorigenesis. In this review, we provide an overview of the function of MSCs in wound healing and cancer progression with the goal of providing insight into the development of novel MSC-manipulating strategies for clinical cancer treatment.
Collapse
|
19
|
Li H, Li Q, Ma Z, Zhou Z, Fan J, Jin Y, Wu Y, Cheng F, Liang P. AID modulates carcinogenesis network via DNA demethylation in bladder urothelial cell carcinoma. Cell Death Dis 2019; 10:251. [PMID: 30874539 PMCID: PMC6420503 DOI: 10.1038/s41419-019-1472-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
Bladder cancer is one of the most common malignant diseases in the urinary system, with poor survival after metastasis. Activation-induced cytidine deaminase (AID), a versatile enzyme involved in antibody diversification, is an oncogenic gene that induces somatic hypermutation and class-switch recombination (CSR). However, the contribution of AID-mediated DNA demethylation to bladder urothelial cell carcinoma (BUCC) remains unclear. Herein, we evaluated the impact on BUCC caused by AID and explored the gene network downstream of AID by using a proteomic approach. Lentiviral vector containing AID-specific shRNA significantly reduced AID expression in T24 and 5637 cells. Silencing AID expression remarkably inhibited tumour malignancies, including cell proliferation, invasion and migration. We used Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics analysis technology to study the underpinning mechanism in monoclonal T24 cells, with or without AID knockdown. Among the 6452 proteins identified, 99 and 142 proteins in shAICDA-T24 cells were significantly up- or downregulated, respectively (1.2-fold change) compared with the NC-T24 control. After a pipeline of bioinformatics analyses, we identified three tumour-associated factors, namely, matrix metallopeptidase 14 (MMP14), C–X–C motif chemokine ligand 12 and wntless Wnt ligand secretion mediator, which were further confirmed in human BUCC tissues. Nonetheless, only MMP14 was sensitive to the DNA demethylation molecule 5-aza-2’-deoxycytidine (5-azadC; 5 μM), which reversed the inhibition of carcinogenesis by AID silence in T24 and 5637 cells. Overall, AID is an oncogene that mediates tumourigenesis via DNA demethylation. Our findings provide novel insights into the clinical treatment for BUCC.
Collapse
Affiliation(s)
- Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Zhe Ma
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Zhiyan Zhou
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Jinfeng Fan
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Yingxia Jin
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yaoxi Wu
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Peiyu Liang
- Department of Urology, the First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province, China.
| |
Collapse
|
20
|
Aziz AH, Bryant SJ. A comparison of human mesenchymal stem cell osteogenesis in poly(ethylene glycol) hydrogels as a function of MMP-sensitive crosslinker and crosslink density in chemically defined medium. Biotechnol Bioeng 2019; 116:1523-1536. [PMID: 30776309 DOI: 10.1002/bit.26957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/28/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
This study investigated osteogenesis of human mesenchymal stem cells encapsulated in matrix-metalloproteinase (MMP)-sensitive poly(ethylene glycol) (PEG) hydrogels in chemically defined medium (10 ng/ml bone morphogenic factor-2). Thiol-norbornene photoclick hydrogels were formed with CRGDS and crosslinkers of PEG dithiol (nondegradable), CVPLS-LYSGC (P1) or CRGRIGF-LRTDC (P2; dash indicates cleavage site) at two crosslink densities. Exogenous MMP-2 degraded P1 and P2 hydrogels similarly. MMP-14 degraded P1 hydrogels more rapidly than P2 hydrogels. Cell spreading was greatest in P1 low crosslinked hydrogels and to a lesser degree in P2 low crosslinked hydrogels, but not evident in nondegradable and high crosslinked MMP-sensitive hydrogels. Early osteogenesis (Alkaline phosphatase [ALP] activity) was accelerated in hydrogels that facilitated cell spreading. Contrarily, late osteogenesis (mineralization) was independent of cell spreading. Mineralized matrix was present in P1 hydrogels, but only present in P2 high crosslinked hydrogels and not yet present in nondegradable hydrogels. Overall, the low crosslinked P1 hydrogels exhibited an accelerated early and late osteogenesis with the highest ALP activity (Day 7), greatest calcium content (Day 14), and greatest collagen content (Day 28), concomitant with increased compressive modulus over time. Collectively, this study demonstrates that in chemically defined medium, hydrogel degradability is critical to accelerating early osteogenesis, but other factors are important in late osteogenesis.
Collapse
Affiliation(s)
- Aaron H Aziz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado.,BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado.,BioFrontiers Institute, University of Colorado, Boulder, Colorado.,Material Science and Engineering, University of Colorado, Boulder, Colorado
| |
Collapse
|
21
|
Wan G, Liu Y, Zhu J, Guo L, Li C, Yang Y, Gu X, Deng LL, Lu C. SLFN5 suppresses cancer cell migration and invasion by inhibiting MT1-MMP expression via AKT/GSK-3β/β-catenin pathway. Cell Signal 2019; 59:1-12. [PMID: 30844429 DOI: 10.1016/j.cellsig.2019.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/17/2019] [Accepted: 03/02/2019] [Indexed: 12/30/2022]
Abstract
Human SLFN5 inhibits invasions of IFNα-sensitive renal clear-cell carcinoma and melanoma cells. However, whether this inhibition is confined to these IFNα-sensitive cancers is unclear. Here we show that SLFN5 expressions on both mRNA and protein levels are significantly higher in non/low-invasive cancer cell lines (breast cancer cell line MCF7, colorectal cancer cell line HCT116 and lung cancer cell line A549) than in highly-invasive cancer cell lines (fibrosarcoma cell line HT1080 and renal clear cell cancer cell line 786-0). SLFN5 knockdown in non/low-invasive cancer cell lines enhanced MT1-MMP expression and increased migration and invasion in vitro, and in vivo. Furthermore, SLFN5 overexpression in HT1080 and 786-0 inhibited MT1-MMP expression and repressed migration and invasion. MT1-MMP is instrumental in SLFN5-controlled inhibition of cancer cell migration and invasion, as shown by MT1-MMP-knockdown and -overexpression analyses. SLFN5 knockdown activated AKT/GSK-3β/β-catenin pathway by promotion AKT phosphorylation and subsequent GSK-3β phosphorylation, further β-catenin translocation into nucleus as un-phosphorylated protein at Ser33, 37 and 45 and Thr41 sites. This is the first study to report that SLFN5 inhibits cancer migration and invasiveness in several common cancer cell lines by repressing MT1-MMP expression via the AKT/GSK-3β/β-catenin signalling pathway, suggesting that SLFN5 plays wide inhibitory roles in various cancers.
Collapse
Affiliation(s)
- Guoqing Wan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yihao Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiang Zhu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lijuan Guo
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chenhong Li
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yue Yang
- Department of Pathology, Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xuefeng Gu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li-Li Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Changlian Lu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
22
|
Fu X, Halim A, Tian B, Luo Q, Song G. MT1-MMP downregulation via the PI3K/Akt signaling pathway is required for the mechanical stretching-inhibited invasion of bone-marrow-derived mesenchymal stem cells. J Cell Physiol 2019; 234:14133-14144. [PMID: 30659604 DOI: 10.1002/jcp.28105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Mobilization from the bone marrow and the migration of bone-marrow-derived mesenchymal stem cells (BMSCs) through the peripheral circulation to injured tissue sites are regulated by multiple mechanical and chemical factors. We previously demonstrated that mechanical stretching promotes the migration but inhibits the invasion of BMSCs. However, the involved mechanisms, especially the mechanism of stretching-inhibited BMSC invasion, have not been thoroughly elucidated to date. In this study, we found that mechanical stretching with a 10% amplitude at a 1-Hz frequency for 8 hr significantly reduces BMSC invasion and downregulates the expression of membrane type-1 matrix metalloproteinases (MT1-MMP) at both the messenger RNA and protein levels. The overexpression of MT1-MMP restores mechanical stretching-reduced BMSC invasion. Moreover, phosphatidylinositol 3-kinase (PI3K)-dependent Akt phosphorylation in BMSCs was found to be inactivated by mechanical stretching. Pharmacological inhibitors of PI3K/Akt signaling (LY294002 or A443654) reduced the expression of MT1-MMP and impaired BMSC invasion. In addition, the upregulation of Akt phosphorylation by a pharmacological activator (SC79) increased MT1-MMP expression and suppressed mechanical stretching-reduced BMSC invasion. Taken together, our results suggest that mechanical stretching inhibits BMSC invasion by downregulating MT1-MMP expression by suppressing the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaorong Fu
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Alexander Halim
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Boren Tian
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Qing Luo
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Guanbin Song
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| |
Collapse
|
23
|
Metformin Inhibits Migration and Invasion by Suppressing ROS Production and COX2 Expression in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2018; 19:ijms19113692. [PMID: 30469399 PMCID: PMC6274682 DOI: 10.3390/ijms19113692] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Several mechanisms of action have been proposed to explain the apparent antineoplastic functions of metformin, many of which are observed at high concentrations that may not be reflective of achievable tissue concentrations. We propose that metformin at low concentrations functions to inhibit ROS production and inflammatory signaling in breast cancer, thereby reducing metastasis. Methods: Using the highly invasive MDA-MB-231 breast carcinoma model, we ascertained the impact of metformin on cell viability by DNA content analysis and fluorescent dye exclusion. Migration and invasion assays were performed using a modified Boyden chamber assay and metastasis was ascertained using the chorioallantoic membrane (CAM) assay. PGE2 production was measured by Enzyme-Linked Immunosorbent Assay (ELISA). COX2 and ICAM1 levels were determined by flow cytometry immunoassay. Results: Metformin acutely decreased cell viability and caused G2 cell cycle arrest only at high concentrations (10 mM). At 100 µM, however, metformin reduced ICAM1 and COX2 expression, as well as reduced PGE2 production and endogenous mitochondrial ROS production while failing to significantly impact cell viability. Consequently, metformin inhibited migration, invasion in vitro and PGE2-dependent metastasis in CAM assays. Conclusion: At pharmacologically achievable concentrations, metformin does not drastically impact cell viability, but inhibits inflammatory signaling and metastatic progression in breast cancer cells.
Collapse
|
24
|
IL-1 β-Induced Matrix Metalloprotease-1 Promotes Mesenchymal Stem Cell Migration via PAR1 and G-Protein-Coupled Signaling Pathway. Stem Cells Int 2018; 2018:3524759. [PMID: 30026761 PMCID: PMC6031215 DOI: 10.1155/2018/3524759] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/19/2017] [Accepted: 12/28/2017] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are known for homing to sites of injury in response to signals of cellular damage. However, the mechanisms of how cytokines recruit stem cells to target tissue are still unclear. In this study, we found that the proinflammation cytokine interleukin-1β (IL-1β) promotes mesenchymal stem cell migration. The cDNA microarray data show that IL-1β induces matrix metalloproteinase-1 (MMP-1) expression. We then used quantitative real-time PCR and MMP-1 ELISA to verify the results. MMP-1 siRNA transfected MSCs, and MSC pretreatment with IL-1β inhibitor interleukin-1 receptor antagonist (IL-1RA), MMP tissue inhibitor of metalloproteinase 1 (TIMP1), tissue inhibitor of metalloproteinase 2 (TIMP2), MMP-1 inhibitor GM6001, and protease-activated receptor 1 (PAR1) inhibitor SCH79797 confirms that PAR1 protein signaling pathway leads to IL-1β-induced cell migration. In conclusion, IL-1β promotes the secretion of MMP-1, which then activates the PAR1 and G-protein-coupled signal pathways to promote mesenchymal stem cell migration.
Collapse
|
25
|
Liu Y, Sun X, Feng J, Deng LL, Liu Y, Li B, Zhu M, Lu C, Zhou L. MT2-MMP induces proteolysis and leads to EMT in carcinomas. Oncotarget 2018; 7:48193-48205. [PMID: 27374080 PMCID: PMC5217011 DOI: 10.18632/oncotarget.10194] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/09/2016] [Indexed: 11/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is critical for carcinoma invasiveness and metastasis. To investigate the role of membrane-type-2 matrix metalloproteinase (MT2-MMP) in EMT, we generated lentiviral constructs of wild-type (WT) and an inactive Glu260Ala (E260A) mutant MT2-MMP and derived stably transfected HCT116 and A549 cell lines. WT-transfected cells appeared mesenchymal-like, whereas cells transfected with the E260A mutant were epithelial-like, as were cells treated with an MMP inhibitor (GM6001). Expression of E-cadherin, β-catenin, and zonula occludens-1 was lower in cells transfected with WT MT2-MMP compared to vector controls, cells treated with GM6001, or cells transfected with the E260A mutant. An 80-kD N-terminal fragment of E-cadherin was immunoprecipitated in conditioned medium from WT MT2-MMP cells, but not in the medium from vector controls, cells treated with GM6001, or E260A mutant cells. When endogenous expression of MT2-MMP in A2780 human ovarian cancer cells was inhibited using GM6001 or MT2-MMP-specific siRNA, levels of the 80-kD E-cadherin fragment in conditioned medium were decreased. Chick embryo chorioallantoic membrane invasion assays demonstrated that cells transfected with WT MT2-MMP were more invasive than cells transfected with control vector, treated with GM6001, or transfected with the E260A mutant. These results suggest that MT2-MMP degrades adherens and tight junction proteins and results in EMT, making it a potential mediator of EMT in carcinomas.
Collapse
Affiliation(s)
- Yusi Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaojiao Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jinfa Feng
- Department of General Surgery, Heilongjiang Province Hospital, Harbin, China
| | - Li-Li Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yihao Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bokang Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingyue Zhu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Changlian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingyun Zhou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Mohammadi M, Mohammadi M, Rezaee MA, Ghadimi T, Abolhasani M, Rahmani MR. Effect of gestational age on migration ability of the human umbilical cord vein mesenchymal stem cells. Adv Med Sci 2018; 63:119-126. [PMID: 29120852 DOI: 10.1016/j.advms.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/11/2017] [Accepted: 08/22/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE Migration ability of mesenchymal stem cells (MSCs) towards chemotactic mediators is a determinant factor in cell therapy. MSCs derived from different sources show different properties. Here we compared the migration ability of the term and the pre-term human umbilical cord vein MSCs (hUCV-MSCs). MATERIALS/METHODS MSCs were isolated from term and pre-term umbilical cord vein, and cultured to passage 3-4. Migration rate of both groups was assessed in the presence of 10% FBS using chemotaxis assay. Surface expression of CXCR4 was measured by flow cytometery. The relative gene expression of CXCR4, IGF1-R, PDGFRα, MMP-2, MMP-9, MT1-MMP and TIMP-2 were evaluated using real time PCR. RESULTS The isolation rate of the pre-term hUCV-MSCs was higher than the term hUCV-MSCs. Phenotype characteristics and differentiation ability of the term and pre-term hUCV-MSCs were not different. The migration rate of the pre-term hUCV-MSCs was more than the term hUCV-MSCs. Gene and surface expressions of the CXCR4 were both significantly higher in the pre-term hUCV-MSCs (P≤0.05). The mRNA levels of PDGFRα, MMP-2, MMP-9, MT1-MMP and TIMP-2 showed no significant difference between the two groups. CONCLUSION Our results showed that the gestational age can affect the migration ability of the hUCV-MSCs.
Collapse
Affiliation(s)
- Mobin Mohammadi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Immunology and Hematology, Faculty of medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Rezaee
- Zoonosis Research center, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Medical Laboratory Sciences, Faculty of Paramedicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Tayyeb Ghadimi
- Department of Surgery, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Massume Abolhasani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Immunology and Hematology, Faculty of medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Department of Immunology and Hematology, Faculty of medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Zoonosis Research center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
27
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
28
|
Turunen SP, Tatti-Bugaeva O, Lehti K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1974-1988. [PMID: 28390905 DOI: 10.1016/j.bbamcr.2017.04.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Membrane-type matrix metalloproteases (MT-MMP) are pivotal regulators of cell invasion, growth and survival. Tethered to the cell membranes by a transmembrane domain or GPI-anchor, the six MT-MMPs can exert these functions via cell surface-associated extracellular matrix degradation or proteolytic protein processing, including shedding or release of signaling receptors, adhesion molecules, growth factors and other pericellular proteins. By interactions with signaling scaffold or cytoskeleton, the C-terminal cytoplasmic tail of the transmembrane MT-MMPs further extends their functionality to signaling or structural relay. MT-MMPs are differentially expressed in cancer. The most extensively studied MMP14/MT1-MMP is induced in various cancers along malignant transformation via pathways activated by mutations in tumor suppressors or proto-oncogenes and changes in tumor microenvironment including cellular heterogeneity, extracellular matrix composition, tissue oxygenation, and inflammation. Classically such induction involves transcriptional programs related to epithelial-to-mesenchymal transition. Besides inhibition by endogenous tissue inhibitors, MT-MMP activities are spatially and timely regulated at multiple levels by microtubular vesicular trafficking, dimerization/oligomerization, other interactions and localization in the actin-based invadosomes, in both tumor and the stroma. The functions of MT-MMPs are multifaceted within reciprocal cellular responses in the evolving tumor microenvironment, which poses the importance of these proteases beyond the central function as matrix scissors, and necessitates us to rethink MT-MMPs as dynamic signaling proteases of cancer. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- S Pauliina Turunen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden
| | - Olga Tatti-Bugaeva
- Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden; Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland; K. Albin Johansson Foundation, Finnish Cancer Institute, P.O. Box 63, FI-00014, Helsinki, Finland.
| |
Collapse
|
29
|
Oliveira FAD, Matos AA, Matsuda SS, Buzalaf MAR, Bagnato VS, Machado MADAM, Damante CA, Oliveira RCD, Peres-Buzalaf C. Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 169:35-40. [PMID: 28264787 DOI: 10.1016/j.jphotobiol.2017.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/26/2017] [Indexed: 11/26/2022]
Abstract
Low level laser therapy (LLLT) has been shown to stimulate bone cell metabolism but their impact on the matrix metalloproteinase (MMP) expression and activity is little explored. This study evaluated the influence of LLLT at two different wavelengths, red and infrared, on MC3T3-E1 preosteoblast viability, alkaline phosphatase (ALP) and MMP-2 and -9 activities. To accomplish this, MC3T3-E1 cells were irradiated with a punctual application of either red (660nm; InGaAIP active medium) or infrared (780nm; GaAlAs active medium) lasers both at a potency of 20mW, energy dose of 0.08 or 0.16J, and energy density of 1.9J/cm2 or 3.8J/cm2, respectively. The control group received no irradiation. Cellular viability, ALP and MMP-2 and -9 activities were assessed by MTT assay, enzymatic activity and zymography, respectively, at 24, 48 and 72h. The treatment of cells with both red and infrared lasers significantly increased the cellular viability compared to the non-irradiated control group at 24 and 48h. The ALP activity was also up modulated in infrared groups at 24 and 72h, depending on the energy densities. In addition, the irradiation with red laser at the energy density of 1.9J/cm2 promoted an enhancement of MMP-2 activity at 48 and 72h. However, no differences were observed for the MMP-9 activity. In conclusion, when used at these specific parameters, LLL modulates both preosteoblast viability and differentiation highlighted by the increased ALP and MMP-2 activities induced by irradiation.
Collapse
Affiliation(s)
- Flávia Amadeu de Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Adriana Arruda Matos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Sandra Satiko Matsuda
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Vanderley Salvador Bagnato
- Departamento de Física e Ciência dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | - Carla Andreotti Damante
- Department of Prosthodontics/Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Camila Peres-Buzalaf
- Universidade do Sagrado Coração, Pró-Reitoria de Pesquisa e Pós-Graduação, Bauru, SP, Brazil
| |
Collapse
|
30
|
Almalki SG, Llamas Valle Y, Agrawal DK. MMP-2 and MMP-14 Silencing Inhibits VEGFR2 Cleavage and Induces the Differentiation of Porcine Adipose-Derived Mesenchymal Stem Cells to Endothelial Cells. Stem Cells Transl Med 2017; 6:1385-1398. [PMID: 28213979 PMCID: PMC5442711 DOI: 10.1002/sctm.16-0329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/19/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022] Open
Abstract
The molecular mechanisms that control the ability of adipose‐derived mesenchymal stem cells (AMSCs) to remodel three‐dimensional extracellular matrix barriers during differentiation are not clearly understood. Herein, we studied the expression of matrix metalloproteinases (MMPs) during the differentiation of AMSCs to endothelial cells (ECs) in vitro. MSCs were isolated from porcine abdominal adipose tissue, and characterized by immunopositivity to CD44, CD90, CD105, and immunonegativity to CD14 and CD45. Plasticity of AMSCs was confirmed by multilineage differentiation. The mRNA transcripts for MMPs and Tissue Inhibitor of Metalloproteinases (TIMPs), and protein expression of EC markers were analyzed. The enzyme activity and protein expression were analyzed by gelatin zymography, enzyme‐linked immunosorbent assay (ELISA), and Western blot. The differentiation of AMSCs to ECs was confirmed by mRNA and protein expressions of the endothelial markers. The mRNA transcripts for MMP‐2 and MMP‐14 were significantly increased during the differentiation of MSCs into ECs. Findings revealed an elevated MMP‐14 and MMP‐2 expression, and MMP2 enzyme activity. Silencing of MMP‐2 and MMP‐14 significantly increased the expression of EC markers, formation of capillary tubes, and acetylated‐low‐density lipoprotein uptake, and decreased the cleavage of vascular endothelial growth factor receptor type 2 (VEGFR2). Inhibition of VEGFR2 significantly decreased the expression of EC markers. These novel findings demonstrate that the upregulation of MMP2 and MMP14 has an inhibitory effect on the differentiation of AMSCs to ECs, and silencing these MMPs inhibit the cleavage of VEGFR2 and stimulate the differentiation of AMSCs to ECs. These findings provide a potential mechanism for the regulatory role of MMP‐2 and MMP‐14 in the re‐endothelialization of coronary arteries following intervention. Stem Cells Translational Medicine2017;6:1385–1398
Collapse
Affiliation(s)
- Sami G Almalki
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Yovani Llamas Valle
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| |
Collapse
|
31
|
Dülk M, Kudlik G, Fekete A, Ernszt D, Kvell K, Pongrácz JE, Merő BL, Szeder B, Radnai L, Geiszt M, Csécsy DE, Kovács T, Uher F, Lányi Á, Vas V, Buday L. The scaffold protein Tks4 is required for the differentiation of mesenchymal stromal cells (MSCs) into adipogenic and osteogenic lineages. Sci Rep 2016; 6:34280. [PMID: 27711054 PMCID: PMC5053279 DOI: 10.1038/srep34280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/08/2016] [Indexed: 12/27/2022] Open
Abstract
The commitment steps of mesenchymal stromal cells (MSCs) to adipogenic and other lineages have been widely studied but not fully understood. Therefore, it is critical to understand which molecules contribute to the conversion of stem cells into differentiated cells. The scaffold protein Tks4 plays a role in podosome formation, EGFR signaling and ROS production. Dysfunction of Tks4 causes a hereditary disease called Frank-ter Haar syndrome with a variety of defects concerning certain mesenchymal tissues (bone, fat and cartilage) throughout embryogenic and postnatal development. In this study, we aimed to analyze how the mutation of Tks4 affects the differentiation potential of multipotent bone marrow MSCs (BM-MSCs). We generated a Tks4 knock-out mouse strain on C57Bl/6 background, and characterized BM-MSCs isolated from wild type and Tks4-/- mice to evaluate their differentiation. Tks4-/- BM-MSCs had reduced ability to differentiate into osteogenic and adipogenic lineages compared to wild type. Studying the expression profile of a panel of lipid-regulated genes during adipogenic induction revealed that the expression of adipogenic transcription factors, genes responsible for lipid droplet formation, sterol and fatty acid metabolism was delayed or reduced in Tks4-/- BM-MSCs. Taken together, these results establish a novel function for Tks4 in the regulation of MSC differentiation.
Collapse
Affiliation(s)
- Metta Dülk
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gyöngyi Kudlik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dávid Ernszt
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Hungary
| | - Krisztián Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Hungary
| | - Judit E Pongrácz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Hungary
| | - Balázs L Merő
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Radnai
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University Medical School, Budapest, Hungary.,"Momentum" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Dalma E Csécsy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Kovács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Uher
- Stem Cell Biology, National Blood Service, Budapest, Hungary
| | - Árpád Lányi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Virag Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Medical Chemistry, Semmelweis University Medical School, Budapest, Hungary
| |
Collapse
|
32
|
Abstract
Mesenchymal stem cells (MSCs) have great potential as a source of cells for cell-based therapy because of their ability for self-renewal and differentiation into functional cells. Moreover, matrix metalloproteinases (MMPs) have a critical role in the differentiation of MSCs into different lineages. MSCs also interact with exogenous MMPs at their surface, and regulate the pericellular localization of MMP activities. The fate of MSCs is regulated by specific MMPs associated with a key cell lineage. Recent reports suggest the integration of MMPs in the differentiation, angiogenesis, proliferation, and migration of MSCs. These interactions are not fully understood and warrant further investigation, especially for their application as therapeutic tools to treat different diseases. Therefore, overexpression of a single MMP or tissue-specific inhibitor of metalloproteinase in MSCs may promote transdifferentiation into a specific cell lineage, which can be used for the treatment of some diseases. In this review, we critically discuss the identification of various MMPs and the signaling pathways that affect the differentiation, migration, angiogenesis, and proliferation of MSCs.
Collapse
Affiliation(s)
- Sami G Almalki
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
33
|
de Lima KA, de Oliveira GLV, Yaochite JNU, Pinheiro DG, de Azevedo JTC, Silva WA, Covas DT, Couri CEB, Simões BP, Voltarelli JC, Oliveira MC, Malmegrim KCR. Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Res Ther 2016; 7:92. [PMID: 27406064 PMCID: PMC4942931 DOI: 10.1186/s13287-016-0351-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/12/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone marrow multipotent mesenchymal stromal cells (MSCs) are a diverse subset of precursors that contribute to the homeostasis of the hematopoietic niche. MSCs can be isolated and expanded in vitro and have unique immunomodulatory and regenerative properties that make them attractive for the treatment of autoimmune diseases, including type 1 diabetes (T1D). Whether autologous or allogeneic MSCs are more suitable for therapeutic purposes has not yet been established. While autologous MSCs may present abnormal function, allogeneic cells may be recognized and rejected by the host immune system. Thus, studies that investigate biological characteristics of MSCs isolated from T1D patients are essential to guide future clinical applications. Methods Bone marrow-derived MSCs from recently diagnosed type 1 diabetes patients (T1D-MSCs) were compared with those from healthy individuals (C-MSCs) for morphological and immunophenotypic characteristics and for differentiation potential. Bioinformatics approaches allowed us to match absolute and differential gene expression of several adhesion molecules, immune mediators, growth factors, and their receptors involved with hematopoietic support and immunomodulatory properties of MSCs. Finally, the differentially expressed genes were collated for functional pathway enrichment analysis. Results T1D-MSCs and C-MSCs were similar for morphology, immunophenotype, and differentiation potential. Our absolute gene expression results supported previous literature reports, while also detecting new potential molecules related to bone marrow-derived MSC functions. T1D-MSCs showed intrinsic abnormalities in mRNA expression, including the immunomodulatory molecules VCAM-1, CXCL12, HGF, and CCL2. Pathway analyses revealed activation of sympathetic nervous system and JAK STAT signaling in T1D-MSCs. Conclusions Collectively, our results indicate that MSCs isolated from T1D patients present intrinsic transcriptional alterations that may affect their therapeutic potential. However, the implications of these abnormalities in T1D development as well as in the therapeutic efficacy of autologous MSCs require further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0351-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalil A de Lima
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil. .,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil. .,, Tenente Catao Roxo, 2501, Monte Alegre, 14051-140, Ribeirao Preto, Sao Paulo, Brazil.
| | - Gislane L V de Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana N U Yaochite
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - Daniel G Pinheiro
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Júlia T C de Azevedo
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Wilson Araujo Silva
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Dimas T Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos E B Couri
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Belinda P Simões
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Julio C Voltarelli
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Maria C Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
34
|
Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep 2016; 6:21176. [PMID: 26880204 PMCID: PMC4754777 DOI: 10.1038/srep21176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/19/2016] [Indexed: 01/02/2023] Open
Abstract
Restenosis or occlusion after vascular procedures is ascribed to intimal hyperplasia. Transforming growth factor (TGF)-β1 is involved in recruitment of mesenchymal stem cells (MSCs) following arterial injury, and its release from latent TGF-binding protein by matrix metalloproteinase (MMP)-14-induced proteolysis contributes to neointima formation. However, the relationship between MMP-14 and TGF-β1 activation in restenosis is unknown. This study investigated the relationship using a rat model of balloon-induced injury. Rats were assigned to vehicle-, SB431542 (SB)-, or recombinant human (rh)TGF-β1-treated groups and examined at various time points after balloon-induced injury for expression of TGF-β1/Smad signalling pathway components, MMP-14 and MSCs markers including Nestin, CD29, and Sca1+CD29+CD11b/c−CD45−. Intimal hyperplasia was reduced in SB- and rhTGF-β1-treated rats. The expression of TGF-β1, TGF-β1RI, and Smad2/3 was decreased, but the levels of phosphorylated Smad2/3 were higher in SB-treated rats than vehicle-treated after 7 days to 14 days. rhTGF-β1 administration decreased the expression of TGF-β1/Smad pathway proteins, except for TGF-β1RI. Nestin and CD29 expression and the number of Sca1+CD29+CD11b−CD45− cells were reduced, whereas MMP-14 expression was increased after SB431542 and rhTGF-β1 administration. These results suggest that TGF-β1/Smad signalling and MMP-14 act to recruit MSCs which differentiate to vascular smooth muscle cells and mesenchymal-like cells that participate in arterial repair/remodelling.
Collapse
|
35
|
Nguyen AH, Wang Y, White DE, Platt MO, McDevitt TC. MMP-mediated mesenchymal morphogenesis of pluripotent stem cell aggregates stimulated by gelatin methacrylate microparticle incorporation. Biomaterials 2015; 76:66-75. [PMID: 26519649 DOI: 10.1016/j.biomaterials.2015.10.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinases (MMPs) remodel the extracellular matrix (ECM) to facilitate epithelial-to-mesenchymal transitions (EMTs) and promote cell specification during embryonic development. In this study, we hypothesized that introducing degradable ECM-based biomaterials to pluripotent stem cell (PSC) aggregates would modulate endogenous proteolytic activity and consequently enhance the differentiation and morphogenesis within 3D PSC aggregates. Gelatin methacrylate (GMA) microparticles (MPs) of low (∼20%) or high (∼90%) cross-linking densities were incorporated into mouse embryonic stem cell (ESC) aggregates, and the effects on MMP activity and cell differentiation were examined with or without MMP inhibition. ESC aggregates containing GMA MPs expressed significantly higher levels of total MMP and MMP-2 than aggregates without MPs. GMA MP incorporation increased expression of EMT markers and enhanced mesenchymal morphogenesis of PSC aggregates. MMP inhibition completely abrogated these effects, and GMA MP-induced MMP activation within ESC aggregates was partially reduced by pSMAD 1/5/8 inhibition. These results suggest that GMA particles activate MMPs by protease-substrate interactions to promote EMT and mesenchymal morphogenesis of ESC aggregates in an MMP-dependent manner. We speculate that controlling protease activity via the introduction of ECM-based materials may offer a novel route to engineer the ECM microenvironment to modulate stem cell differentiation.
Collapse
Affiliation(s)
- Anh H Nguyen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yun Wang
- The Gladstone Institute for Cardiovascular Disease, San Francisco, CA, USA
| | - Douglas E White
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Manu O Platt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Todd C McDevitt
- The Gladstone Institute for Cardiovascular Disease, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
Le Blanc S, Simann M, Jakob F, Schütze N, Schilling T. Fibroblast growth factors 1 and 2 inhibit adipogenesis of human bone marrow stromal cells in 3D collagen gels. Exp Cell Res 2015; 338:136-48. [PMID: 26384550 DOI: 10.1016/j.yexcr.2015.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/24/2015] [Accepted: 09/13/2015] [Indexed: 01/22/2023]
Abstract
Multipotent human bone marrow stromal cells (hBMSCs) are the common progenitors of osteoblasts and adipocytes. A shift in hBMSC differentiation in favor of adipogenesis may contribute to the bone loss and marrow fat accumulation observed in aging and osteoporosis. Hence, the identification of factors modulating marrow adipogenesis is of great therapeutic interest. Fibroblast growth factors 1 (FGF1) and 2 (FGF2) play important roles in several cellular processes including differentiation. Their role in adipogenesis is, however, still unclear given the contradictory reports found in the literature. In this work, we investigated the effect of FGF signaling on hBMSC adipogenesis in a 3D collagen gel system to mimic the natural microenvironment. We successfully established adipogenic differentiation of hBMSC embedded in type I collagen gels. We found that exogenous FGF1 and FGF2 exerted an inhibitory effect on lipid droplet accumulation and gene expression of adipogenic markers, which was abolished by pharmacological blocking of FGF receptor (FGFR) signaling. FGF treatment also affected the expression of the matrix metalloproteinase 13 (MMP13) and the tissue inhibitor of metalloproteinases 1 (TIMP1), altering the MMP/TIMP balance, which modulates collagen processing and turnover. FGF1- and FGF2-mediated inhibition of differentiation was, however, not restricted to adipogenesis since FGF1 and FGF2 treatment also resulted in the inhibition of the osteogenic differentiation in collagen gels. We conclude that FGFR signaling inhibits the in vitro adipogenic commitment of hBMSCs, downregulating core differentiation markers and altering ECM composition.
Collapse
Affiliation(s)
- Solange Le Blanc
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Meike Simann
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Tatjana Schilling
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| |
Collapse
|
37
|
Qin Z, Feng J, Liu Y, Deng LL, Lu C. PDGF-D promotes dermal fibroblast invasion in 3-dimensional extracellular matrix via Snail-mediated MT1-MMP upregulation. Tumour Biol 2015; 37:591-9. [PMID: 26234766 DOI: 10.1007/s13277-015-3828-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Increasing attention has been focused on the malignant tumor microenvironment, which plays important roles in tumor occurrence, progression and metastasis. Fibroblasts are recruited by platelet-derived growth factor (PDGFs) and invade the tumor microenvironment. In the PDGF family, PDGF-B has been reported to play an important role in the recruitment and invasion programs. However, whether PDGF-D plays a role in these programs remains unclear. We generated a recombinant plasmid expressing human PDGF-D and transfected the plasmid to dermal fibroblasts to examine the effects on cell invasive activities in 3D type I collagen gels. PDGF-D plasmid transfection enhanced fibroblast invasive activities both in invasive cell numbers and invasion depth in 3D collagen gels. These effects were blocked by Snail-specific siRNA transfection. PDGF-D transfection significantly induced Snail expression at both mRNA and protein levels. PDGF-D further upregulated MT1-MMP mRNA and protein expressions and this was inhibited when Snail was knocked down by siRNA. Both Snail and MT1-MMP expressions in fibroblasts and cellular invasive activities in 3D collagen induced by PDGF-D were inhibited by LY294002, SP600125, and U1026, the inhibitors of PI3K, JNK, and ERK1/2 signaling pathways, respectively. However, no effects were observed in response to the P38MAPK signaling pathway inhibitor SB203580. These effects of PDGF-D were confirmed by using the culture supernatants of the transfectants. Taken together, these data demonstrate that PDGF-D plays important roles in the recruitment and invasion programs of fibroblasts via the activation of PI3K, JNK and ERK1/2 signaling pathways, and upregulation of Snail and downstream effecter MT1-MMP. These findings indicate that PDGF-D is an important player in the tumor microenvironment for fibroblast recruitment.
Collapse
Affiliation(s)
- Zhuo Qin
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University Harbin, 157 Baojian Rd, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Jinfa Feng
- Department of General Surgery, Heilongjiang Province Hospital, Harbin, Heilongjiang, 150000, People's Republic of China
| | - Yusi Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University Harbin, 157 Baojian Rd, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Li-Li Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Changlian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University Harbin, 157 Baojian Rd, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
38
|
Han KY, Dugas-Ford J, Lee H, Chang JH, Azar DT. MMP14 Cleavage of VEGFR1 in the Cornea Leads to a VEGF-Trap Antiangiogenic Effect. Invest Ophthalmol Vis Sci 2015; 56:5450-6. [PMID: 26284550 PMCID: PMC4544186 DOI: 10.1167/iovs.14-16248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/28/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the possible antiangiogenic effect of metalloproteinase (MMP) 14 cleavage of vascular endothelial growth factor receptor 1 (VEGFR1) in the cornea. METHODS Recombinant mouse (rm) VEGFR1 was incubated with various concentrations of recombinant MMP14 to examine proteolysis in vitro. The reaction mixture was analyzed by SDS-PAGE and stained with Coomassie blue. The fragments resulting from rmVEGFR1 cleavage by MMP14 were subjected to Edman degradation, and the amino acid sequences were aligned with rmVEGFR1 sequences. Surface plasmon resonance was used to determine the equilibrium dissociation constant (KD) between MMP14 and rmVEGFR1. The KD value of rmVEGFR1 and the 59.8-kDa cleavage product binding to VEGF-A₁₆₅ was also determined. Cell proliferation assays were performed in the presence of VEGF-A₁₆₅ plus the 59.8-kDa VEGFR1 fragment or VEGF-A₁₆₅ alone. RESULTS Matrix metalloproteinase 14 binds and cleaves rmVEGFR1 to produce 59.8-kDa (N-terminal fragment, Ig domains 1-5), 35-kDa (C-terminal fragment containing IgG and His-tag), and 21-kDa (Ig domains 6-7) fragments. The 59.8-kDa fragment showed binding to VEGF-A₁₆₅ and inhibited VEGF-induced endothelial cell mitogenesis. CONCLUSIONS Our findings suggest that VEGFR1 cleavage by MMP14 in the cornea leads to a VEGF-trap effect, reducing the proangiogenic effect of VEGF-A₁₆₅, thereby reducing corneal angiogenesis.
Collapse
Affiliation(s)
- Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jennifer Dugas-Ford
- Department of Ophthalmology and Visual Sciences Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Hyun Lee
- Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
39
|
Li Y, Kuscu C, Banach A, Zhang Q, Pulkoski-Gross A, Kim D, Liu J, Roth E, Li E, Shroyer KR, Denoya PI, Zhu X, Chen L, Cao J. miR-181a-5p Inhibits Cancer Cell Migration and Angiogenesis via Downregulation of Matrix Metalloproteinase-14. Cancer Res 2015; 75:2674-85. [PMID: 25977338 DOI: 10.1158/0008-5472.can-14-2875] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/10/2015] [Indexed: 01/18/2023]
Abstract
Upregulation of matrix metalloproteinase MMP-14 (MT1-MMP) is associated with poor prognosis in cancer patients, but it is unclear how MMP-14 becomes elevated in tumors. Here, we show that miR-181a-5p is downregulated in aggressive human breast and colon cancers where its levels correlate inversely with MMP-14 expression. In clinical specimens, enhanced expression of MMP-14 was observed in cancer cells located at the invasive front of tumors where miR-181a-5p was downregulated relative to adjacent normal cells. Bioinformatics analyses defined a potential miR-181a-5p response element within the 3'-untranslated region of MMP-14 that was validated in reporter gene experiments. Ectopic miR-181a-5p reduced MMP-14 expression, whereas miR-181a-5p attenuation elevated MMP-14 expression. In support of a critical relationship between these two genes, miR-181a-5p-mediated reduction of MMP-14 levels was sufficient to decrease cancer cell migration, invasion, and activation of pro-MMP-2. Furthermore, this reduction in MMP-14 levels was sufficient to reduce in vivo invasion and angiogenesis in chick chorioallantoic membrane assays. Taken together, our results establish the regulation of MMP-14 in cancers by miR-181a-5p through a posttranscriptional mechanism, and they further suggest strategies to elevate miR-181a-5p to prevent cancer metastasis.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York. Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cem Kuscu
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York
| | - Anna Banach
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York
| | - Qian Zhang
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York
| | | | - Deborah Kim
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York
| | - Jingxuan Liu
- Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Eric Roth
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York
| | - Ellen Li
- Department of Medicine/Division of Gastroenterology and Hepatology, Stony Brook University, Stony Brook, New York
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Paula I Denoya
- Department of Surgery, Stony Brook University, Stony Brook, New York
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jian Cao
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
40
|
Sun L, Lin P, Qin Z, Liu Y, Deng LL, Lu C. Hypoxia promotes HO-8910PM ovarian cancer cell invasion via Snail-mediated MT1-MMP upregulation. Exp Biol Med (Maywood) 2015; 240:1434-45. [PMID: 25681470 DOI: 10.1177/1535370215570205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms of ovarian cancer cell invasion under hypoxia remain unclear. Here we employed a 3D collagen model and chick chorioallantoic membrane (CAM) invasion assay to explore the influence of hypoxia on ovarian cancer cell invasion. Hypoxia (both 1% O2 and CoCl2 150 and 250 µM) induced HO-8910PM ovarian cancer cell invasion in 3D collagen and collagenolysis determined by hydroxyproline. Pretreatment with a hypoxia inducible factor-1α inhibitor, YC-1, or MMP inhibitor, GM6001, significantly inhibited 3D collagen invasion and degradation and cell proliferation. Hypoxia stimulated both mRNA and protein expressions of membrane-type 1 matrix metalloproteinase (MT1-MMP) and promoted MT1-MMP translocation to the cell surface in an YC-1 sensitive manner. MT1-siRNA transfection inhibited hypoxia-induced invasion, proliferation, and collagen degradation of cells in 3D collagen. Hypoxia stimulated Snail mRNA and protein expression as well as translocation to nucleus in an YC-1 sensitive manner. Overexpression of Snail with a recombinant plasmid in HO-8910PM cells resulted in an enhanced invasion in 3D collagen. Transfection with Snail-specific siRNA significantly decreased MT1-MMP expression and 3D collagen invasion. Hypoxia-treated cells significantly broke the upper CAM surface of 11-day-old chick embryos and infiltrated interstitial tissue, completely blocked in the presence of YC-1 or GM6001, or after MT1-MMP siRNA or Snail siRNA transfection. Together, these data suggest that hypoxia promotes HO-8910PM ovarian cancer cell traffic through 3D matrix via Snail-mediated MT1-MMP upregulation, a possible molecular mechanism of ovarian cancer cell invasion under hypoxia.
Collapse
Affiliation(s)
- Lijun Sun
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| | - Ping Lin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Zhuo Qin
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| | - Yusi Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| | - Li-Li Deng
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Changlian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
41
|
Kessenbrock K, Wang CY, Werb Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol 2015; 44-46:184-90. [PMID: 25661772 PMCID: PMC4498798 DOI: 10.1016/j.matbio.2015.01.022] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 12/12/2022]
Abstract
Since Gross and Lapiere firstly discovered matrix metalloproteinases (MMPs) as important collagenolytic enzymes during amphibian tadpole morphogenesis in 1962, this intriguing family of extracellular proteinases has been implicated in various processes of developmental biology. However, the pathogenic roles of MMPs in human diseases such as cancer have also garnered widespread attention. The most straightforward explanation for their role in cancer is that MMPs, through extracellular matrix degradation, pave the way for tumor cell invasion and metastasis. While this notion may be true for many circumstances, we now know that, depending on the context, MMPs may employ additional modes of functionality. Here, we will give an update on the function of MMPs in development and cancer, which may directly regulate signaling pathways that control tissue homeostasis and may even work in a non-proteolytic manner. These novel findings about the functionality of MMPs have important implications for MMP inhibitor design and may allow us to revisit MMPs as drug targets in the context of cancer and other diseases.
Collapse
Affiliation(s)
- Kai Kessenbrock
- Department of Anatomy and Biomedical Sciences Program, University of California, San Francisco, CA 94143-0452, United States
| | - Chih-Yang Wang
- Department of Anatomy and Biomedical Sciences Program, University of California, San Francisco, CA 94143-0452, United States; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zena Werb
- Department of Anatomy and Biomedical Sciences Program, University of California, San Francisco, CA 94143-0452, United States.
| |
Collapse
|
42
|
Stoler-Barak L, Petrovich E, Aychek T, Gurevich I, Tal O, Hatzav M, Ilan N, Feigelson SW, Shakhar G, Vlodavsky I, Alon R. Heparanase of murine effector lymphocytes and neutrophils is not required for their diapedesis into sites of inflammation. FASEB J 2015; 29:2010-21. [PMID: 25634957 DOI: 10.1096/fj.14-265447] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/05/2015] [Indexed: 11/11/2022]
Abstract
Heparanase, the exclusive mammalian heparan sulfate-degrading enzyme, has been suggested to be utilized by leukocytes to penetrate through the dense basement membranes surrounding blood venules. Despite its established role in tumor cell invasion, heparanase function in leukocyte extravasation has never been demonstrated. We found that TH1/TC1-type effector T cells are highly enriched for this enzyme, with a 3.6-fold higher heparanase mRNA expression compared with naive lymphocytes. Using adoptive transfer of wild-type and heparanase-deficient effector T cells into inflamed mice, we show that T-cell heparanase was not required for extravasation inside inflamed lymph nodes or skin. Leukocyte extravasation through acute inflamed skin vessels was also heparanase independent. Furthermore, neutrophils emigrated to the inflamed peritoneal cavity independently of heparanase expression on either the leukocytes or on the endothelial and mesothelial barriers, and overexpression of the enzyme on neutrophils did not facilitate their emigration. However, heparanase absence significantly reduced monocyte emigration into the inflamed peritoneal cavity. These results collectively suggest that neither leukocyte nor endothelial heparanase is required for T-cell and neutrophil extravasation through inflamed vascular barriers, whereas this enzyme is required for optimal monocyte recruitment to inflamed peritoneum.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ekaterina Petrovich
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tegest Aychek
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Irina Gurevich
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Orna Tal
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Miki Hatzav
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Sara W Feigelson
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Guy Shakhar
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ronen Alon
- *Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; and Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
43
|
Deng L, Shang L, Bai S, Chen J, He X, Martin-Trevino R, Chen S, Li XY, Meng X, Yu B, Wang X, Liu Y, McDermott SP, Ariazi AE, Ginestier C, Ibarra I, Ke J, Luther T, Clouthier SG, Xu L, Shan G, Song E, Yao H, Hannon GJ, Weiss SJ, Wicha MS, Liu S. MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development. Cancer Res 2014; 74:6648-60. [PMID: 25217527 PMCID: PMC4370193 DOI: 10.1158/0008-5472.can-13-3710] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
miRNAs are essential for self-renewal and differentiation of normal and malignant stem cells by regulating the expression of key stem cell regulatory genes. Here, we report evidence implicating the miR100 in self-renewal of cancer stem-like cells (CSC). We found that miR100 expression levels relate to the cellular differentiation state, with lowest expression in cells displaying stem cell markers. Utilizing a tetracycline-inducible lentivirus to elevate expression of miR100 in human cells, we found that increasing miR100 levels decreased the production of breast CSCs. This effect was correlated with an inhibition of cancer cell proliferation in vitro and in mouse tumor xenografts due to attenuated expression of the CSC regulatory genes SMARCA5, SMARCD1, and BMPR2. Furthermore, miR100 induction in breast CSCs immediately upon their orthotopic implantation or intracardiac injection completely blocked tumor growth and metastasis formation. Clinically, we observed a significant association between miR100 expression in breast cancer specimens and patient survival. Our results suggest that miR100 is required to direct CSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Lu Deng
- Innovation Center for Cell Biology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Li Shang
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shoumin Bai
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ji Chen
- Innovation Center for Cell Biology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xueyan He
- Innovation Center for Cell Biology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Rachel Martin-Trevino
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shanshan Chen
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Xiaojie Meng
- Departments of Molecular Biosciences and Radiation Oncology, University of Kansas Cancer Center, University of Kansas Medical School, University of Kansas, Lawrence, Kansas
| | - Bin Yu
- Innovation Center for Cell Biology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolin Wang
- Innovation Center for Cell Biology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yajing Liu
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sean P McDermott
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Alexa E Ariazi
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Christophe Ginestier
- Centre de Recherche en Cance'rologie de Marseille, Laboratoire d'Oncologie Mole'culaire, UMR891 Inserm/Institut Paoli-Calmettes, Universite' de la Me'diterrane'e, Marseille, France
| | - Ingrid Ibarra
- Cold Spring Harbor Laboratory, Program in Genetics and Bioinformatics, Cold Spring Harbor, New York, New York
| | - Jia Ke
- Department of Colorectal Surgery, Sixth Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tahra Luther
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shawn G Clouthier
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Liang Xu
- Departments of Molecular Biosciences and Radiation Oncology, University of Kansas Cancer Center, University of Kansas Medical School, University of Kansas, Lawrence, Kansas
| | - Ge Shan
- Innovation Center for Cell Biology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Erwei Song
- Department of Breast Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Herui Yao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gregory J Hannon
- Cold Spring Harbor Laboratory, Program in Genetics and Bioinformatics, Cold Spring Harbor, New York, New York
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Max S Wicha
- Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Suling Liu
- Innovation Center for Cell Biology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
44
|
Bouvet-Gerbettaz S, Boukhechba F, Balaguer T, Schmid-Antomarchi H, Michiels JF, Scimeca JC, Rochet N. Adaptive Immune Response Inhibits Ectopic Mature Bone Formation Induced by BMSCs/BCP/Plasma Composite in Immune-Competent Mice. Tissue Eng Part A 2014; 20:2950-62. [DOI: 10.1089/ten.tea.2013.0633] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Sébastien Bouvet-Gerbettaz
- UFR Médecine F-06107, Université Nice Sophia Antipolis, Nice, France
- UFR Odontologie F-06357, Université Nice Sophia Antipolis, Nice, France
| | - Florian Boukhechba
- UFR Médecine F-06107, Université Nice Sophia Antipolis, Nice, France
- CNRS, UMR7277, F-06108 Nice, France
- Inserm U1091, F-06108 Nice, France
| | - Thierry Balaguer
- UFR Médecine F-06107, Université Nice Sophia Antipolis, Nice, France
- CNRS, UMR7277, F-06108 Nice, France
- Inserm U1091, F-06108 Nice, France
- Service de Chirurgie Plastique, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Heidy Schmid-Antomarchi
- UFR Médecine F-06107, Université Nice Sophia Antipolis, Nice, France
- CNRS, UMR7277, F-06108 Nice, France
- Inserm U1091, F-06108 Nice, France
| | - Jean-François Michiels
- UFR Médecine F-06107, Université Nice Sophia Antipolis, Nice, France
- Service d'Anatomopathologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Jean-Claude Scimeca
- UFR Médecine F-06107, Université Nice Sophia Antipolis, Nice, France
- CNRS, UMR7277, F-06108 Nice, France
- Inserm U1091, F-06108 Nice, France
| | - Nathalie Rochet
- UFR Médecine F-06107, Université Nice Sophia Antipolis, Nice, France
- CNRS, UMR7277, F-06108 Nice, France
- Inserm U1091, F-06108 Nice, France
| |
Collapse
|
45
|
Ottewell PD, Wang N, Brown HK, Reeves KJ, Fowles CA, Croucher PI, Eaton CL, Holen I. Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res 2014; 20:2922-32. [PMID: 24687923 DOI: 10.1158/1078-0432.ccr-13-1246] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Clinical trials in early breast cancer have suggested that benefits of adjuvant bone-targeted treatments are restricted to women with established menopause. We developed models that mimic pre- and postmenopausal status to investigate effects of altered bone turnover on growth of disseminated breast tumor cells. Here, we report a differential antitumor effect of zoledronic acid (ZOL) in these two settings. EXPERIMENTAL DESIGN Twleve-week-old female Balb/c-nude mice with disseminated MDA-MB-231 breast tumor cells in bone underwent sham operation or ovariectomy (OVX), mimicking the pre- and postmenopausal bone microenvironment, respectively. To determine the effects of bone-targeted therapy, sham/OVX animals received saline or 100 μg/kg ZOL weekly. Tumor growth was assessed by in vivo imaging and effects on bone by real-time PCR, micro-CT, histomorphometry, and measurements of bone markers. Disseminated tumor cells were detected by two-photon microscopy. RESULTS OVX increased bone resorption and induced growth of disseminated tumor cells in bone. Tumors were detected in 83% of animals following OVX (postmenopausal model) compared with 17% following sham operation (premenopausal model). OVX had no effect on tumors outside of bone. OVX-induced tumor growth was completely prevented by ZOL, despite the presence of disseminated tumor cells. ZOL did not affect tumor growth in bone in the sham-operated animals. ZOL increased bone volume in both groups. CONCLUSIONS This is the first demonstration that tumor growth is driven by osteoclast-mediated mechanisms in models that mimic post- but not premenopausal bone, providing a biologic rationale for the differential antitumor effects of ZOL reported in these settings. Clin Cancer Res; 20(11); 2922-32. ©2014 AACR.
Collapse
Affiliation(s)
- Penelope D Ottewell
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Ning Wang
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Hannah K Brown
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Kimberly J Reeves
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - C Anne Fowles
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Peter I Croucher
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Colby L Eaton
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| | - Ingunn Holen
- Authors' Affiliations: Academic Unit of Clinical Oncology, Department of Oncology, Academic Unit of Bone Biology, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom; and Musculoskeletal Medicine Division, Garvan Institute of Medical Research, Sidney, New South Wales, Australia
| |
Collapse
|
46
|
Willis AL, Sabeh F, Li XY, Weiss SJ. Extracellular matrix determinants and the regulation of cancer cell invasion stratagems. J Microsc 2014; 251:250-60. [PMID: 23924043 DOI: 10.1111/jmi.12064] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/13/2013] [Indexed: 12/13/2022]
Abstract
During development, wound repair and disease-related processes, such as cancer, normal, or neoplastic cell types traffic through the extracellular matrix (ECM), the complex composite of collagens, elastin, glycoproteins, proteoglycans, and glycosaminoglycans that dictate tissue architecture. Current evidence suggests that tissue-invasive processes may proceed by protease-dependent or protease-independent strategies whose selection is not only governed by the characteristics of the motile cell population, but also by the structural properties of the intervening ECM. Herein, we review the mechanisms by which ECM dimensionality, elasticity, crosslinking, and pore size impact patterns of cell invasion. This summary should prove useful when designing new experimental approaches for interrogating invasion programs as well as identifying potential cellular targets for next-generation therapeutics.
Collapse
Affiliation(s)
- A L Willis
- Division of Molecular Medicine & Genetics, Department of Internal Medicine, and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
47
|
Gao Y, Liu LJ, Blatnik JA, Krpata DM, Anderson JM, Criss CN, Posielski N, Novitsky YW. Methodology of fibroblast and mesenchymal stem cell coating of surgical meshes: a pilot analysis. J Biomed Mater Res B Appl Biomater 2013; 102:797-805. [PMID: 24142485 DOI: 10.1002/jbm.b.33061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/11/2013] [Accepted: 09/27/2013] [Indexed: 12/27/2022]
Abstract
Coating of various synthetic, absorbable, and biologic meshes with mesenchymal stem cells (MSCs) and fibroblasts was analyzed qualitatively and quantitatively. Five hernia meshes-light weight monofilament polypropylene (Soft Mesh), polyester (Parietex-TET), polylactide composite (TIGR), heavy weight monofilament polypropylene (Marlex), and porcine dermal collagen (Strattice)-were coated with three cell lines: human dermal fibroblasts (HFs), rat kidney fibroblasts (NRKs), and rat MSCs. Cell densities were determined at different time points. Samples also underwent histology and transmission electron microscopic (TEM) analyses. It required HFs 3 weeks to cover the entire mesh, while only 2 weeks for NRKs and MSCs to do so. MSCs had no preference for any of the meshes and produced the highest cell densities on Parietex and TIGR. Substrate-preference accounted for the significantly lower fibroblast densities on TIGR than Parietex. Fibroblasts failed to coat Marlex. Strattice, which had the least surface area, generated comparable cell densities to Parietex. Both histology and TEM confirmed cell coating of mesh surface. Various prosthetics can be coated by certain cell strains. Both mesh composition and cell preference dramatically influence the coating process. This methodology provides foundation for novel avenues of modulation of host response to various modern synthetic and biologic meshes.
Collapse
Affiliation(s)
- Yue Gao
- Department of Surgery, Case Comprehensive Hernia Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Strong AL, Semon JA, Strong TA, Santoke TT, Zhang S, McFerrin HE, Gimble JM, Bunnell BA. Obesity-associated dysregulation of calpastatin and MMP-15 in adipose-derived stromal cells results in their enhanced invasion. Stem Cells 2013; 30:2774-83. [PMID: 22969001 DOI: 10.1002/stem.1229] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/21/2012] [Indexed: 01/29/2023]
Abstract
Adipose tissue maintains a subpopulation of cells, referred to as adipose-derived stromal/stem cells (ASCs), which have been associated with increased breast cancer tumorigenesis and metastasis. For ASCs to affect breast cancer cells, it is necessary to delineate how they mobilize and home to cancer cells, which requires mobilization and invasion through extracellular matrix barriers. In this study, ASCs were separated into four different categories based on the donor's obesity status and depot site of origin. ASCs isolated from the subcutaneous abdominal adipose tissue of obese patients (Ob(+)Ab(+)) demonstrated increased invasion through Matrigel as well as a chick chorioallantoic membrane, a type I collagen-rich extracellular matrix barrier. Detailed mRNA and protein analyses revealed that calpain-4, calpastatin, and MMP-15 were associated with increased invasion, and the silencing of each protease or protease inhibitor confirmed their role in ASC invasion. Thus, the data indicate that both the donor's obesity status and depot site of origin distinguishes the properties of subcutaneous-derived ASCs with respect to enhanced invasion and this is associated with the dysregulation of calpain-4, calpastatin, and MMP-15.
Collapse
Affiliation(s)
- Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lu C, Sun X, Sun L, Sun J, Lu Y, Yu X, Zhou L, Gao X. Snail mediates PDGF-BB-induced invasion of rat bone marrow mesenchymal stem cells in 3D collagen and chick chorioallantoic membrane. J Cell Physiol 2013; 228:1827-33. [PMID: 23460471 DOI: 10.1002/jcp.24342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/30/2013] [Indexed: 02/01/2023]
Abstract
We previously reported that membrane type-1 matrix metalloproteinase (MT1-MMP) enables mesenchymal stem cells (MSCs) to move through both three-dimensional (3D) type I collagen and basement membrane barriers; however, its upstream regulating factors were unidentified. Here, we report that PDGF-BB upregulates both mRNA and protein expression of snail in rat bone marrow MSCs (rBMMSCs). PDGF-BB enhances rBMMSC invasion in 3D collagen, which is blocked by snail specific siRNA transfection. Snail overexpression induced by plasmid transfection results in increased rBMMSC invasion in 3D collagen. Snail expression induced by PDGF-BB in MSCs is inhibited by LY294002 and PD98059, which are inhibitors of the PI3K/AKT and MAPK1/2/ERK1/2 signaling pathways, respectively. MT1-MMP expression in rBMMSCs, both as mRNA and protein, is decreased by snail siRNA transfection, but increased by snail overexpression, indicating that they are controlled by snail. Finally, snail controls MSC transmigration through chorioallantoic membrane of 11-day-old chick embryos. Taken together, these in vitro and in vivo data identify snail as a critical mediator for rBMMSC invasion induced by PDGF-BB.
Collapse
Affiliation(s)
- Changlian Lu
- College of Pharmacy, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tang Y, Rowe RG, Botvinick EL, Kurup A, Putnam AJ, Seiki M, Weaver VM, Keller ET, Goldstein S, Dai J, Begun D, Saunders T, Weiss SJ. MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. Dev Cell 2013; 25:402-16. [PMID: 23685250 DOI: 10.1016/j.devcel.2013.04.011] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 12/18/2022]
Abstract
In vitro, topographical and biophysical cues arising from the extracellular matrix (ECM) direct skeletal stem cell (SSC) commitment and differentiation. However, the mechanisms by which the SSC-ECM interface is regulated and the outcome of such interactions on stem cell fate in vivo remain unknown. Here we demonstrate that conditional deletion of the membrane-anchored metalloproteinase MT1-MMP (Mmp14) in mesenchymal progenitors, but not in committed osteoblasts, redirects SSC fate decisions from osteogenesis to adipo- and chondrogenesis. By effecting ECM remodeling, MT1-MMP regulates stem cell shape, thereby activating a β1-integrin/RhoGTPase signaling cascade and triggering the nuclear localization of the transcriptional coactivators YAP and TAZ, which serve to control SSC lineage commitment. These data identify a critical MT1-MMP/integrin/YAP/TAZ axis operative in the stem cell niche that oversees SSC fate determination.
Collapse
Affiliation(s)
- Yi Tang
- Division of Molecular Medicine & Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|