1
|
Impact of Genetic Polymorphisms in Modifier Genes in Determining Fetal Hemoglobin Levels in Beta-Thalassemia. THALASSEMIA REPORTS 2023. [DOI: 10.3390/thalassrep13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Genetic polymorphisms in Quantitative Trait Loci (QTL) genes such as BCL11A, HBS1L-MYB and KLF1 have been reported to influence fetal hemoglobin (HbF) levels. This prospective study was planned to evaluate the role of genetic polymorphisms in QTL genes as determinant of HbF levels in beta thalassemia major patients. The study was carried out on 100 thalassemia major patients. Blood samples were collected in EDTA and plain vials for biochemical and molecular evaluation. The BCL11A, HBS1L-MYB and KLF1 genotypes were determined using a polymerase chain reaction (PCR)-based method. Red Blood Cell (RBC) indices and HbF levels were assessed. In silico analysis was assessed using loss-of-function tool (Lof Tool). Statistical difference and genetic comparisons between groups were evaluated by using SPSS for Windows, version 16.0 (SPSS Inc., Chicago, IL, USA). Comparisons between quantitative variables were carried out after data explored for normality using Kolmogorov–Smirnov test of normality. Logistic regression was used for computation of ORs and 95% CIs (Confidence Interval). We observed association of HbF levels in thalassemia major patients with the polymorphisms in BCL11A (rs11886868 rs7557939; rs1427407 and rs766432) and HBS1L-MYB (rs9399137) gene. The results of this study indicated that the presence of polymorphisms on modifier genes are strongly associated with an increase in HbF levels in thalassemia major patients. Further research with a larger sample size and with other genes of modifier genes is required.
Collapse
|
2
|
Mott AC, Mott A, Preuß S, Bennewitz J, Tetens J, Falker-Gieske C. eQTL analysis of laying hens divergently selected for feather pecking identifies KLF14 as a potential key regulator for this behavioral disorder. Front Genet 2022; 13:969752. [PMID: 36061196 PMCID: PMC9428588 DOI: 10.3389/fgene.2022.969752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 02/03/2023] Open
Abstract
Feather pecking in chickens is a damaging behavior, seriously impacting animal welfare and leading to economic losses. Feather pecking is a complex trait, which is partly under genetic control. Different hypotheses have been proposed to explain the etiology of feather pecking and notably, several studies have identified similarities between feather pecking and human mental disorders such as obsessive-compulsive disorder and schizophrenia. This study uses transcriptomic and phenotypic data from 167 chickens to map expression quantitative trait loci and to identify regulatory genes with a significant effect on this behavioral disorder using an association weight matrix approach. From 70 of the analyzed differentially expressed genes, 11,790 genome wide significantly associated variants were detected, of which 23 showed multiple associations (≥15). These were located in proximity to a number of genes, which are transcription regulators involved in chromatin binding, nucleic acid metabolism, protein translation and putative regulatory RNAs. The association weight matrix identified 36 genes and the two transcription factors: SP6 (synonym: KLF14) and ENSGALG00000042129 (synonym: CHTOP) as the most significant, with an enrichment of KLF14 binding sites being detectable in 40 differentially expressed genes. This indicates that differential expression between animals showing high and low levels of feather pecking was significantly associated with a genetic variant in proximity to KLF14. This multiallelic variant was located 652 bp downstream of KLF14 and is a deletion of 1-3 bp. We propose that a deletion downstream of the transcription factor KLF14 has a negative impact on the level of T cells in the developing brain of high feather pecking chickens, which leads to developmental and behavioral abnormalities. The lack of CD4 T cells and gamma-Aminobutyric acid (GABA) receptors are important factors for the increased propensity of laying hens to perform feather pecking. As such, KLF14 is a clear candidate regulator for the expression of genes involved in the pathogenic development. By further elucidating the regulatory pathways involved in feather pecking we hope to take significant steps forward in explaining and understanding other mental disorders, not just in chickens.
Collapse
Affiliation(s)
| | - Andrea Mott
- Department of Animal Sciences, Georg-August-University, Göttingen, Germany
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Göttingen, Germany
- *Correspondence: Clemens Falker-Gieske,
| |
Collapse
|
3
|
Khan F, Ali H, Musharraf SG. Tenofovir disoproxil fumarate-mediated γ-globin induction is correlated with the suppression of trans-acting factors in CD34 + progenitor cells: A role in the reactivation of fetal hemoglobin. Eur J Pharmacol 2022; 927:175036. [PMID: 35618038 DOI: 10.1016/j.ejphar.2022.175036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Sickle-cell disease (SCD) and β-thalassemia are public health issues that affect people all over the world. Fetal hemoglobin (HbF) induction is a molecular intervention, including hydroxyurea, which has made an effort to improve current treatment. Tenofovir disoproxil fumarate (TDF) is formerly reported with improving levels of hemoglobin, mean corpuscular hemoglobin (MCH), and mean corpuscular volume (MCV). Hence, in this preclinical investigation, human peripheral whole blood-derived CD34+ progenitor cells were cultured to prove the efficacy of TDF on erythroid proliferation, differentiation, γ-globin gene expression regulation, and ultimately HbF production. We observed that TDF increased the proliferation of immature erythroid cells, delayed the terminal erythroid maturation without cytotoxicity as correlated with other HbF inducers. Here, the presented data show that TDF can induce HbF expression by up-regulating the γ-globin gene transcription up to 7.1 ± 0.46-fold and subsequently increased the F-cells (10.79 ± 1.9-fold) population in terminally differentiated erythroid cells. Furthermore, our findings demonstrated that TDF-mediated γ-globin gene induction and HbF production was associated with down-fold regulation of BCL11A and SOX6, and their corresponding trans-acting regulators, FOP, KLF1, and GATA1. Collectively, our findings suggest TDF as an effective inducer of HbF in CD34+ cells and pave the way to put forward the assessment of TDF as a new potential therapy in treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Faisal Khan
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hamad Ali
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Syed Ghulam Musharraf
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
4
|
Dahlgren AR, Knych HK, Arthur RM, Durbin-Johnson BP, Finno CJ. Transcriptomic Markers of Recombinant Human Erythropoietin Micro-Dosing in Thoroughbred Horses. Genes (Basel) 2021; 12:1874. [PMID: 34946824 PMCID: PMC8702184 DOI: 10.3390/genes12121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Recombinant human erythropoietin (rHuEPO) is a well-known performance enhancing drug in human athletes, and there is anecdotal evidence of it being used in horse racing for the same purpose. rHuEPO, like endogenous EPO, increases arterial oxygen content and thus aerobic power. Micro-doping, or injecting smaller doses over a longer period of time, has become an important concern in both human and equine athletics since it is more difficult to detect. Horses offer an additional challenge of a contractile spleen, thus large changes in the red blood cell mass occur naturally. To address the challenge of detecting rHuEPO doping in horse racing, we determined the transcriptomic effects of rHuEPO micro-dosing over seven weeks in exercised Thoroughbreds. RNA-sequencing of peripheral blood mononuclear cells isolated at several time points throughout the study identified three transcripts (C13H16orf54, PUM2 and CHTOP) that were significantly (PFDR < 0.05) different between the treatment groups across two or three time point comparisons. PUM2 and CHTOP play a role in erythropoiesis while not much is known about C13H16orf54, but it is primarily expressed in whole blood. However, gene expression differences were not large enough to detect via RT-qPCR, thereby precluding their utility as biomarkers of micro-doping.
Collapse
Affiliation(s)
- Anna R. Dahlgren
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.R.D.); (R.M.A.)
| | - Heather K. Knych
- K.L. Maddy Equine Analytical Pharmacology Lab and Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Rick M. Arthur
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.R.D.); (R.M.A.)
| | | | - Carrie J. Finno
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.R.D.); (R.M.A.)
| |
Collapse
|
5
|
Mussolino C, Strouboulis J. Recent Approaches for Manipulating Globin Gene Expression in Treating Hemoglobinopathies. Front Genome Ed 2021; 3:618111. [PMID: 34713248 PMCID: PMC8525358 DOI: 10.3389/fgeed.2021.618111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue oxygenation throughout life depends on the activity of hemoglobin (Hb) one of the hemeproteins that binds oxygen in the lungs and secures its delivery throughout the body. Hb is composed of four monomers encoded by eight different genes the expression of which is tightly regulated during development, resulting in the formation of distinct hemoglobin tetramers in each developmental stage. Mutations that alter hemoglobin structure or its regulated expression result in a large group of diseases typically referred to as hemoglobinopathies that are amongst the most common genetic defects worldwide. Unprecedented efforts in the last decades have partially unraveled the complex mechanisms that control globin gene expression throughout development. In addition, genome wide association studies have revealed protective genetic traits capable of ameliorating the clinical manifestations of severe hemoglobinopathies. This knowledge has fueled the exploration of innovative therapeutic approaches aimed at modifying the genome or the epigenome of the affected cells to either restore hemoglobin function or to mimic the effect of protective traits. Here we describe the key steps that control the switch in gene expression that concerns the different globin genes during development and highlight the latest efforts in altering globin regulation for therapeutic purposes.
Collapse
Affiliation(s)
- Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John Strouboulis
- Laboratory of Molecular Erythropoiesis, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Starlard-Davenport A, Fitzgerald A, Pace BS. Exploring epigenetic and microRNA approaches for γ-globin gene regulation. Exp Biol Med (Maywood) 2021; 246:2347-2357. [PMID: 34292080 DOI: 10.1177/15353702211028195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic interventions aimed at inducing fetal hemoglobin and reducing the concentration of sickle hemoglobin is an effective approach to ameliorating acute and chronic complications of sickle cell disease, exemplified by the long-term use of hydroxyurea. However, there remains an unmet need for the development of additional safe and effective drugs for single agent or combination therapy for individuals with β-hemoglobinopathies. Regulation of the γ-globin to β-globin switch is achieved by chromatin remodeling at the HBB locus on chromosome 11 and interactions of major DNA binding proteins, such as KLF1 and BCL11A in the proximal promoters of the globin genes. Experimental evidence also supports a role of epigenetic modifications including DNA methylation, histone acetylation/methylation, and microRNA expression in γ-globin gene silencing during development. In this review, we will critically evaluate the role of epigenetic mechanisms in γ-globin gene regulation and discuss data generated in tissue culture, pre-clinical animal models, and clinical trials to support drug development to date. The question remains whether modulation of epigenetic pathways will produce sufficient efficacy and specificity for fetal hemoglobin induction and to what extent targeting these pathways form the basis of prospects for clinical therapy.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ashley Fitzgerald
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Ali H, Khan F, Ghulam Musharraf S. Acyclovir induces fetal hemoglobin via downregulation of γ-globin repressors, BCL11A and SOX6 trans-acting factors. Biochem Pharmacol 2021; 190:114612. [PMID: 34010599 DOI: 10.1016/j.bcp.2021.114612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Pharmacological reactivation of developmentally silenced fetal hemoglobin (HbF) is an attractive approach to ameliorate the clinical manifestations of β-thalassemia and sickle cell anemia. Hydroxyurea, the only HbF inducer, has obtained regulatory approval. However, hydroxyurea non-responders and associated myelosuppression making its widespread use undesirable. A high level of HbF with safe and effective agents remains an elusive therapeutic goal for this global health burden. This study demonstrated the effect of acyclovir on γ-globin expression and erythropoiesis, associated with increased HbF production. In vitro, human erythroleukemia cells and human CD34+ erythroid progenitors, and in vivo β-YAC transgenic mice were used as experimental models. We found that acyclovir significantly induces expression of the γ-globin gene and HbF synthesis in CD34+ erythroid progenitors, without affecting terminal erythroid differentiation and erythroid cell proliferation. In contrast to other HbF inducers, no associated cytotoxicity with acyclovir was observed. Further, we reported the effect of acyclovir on γ-globin gene transcriptional regulators including BCL11A, FOP1, KLF1 SOX6, and GATA-1. Significant downregulation of the γ-globin repressors BCL11A and SOX6 was observed at both mRNA and protein levels. Whereas, GATA-1, a master erythroid transcription factor, was upregulated in acyclovir treated human CD34+ erythroid culture. Similarly, the HbF inducing effect of acyclovir in β-YAC transgenic mice revealed a good in vitro correlation, with a substantial increase in fetal globin mRNA, and F cells population. These findings collectively suggest acyclovir as an effective HbF inducer and pave the way to evaluate its clinical efficacy in treating β-globin disorders.
Collapse
Affiliation(s)
- Hamad Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Faisal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
8
|
Insight of fetal to adult hemoglobin switch: Genetic modulators and therapeutic targets. Blood Rev 2021; 49:100823. [PMID: 33726930 DOI: 10.1016/j.blre.2021.100823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 01/31/2023]
Abstract
The clinical heterogeneity of β-hemoglobinopathies is so variable that it prompted the researchers to identify the genetic modulators of these diseases. Though the primary modulator is the type of β-globin mutation which affects the degree of β-globin chain synthesis, the co-inheritance of α-thalassemia and the fetal hemoglobin (HbF) levels also act as potent secondary genetic modifiers. As elevated HbF levels ameliorate the severity of hemoglobinopathies, in this review, the genetic modulators lying within and outside the β-globin gene cluster with their plausible role in governing the HbF levels have been summarised, which in future may act as potential therapeutic targets.
Collapse
|
9
|
When basic science reaches into rational therapeutic design: from historical to novel leads for the treatment of β-globinopathies. Curr Opin Hematol 2021; 27:141-148. [PMID: 32167946 DOI: 10.1097/moh.0000000000000577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW β-hemoglobinopathies, such as β-Thalassemias (β-Thal) and sickle cell disease (SCD) are among the most common inherited genetic disorders in humans worldwide. These disorders are characterized by a quantitative (β-Thal) or qualitative (SCD) defects in adult hemoglobin production, leading to anemia, ineffective erythropoiesis and severe secondary complications. Reactivation of the fetal globin genes (γ-globin), making-up fetal hemoglobin (HbF), which are normally silenced in adults, represents a major strategy to ameliorate anemia and disease severity. RECENT FINDINGS Following the identification of the first 'switching factors' for the reactivation of fetal globin gene expression more than 10 years ago, a multitude of novel leads have recently been uncovered. SUMMARY Recent findings provided invaluable functional insights into the genetic and molecular networks controlling globin genes expression, revealing that complex repression systems evolved in erythroid cells to maintain HbF silencing in adults. This review summarizes these unique and exciting discoveries of the regulatory factors controlling the globin switch. New insights and novel leads for therapeutic strategies based on the pharmacological induction of HbF are discussed. This represents a major breakthrough for rational drug design in the treatment of β-Thal and SCD.
Collapse
|
10
|
J. Verheul TC, Trinh VT, Vázquez O, Philipsen S. Targeted Protein Degradation as a Promising Tool for Epigenetic Upregulation of Fetal Hemoglobin. ChemMedChem 2020; 15:2436-2443. [PMID: 33002296 PMCID: PMC7756256 DOI: 10.1002/cmdc.202000574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Indexed: 12/17/2022]
Abstract
The level of fetal hemoglobin (HbF) is an important disease modifier for β-thalassemia and sickle cell disease patients. Indeed, genetic tinkering with the HbF repression machinery has demonstrated great potential for disease mitigation. Such genetic treatments are costly and the high incidence of β-hemoglobinopathies in low-income countries, therefore, calls for the development of affordable, off-the-shelf, oral treatments. The use of PROTAC (PRoteolysis TArgeting Chimeras) technology to influence the epigenetic mechanisms involved in HbF suppression may provide a solution. In this minireview, we briefly explain the HbF repression network highlighting the epigenetic factors that could be targeted for degradation by PROTACs. We hope that this review will inspire clinicians, molecular and chemical biologists to collaborate and contribute to this fascinating field, which should ultimately deliver drugs that reactivate HbF expression with high specificity and low toxicity.
Collapse
Affiliation(s)
- Thijs C. J. Verheul
- Department of Cell BiologyErasmus University Medical Center RotterdamWytemaweg 803000 CARotterdamThe Netherlands
| | - Van Tuan Trinh
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straβe 435043MarburgGermany
| | - Olalla Vázquez
- SYNMIKRO Research CenterUniversity of Marburg35043MarburgGermany
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straβe 435043MarburgGermany
| | - Sjaak Philipsen
- Department of Cell BiologyErasmus University Medical Center RotterdamWytemaweg 803000 CARotterdamThe Netherlands
| |
Collapse
|
11
|
Feng X, Bai X, Ni J, Wasinger VC, Beretov J, Zhu Y, Graham P, Li Y. CHTOP in Chemoresistant Epithelial Ovarian Cancer: A Novel and Potential Therapeutic Target. Front Oncol 2019; 9:557. [PMID: 31380263 PMCID: PMC6660285 DOI: 10.3389/fonc.2019.00557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/07/2019] [Indexed: 01/14/2023] Open
Abstract
Objective: Chemoresistance is a major challenge in epithelial ovarian cancer (EOC) treatment. Chromatin target of protein arginine methyltransferase (CHTOP) was identified as a potential biomarker in chemoresistant EOC cell lines using label-free LC-MS/MS quantitative proteomics. Thus, the aim of this study is to investigate the role of CHTOP in chemoresistant EOC and the underlying mechanism. Methods: The expression of CHTOP in human ovarian cancer cells and tissues was detected using immunofluorescence (IF), western blot (WB), and immunohistochemistry (IHC), respectively. Flow cytometry and TUNEL assay were employed to detect the effect of CHTOP knockdown (KD) in chemoresistant EOC cell apoptosis, while colony and sphere formation assays were used to evaluate its effect on cell stemness. The association of CHTOP with cell metastasis was determined using Matrigel invasion and wound-healing assays. Results: The higher level expression of CHTOP protein was found in chemoresistant EOC cells as compared to their sensitive parental cells or normal epithelial ovarian cells. Results from IHC and bioinformatic analysis showed CHTOP was highly expressed in human ovarian cancer tissues and associated with a poor progression-free survival in patients. In addition, CHTOP KD significantly enhanced cisplatin-induced apoptosis, reduced the stemness of chemoresistant EOC cells, and decreased their metastatic potential. Conclusion: Our findings suggest that CHTOP is associated with apoptosis, stemness, and metastasis in chemoresistant EOC cells and might be a promising target to overcome chemoresistance in EOC treatment.
Collapse
Affiliation(s)
- Xiaojie Feng
- Department of Gynaecological Oncology, Henan Cancer Hospital, Zhengzhou, China.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Xupeng Bai
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Jie Ni
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, NSW, Australia.,School of Medical Science, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Julia Beretov
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia.,Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, Australia
| | - Ying Zhu
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Chromatin target of protein arginine methyltransferase regulates invasion, chemoresistance, and stemness in epithelial ovarian cancer. Biosci Rep 2019; 39:BSR20190016. [PMID: 30910850 PMCID: PMC6465198 DOI: 10.1042/bsr20190016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/08/2019] [Accepted: 03/23/2019] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological cancers with a high mortality rate in females. Chromatin target of protein arginine methyltransferase (CHTOP) is an important intracellular protein that regulates the transcriptional activation of several oncogenic genes in glioblastomagenesis and controls mature mRNA export as a component of TRanscription-Export complex. However, the role of CHTOP in ovarian cancer is unclear. In the present study, we investigated the correlation between tumor-derived CHTOP expression and prognosis and explored its role in the malignant behaviors of epithelial ovarian cancer cells. We found that higher expression of CHTOP was associated with a lower disease-free survival (DFS) rate in ovarian cancer patients. Also, CHTOP was highly expressed in human ovarian cancer tissues compared with normal and adjacent tissues. Moreover, compared with IGROV-1 cell line, higher expression of CHTOP was also confirmed in the malignant ovarian cancer cell lines (OV-90 and SK-OV-3). Further results from wound-healing and Matrigel assay showed that CHTOP knockdown significantly reduced the migration and invasion ability of OV-90 and SK-OV-3 cells, while colony formation assay and apoptosis detection showed that CHTOP knockdown markedly sensitized OV-90 and SK-OV-3 cells to cisplatin treatment by inducing apoptosis. Additionally, CHTOP silence also remarkably weakened the stemness of OV-90 and SK-OV-3 through inhibiting the protein expressions of several transcriptional or surface markers of cancer stem cells. These findings first suggest that CHTOP, as a highly expressed protein in ovarian cancer, is closely associated with the malignant phenotypes of epithelial ovarian cancer cells, including metastasis, chemoresistance, and stemness, which highlights a promising role of CHTOP in ovarian cancer targeted therapy.
Collapse
|
13
|
Diepstraten ST, Hart AH. Modelling human haemoglobin switching. Blood Rev 2018; 33:11-23. [PMID: 30616747 DOI: 10.1016/j.blre.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Genetic lesions of the β-globin gene result in haemoglobinopathies such as β-thalassemia and sickle cell disease. To discover and test new molecular medicines for β-haemoglobinopathies, cell-based and animal models are now being widely utilised. However, multiple in vitro and in vivo models are required due to the complex structure and regulatory mechanisms of the human globin gene locus, subtle species-specific differences in blood cell development, and the influence of epigenetic factors. Advances in genome sequencing, gene editing, and precision medicine have enabled the first generation of molecular therapies aimed at reactivating, repairing, or replacing silenced or damaged globin genes. Here we compare and contrast current animal and cell-based models, highlighting their complementary strengths, reflecting on how they have informed the scope and direction of the field, and describing some of the novel molecular and precision medicines currently under development or in clinical trial.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Adam H Hart
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
14
|
Izumikawa K, Ishikawa H, Simpson RJ, Takahashi N. Modulating the expression of Chtop, a versatile regulator of gene-specific transcription and mRNA export. RNA Biol 2018; 15:849-855. [PMID: 29683372 DOI: 10.1080/15476286.2018.1465795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Chtop binds competitively to the arginine methyltransferases PRMT1 and PRMT5, thereby promoting the asymmetric or symmetric methylation of arginine residues, respectively. In cooperation with PRMT1, Chtop activates transcription of certain gene groups, such as the estrogen-inducible genes in breast cancer cells, the 5-hydroxymethylcytosine-modified genes involved in glioblastomagenesis, or the Zbp-89-dependent genes in erythroleukemia cells. Chtop also represses expression of the fetal γ-globin gene. In addition, Chtop is a component of the TREX complex that links transcription elongation to mRNA export. The regulation of Chtop expression is, therefore, a key process during the expression of certain gene groups and pathogenesis of certain diseases. Our recent study revealed that cellular levels of Chtop are strictly autoregulated by a mechanism involving intron retention and nonsense-mediated mRNA decay. Here, we summarize roles of Chtop in gene-specific expression and highlight our recent findings concerning the autoregulation of Chtop.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Hideaki Ishikawa
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Richard J Simpson
- b Global Innovation Research Organizations, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,c La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University , Bundoora Victoria , Australia
| | - Nobuhiro Takahashi
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,b Global Innovation Research Organizations, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| |
Collapse
|
15
|
Becker JS, McCarthy RL, Sidoli S, Donahue G, Kaeding KE, He Z, Lin S, Garcia BA, Zaret KS. Genomic and Proteomic Resolution of Heterochromatin and Its Restriction of Alternate Fate Genes. Mol Cell 2017; 68:1023-1037.e15. [PMID: 29272703 PMCID: PMC5858919 DOI: 10.1016/j.molcel.2017.11.030] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/18/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022]
Abstract
Heterochromatin is integral to cell identity maintenance by impeding the activation of genes for alternate cell fates. Heterochromatic regions are associated with histone 3 lysine 9 trimethylation (H3K9me3) or H3K27me3, but these modifications are also found in euchromatic regions that permit transcription. We discovered that resistance to sonication is a reliable indicator of the heterochromatin state, and we developed a biophysical method (gradient-seq) to discriminate subtypes of H3K9me3 and H3K27me3 domains in sonication-resistant heterochromatin (srHC) versus euchromatin. These classifications are more accurate than the histone marks alone in predicting transcriptional silence and resistance of alternate fate genes to activation during direct cell conversion. Our proteomics of H3K9me3-marked srHC and functional screens revealed diverse proteins, including RBMX and RBMXL1, that impede gene induction during cellular reprogramming. Isolation of srHC with gradient-seq provides a genome-wide map of chromatin structure, elucidating subtypes of repressed domains that are uniquely predictive of diverse other chromatin properties.
Collapse
Affiliation(s)
- Justin S Becker
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Ryan L McCarthy
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kelsey E Kaeding
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Zhiying He
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Shu Lin
- Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
17
|
Izumikawa K, Yoshikawa H, Ishikawa H, Nobe Y, Yamauchi Y, Philipsen S, Simpson RJ, Isobe T, Takahashi N. Chtop (Chromatin target of Prmt1) auto-regulates its expression level via intron retention and nonsense-mediated decay of its own mRNA. Nucleic Acids Res 2016; 44:9847-9859. [PMID: 27683223 PMCID: PMC5175361 DOI: 10.1093/nar/gkw831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Chtop (chromatin target of Prmt1) regulates various aspects of gene expression including transcription and mRNA export. Despite these important functions, the regulatory mechanism underlying Chtop expression remains undetermined. Using Chtop-expressing human cell lines, we demonstrate that Chtop expression is controlled via an autoregulatory negative feedback loop whereby Chtop binds its own mRNA to retain intron 2 during splicing; a premature termination codon present at the 5′ end of intron 2 leads to nonsense-mediated decay of the mRNA. We also show that Chtop interacts with exon 2 of Chtop mRNA via its arginine-glycine-rich (RG) domain, and with intron 2 via its N-terminal (N1) domain; both are required for retention of intron 2. In addition, we show that hnRNP H accelerates intron 2 splicing of Chtop mRNA in a manner dependent on Chtop expression level, suggesting that Chtop and hnRNP H regulate intron 2 retention of Chtop mRNA antagonistically. Thus, the present study provides a novel molecular mechanism by which mRNA and protein levels are constitutively regulated by intron retention.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Biological Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Hideaki Ishikawa
- Department of Applied Biological Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuko Nobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Richard J Simpson
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University, Bundoora, Victoria 3086, Australia
| | - Toshiaki Isobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
18
|
Tasan I, Jain S, Zhao H. Use of genome-editing tools to treat sickle cell disease. Hum Genet 2016; 135:1011-28. [PMID: 27250347 PMCID: PMC5002234 DOI: 10.1007/s00439-016-1688-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in genome-editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next-generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD, but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review, we will discuss the three programmable nucleases that are commonly used for genome-editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Surbhi Jain
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
Pace BS, Liu L, Li B, Makala LH. Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease. Exp Biol Med (Maywood) 2015; 240:1050-64. [PMID: 26283707 DOI: 10.1177/1535370215596859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75083, USA
| | - Biaoru Li
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| | - Levi H Makala
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
20
|
Ginder GD. Epigenetic regulation of fetal globin gene expression in adult erythroid cells. Transl Res 2015; 165:115-25. [PMID: 24880147 PMCID: PMC4227965 DOI: 10.1016/j.trsl.2014.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
The developmental regulation of globin gene expression has served as an important model for understanding higher eukaryotic transcriptional control mechanisms. During human erythroid development, there is a sequential switch from expression of the embryonic ε-globin gene to the fetal ɣ-globin gene in utero, and postpartum the ɣ-globin gene is silenced, as the β-globin gene becomes the predominantly expressed locus. Because the expression of normally silenced fetal ɣ-type globin genes and resultant production of fetal hemoglobin (HbF) in adult erythroid cells can ameliorate the pathophysiological consequences of both abnormal β-globin chains in sickle cell anemia and deficient β-globin chain production in β-thalassemia, understanding the complex mechanisms of this developmental switch has direct translational clinical relevance. Of particular interest for translational research are the factors that mediate silencing of the ɣ-globin gene in adult stage erythroid cells. In addition to the regulatory roles of transcription factors and their cognate DNA sequence motifs, there has been a growing appreciation of the role of epigenetic signals and their cognate factors in gene regulation, and in particular in gene silencing through chromatin. Much of the information about epigenetic silencing stems from studies of globin gene regulation. As discussed here, the term epigenetics refers to postsynthetic modifications of DNA and chromosomal histone proteins that affect gene expression and can be inherited through somatic cell replication. A full understanding of the molecular mechanisms of epigenetic silencing of HbF expression should facilitate the development of more effective treatment of β-globin chain hemoglobinopathies.
Collapse
Affiliation(s)
- Gordon D Ginder
- Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
21
|
Ju J, Wang Y, Liu R, Zhang Y, Xu Z, Wang Y, Wu Y, Liu M, Cerruti L, Zou F, Ma C, Fang M, Tan R, Jane SM, Zhao Q. Human fetal globin gene expression is regulated by LYAR. Nucleic Acids Res 2014; 42:9740-52. [PMID: 25092918 PMCID: PMC4150809 DOI: 10.1093/nar/gku718] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human globin gene expression during development is modulated by transcription factors in a stage-dependent manner. However, the mechanisms controlling the process are still largely unknown. In this study, we found that a nuclear protein, LYAR (human homologue of mouse Ly-1 antibody reactive clone) directly interacted with the methyltransferase PRMT5 which triggers the histone H4 Arg3 symmetric dimethylation (H4R3me2s) mark. We found that PRMT5 binding on the proximal γ-promoter was LYAR-dependent. The LYAR DNA-binding motif (GGTTAT) was identified by performing CASTing (cyclic amplification and selection of targets) experiments. Results of EMSA and ChIP assays confirmed that LYAR bound to a DNA region corresponding to the 5′-untranslated region of the γ-globin gene. We also found that LYAR repressed human fetal globin gene expression in both K562 cells and primary human adult erythroid progenitor cells. Thus, these data indicate that LYAR acts as a novel transcription factor that binds the γ-globin gene, and is essential for silencing the γ-globin gene.
Collapse
Affiliation(s)
- Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ronghua Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yichong Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Zhen Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yadong Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yupeng Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Loretta Cerruti
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia
| | - Fengwei Zou
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Chi Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ming Fang
- Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Kuypers FA. Hemoglobin S Polymerization and Red Cell Membrane Changes. Hematol Oncol Clin North Am 2014; 28:155-79. [DOI: 10.1016/j.hoc.2013.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) and PGC-1β have been shown to be intimately involved in the transcriptional regulation of cellular energy metabolism as well as other biological processes, but both coactivator proteins are expressed in many other tissues and organs in which their function is, in essence, unexplored. Here, we found that both PGC-1 proteins are abundantly expressed in maturing erythroid cells. PGC-1α and PGC-1β compound null mutant (Pgc-1(c)) animals express less β-like globin mRNAs throughout development; consequently, neonatal Pgc-1(c) mice exhibit growth retardation and profound anemia. Flow cytometry shows that the number of mature erythrocytes is markedly reduced in neonatal Pgc-1(c) pups, indicating that erythropoiesis is severely compromised. Furthermore, hematoxylin and eosin staining revealed necrotic cell death and cell loss in Pgc-1(c) livers and spleen. Chromatin immunoprecipitation studies revealed that both PGC-1α and -1β, as well as two nuclear receptors, TR2 and TR4, coordinately bind to the various globin gene promoters. In addition, PGC-1α and -1β can interact with TR4 to potentiate transcriptional activation. These data provide new insights into our understanding of globin gene regulation and raise the interesting possibility that the PGC-1 coactivators can interact with TR4 to elicit differential stage-specific effects on globin gene transcription.
Collapse
|
24
|
McColl B, Kao BR, Lourthai P, Chan K, Wardan H, Roosjen M, Delagneau O, Gearing LJ, Blewitt ME, Svasti S, Fucharoen S, Vadolas J. An in vivo model for analysis of developmental erythropoiesis and globin gene regulation. FASEB J 2014; 28:2306-17. [PMID: 24443374 DOI: 10.1096/fj.13-246637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of fetal γ-globin in adulthood ameliorates symptoms of β-hemoglobinopathies by compensating for the mutant β-globin. Reactivation of the silenced γ-globin gene is therefore of substantial clinical interest. To study the regulation of γ-globin expression, we created the GG mice, which carry an intact 183-kb human β-globin locus modified to express enhanced green fluorescent protein (eGFP) from the Gγ-globin promoter. GG embryos express eGFP first in the yolk sac blood islands and then in the aorta-gonad mesonephros and the fetal liver, the sites of normal embryonic hematopoiesis. eGFP expression in erythroid cells peaks at E9.5 and then is rapidly silenced (>95%) and maintained at low levels into adulthood, demonstrating appropriate developmental regulation of the human β-globin locus. In vitro knockdown of the epigenetic regulator DNA methyltransferase-1 in GG primary erythroid cells increases the proportion of eGFP(+) cells in culture from 41.9 to 74.1%. Furthermore, eGFP fluorescence is induced >3-fold after treatment of erythroid precursors with epigenetic drugs known to induce γ-globin expression, demonstrating the suitability of the Gγ-globin eGFP reporter for evaluation of γ-globin inducers. The GG mouse model is therefore a valuable model system for genetic and pharmacologic studies of the regulation of the β-globin locus and for discovery of novel therapies for the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Bradley McColl
- 2Cell and Gene Therapy Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Roosjen M, McColl B, Kao B, Gearing LJ, Blewitt ME, Vadolas J. Transcriptional regulators Myb and BCL11A interplay with DNA methyltransferase 1 in developmental silencing of embryonic and fetal β-like globin genes. FASEB J 2013; 28:1610-20. [PMID: 24371119 DOI: 10.1096/fj.13-242669] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The clinical symptoms of hemoglobin disorders such as β-thalassemia and sickle cell anemia are significantly ameliorated by the persistent expression of γ-globin after birth. This knowledge has driven the discovery of important regulators that silence γ-globin postnatally. Improved understanding of the γ- to β-globin switching mechanism holds the key to devising targeted therapies for β-hemoglobinopathies. To further investigate this mechanism, we used the murine erythroleukemic (MEL) cell line containing an intact 183-kb human β-globin locus, in which the (G)γ- and β-globin genes are replaced by DsRed and eGFP fluorescent reporters, respectively. Following RNA interference (RNAi)-mediated knockdown of two key transcriptional regulators, Myb and BCL11A, we observed a derepression of γ-globin, measured by DsRed fluorescence and qRT-PCR (P<0.001). Interestingly, double knockdown of Myb and DNA methyltransferase 1 (DNMT1) resulted in a robust induction of ε-globin, (up to 20% of total β-like globin species) compared to single knockdowns (P<0.001). Conversely, double knockdowns of BCL11A and DNMT1 enhanced γ-globin expression (up to 90% of total β-like globin species) compared to single knockdowns (P<0.001). Moreover, following RNAi treatment, expression of human β-like globin genes mirrored the expression levels of their endogenous murine counterparts. These results demonstrate that Myb and BCL11A cooperate with DNMT1 to achieve developmental repression of embryonic and fetal β-like globin genes in the adult erythroid environment.
Collapse
Affiliation(s)
- Mark Roosjen
- 1Cell and Gene Therapy Group, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Rd., Parkville, VIC 3052, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res 2013; 2:188. [PMID: 24555089 DOI: 10.12688/f1000research.2-188.v1] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing is widely recognized for its roles in regulating genes and creating gene diversity. However, despite many efforts, the repertoire of gene splicing variation is still incompletely characterized, even in humans. Here we describe a new computational system, ASprofile, and its application to RNA-seq data from Illumina's Human Body Map project (>2.5 billion reads). Using the system, we identified putative alternative splicing events in 16 different human tissues, which provide a dynamic picture of splicing variation across the tissues. We detected 26,989 potential exon skipping events representing differences in splicing patterns among the tissues. A large proportion of the events (>60%) were novel, involving new exons (~3000), new introns (~16000), or both. When tracing these events across the sixteen tissues, only a small number (4-7%) appeared to be differentially expressed ('switched') between two tissues, while 30-45% showed little variation, and the remaining 50-65% were not present in one or both tissues compared. Novel exon skipping events appeared to be slightly less variable than known events, but were more tissue-specific. Our study represents the first effort to build a comprehensive catalog of alternative splicing in normal human tissues from RNA-seq data, while providing insights into the role of alternative splicing in shaping tissue transcriptome differences. The catalog of events and the ASprofile software are freely available from the Zenodo repository ( http://zenodo.org/record/7068; doi: 10.5281/zenodo.7068) and from our web site http://ccb.jhu.edu/software/ASprofile.
Collapse
Affiliation(s)
- Liliana Florea
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Li Song
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Steven L Salzberg
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
27
|
Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res 2013; 2:188. [PMID: 24555089 PMCID: PMC3892928 DOI: 10.12688/f1000research.2-188.v2] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing is widely recognized for its roles in regulating genes and creating gene diversity. However, despite many efforts, the repertoire of gene splicing variation is still incompletely characterized, even in humans. Here we describe a new computational system, ASprofile, and its application to RNA-seq data from Illumina’s Human Body Map project (>2.5 billion reads). Using the system, we identified putative alternative splicing events in 16 different human tissues, which provide a dynamic picture of splicing variation across the tissues. We detected 26,989 potential exon skipping events representing differences in splicing patterns among the tissues. A large proportion of the events (>60%) were novel, involving new exons (~3000), new introns (~16000), or both. When tracing these events across the sixteen tissues, only a small number (4-7%) appeared to be differentially expressed (‘switched’) between two tissues, while 30-45% showed little variation, and the remaining 50-65% were not present in one or both tissues compared. Novel exon skipping events appeared to be slightly less variable than known events, but were more tissue-specific. Our study represents the first effort to build a comprehensive catalog of alternative splicing in normal human tissues from RNA-seq data, while providing insights into the role of alternative splicing in shaping tissue transcriptome differences. The catalog of events and the ASprofile software are freely available from the Zenodo repository (
http://zenodo.org/record/7068; doi:
10.5281/zenodo.7068) and from our web site
http://ccb.jhu.edu/software/ASprofile.
Collapse
Affiliation(s)
- Liliana Florea
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Li Song
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Steven L Salzberg
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
28
|
Abstract
B-cell lymphoma 11A (BCL11A) downregulation in human primary adult erythroid progenitors results in elevated expression of fetal γ-globin. Recent reports showed that BCL11A expression is activated by KLF1, leading to γ-globin repression. To study regulation of erythropoiesis and globin expression by KLF1 and BCL11A in an in vivo model, we used mice carrying a human β-globin locus transgene with combinations of Klf1 knockout, Bcl11a floxed, and EpoR(Cre) knockin alleles. We found a higher percentage of reticulocytes in adult Klf1(wt/ko) mice and a mild compensated anemia in Bcl11a(cko/cko) mice. These phenotypes were more pronounced in compound Klf1(wt/ko)::Bcl11a(cko/cko) mice. Analysis of Klf1(wt/ko), Bcl11a(cko/cko), and Klf1(wt/ko)::Bcl11a(cko/cko) mutant embryos demonstrated increased expression of mouse embryonic globins during fetal development. Expression of human γ-globin remained high in Bcl11a(cko/cko) embryos during fetal development, and this was further augmented in Klf1(wt/ko)::Bcl11a(cko/cko) embryos. After birth, expression of human γ-globin and mouse embryonic globins decreased in Bcl11a(cko/cko) and Klf1(wt/ko)::Bcl11a(cko/cko) mice, but the levels remained much higher than those observed in control animals. Collectively, our data support an important role for the KLF1-BCL11A axis in erythroid maturation and developmental regulation of globin expression.
Collapse
|
29
|
Abstract
The fetal-to-adult hemoglobin switch and silencing of fetal hemoglobin (HbF) have been areas of long-standing interest among hematologists, given the fact that clinical induction of HbF production holds tremendous promise to ameliorate the clinical symptoms of sickle cell disease (SCD) and β-thalassemia. In this article, we discuss historic attempts to induce HbF that have resulted in some therapeutic approaches to manage SCD and β-thalassemia. We then go on to discuss how more recent molecular studies that have identified regulators, including BCL11A, MYB, and KLF1, hold great promise to develop targeted and more effective approaches for HbF induction. We go on to discuss strategies by which such approaches may be developed. Older studies in this field can provide important lessons for future studies aimed at developing more effective strategies for HbF induction, and we therefore chronologically cover the work accomplished as this field has evolved over the course of the past four decades.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
30
|
Papadopoulos P, Gutiérrez L, van der Linden R, Kong-A-San J, Maas A, Drabek D, Patrinos GP, Philipsen S, Grosveld F. A dual reporter mouse model of the human β-globin locus: applications and limitations. PLoS One 2012; 7:e51272. [PMID: 23272095 PMCID: PMC3522686 DOI: 10.1371/journal.pone.0051272] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/30/2012] [Indexed: 12/27/2022] Open
Abstract
The human β-globin locus contains the β-like globin genes (i.e. fetal γ-globin and adult β-globin), which heterotetramerize with α-globin subunits to form fetal or adult hemoglobin. Thalassemia is one of the commonest inherited disorders in the world, which results in quantitative defects of the globins, based on a number of genome variations found in the globin gene clusters. Hereditary persistence of fetal hemoglobin (HPFH) also caused by similar types of genomic alterations can compensate for the loss of adult hemoglobin. Understanding the regulation of the human γ-globin gene expression is a challenge for the treatment of thalassemia. A mouse model that facilitates high-throughput assays would simplify such studies. We have generated a transgenic dual reporter mouse model by tagging the γ- and β-globin genes with GFP and DsRed fluorescent proteins respectively in the endogenous human β-globin locus. Erythroid cell lines derived from this mouse model were tested for their capacity to reactivate the γ-globin gene. Here, we discuss the applications and limitations of this fluorescent reporter model to study the genetic basis of red blood cell disorders and the potential use of such model systems in high-throughput screens for hemoglobinopathies therapeutics.
Collapse
Affiliation(s)
| | - Laura Gutiérrez
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | - John Kong-A-San
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - George P. Patrinos
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Abstract
The level of fetal hemoglobin (HbF) modifies the severity of the common β-globin disorders. Knowledge of the normal mechanisms that repress HbF in the adult stage has remained limited until recently despite nearly 3 decades of molecular investigation, in part because of imperfect model systems. Recent studies have provided new insights into the developmental regulation of globin genes and identified specific transcription factors and epigenetic regulators responsible for physiologic silencing of HbF. Most prominent among these regulators is BCL11A, a transcriptional repressor that inhibits adult-stage HbF expression. KLF1 and c-Myb are additional critical HbF-regulating erythroid transcription factors more broadly involved in erythroid gene expression programs. Chromatin modifiers, including histone deacetylases and DNA methyltransferases, also play key roles in orchestrating appropriate globin gene expression. Taken together, these discoveries present novel therapeutic targets for further consideration. Although substantial hurdles remain, opportunities are now rich for the rational design of HbF inducers.
Collapse
|
32
|
Fanis P, Gillemans N, Aghajanirefah A, Pourfarzad F, Demmers J, Esteghamat F, Vadlamudi RK, Grosveld F, Philipsen S, van Dijk TB. Five friends of methylated chromatin target of protein-arginine-methyltransferase[prmt]-1 (chtop), a complex linking arginine methylation to desumoylation. Mol Cell Proteomics 2012; 11:1263-73. [PMID: 22872859 DOI: 10.1074/mcp.m112.017194] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin target of Prmt1 (Chtop) is a vertebrate-specific chromatin-bound protein that plays an important role in transcriptional regulation. As its mechanism of action remains unclear, we identified Chtop-interacting proteins using a biotinylation-proteomics approach. Here we describe the identification and initial characterization of Five Friends of Methylated Chtop (5FMC). 5FMC is a nuclear complex that can only be recruited by Chtop when the latter is arginine-methylated by Prmt1. It consists of the co-activator Pelp1, the Sumo-specific protease Senp3, Wdr18, Tex10, and Las1L. Pelp1 functions as the core of 5FMC, as the other components become unstable in the absence of Pelp1. We show that recruitment of 5FMC to Zbp-89, a zinc-finger transcription factor, affects its sumoylation status and transactivation potential. Collectively, our data provide a mechanistic link between arginine methylation and (de)sumoylation in the control of transcriptional activity.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Cell Biology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chan KSK, Xu J, Wardan H, McColl B, Orkin S, Vadolas J. Generation of a genomic reporter assay system for analysis of γ- and β-globin gene regulation. FASEB J 2012; 26:1736-44. [PMID: 22267339 DOI: 10.1096/fj.11-199356] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A greater understanding of the regulatory mechanisms that govern γ-globin expression in humans, especially the switching from γ- to β-globin, which occurs after birth, would help to identify new therapeutic targets for patients with β-hemoglobinopathy. To further elucidate the mechanisms involved in γ-globin expression, a novel fluorescent-based cellular reporter assay system was developed. Using homologous recombination, two reporter genes, DsRed and EGFP, were inserted into a 183-kb intact human β-globin locus under the control of (G)γ- or (A)γ-globin promoter and β-globin promoter, respectively. The modified constructs were stably transfected into adult murine erythroleukaemic (MEL) cells and human embryonic or fetal erythroleukemic (K562) cells, allowing for rapid and simultaneous analysis of fetal and adult globin gene expression according to their developmental stage-specific expression. To demonstrate the utility of this system, we performed RNA interference (RNAi)-mediated knockdown of BCL11A in the presence or absence of known fetal hemoglobin inducers and demonstrated functional derepression of a γ-globin-linked reporter in an adult erythroid environment. Our results demonstrate that the cellular assay system represents a promising approach to perform genetic and functional genomic studies to identify and evaluate key factors associated with γ-globin gene suppression.
Collapse
Affiliation(s)
- Kasey S K Chan
- Cell and Gene Therapy Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol 2011; 31:3298-311. [PMID: 21670149 DOI: 10.1128/mcb.05310-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptors TR2 and TR4 (TR2/TR4) were previously shown to bind in vitro to direct repeat elements in the mouse and human embryonic and fetal β-type globin gene promoters and to play critical roles in the silencing of these genes. By chromatin immunoprecipitation (ChIP) we show that, in adult erythroid cells, TR2/TR4 bind to the embryonic β-type globin promoters but not to the adult β-globin promoter. We purified protein complexes containing biotin-tagged TR2/TR4 from adult erythroid cells and identified DNMT1, NuRD, and LSD1/CoREST repressor complexes, as well as HDAC3 and TIF1β, all known to confer epigenetic gene silencing, as potential corepressors of TR2/TR4. Coimmunoprecipitation assays of endogenous abundance proteins indicated that TR2/TR4 complexes consist of at least four distinct molecular species. In ChIP assays we found that, in undifferentiated murine adult erythroid cells, many of these corepressors associate with both the embryonic and the adult β-type globin promoters but, upon terminal differentiation, they specifically dissociate only from the adult β-globin promoter concomitant with its activation but remain bound to the silenced embryonic globin gene promoters. These data suggest that TR2/TR4 recruit an array of transcriptional corepressors to elicit adult stage-specific silencing of the embryonic β-type globin genes through coordinated epigenetic chromatin modifications.
Collapse
|
35
|
Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood 2011; 117:3945-53. [PMID: 21321359 DOI: 10.1182/blood-2010-11-316893] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In humans, embryonic, fetal, and adult hemoglobins are sequentially expressed in developing erythroblasts during ontogeny. For the past 40 years, this process has been the subject of intensive study because of its value to enlighten the biology of developmental gene regulation and because fetal hemoglobin can significantly ameliorate the clinical manifestations of both sickle cell disease and β-thalassemia. Understanding the normal process of loss of fetal globin expression and activation of adult globin expression could potentially lead to new therapeutic approaches for these hemoglobin disorders. Herein, we briefly review the history of the study of hemoglobin switching and then focus on recent discoveries in the field that now make new therapeutic approaches seem feasible in the future. Erythroid-specific knockdown of fetal gene repressors or enforced expression of fetal gene activators may provide clinically applicable approaches for genetic treatment of hemoglobin disorders that would benefit from increased fetal hemoglobin levels.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The developmental switch from fetal to adult hemoglobin has long fascinated biologists and attracted hematologists given its importance for patients with hemoglobin disorders. New discoveries have reinvigorated the field of globin gene regulation. These results hold promise for improved treatment of the major hemoglobinopathies. RECENT FINDINGS Both genome-wide association studies and traditional linkage studies have identified several genetic loci involved in silencing fetal hemoglobin. BCL11A is a potent silencer of fetal hemoglobin in both mouse and humans. It controls the beta-globin gene cluster in concert with other factors. KLF1, a vital erythroid transcription factor, activates BCL11A and assists in coordinating the switch from fetal to adult hemoglobin. A regulatory network of cell-intrinsic and cell-extrinsic factors maintains the epigenetic homeostasis of the beta-globin cluster and accounts for the precise lineage-specific and developmental stage-specific regulation of the globin genes. SUMMARY With an improved understanding of pathways involved in the switch from fetal to adult hemoglobin, new targets have emerged for the treatment of the common hemoglobin disorders, sickle cell anemia and beta-thalassemia.
Collapse
Affiliation(s)
- Daniel E Bauer
- Children's Hospital Boston and Dana-Farber Cancer Institute, USA
| | | |
Collapse
|
37
|
Sankaran VG. Targeted therapeutic strategies for fetal hemoglobin induction. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2011; 2011:459-465. [PMID: 22160074 DOI: 10.1182/asheducation-2011.1.459] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Increased levels of fetal hemoglobin (HbF) can ameliorate the severity of the β-hemoglobin disorders, sickle cell disease (SCD) and β-thalassemia, which are major sources of morbidity and mortality worldwide. As a result, there has been a longstanding interest in developing therapeutic approaches for inducing HbF. For more than 3 decades, the majority of HbF inducers developed were based on empiric observations and have had limited success. Recently, human genetic approaches have provided insight into previously unappreciated regulators of the fetal-to-adult hemoglobin switch and HbF silencing, revealing molecular targets to induce HbF. This article reviews these developments and discusses how molecules including BCL11A, KLF1, MYB, SOX6, miRNAs 15a and 16-1, and histone deacetylase 1 and 2 (HDAC1/2) could be important targets for HbF induction in humans. The current understanding of how these molecules function and the benefits and drawbacks of each of these potential therapeutic targets are also examined. The identification of these regulators of HbF expression is extremely promising and suggests that rationally designed approaches targeting the very mechanisms mediating this switching process could lead to better, less toxic, and more effective strategies for HbF induction.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|