1
|
Kullaya VI, Temba GS, Vadaq N, Njau J, Boahen CK, Nkambule BB, Thibord F, Chen MH, Pecht T, Lyamuya F, Kumar V, Netea MG, Mmbaga BT, van der Ven A, Johnson AD, de Mast Q. Genetic and nongenetic drivers of platelet reactivity in healthy Tanzanian individuals. J Thromb Haemost 2024; 22:805-817. [PMID: 38029856 DOI: 10.1016/j.jtha.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Platelets play a key role in hemostasis, inflammation, and cardiovascular diseases. Platelet reactivity is highly variable between individuals. The drivers of this variability in populations from Sub-Saharan Africa remain largely unknown. OBJECTIVES We aimed to investigate the nongenetic and genetic determinants of platelet reactivity in healthy adults living in a rapidly urbanizing area in Northern Tanzania. METHODS Platelet activation and reactivity were measured by platelet P-selectin expression and the binding of fibrinogen in unstimulated blood and after ex vivo stimulation with adenosine diphosphate and PAR-1 and PAR-4 ligands. We then analyzed the associations of platelet parameters with host genetic and nongenetic factors, environmental factors, plasma inflammatory markers, and plasma metabolites. RESULTS Only a few associations were found between platelet reactivity parameters and plasma inflammatory markers and nongenetic host and environmental factors. In contrast, untargeted plasma metabolomics revealed a large number of associations with food-derived metabolites, including phytochemicals that were previously reported to inhibit platelet reactivity. Genome-wide single-nucleotide polymorphism genotyping identified 2 novel single-nucleotide polymorphisms (rs903650 and rs4789332) that were associated with platelet reactivity at the genome-wide level (P < 5 × 10-8) as well as a number of variants in the PAR4 gene (F2RL3) that were associated with PAR4-induced reactivity. CONCLUSION Our study uncovered factors that determine variation in platelet reactivity in a population in East Africa that is rapidly transitioning to an urban lifestyle, including the importance of genetic ancestry and the gradual abandoning of the traditional East African diet.
Collapse
Affiliation(s)
- Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Godfrey S Temba
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith Njau
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Collins K Boahen
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Florian Thibord
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Ming-Huei Chen
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Tal Pecht
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Furaha Lyamuya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Vinod Kumar
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania; Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Andre van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Tamura T, Cheng C, Chen W, Merriam LT, Athar H, Kim YH, Manandhar R, Amir Sheikh MD, Pinilla-Vera M, Varon J, Hou PC, Lawler PR, Oldham WM, Seethala RR, Tesfaigzi Y, Weissman AJ, Baron RM, Ichinose F, Berg KM, Bohula EA, Morrow DA, Chen X, Kim EY. Single-cell transcriptomics reveal a hyperacute cytokine and immune checkpoint axis after cardiac arrest in patients with poor neurological outcome. MED 2023; 4:432-456.e6. [PMID: 37257452 PMCID: PMC10524451 DOI: 10.1016/j.medj.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Most patients hospitalized after cardiac arrest (CA) die because of neurological injury. The systemic inflammatory response after CA is associated with neurological injury and mortality but remains poorly defined. METHODS We determine the innate immune network induced by clinical CA at single-cell resolution. FINDINGS Immune cell states diverge as early as 6 h post-CA between patients with good or poor neurological outcomes 30 days after CA. Nectin-2+ monocyte and Tim-3+ natural killer (NK) cell subpopulations are associated with poor outcomes, and interactome analysis highlights their crosstalk via cytokines and immune checkpoints. Ex vivo studies of peripheral blood cells from CA patients demonstrate that immune checkpoints are a compensatory mechanism against inflammation after CA. Interferon γ (IFNγ)/interleukin-10 (IL-10) induced Nectin-2 on monocytes; in a negative feedback loop, Nectin-2 suppresses IFNγ production by NK cells. CONCLUSIONS The initial hours after CA may represent a window for therapeutic intervention in the resolution of inflammation via immune checkpoints. FUNDING This work was supported by funding from the American Heart Association, Brigham and Women's Hospital Department of Medicine, the Evergreen Innovation Fund, and the National Institutes of Health.
Collapse
Affiliation(s)
- Tomoyoshi Tamura
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Humra Athar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yaunghyun H Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Reshmi Manandhar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Muhammad Dawood Amir Sheikh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mayra Pinilla-Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Peter C Hou
- Harvard Medical School, Boston, MA 02115, USA; Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Patrick R Lawler
- Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON M5G 2N2, Canada; McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Raghu R Seethala
- Harvard Medical School, Boston, MA 02115, USA; Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra J Weissman
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Fumito Ichinose
- Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katherine M Berg
- Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Erin A Bohula
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David A Morrow
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Valenzuela A, Ayuso M, Buyssens L, Bars C, Van Ginneken C, Tessier Y, Van Cruchten S. Platelet Activation by Antisense Oligonucleotides (ASOs) in the Göttingen Minipig, including an Evaluation of Glycoprotein VI (GPVI) and Platelet Factor 4 (PF4) Ontogeny. Pharmaceutics 2023; 15:pharmaceutics15041112. [PMID: 37111598 PMCID: PMC10143489 DOI: 10.3390/pharmaceutics15041112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Antisense oligonucleotide (ASO) is a therapeutic modality that enables selective modulation of undruggable protein targets. However, dose- and sequence-dependent platelet count reductions have been reported in nonclinical studies and clinical trials. The adult Göttingen minipig is an acknowledged nonclinical model for ASO safety testing, and the juvenile Göttingen minipig has been recently proposed for the safety testing of pediatric medicines. This study assessed the effects of various ASO sequences and modifications on Göttingen minipig platelets using in vitro platelet activation and aggregometry assays. The underlying mechanism was investigated further to characterize this animal model for ASO safety testing. In addition, the protein abundance of glycoprotein VI (GPVI) and platelet factor 4 (PF4) was investigated in the adult and juvenile minipigs. Our data on direct platelet activation and aggregation by ASOs in adult minipigs are remarkably comparable to human data. Additionally, PS ASOs bind to platelet collagen receptor GPVI and directly activate minipig platelets in vitro, mirroring the findings in human blood samples. This further corroborates the use of the Göttingen minipig for ASO safety testing. Moreover, the differential abundance of GPVI and PF4 in minipigs provides insight into the influence of ontogeny in potential ASO-induced thrombocytopenia in pediatric patients.
Collapse
|
4
|
Chen M, Hou L, Hu L, Tan C, Wang X, Bao P, Ran Q, Chen L, Li Z. Platelet detection as a new liquid biopsy tool for human cancers. Front Oncol 2022; 12:983724. [PMID: 36185270 PMCID: PMC9515491 DOI: 10.3389/fonc.2022.983724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/09/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is still a leading cause of death worldwide and liquid biopsy is a powerful tool that can be applied to different stages of cancer screening and treatment. However, as the second most abundant cell type in the bloodstream, platelets are isolated through well-established and fast methods in clinic but their value as a BioSource of cancer biomarkers is relatively recent. Many studies demonstrated the bidirectional interaction between cancer cells and platelets. Platelets transfer various proteins (e.g., growth factors, cytokine, chemokines) and RNAs (e.g., mRNA, lncRNA, miRNA, circRNA) into the tumor cells and microenvironment, leading the stimulation of tumor growth and metastasis. In turn, the platelet clinical characteristics (e.g., count and volume) and contents (e.g., RNA and protein) are altered by the interactions with cancer cells and this enables the early cancer detection using these features of platelets. In addition, platelet-derived microparticles also demonstrate the prediction power of being cancer biomarkers. In this review, we focus on the clinical applications of platelet detection using the platelet count, mean platelet volume, platelet RNA and protein profiles for human cancers and discuss the gap in bringing these implementations into the clinic.
Collapse
Affiliation(s)
- Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Maoshan Chen, ; Li Chen, ; Zhongjun Li,
| | - Lijia Hou
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaojie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Peipei Bao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Maoshan Chen, ; Li Chen, ; Zhongjun Li,
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injuries, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Maoshan Chen, ; Li Chen, ; Zhongjun Li,
| |
Collapse
|
5
|
Kostyunin A, Glushkova T, Stasev A, Mukhamadiyarov R, Velikanova E, Bogdanov L, Sinitskaya A, Asanov M, Ovcharenko E, Barbarash L, Kutikhin A. Early Postoperative Immunothrombosis of Bioprosthetic Mitral Valve and Left Atrium: A Case Report. Int J Mol Sci 2022; 23:ijms23126736. [PMID: 35743174 PMCID: PMC9224391 DOI: 10.3390/ijms23126736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
A 72-year-old female patient with mixed rheumatic mitral valve disease and persistent atrial fibrillation underwent mitral valve replacement and suffered from a combined thrombosis of the bioprosthetic valve and the left atrium as soon as 2 days post operation. The patient immediately underwent repeated valve replacement and left atrial thrombectomy. Yet, four days later the patient died due to the recurrent prosthetic valve and left atrial thrombosis which both resulted in an extremely low cardiac output. In this patient's case, the thrombosis was notable for the resistance to anticoagulant therapy as well as for aggressive neutrophil infiltration and release of neutrophil extracellular traps (NETs) within the clot, as demonstrated by immunostaining. The reasons behind these phenomena remained unclear, as no signs of sepsis or contamination of the BHV were documented, although the patient was diagnosed with inherited thrombophilia that could impede the fibrinolysis. The described case highlights the hazard of immunothrombosis upon valve replacement and elucidates its mechanisms in this surgical setting.
Collapse
|
6
|
Nalls MA, Blauwendraat C, Sargent L, Vitale D, Leonard H, Iwaki H, Song Y, Bandres-Ciga S, Menden K, Faghri F, Heutink P, Cookson MR, Singleton AB. Evidence for GRN connecting multiple neurodegenerative diseases. Brain Commun 2021; 3:fcab095. [PMID: 34693284 DOI: 10.1093/braincomms/fcab095] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Previous research using genome-wide association studies has identified variants that may contribute to lifetime risk of multiple neurodegenerative diseases. However, whether there are common mechanisms that link neurodegenerative diseases is uncertain. Here, we focus on one gene, GRN, encoding progranulin, and the potential mechanistic interplay between genetic risk, gene expression in the brain and inflammation across multiple common neurodegenerative diseases. We utilized genome-wide association studies, expression quantitative trait locus mapping and Bayesian colocalization analyses to evaluate potential causal and mechanistic inferences. We integrate various molecular data types from public resources to infer disease connectivity and shared mechanisms using a data-driven process. Expression quantitative trait locus analyses combined with genome-wide association studies identified significant functional associations between increasing genetic risk in the GRN region and decreased expression of the gene in Parkinson's, Alzheimer's and amyotrophic lateral sclerosis. Additionally, colocalization analyses show a connection between blood-based inflammatory biomarkers relating to platelets and GRN expression in the frontal cortex. GRN expression mediates neuroinflammation function related to multiple neurodegenerative diseases. This analysis suggests shared mechanisms for Parkinson's, Alzheimer's and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA.,Data Tecnica International LLC, Glen Echo, MD 20812, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lana Sargent
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA.,Data Tecnica International LLC, Glen Echo, MD 20812, USA
| | - Hampton Leonard
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA.,Data Tecnica International LLC, Glen Echo, MD 20812, USA.,German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA.,Data Tecnica International LLC, Glen Echo, MD 20812, USA
| | - Yeajin Song
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA.,Data Tecnica International LLC, Glen Echo, MD 20812, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Menden
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Faraz Faghri
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA.,Data Tecnica International LLC, Glen Echo, MD 20812, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Mark R Cookson
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Impact of Platelet Glycoprotein Ia/IIa C807T Gene Polymorphisms on Coronary Artery Aneurysms of KD Patients. Cardiol Res Pract 2021; 2021:4895793. [PMID: 33708441 PMCID: PMC7929693 DOI: 10.1155/2021/4895793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 01/24/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022] Open
Abstract
Background Kawasaki disease (KD) is a systemic vasculitis of unknown etiology in children. Coronary artery abnormalities are the most common complications of KD. Recent evidence showed that genetic polymorphisms may lead to susceptibility to KD. Genetic variants in platelet glycoprotein have been reported to be associated with coronary artery disease. The aim of the present study is to investigate the correlation between the role of platelet glycoprotein and coronary artery aneurysms in KD patients. Methods We did a case-control study that enrolled 818 KD patients and 1401 healthy children with the same age and sex from January 2013 to December 2016. Analysis of single-nucleotide polymorphism (rs1126643) of the platelet glycoprotein Ia/IIa C807T was performed by multiplex polymerase chain reactions in this study. Results A significant difference in the genotype distribution between KD cases and controls was observed for the glycoprotein Ia/IIa C807T (rs1126643) polymorphism (p=0.026). Compared with the healthy children, the rs1126643T allele carriers had odds ratio (OR) of 0.63 for developing KD (TT vs. CC: adjusted OR = 0.62, 95% confidence interval (CI) = 0.43–0.88,p=0.0078; TT vs. CT/CC: adjusted OR = 0.63, 95% CI = 0.44–0.889,p=0.0093). Furthermore, we also found that children less than 60 months of age and female patients with rs1126643 T allele carriers had an adjusted OR of 0.66 (95% CI = 0.46–0.95) for noncoronary artery aneurysm patients (p=0.0242). Single-nucleotide polymorphism rs1126643 TT seems to represent a protective factor against KD in coronary artery aneurysm formation in multivariate analysis. Conclusions The platelet glycoprotein Ia/IIa T allele carriers may have a protective effect on the risk of coronary artery aneurysms of KD patients, especially in females and children aged less than 60 months. These results may provide evidence for platelet glycoprotein Ia/IIa gene polymorphisms in the pathogenesis of KD patients.
Collapse
|
8
|
Van Hout CV, Tachmazidou I, Backman JD, Hoffman JD, Liu D, Pandey AK, Gonzaga-Jauregui C, Khalid S, Ye B, Banerjee N, Li AH, O'Dushlaine C, Marcketta A, Staples J, Schurmann C, Hawes A, Maxwell E, Barnard L, Lopez A, Penn J, Habegger L, Blumenfeld AL, Bai X, O'Keeffe S, Yadav A, Praveen K, Jones M, Salerno WJ, Chung WK, Surakka I, Willer CJ, Hveem K, Leader JB, Carey DJ, Ledbetter DH, Cardon L, Yancopoulos GD, Economides A, Coppola G, Shuldiner AR, Balasubramanian S, Cantor M, Nelson MR, Whittaker J, Reid JG, Marchini J, Overton JD, Scott RA, Abecasis GR, Yerges-Armstrong L, Baras A. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature 2020; 586:749-756. [PMID: 33087929 PMCID: PMC7759458 DOI: 10.1038/s41586-020-2853-0] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.
Collapse
Affiliation(s)
| | | | | | - Joshua D Hoffman
- GlaxoSmithKline, Collegeville, PA, USA
- Foresite Labs, Cambridge, MA, USA
| | - Daren Liu
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | - Bin Ye
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | - Claudia Schurmann
- Regeneron Genetics Center, Tarrytown, NY, USA
- Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | - John Penn
- Regeneron Genetics Center, Tarrytown, NY, USA
- DNANexus, Mountain View, CA, USA
| | | | | | | | | | | | | | | | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Kristian Hveem
- Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | - Matthew R Nelson
- GlaxoSmithKline, Collegeville, PA, USA
- Deerfield, New York, NY, USA
| | | | | | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA.
| |
Collapse
|
9
|
Fontana P, Ibberson M, Stevenson B, Wigger L, Daali Y, Niknejad A, Mach F, Docquier M, Xenarios I, Cuisset T, Alessi MC, Reny JL. Contribution of exome sequencing to the identification of genes involved in the response to clopidogrel in cardiovascular patients. J Thromb Haemost 2020; 18:1425-1434. [PMID: 32077582 DOI: 10.1111/jth.14776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND On-clopidogrel platelet reactivity (PR) is associated with the risk of thrombotic or bleeding event in selected populations of high-risk patients. PR is a highly heritable phenotype and a few variants of cytochrome genes, essentially CYP2C19, are associated with PR but only explain 5% to 12% of the variability. OBJECTIVE The aim of this study is to delineate genetic determinants of on-clopidogrel PR using high-throughput sequencing. METHODS We performed a whole exome sequencing of 96 low- and matched high-PR patients in a discovery cohort. Exomes from genes with variants significantly associated with PR were sequenced in 96 low- and matched high-PR patients from an independent replication cohort. RESULTS We identified 585 variants in 417 genes with an adjusted P value < .05. In the replication cohort, all top variants including CYP2C8, CYP2C18, and CYP2C19 from the discovery population were found again. An original network analysis identified several candidate genes of potential interest such as a regulator of PI3K, a key actor in the downstream signaling pathway of the P2Y12 receptor. CONCLUSION This study emphasizes the role of CYP-related genes as major regulators of clopidogrel response, including the poorly investigated CYP2C8 and CYP2C18.
Collapse
Affiliation(s)
- Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| | - Mark Ibberson
- SIB Swiss Institute of Bioinformatics, Vital-IT Group, University of Lausanne, Lausanne, Switzerland
| | - Brian Stevenson
- SIB Swiss Institute of Bioinformatics, Vital-IT Group, University of Lausanne, Lausanne, Switzerland
| | - Leonore Wigger
- SIB Swiss Institute of Bioinformatics, Vital-IT Group, University of Lausanne, Lausanne, Switzerland
| | - Youssef Daali
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| | - Anne Niknejad
- SIB Swiss Institute of Bioinformatics, Vital-IT Group, University of Lausanne, Lausanne, Switzerland
| | - François Mach
- Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| | - Mylène Docquier
- iGE3 Genomics platform, University of Geneva, Geneva, Switzerland
| | - Ioannis Xenarios
- SIB Swiss Institute of Bioinformatics, Vital-IT Group, University of Lausanne, Lausanne, Switzerland
| | - Thomas Cuisset
- INSERM, INRA, C2VN, APHM, Aix Marseille University, Marseille, France
| | | | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
Semeniak D, Faber K, Öftering P, Manukjan G, Schulze H. Impact of Itga2-Gp6-double collagen receptor deficient mice for bone marrow megakaryocytes and platelets. PLoS One 2019; 14:e0216839. [PMID: 31398205 PMCID: PMC6688823 DOI: 10.1371/journal.pone.0216839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
The two main collagen receptors on platelets, GPVI and integrin α2β1, play an important role for the recognition of exposed collagen at sites of vessel injury, which leads to platelet activation and subsequently stable thrombus formation. Both receptors are already expressed on megakaryocytes, the platelet forming cells within the bone marrow. Megakaryocytes are in permanent contact with collagen filaments in the marrow cavity and at the basal lamina of sinusoids without obvious preactivation. The role of both collagen receptors for megakaryocyte maturation and thrombopoiesis is still poorly understood. To investigate the function of both collagen receptors, we generated mice that are double deficient for Gp6 and Itga2. Flow cytometric analyses revealed that the deficiency of both receptors had no impact on platelet number and led to the expected lack in GPVI responsiveness. Integrin activation and degranulation ability was comparable to wildtype mice. By immunofluorescence microscopy, we could demonstrate that both wildtype and double-deficient megakaryocytes were overall normally distributed within the bone marrow. We found megakaryocyte count and size to be normal, the localization within the bone marrow, the degree of maturation, as well as their association to sinusoids were also unaltered. However, the contact of megakaryocytes to collagen type I filaments was decreased at sinusoids compared to wildtype mice, while the interaction to type IV collagen was unaffected. Our results imply that GPVI and α2β1 have no influence on the localization of megakaryocytes within the bone marrow, their association to the sinusoids or their maturation. The decreased contact of megakaryocytes to collagen type I might at least partially explain the unaltered platelet phenotype in these mice, since proplatelet formation is mediated by these receptors and their interaction to collagen. It is rather likely that other compensatory signaling pathways and receptors play a role that needs to be elucidated.
Collapse
Affiliation(s)
- Daniela Semeniak
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Faber
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Öftering
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Georgi Manukjan
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Dept. of Experimental Biomedicine, Chair I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Mean Platelet Volume (MPV): New Perspectives for an Old Marker in the Course and Prognosis of Inflammatory Conditions. Mediators Inflamm 2019; 2019:9213074. [PMID: 31148950 PMCID: PMC6501263 DOI: 10.1155/2019/9213074] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Platelet size has been demonstrated to reflect platelet activity and seems to be a useful predictive and prognostic biomarker of cardiovascular events. It is associated with a variety of prothrombotic and proinflammatory diseases. The aim is a review of literature reports concerning changes in the mean platelet volume (MPV) and its possible role as a biomarker in inflammatory processes and neoplastic diseases. PubMed database was searched for sources using the following keywords: platelet activation, platelet count, mean platelet volume and: inflammation, cancer/tumor, cardiovascular diseases, myocardial infarction, diabetes, lupus disease, rheumatoid arthritis, tuberculosis, ulcerative colitis, renal disease, pulmonary disease, influencing factors, age, gender, genetic factors, oral contraceptives, smoking, lifestyle, methods, standardization, and hematological analyzer. Preference was given to the sources which were published within the past 20 years. Increased MPV was observed in cardiovascular diseases, cerebral stroke, respiratory diseases, chronic renal failure, intestine diseases, rheumatoid diseases, diabetes, and various cancers. Decreased MPV was noted in tuberculosis during disease exacerbation, ulcerative colitis, SLE in adult, and different neoplastic diseases. The study of MPV can provide important information on the course and prognosis in many inflammatory conditions. Therefore, from the clinical point of view, it would be interesting to establish an MPV cut-off value indicating the intensity of inflammatory process, presence of the disease, increased risk of disease development, increased risk of thrombotic complications, increased risk of death, and patient's response on applied treatment. Nevertheless, this aspect of MPV evaluation allowing its use in clinical practice is limited and requires further studies.
Collapse
|
12
|
Syahputra K, Kania PW, Al-Jubury A, Jafaar RM, Dirks RP, Buchmann K. Transcriptomic analysis of immunity in rainbow trout (Oncorhynchus mykiss) gills infected by Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:486-496. [PMID: 30513380 DOI: 10.1016/j.fsi.2018.11.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The parasite Ichthyophthirius multifiliis infecting skin, fins and gills of a wide range of freshwater fish species, including rainbow trout, is known to induce a protective immune response in the host. Although a number of studies have reported activation of several immune genes in infected fish host, the immune response picture is still considered incomplete. In order to address this issue, a comparative transcriptomic analysis was performed on infected versus uninfected rainbow trout gills and it showed that a total of 3352 (7.2%) out of 46,585 identified gene sequences were significantly regulated after parasite infection. Of differentially expressed gene sequences, 1796 genes were up-regulated and 1556 genes were down-regulated. These were classified into 61 Gene Ontology (GO) terms and mapped to 282 reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Infection of I. multifiliis induced a clear differential expression of immune genes, related to both innate and adaptive immunity. A total of 268 (6.86%) regulated gene sequences were known to take part in 16 immune-related pathways. These involved pathways related to the innate immunity such as the Chemokine signaling pathway, Platelet activation, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and Leukocyte transendothelial migration. Elevated transcription of genes encoding the TLR 8 gene and chemokines (CCL4, CCL19, CCL28, CXCL8, CXCL11, CXCL13, CXCL14) was recorded indicating their roles in recognition of I. multifiliis and subsequent induction of the inflammatory response, respectively. A number of upregulated genes in infected gills were associated with antigen processing/presentation and T and B cell receptor signaling (including B cell marker CD22 involved in B cell development). Overall the analysis supports the notion that I. multifiliis induces a massive and varied innate response upon which a range of adaptive immune responses are established which may contribute to the long lasting protection of immunized rainbow trout.
Collapse
Affiliation(s)
- Khairul Syahputra
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Per W Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rzgar M Jafaar
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, the Netherlands
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
13
|
Coller BS. Foreword: A Brief History of Ideas About Platelets in Health and Disease. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Tricoci P, Neely M, Whitley MJ, Edelstein LC, Simon LM, Shaw C, Fortina P, Moliterno DJ, Armstrong PW, Aylward P, White H, Van de Werf F, Jennings LK, Wallentin L, Held C, Harrington RA, Mahaffey KW, Bray PF. Effects of genetic variation in protease activated receptor 4 after an acute coronary syndrome: Analysis from the TRACER trial. Blood Cells Mol Dis 2018; 72:37-43. [PMID: 30055940 DOI: 10.1016/j.bcmd.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Variation in platelet response to thrombin may affect the safety and efficacy of PAR antagonism. The Thr120 variant of the common single nucleotide polymorphism (SNP) rs773902 in the protease-activated receptor (PAR) 4 gene is associated with higher platelet aggregation compared to the Ala120 variant. We investigated the relationship between the rs773902 SNP with major bleeding and ischemic events, safety, and efficacy of PAR1 inhibition in 6177 NSTE ACS patients in the TRACER trial. There was a lower rate of GUSTO moderate/severe bleeding in patients with the Thr120 variant. The difference was driven by a lower rate in the smaller homozygous group (recessive model, HR 0.13 [0.02-0.92] P = 0.042). No significant differences were observed in the ischemic outcomes. The excess in bleeding observed with PAR1 inhibition was attenuated in patients with the Thr120 variant, but the interactions were not statistically significant. In summary, lower major bleeding rates were observed in the overall TRACER cohort with the hyperreactive PAR4 Thr120 variant. The increase in bleeding with vorapaxar was attenuated with the Thr120 variant, but we could not demonstrate an interaction with PAR1 inhibition. These findings warrant further exploration, including those of African ancestry where the A allele (Thr120) frequency is ~65%.
Collapse
Affiliation(s)
| | - Megan Neely
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Michael J Whitley
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Leonard C Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Lukas M Simon
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chad Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Statistics, Rice University, Houston, TX, USA
| | - Paolo Fortina
- Cancer Genomics and Bioinformatics Laboratory, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - David J Moliterno
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Philip Aylward
- Division of Medicine, Cardiac & Critical Care Services, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Harvey White
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - Frans Van de Werf
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Lisa K Jennings
- CirQuest Labs, LLC, and University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lars Wallentin
- Department of Medical Sciences, Uppsala Clinical Research Center, Uppsala, Sweden
| | - Claes Held
- Department of Medical Sciences, Uppsala Clinical Research Center, Uppsala, Sweden
| | | | | | - Paul F Bray
- Division of Hematology and Hematologic Malignancies in the Department of Internal Medicine and the Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Sokol J, Skerenova M, Ivankova J, Simurda T, Stasko J. Association of Genetic Variability in Selected Genes in Patients With Deep Vein Thrombosis and Platelet Hyperaggregability. Clin Appl Thromb Hemost 2018; 24:1027-1032. [PMID: 29865896 PMCID: PMC6714740 DOI: 10.1177/1076029618779136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the genetic variability of the selected single nucleotide polymorphisms (SNPs) and examine the association between these SNPs and risk for deep vein thrombosis (DVT) in patients with sticky platelet syndrome (SPS). We examined 84 patients with SPS and history of DVT and 101 healthy individuals. We were interested in 2 SNPs within platelet endothelial aggregation receptor 1 (PEAR1) gene (rs12041331 and rs12566888), 2 SNPs within mkurine retrovirus integration site 1 gene (rs7940646 and rs1874445), 1 SNP within Janus kinase 2 gene (rs2230722), 1 SNP within FCER1G gene (rs3557), 1 SNP within pro-platelet basic protein (rs442155), 4 SNPs within alpha2A adrenergic receptor 2A (ADRA2A; rs1800545, rs4311994, rs11195419, and rs553668), and 1 SNP within sonic hedgehog gene (rs2363910). We identified 2 protective SNPs within PEAR1 gene and 1 risk SNP within ADRA2A gene (PEAR1: rs12041331 and rs12566888; ADRA2A: rs1800545). A haplotype analysis of 4 SNPs within ADRA2A gene identified a risk haplotype aagc ( P = .003). Moreover, we identified 1 protective haplotype within PEAR1 gene (AT, P = .004). Our results support the idea that genetic variability of PEAR1 and ADRA2A genes is associated with platelet hyperaggregability manifested as venous thromboembolism. The study also suggests a possible polygenic type of SPS heredity.
Collapse
Affiliation(s)
- Juraj Sokol
- 1 Department of Haematology and Transfusion Medicine, National Center of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova, Martin, Slovakia
| | - Maria Skerenova
- 2 Department of Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova, Martin, Slovakia
| | - Jela Ivankova
- 1 Department of Haematology and Transfusion Medicine, National Center of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova, Martin, Slovakia
| | - Tomas Simurda
- 1 Department of Haematology and Transfusion Medicine, National Center of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova, Martin, Slovakia
| | - Jan Stasko
- 1 Department of Haematology and Transfusion Medicine, National Center of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova, Martin, Slovakia
| |
Collapse
|
16
|
Comparative characterisation of the biofilm-production abilities of Staphylococcus epidermidis isolated from human skin and platelet concentrates. J Med Microbiol 2018; 67:190-197. [DOI: 10.1099/jmm.0.000673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
17
|
Grimm I, Weinstock M, Birschmann I, Dreier J, Knabbe C, Vollmer T. Strain-dependent interactions of Streptococcus gallolyticus subsp. gallolyticus with human blood cells. BMC Microbiol 2017; 17:210. [PMID: 29078765 PMCID: PMC5658974 DOI: 10.1186/s12866-017-1116-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus) is the causative pathogen in up to 20% of streptococcal-induced infective endocarditis (IE) cases. However, the underlying mechanisms of pathogenesis in S. gallolyticus have not yet been solved. Pathogens causing IE need to employ virulent strategies to initiate and establish infections, such as escape the bloodstream, invade the host-cell, and persist intracellularly. In this study, we examined the induction of inflammation by different S. gallolyticus strains in relation to their survival in whole blood and cell culture models as well as their ability to induce platelet aggregation. Phagocytosis of these bacteria by macrophages, followed by intracellular survival, was also quantified. METHODS In whole blood and THP-1 cell culture assays bacterial growth kinetics was determined by plating, followed by colony counting. Induction of interleukin (IL)-6 expression in whole blood of three healthy volunteers, caused by different strains, was quantified by ELISA. Gene expression of cytokines (IL1B, IL6 and IL8) was quantified by real-time PCR after stimulating THP-1 monocytes with bacteria. Induction of platelet aggregation was analyzed by light transmission aggregometry using the BORN method. A macrophage model was used to analyze phagocytosis of strains and their survival in macrophages within 48 h. RESULTS Strains promoted IL-6 secretion in a time-dependent fashion. For example, DSM16831 induced IL-6 secretion in whole blood earlier than other isolates, and was eliminated in the whole blood of one volunteer, whereas UCN34 could grow. Platelet aggregation depended on the different isolates used and on the individual platelet donor. Two strains (AC1181 and 010672/01) induced cytokine gene expression in THP-1 monocytes only marginally, compared to other strains. The phagocytosis rate of S. gallolyticus isolates differed significantly, and the isolates UCN34 and BAA-2069 could persist for a considerable time in the phagocytes. CONCLUSION The strain-dependent differences of S. gallolyticus isolates, observed during interaction with human blood cells, support the hypotheses that divergences in individual virulence factors determine a distinct pathogenicity of the isolates. These data constitute an additional step towards the elucidation of mechanisms in the complex, multifactorial pathogenesis of this IE pathogen.
Collapse
Affiliation(s)
- Imke Grimm
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Melanie Weinstock
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Ingvild Birschmann
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Jens Dreier
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Tanja Vollmer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
18
|
Longo V, Rebulla P, Pupella S, Zolla L, Rinalducci S. Proteomic characterization of platelet gel releasate from adult peripheral and cord blood. Proteomics Clin Appl 2017; 10:870-82. [PMID: 27377258 DOI: 10.1002/prca.201500126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/20/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Activated platelet gel (PG) derived from adult peripheral blood (APB) has been extensively used for topical therapy of various clinical conditions. Conversely, few observations on PG from umbilical cord blood (CB) have been reported so far. Although PG preparations are known to contain a high concentration of a large number of biological factors involved in inflammation and tissue repair, their comprehensive characterization is still missing. The innovative goal of our research was to use proteomics technologies in order to profile biologically active components in these blood derivatives. EXPERIMENTAL DESIGN Supernatants recovered from three independent APB and CB-derived PGs, prepared using batroxobin, were enriched for low-abundance proteins with ProteoMiner and subsequently analyzed by GeLC-MS/MS. RESULTS The 751 and 760 proteins were identified in the APB and CB-derived PG releasates, respectively. A core dataset including only proteins found in 2/3 and 3/3 biological replicates was generated and functionally characterized by gene ontology. Searching against Vesiclepedia database showed that 33% of our dataset consists of novel releasate proteins. Comparison between the two types of PG secretomes revealed that 117 proteins are present only in the APB-derived samples, 104 proteins are distinctive of the CB-derived samples, and 229 are in common. CONCLUSION AND CLINICAL RELEVANCE Our study highlighted a differential content of proteins supporting tissue repair and regeneration between APB and CB-derived PGs. These findings may help better identifying future appropriate clinical applications.
Collapse
Affiliation(s)
- Valentina Longo
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Paolo Rebulla
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simonetta Pupella
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| |
Collapse
|
19
|
Thrombin induced platelet-fibrin clot strength in relation to platelet volume indices and inflammatory markers in patients with coronary artery disease. Oncotarget 2017; 8:64217-64223. [PMID: 28969064 PMCID: PMC5609996 DOI: 10.18632/oncotarget.19450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
Platelet aggregation and inflammation are both implicated in coronary artery disease (CAD). Thrombin induced platelet-fibrin clot strength (MAThrombin) measured by thrombelastography (TEG) has been proved to be a novel marker of platelet aggregation. The aim of this study was to investigate the correlation of MAThrombin to platelet volume indices (PVIs) or to inflammatory markers in different types of CAD. 206 patients with different types of CAD were enrolled. MAThrombin, PVIs, including mean platelet volume (MPV), platelet distribution width (PDW), and platelet-large cell ratio (P-LCR) as well as inflammatory markers, including high-sensitivity C-reactive protein (hs-CRP) and fibrinogen (Fbg) were measured. Multiple linear regression models were used to analyze the association between MAThrombin, PVIs, and inflammatory markers. MAThrombin and inflammatory markers both varied with CAD types (P<0.001). MAThrombin was correlated to PVIs in NSTEMI individuals (MPV, r=0.393, P=0.007; PDW, r=0.334, P=0.023; P-LCR, r=0.382, P=0.008), but had inner-link with inflammatory markers in STEMI cases (hs-CRP, r=0.499, P<0.001; Fbg, r=0.500, P<0.001). These findings may suggest different mechanisms of platelet aggregation in different types of CAD. Moreover, MAThrombin may be used as a potential parameter to evaluate platelet aggregation and inflammation together.
Collapse
|
20
|
Nurden AT. Should studies on Glanzmann thrombasthenia not be telling us more about cardiovascular disease and other major illnesses? Blood Rev 2017; 31:287-299. [PMID: 28395882 DOI: 10.1016/j.blre.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Glanzmann thrombasthenia (GT) is a rare inherited bleeding disorder caused by loss of αIIbβ3 integrin function in platelets. Most genetic variants of β3 also affect the widely expressed αvβ3 integrin. With brief mention of mouse models, I now look at the consequences of disease-causing ITGA2B and ITGB3 mutations on the non-hemostatic functions of platelets and other cells. Reports of arterial thrombosis in GT patients are rare, but other aspects of cardiovascular disease do occur including deep vein thrombosis and congenital heart defects. Thrombophilic and other risk factors for thrombosis and lessons from heterozygotes and variant forms of GT are discussed. Assessed for GT patients are reports of leukemia and cancer, loss of fertility, bone pathology, inflammation and wound repair, infections, kidney disease, autism and respiratory disease. This survey shows an urgent need for a concerted international effort to better determine how loss of αIIbβ3 and αvβ3 influences health and disease.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| |
Collapse
|
21
|
Nagy M, Heemskerk JWM, Swieringa F. Use of microfluidics to assess the platelet-based control of coagulation. Platelets 2017; 28:441-448. [PMID: 28358995 DOI: 10.1080/09537104.2017.1293809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper provides an overview of the various types of microfluidic devices that are employed to study the complex processes of platelet activation and blood coagulation in whole blood under flow conditions. We elaborate on how these devices are used to detect impaired platelet-dependent fibrin formation in blood from mice or patients with specific bleeding disorders. We provide a practical guide on how to assess formation of a platelet-fibrin thrombus under flow, using equipment that is present in most laboratories. In addition, we describe current insights on how blood flow and shear rate alter the location of platelet populations, von Willebrand factor, coagulation factors, and fibrin in a growing thrombus. Finally, we discuss possibilities and limitations for the clinical use of microfluidic devices to evaluate a hemostatic or prothrombotic tendency in patient blood samples.
Collapse
Affiliation(s)
- Magdolna Nagy
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Johan W M Heemskerk
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Frauke Swieringa
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands.,b Department of Bioanalytics , Leibniz Institute for Analytical Sciences - ISAS- e.V. , Dortmund , Germany
| |
Collapse
|
22
|
Liu H, Xu Z, Gu H, Li W, Chen W, Sun C, Zhao K, Teng X, Zhang H, Jiang L, Hu S, Zhou Z, Zheng Z. Common Variant in Glycoprotein Ia Increases Long-Term Adverse Events Risk After Coronary Artery Bypass Graft Surgery. J Am Heart Assoc 2016; 5:e004496. [PMID: 27881421 PMCID: PMC5210398 DOI: 10.1161/jaha.116.004496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/20/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND This study was aimed to investigate the clinical relevance between glycoprotein Ia (GPIA) rs1126643C/T polymorphism and the outcome of coronary artery disease after coronary artery bypass graft (CABG) surgery and explore the involved potential mechanisms. METHODS AND RESULTS We genotyped GPIA rs1126643 polymorphism of 1592 patients who underwent CABG and followed up for a median period of 72.8 months. Patients who are GPIA rs1126643 T-allele carriers have a higher major adverse cardiac or cerebrovascular events risk post-CABG than those who are CC homozygotes (hazard ratio [HR]=1.29; P=0.022). The clinical association between the risk allele (T) carriage and major adverse cardiac or cerebrovascular events was confirmed in another cohort study, which included 646 CABG patients from various health centers across China. Meanwhile, rs1126643 T allele was also linked with increased risk of major adverse cardiac or cerebrovascular events (HR=1.73; P=0.019). To explore the underlying mechanisms, we prospectively recruited 131 coronary artery disease patients, assessed their platelet aggregation function, and focused on detecting their GPIA mRNA level and protein expression. Results showed that patients with rs1126643 T allele have elevated platelet aggregation activity (P=0.029) when protein expression is increased (P<0.001) and not affected by glycoprotein Ia mRNA level. CONCLUSIONS The synonymous common variant, GPIA rs1126643, increases the long-term adverse events risk of CABG by augmenting GPIa protein expression and enhancing platelet aggregation function. This finding can serve as the implication of improving secondary prevention of CABG patients.
Collapse
Affiliation(s)
- Hanning Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengxi Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyong Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Cheng Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Xiao Teng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixin Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Zhe Zheng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Kucuk E, Kucuk I. Mean Platelet Volume is Reduced in Acute Appendicitis. Turk J Emerg Med 2016; 15:23-7. [PMID: 27331191 PMCID: PMC4909950 DOI: 10.5505/1304.7361.2015.32657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 11/20/2014] [Indexed: 02/01/2023] Open
Abstract
Objectives Acute appendicitis (AA) is the most common indication for emergency abdominal surgery, although it remains difficult to diagnose. In this study, we investigated the the clinical utility of mean platelet volume in the diagnosis of acute appendicitis. Methods The medical records of 241 patients who had undergone appendectomy between June 2013 and March 2014 were investigated retrospectively. Sixty patients who had undergone at least one complete blood count during preoperative hospital admission and who had no other active inflammatory conditions at the time the sample was taken were included in the study. Mean platelet volume and leukocyte count values were determined in each patient at hospital admission and during active acute appendicitis. Age, sex, mean platelet volume and leukocyte counts were recorded for each patient. Results The mean age of patients was 33.15±10.94 years and the male to female ratio was 1.5:1. The mean leukocyte count prior to acute appendicitis was 7.42±2.12×103/mm3. Mean leukocyte count was significantly higher (13.14±2.99×103/mm3) in acute appendicitis. The optimal leukocyte count cutoff point for the diagnosis of acute appendicitis was 10.10×103/mm3, with sensitivity of 94% and a specificity of 75%. The mean platelet volume prior to acute appendicitis was 7.58±1.11 fL. Mean platelet volume was significantly lower (7.03±0.8 fL) in acute appendicitis. The optimal mean platelet volume cutoff point for the diagnosis of AA was 6.10 fL, with a sensitivity of 83% and a specificity of 42%. Area under the curve for leukocyte count diagnosis was 0.67 and 0.69 for the diagnosis of AA by mean platelet volume. Conclusions Mean platelet volume was significantly decreased in acute appendicitis. Mean platelet volume can be used as a supportive diagnostic parameter in the diagnosis of acute appendicitis.
Collapse
Affiliation(s)
- Egemen Kucuk
- Department of Emergency Medicine, Sakarya University Training and Research Hospital, Sakarya, Turkey
| | - Irfan Kucuk
- Department of Gastroenterology, Diyarbakir Military Hospital, Diyarbakir, Turkey
| |
Collapse
|
24
|
Zeltz C, Gullberg D. The integrin-collagen connection--a glue for tissue repair? J Cell Sci 2016; 129:653-64. [PMID: 26857815 DOI: 10.1242/jcs.180992] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The α1β1, α2β1, α10β1 and α11β1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins α1β1 and α2β1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (α2β1), vascular cells (α1β1, α2β1), epithelial cells (α1β1, α2β1) and fibroblasts (α1β1, α2β1). Integrin α10β1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin α11β1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events--such as wound healing--where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily--integrins α10β1 and α11β1.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| |
Collapse
|
25
|
Maluf CB, Barreto SM, dos Reis RC, Vidigal PG. Platelet volume is associated with the Framingham risk score for cardiovascular disease in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). ACTA ACUST UNITED AC 2016; 54:879-87. [DOI: 10.1515/cclm-2015-0686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/06/2015] [Indexed: 11/15/2022]
Abstract
AbstractBackground:Platelet volume indices (PVI), an easy and inexpensive surrogate measure of platelet function, have been associated with cardiovascular diseases (CVD) and their risk factors. However, results are conflicting because of the lack of standardized procedures. The purpose of this study is to investigate the relationship of PVI with the Framingham risk score (FRS).Methods:Baseline data (2008–2010) of 3115 participants enrolled in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) were used. PVI measurements were strictly controlled. The cohort was distributed according to risk factors and the general FRS was estimated. Multiple linear regression analysis was used to estimate the association between PVI and FRS.Results:Mean platelet volume (MPV), platelet distribution width (PDW) and platelet large cell ratio (P-LCR) independently correlated (p≤0.01) with FRS after adjustment for confounding variables. One unit increase in MPV, PDW, or P-LCR increased the FRS by 0.59%, 0.40%, and 0.08%, respectively. Diabetics had higher (p≤0.004) MPV, PDW, and P-LCR, and hypertensive individuals had higher (p≤0.045) PDW and P-LCR.Conclusions:Increased PVI was independently correlated with higher CVD risk based on the FRS, diabetes, and systolic hypertension. Prospective follow up of this cohort is warranted to confirm that PVI is associated with the development of CVD.
Collapse
|
26
|
Regulation of Early Steps of GPVI Signal Transduction by Phosphatases: A Systems Biology Approach. PLoS Comput Biol 2015; 11:e1004589. [PMID: 26584182 PMCID: PMC4652868 DOI: 10.1371/journal.pcbi.1004589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2), provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in controlling the rate, and therefore extent, of GPVI-stimulated platelet activation.
Collapse
|
27
|
Nissinen L, Rappu P, Ollikka P, Nieminen J, Marjamäki A, Heino J. Platelet response to a small molecule inhibitor of α2β1 integrin is associated with ITGA2 C807T dimorphism. Platelets 2015; 27:378-80. [PMID: 26556301 DOI: 10.3109/09537104.2015.1095877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High expression of the collagen receptor, α2β1 integrin, on platelets of ITGA2 807T-allele carriers has been identified as a risk factor for thromboembolic conditions, and α2β1 inhibitors are considered to be potential therapeutic agents. In 59 genotyped individuals, we measured α2 expression levels on platelets and analyzed platelet adhesion to collagen under flow conditions. A sulfonamide-type small-molecule inhibitor of α2β1 integrin decreased average platelet adhesion in individuals with the C/T807T genotype but not in those harboring C807C. Thus, genotype can be used to select a human subpopulation that has the highest probability of showing a positive response to α2β1 inhibitors.
Collapse
Affiliation(s)
- Liisa Nissinen
- a Department of Biochemistry , University of Turku , Turku , Finland.,b BioTie Therapies Corp ., Turku , Finland
| | - Pekka Rappu
- a Department of Biochemistry , University of Turku , Turku , Finland
| | | | | | - Anne Marjamäki
- a Department of Biochemistry , University of Turku , Turku , Finland.,b BioTie Therapies Corp ., Turku , Finland
| | - Jyrki Heino
- a Department of Biochemistry , University of Turku , Turku , Finland
| |
Collapse
|
28
|
Genome-wide association study of platelet aggregation in African Americans. BMC Genet 2015; 16:58. [PMID: 26024889 PMCID: PMC4448541 DOI: 10.1186/s12863-015-0217-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We have previously shown that platelet aggregation has higher heritability in African Americans than European Americans. However, a genome-wide association study (GWAS) of platelet aggregation in African Americans has not been reported. We measured platelet aggregation in response to arachidonic acid, ADP, collagen, or epinephrine by optical aggregometry. The discovery cohort was 825 African Americans from the GeneSTAR study. Two replication cohorts were used: 119 African Americans from the Platelet Genes and Physiology Study and 1221 European Americans from GeneSTAR. Genotyping was conducted with Illumina 1 M arrays. For each cohort, age- and sex-adjusted linear mixed models were used to test for association between each SNP and each phenotype under an additive model. RESULTS Six SNPs were significantly associated with platelet aggregation (P<5×10(-8)) in the discovery sample. Of these, three SNPs in three different loci were confirmed: 1) rs12041331, in PEAR1 (platelet endothelial aggregation receptor 1), replicated in both African and European Americans for collagen- and epinephrine-induced aggregation, and in European Americans for ADP-induced aggregation; 2) rs11202221, in BMPR1A (bone morphogenetic protein receptor type1A), replicated in African Americans for ADP-induced aggregation; and 3) rs6566765 replicated in European Americans for ADP-induced aggregation. The rs11202221 and rs6566765 associations with agonist-induced platelet aggregation are novel. CONCLUSIONS In this first GWAS of agonist-induced platelet aggregation in African Americans, we discovered and replicated, novel associations of two variants with ADP-induced aggregation, and confirmed the association of a PEAR1 variant with multi-agonist-induced aggregation. Further study of these genes may provide novel insights into platelet biology.
Collapse
|
29
|
High on-treatment platelet reactivity in patients with ischemic cerebrovascular disease: assessment of prevalence and stability over time using four platelet function tests. Blood Coagul Fibrinolysis 2015; 25:604-11. [PMID: 24717421 DOI: 10.1097/mbc.0000000000000118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High on-treatment platelet reactivity (HTPR), referred to as a higher than expected platelet reactivity in patients under antiplatelet therapy, could influence outcome in cerebrovascular disease (CVD), but its prevalence and its stability over time is uncertain. Platelet reactivity was assessed in 18 patients with ischemic stroke/transient ischemic attack (TIA) 7 days (D7) and 90 days (D90) after prescription of clopidogrel, using four methods: light transmission aggregometry with 5 μmol/l ADP (LTA-ADP), vasodilator-stimulated phosphoprotein (VASP), Verify Now P2Y12 and platelet function analyzer (PFA) P2Y. HTPR was defined as LTA-ADP more than 46%; PFA-100-P2Y closure time less than 106 s; VerifyNow P2Y12, PRU greater than 235, VASP, PRI greater than 50%. Patients displayed, both at D7 and D90, a marked inhibition of platelet reactivity towards ADP in all tests as compared with reference levels. Correlations between the results obtained with all the tests at D7 and D90 and between measurements on each day in each test were low-to-moderate. The prevalence of HTPR for all the tests was 40% at D7 and 42% at D90. There was a moderate degree of agreement (k statistic < 0.5) between tests with regard to categorizing patients as HTPR/No-HTPR (D7 and D90). The on-clopidogrel platelet reactivity phenotype, HTPR/No-HTPR, remained stable in 55-72% of patients, depending on the test. A high prevalence of HTPR is found among CVD patients treated with clopidogrel and this platelet reactivity phenotype remains over time. There is poor agreement between the different platelet function tests for categorizing the platelet reactivity phenotype in these patients. The new PFA-100 P2Y equals other platelet function assays for evaluating HTPR in CVD.
Collapse
|
30
|
Maluf CB, Barreto SM, Vidigal PG. Standardization and reference intervals of platelet volume indices: Insight from the Brazilian longitudinal study of adult health (ELSA-BRASIL). Platelets 2014; 26:413-20. [DOI: 10.3109/09537104.2014.942620] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Schubert S, Weyrich AS, Rowley JW. A tour through the transcriptional landscape of platelets. Blood 2014; 124:493-502. [PMID: 24904119 PMCID: PMC4110657 DOI: 10.1182/blood-2014-04-512756] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023] Open
Abstract
The RNA code found within a platelet and alterations of that code continue to shed light onto the mechanistic underpinnings of platelet function and dysfunction. It is now known that features of messenger RNA (mRNA) in platelets mirror those of nucleated cells. This review serves as a tour guide for readers interested in developing a greater understanding of platelet mRNA. The tour provides an in-depth and interactive examination of platelet mRNA, especially in the context of next-generation RNA sequencing. At the end of the expedition, the reader will have a better grasp of the topography of platelet mRNA and how it impacts platelet function in health and disease.
Collapse
Affiliation(s)
| | - Andrew S Weyrich
- The Molecular Medicine Program and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Jesse W Rowley
- The Molecular Medicine Program and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
32
|
Choi JL, Li S, Han JY. Platelet function tests: a review of progresses in clinical application. BIOMED RESEARCH INTERNATIONAL 2014; 2014:456569. [PMID: 24895576 PMCID: PMC4034486 DOI: 10.1155/2014/456569] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/25/2014] [Indexed: 01/03/2023]
Abstract
The major goal of traditional platelet function tests has been to screen and diagnose patients who present with bleeding problems. However, as the central role of platelets implicated in the etiology of arterial thrombotic diseases such as myocardial infarction and stroke became widely known, platelet function tests are now being promoted to monitor the efficacy of antiplatelet drugs and also to potentially identify patients at increased risk of thrombosis. Beyond hemostasis and thrombosis, an increasing number of studies indicate that platelets play an integral role in intercellular communication, are mediators of inflammation, and have immunomodulatory activity. As new potential biomarkers and technologies arrive at the horizon, platelet functions testing appears to take on a new aspect. This review article discusses currently available clinical application of platelet function tests, placing emphasis on essential characteristics.
Collapse
Affiliation(s)
- Jae-Lim Choi
- Department of Laboratory Medicine, Dong-A University College of Medicine, 1,3-Ga, Dongdaesin-dong, Seo-gu, Busan 602-715, Republic of Korea
| | - Shuhua Li
- Department of Laboratory Medicine, Dong-A University College of Medicine, 1,3-Ga, Dongdaesin-dong, Seo-gu, Busan 602-715, Republic of Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, 1,3-Ga, Dongdaesin-dong, Seo-gu, Busan 602-715, Republic of Korea
| |
Collapse
|
33
|
Stratmann B, Xu T, Meisinger C, Menart B, Roden M, Herder C, Grallert H, Peters A, Koenig W, Illig T, Wichmann HE, Wang-Sattler R, Rathmann W, Tschoepe D. PLA1A2 platelet polymorphism predicts mortality in prediabetic subjects of the population based KORA S4-Cohort. Cardiovasc Diabetol 2014; 13:90. [PMID: 24886443 PMCID: PMC4022397 DOI: 10.1186/1475-2840-13-90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/28/2014] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE The genetic polymorphism concerning the ß3-subunit of platelet integrin receptor glycoprotein IIIa is held responsible for enhanced binding of adhesive proteins resulting in increased thrombogenic potential. Whether it is associated with mortality, HbA1c or platelet volume is tested prospectively in an epidemiological cohort. RESEARCH DESIGN AND METHODS Population-based Cooperative Health Research in the Region of Augsburg (KORA) S4-Survey (N = 4,028) was investigated for prognostic value of PLA1A2-polymorphism regarding all-cause mortality, correlation with HbA1c, and mean platelet volume. Multivariate analysis was performed to investigate association between genotype and key variables. RESULTS Prevalence of thrombogenic allele variant PLA2 was 15.0%. Multivariate analysis revealed no association between PLA1A2 polymorphism and mortality in the KORA-cohort. HbA1c was a prognostic marker of mortality in non-diabetic persons resulting in J-shaped risk curve with dip at HbA1c = 5.5% (37 mmol/mol), confirming previous findings regarding aged KORA-S4 participants (55-75 years). PLA1A2 was significantly associated with elevated HbA1c levels in diabetic patients (N = 209) and reduced mean platelet volume in general population. In non-diabetic participants (N = 3,819), carriers of PLA2 allele variant presenting with HbA1c > 5.5% (37 mmol/mol) showed higher relative risk of mortality with increasing HbA1c. CONCLUSION PLA1A2 polymorphism is associated with mortality in participants with HbA1c ranging from 5.5% (37 mmol/mol) to 6.5% (48 mmol/mol). Maintenance of euglycemic control and antiplatelet therapy are therefore regarded as effective primary prevention in this group.
Collapse
Affiliation(s)
- Bernd Stratmann
- Heart and Diabetes Center NRW, Ruhr University Bochum, Georgstr. 11, D-32545 Bad Oeynhausen, Germany
| | - Tao Xu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center of Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center of Environmental Health, Neuherberg, Germany
| | - Barbara Menart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center of Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center of Environmental Health, Neuherberg, Germany
| | - Wolfgang Koenig
- Department Internal Medicine II, University Clinic Ulm, Ulm, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center of Environmental Health, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Heinz-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum Muenchen, German Research Center of Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center of Environmental Health, Neuherberg, Germany
| | - Wolfgang Rathmann
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Duesseldorf, Germany
| | - Diethelm Tschoepe
- Heart and Diabetes Center NRW, Ruhr University Bochum, Georgstr. 11, D-32545 Bad Oeynhausen, Germany
| |
Collapse
|
34
|
Tantry US, Jeong YH, Navarese EP, Kubica J, Gurbel PA. Influence of genetic polymorphisms on platelet function, response to antiplatelet drugs and clinical outcomes in patients with coronary artery disease. Expert Rev Cardiovasc Ther 2014; 11:447-62. [DOI: 10.1586/erc.13.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Shameer K, Denny JC, Ding K, Jouni H, Crosslin DR, de Andrade M, Chute CG, Peissig P, Pacheco JA, Li R, Bastarache L, Kho AN, Ritchie MD, Masys DR, Chisholm RL, Larson EB, McCarty CA, Roden DM, Jarvik GP, Kullo IJ. A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet 2014; 133:95-109. [PMID: 24026423 PMCID: PMC3880605 DOI: 10.1007/s00439-013-1355-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
Abstract
Platelets are enucleated cell fragments derived from megakaryocytes that play key roles in hemostasis and in the pathogenesis of atherothrombosis and cancer. Platelet traits are highly heritable and identification of genetic variants associated with platelet traits and assessing their pleiotropic effects may help to understand the role of underlying biological pathways. We conducted an electronic medical record (EMR)-based study to identify common variants that influence inter-individual variation in the number of circulating platelets (PLT) and mean platelet volume (MPV), by performing a genome-wide association study (GWAS). We characterized genetic variants associated with MPV and PLT using functional, pathway and disease enrichment analyses; we assessed pleiotropic effects of such variants by performing a phenome-wide association study (PheWAS) with a wide range of EMR-derived phenotypes. A total of 13,582 participants in the electronic MEdical Records and GEnomic network had data for PLT and 6,291 participants had data for MPV. We identified five chromosomal regions associated with PLT and eight associated with MPV at genome-wide significance (P < 5E-8). In addition, we replicated 20 SNPs [out of 56 SNPs (α: 0.05/56 = 9E-4)] influencing PLT and 22 SNPs [out of 29 SNPs (α: 0.05/29 = 2E-3)] influencing MPV in a published meta-analysis of GWAS of PLT and MPV. While our GWAS did not find any new associations, our functional analyses revealed that genes in these regions influence thrombopoiesis and encode kinases, membrane proteins, proteins involved in cellular trafficking, transcription factors, proteasome complex subunits, proteins of signal transduction pathways, proteins involved in megakaryocyte development, and platelet production and hemostasis. PheWAS using a single-SNP Bonferroni correction for 1,368 diagnoses (0.05/1368 = 3.6E-5) revealed that several variants in these genes have pleiotropic associations with myocardial infarction, autoimmune, and hematologic disorders. We conclude that multiple genetic loci influence interindividual variation in platelet traits and also have significant pleiotropic effects; the related genes are in multiple functional pathways including those relevant to thrombopoiesis.
Collapse
Affiliation(s)
- Khader Shameer
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Joshua C. Denny
- Departments of Medicine and Biomedical Informatics, Vanderbilt University, Nashville, TN 37232, USA
| | - Keyue Ding
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Hayan Jouni
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - David R. Crosslin
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher G. Chute
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Peggy Peissig
- Biomedical Informatics Research Center, Marshfield Clinic, Marshfield, WI, 54449, USA
| | - Jennifer A. Pacheco
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rongling Li
- Office of Population Genomics, National Human Genome Research Institute, 5635 Fishers Lane, Suite 3058, MSC 9307, Bethesda, MD, 20892, USA
| | - Lisa Bastarache
- Departments of Medicine and Biomedical Informatics, Vanderbilt University, Nashville, TN 37232, USA
| | - Abel N. Kho
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marylyn D Ritchie
- Center for Systems Genomics, Pennsylvania State University, Eberly College of Science, The Huck Institutes of the Life Sciences, 512 Wartik Laboratory, University Park, PA 16802 USA
| | - Daniel R. Masys
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Room 416 Eskind Medical Library, Nashville, TN, 37232, USA
| | - Rex L. Chisholm
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric B. Larson
- Group Health Research Institute, 1730 Minor Avenue, Suite 1600, Seattle, WA, 98101, USA
| | | | - Dan M. Roden
- Department of Pharmacology, Vanderbilt University School of Medicine, 1285 Medical Research Building IV, Nashville, TN, 37232, USA
| | - Gail P. Jarvik
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle WA 98195, USA
| | - Iftikhar J. Kullo
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
36
|
Israels SJ, Rand ML. What we have learned from inherited platelet disorders. Pediatr Blood Cancer 2013; 60 Suppl 1:S2-7. [PMID: 23109117 DOI: 10.1002/pbc.24345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 08/30/2012] [Indexed: 11/09/2022]
Abstract
Identifying the molecular basis of inherited platelet disorders has contributed to our understanding of normal platelet physiology. Many of these conditions are rare, but close observation of clinical and laboratory phenotype, and subsequent identification of the abnormal protein and mutated gene, have provided us with unique opportunities to examine specific aspects of platelet biogenesis and function. Phenotype-genotype association studies are providing a detailed understanding of the structure and function of platelet membrane receptors, the biogenesis and release of platelet granules, and the assembly of the cytoskeleton. Genetic polymorphisms contributing to decreased or increased platelet adhesion and activation may translate into increased clinical risks for bleeding or thrombosis. More recently, genome wide association studies have identified new genes contributing to the variation in normal platelet function.
Collapse
Affiliation(s)
- Sara J Israels
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
37
|
Neeves KB, Onasoga AA, Hansen RR, Lilly JJ, Venckunaite D, Sumner MB, Irish AT, Brodsky G, Manco-Johnson MJ, Di Paola JA. Sources of variability in platelet accumulation on type 1 fibrillar collagen in microfluidic flow assays. PLoS One 2013; 8:e54680. [PMID: 23355889 PMCID: PMC3552855 DOI: 10.1371/journal.pone.0054680] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/13/2012] [Indexed: 12/22/2022] Open
Abstract
Microfluidic flow assays (MFA) that measure shear dependent platelet function have potential clinical applications in the diagnosis and treatment of bleeding and thrombotic disorders. As a step towards clinical application, the objective of this study was to measure how phenotypic and genetic factors, as well as experimental conditions, affect the variability of platelet accumulation on type 1 collagen within a MFA. Whole blood was perfused over type 1 fibrillar collagen at wall shear rates of 150, 300, 750 and 1500 s−1 through four independent channels with a height of 50 µm and a width of 500 µm. The accumulation of platelets was characterized by the lag time to 1% platelet surface coverage (LagT), the rate of platelet accumulation (VPLT), and platelet surface coverage (SC). A cohort of normal donors was tested and the results were correlated to plasma von Willebrand factor (VWF) levels, platelet count, hematocrit, sex, and collagen receptors genotypes. VWF levels were the strongest determinant of platelet accumulation. VWF levels were positively correlated to VPLT and SC at all wall shear rates. A longer LagT for platelet accumulation at arterial shear rates compared to venous shear rates was attributed to the time required for plasma proteins to adsorb to collagen. There was no association between platelet accumulation and hematocrit or platelet count. Individuals with the AG genotype of the GP6 gene had lower platelet accumulation than individuals with the AA genotype at 150 s−1 and 300 s−1. Recalcified blood collected into sodium citrate and corn trypsin inhibitor (CTI) resulted in diminished platelet accumulation compared to CTI alone, suggesting that citrate irreversibly diminishes platelet function. This study the largest association study of MFA in healthy donors (n = 104) and will likely set up the basis for the determination of the normal range of platelet responses in this type of assay.
Collapse
Affiliation(s)
- Keith B. Neeves
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, United States of America
- Department of Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail: (KBN); (JADP)
| | - Abimbola A. Onasoga
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, United States of America
| | - Ryan R. Hansen
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, United States of America
| | - Jessica J. Lilly
- Department of Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Diana Venckunaite
- Department of Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Meghan B. Sumner
- Department of Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Andrew T. Irish
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, United States of America
| | - Gary Brodsky
- Department of Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Marilyn J. Manco-Johnson
- Department of Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Jorge A. Di Paola
- Department of Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail: (KBN); (JADP)
| |
Collapse
|
38
|
Zufferey A, Ibberson M, Reny JL, Xenarios I, Sanchez JC, Fontana P. Unraveling modulators of platelet reactivity in cardiovascular patients using omics strategies: Towards a network biology paradigm. TRANSLATIONAL PROTEOMICS 2013. [DOI: 10.1016/j.trprot.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
39
|
|
40
|
Abstract
In this issue of Blood, Flamm et al combine high-throughput experimental methods and multiscale computer simulations to predict patient-specific thrombus formation potential.(1) Their studies reveal a novel thromboxane receptor mutation (TP-V241G) in humans that confers resistance to indomethacin.
Collapse
|
41
|
Abstract
This chapter summarizes current ideas about the intracellular signaling that drives platelet responses to vascular injury. After a brief overview of platelet activation intended to place the signaling pathways into context, the first section considers the early events of platelet activation leading up to integrin activation and platelet aggregation. The focus is on the G protein-mediated events utilized by agonists such as thrombin and ADP, and the tyrosine kinase-based signaling triggered by collagen. The second section considers the events that occur after integrin engagement, some of which are dependent on close physical contact between platelets. A third section addresses the regulatory events that help to avoid unprovoked or excessive platelet activation, after which the final section briefly considers individual variations in platelet reactivity and the role of platelet signaling in the innate immune response and embryonic development.
Collapse
Affiliation(s)
- Timothy J Stalker
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
42
|
de Gaetano G, Santimone I, Gianfagna F, Iacoviello L, Cerletti C. Variability of platelet indices and function: acquired and genetic factors. Handb Exp Pharmacol 2012:395-434. [PMID: 22918740 DOI: 10.1007/978-3-642-29423-5_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Each individual has an inherent variable risk of bleeding linked to genetic or acquired abnormal platelet number or platelet dysfunction. In contrast, it is less obvious that the variability of platelet phenotypes (number, mean platelet volume, function) may contribute to the variable individual risk of thrombosis. Interindividual variability of platelet indices or function may be either due to acquired factors, such as age, sex, metabolic variables, smoke, dietary habits, and ongoing inflammation, or due to genetic factors. Acquired variables explain a small portion of the heterogeneity of platelet parameters. Genetic factors, instead, appear to play a major role, although a consistent portion of such a genetic variance has not yet been attributed to any specific genetic factor, possibly due to the high number of DNA loci potentially involved and to the limited effect size of each individual SNP. A portion of variance remains thus unexplained, also due to variability of test performance. A major contradiction in present platelet knowledge is, indeed, the difficulty to reconcile the universally accepted importance of platelet indices or function and the lack of reliable platelet parameters in cardiovascular risk prediction models. Trials on antiplatelet drugs were generally designed to select a homogeneous sample, whose results could be applied to an "average subject," tending to exclude the deviation/extreme values. As the current indications for antiplatelet treatment in primary or secondary prevention of ischemic vascular disease still derive from the results of such clinical trials where platelet function and its variability was not investigated, we cannot at present rely upon any current platelet test to either initiate, or monitor, or modify or stop treatment with any antiplatelet drug. Evidence is, however, increasing that traditional platelet aggregometry and other more recently developed platelet function assays could be useful to optimize antiplatelet therapy and to predict major adverse cardiac events.The observation of interindividual differences in platelet response to antiplatelet drugs has enlarged the spectrum and the possible clinical relevance of the variability of platelet indices or function. The development of "personalized medicine" will benefit from the concepts discussed in this chapter.
Collapse
Affiliation(s)
- Giovanni de Gaetano
- Research Laboratories, Fondazione di Ricerca e Cura "Giovanni Paolo II", Università Cattolica, Largo Gemelli, 1, 86100, Campobasso, Italy.
| | | | | | | | | |
Collapse
|
43
|
Kunicki TJ, Williams SA, Nugent DJ, Yeager M. Mean Platelet Volume and Integrin Alleles Correlate With Levels of Integrins αIIbβ3and α2β1in Acute Coronary Syndrome Patients and Normal Subjects. Arterioscler Thromb Vasc Biol 2012; 32:147-52. [DOI: 10.1161/atvbaha.111.239392] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas J. Kunicki
- From the CHOC Children's Hospital, Hematology Research, Orange, CA (T.J.K., S.A.W., D.J.N.); Departments of Molecular and Experimental Medicine (T.J.K.) and Cell Biology (M.Y.), Scripps Research Institute, La Jolla, CA; Department of Medicine, Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA (M.Y.); Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine and Department of Medicine, Division of Cardiovascular Medicine, University of
| | - Shirley A. Williams
- From the CHOC Children's Hospital, Hematology Research, Orange, CA (T.J.K., S.A.W., D.J.N.); Departments of Molecular and Experimental Medicine (T.J.K.) and Cell Biology (M.Y.), Scripps Research Institute, La Jolla, CA; Department of Medicine, Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA (M.Y.); Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine and Department of Medicine, Division of Cardiovascular Medicine, University of
| | - Diane J. Nugent
- From the CHOC Children's Hospital, Hematology Research, Orange, CA (T.J.K., S.A.W., D.J.N.); Departments of Molecular and Experimental Medicine (T.J.K.) and Cell Biology (M.Y.), Scripps Research Institute, La Jolla, CA; Department of Medicine, Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA (M.Y.); Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine and Department of Medicine, Division of Cardiovascular Medicine, University of
| | - Mark Yeager
- From the CHOC Children's Hospital, Hematology Research, Orange, CA (T.J.K., S.A.W., D.J.N.); Departments of Molecular and Experimental Medicine (T.J.K.) and Cell Biology (M.Y.), Scripps Research Institute, La Jolla, CA; Department of Medicine, Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA (M.Y.); Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine and Department of Medicine, Division of Cardiovascular Medicine, University of
| |
Collapse
|
44
|
Postula M, Kaplon-Cieslicka A, Rosiak M, Kondracka A, Serafin A, Filipiak KJ, Czlonkowski A, Opolski G, Janicki PK. Genetic determinants of platelet reactivity during acetylsalicylic acid therapy in diabetic patients: evaluation of 27 polymorphisms within candidate genes. J Thromb Haemost 2011; 9:2291-301. [PMID: 21854539 DOI: 10.1111/j.1538-7836.2011.04482.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Decreased platelet responsiveness to acetylsalicylic acid (ASA) reported previously in diabetic patients could be attributed to patient-based, clinical, genetic and cellular factors. The objective of the present study was to investigate the effect of the genomic polymorphism on the platelet reactivity in diabetic patients treated with ASA. METHODS AND RESULTS The study cohort consisted of 295 Caucasians with diabetes type 2 who had been taking ASA tablets at the dose of 75 mg per day for at least 3 months for primary or secondary prevention of myocardial infarction (MI). Platelet reactivity analyzes were performed using VerifyNow ASA and PFA-100 assays. Genotyping for the selected 27 single nucleotide polymorphisms (SNPs) within 19 genes was performed using a Sequenom iPLEX platform. The results indicate that the statistically significant differences in platelet reactivity were observed in the PFA-100 assay for SNPs in following genes: TXBA2R (rs1131882), ADRA2A (rs4311994), PLA2G7 (rs7756935) and 9p21.3 (rs10120688) (P = 0.02, P = 0.03, P = 0.02, P = 0.03, respectively, all significance levels corrected for multiple comparisons). When using the VerifyNow ASA test, a weak nominal statistical significance (i.e. before multiple comparison testing) was observed for two SNPs in the GPVI gene: rs1671152 and rs1613662 [P = 0.025 (0.5) for both SNPs, corrected for multiple comparisons test]. CONCLUSIONS The results from the present study suggest that the four analyzed genes may contribute to platelet reactivity measured with the PFA-100 assay in the diabetic population treated with ASA.
Collapse
Affiliation(s)
- M Postula
- Department of Cardiology, Medical University of Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cay N, Ipek A, Gumus M, Birkan Z, Ozmen E. Platelet Activity Indices in Patients With Deep Vein Thrombosis. Clin Appl Thromb Hemost 2011; 18:206-10. [DOI: 10.1177/1076029611419841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Extensive research has been performed regarding the association between platelet activity indices and various cardiovascular disorders. Less clear data, however, are present between these indices and deep vein thrombosis (DVT). Aim: The aim of this study was to investigate the association between platelet activity indices and DVT in a relatively large population. Methods: Mean platelet volume (MPV), mean platelet mass (MPM), and mean platelet component (MPC) were measured by an autoanalyzer in a total of 203 patients with DVT and the results were compared with 210 age- and sex-matched controls without DVT. Results: There were significant differences between the study and control groups in MPV (8.6 ± 1.3 fL vs 7.9 ± 0.5 fL [95% CI −0.82 to −0.44], P < .001, respectively), MPM (2.2 ± 0.3 pg vs 2.0 ± 0.1 pg [95% CI −0.20 to −0.11], P < .001, respectively), and MPC (24.9 ± 3.2 g/dL vs 26.3 ± 1.6 g/dL [95% CI 0.91 to 1.89], P < .001, respectively). These 3 platelet activity indices were also found to be significant predictors of the presence of DVT (all Ps < .001). Conclusion: In patients with DVT, the presence of DVT was closely associated with increased platelet activation. The MPV, MPM, and MPC may identify patients requiring aggressive antiplatelet treatment.
Collapse
Affiliation(s)
- Nurdan Cay
- Department of Radiology, Yuksek Ihtisas Education and Research Hospital, Ankara, Turkey
| | - Ali Ipek
- Department of Radiology, Ataturk Education and Research Hospital, Ankara, Turkey
| | - Mehmet Gumus
- Department of Radiology, Ataturk Education and Research Hospital, Ankara, Turkey
| | - Zulfu Birkan
- Department of Radiology, Harput State Hospital, Elazig, Turkey
| | - Evrim Ozmen
- Department of Radiology, Ataturk Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
46
|
Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011; 118:5996-6005. [PMID: 21917754 DOI: 10.1182/blood-2011-07-365635] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Characterized by mucocutaneous bleeding arising from a lack of platelet aggregation to physiologic stimuli, Glanzmann thrombasthenia (GT) is the archetype-inherited disorder of platelets. Transmitted by autosomal recessive inheritance, platelets in GT have quantitative or qualitative deficiencies of the fibrinogen receptor, αIIbβ3, an integrin coded by the ITGA2B and ITGB3 genes. Despite advances in our understanding of the disease, extensive phenotypic variability with respect to severity and intensity of bleeding remains poorly understood. Importantly, genetic defects of ITGB3 also potentially affect other tissues, for β3 has a wide tissue distribution when present as αvβ3 (the vitronectin receptor). We now look at the repertoire of ITGA2B and ITGB3 gene defects, reexamine the relationship between phenotype and genotype, and review integrin structure in the many variant forms. Evidence for modifications in platelet production is assessed, as is the multifactorial etiology of the clinical expression of the disease. Reports of cardiovascular disease and deep vein thrombosis, cancer, brain disease, bone disorders, and pregnancy defects in GT are discussed in the context of the results obtained for mouse models where nonhemostatic defects of β3-deficiency or nonfunction are being increasingly described.
Collapse
|
47
|
Zufferey A, Reny JL, Combescure C, de Moerloose P, Sanchez JC, Fontana P. Platelet reactivity is a stable and global phenomenon in aspirin-treated cardiovascular patients. Thromb Haemost 2011; 106:466-74. [PMID: 21725581 DOI: 10.1160/th11-04-0226] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/13/2011] [Indexed: 12/14/2022]
Abstract
In healthy subjects, platelet hyperreactivity is a global phenomenon--as opposed to agonist-specific--and epinephrine-induced platelet aggregation (EPA) is a reliable marker of this phenotype. Few data are available on platelet reactivity and the relationship between EPA and aggregation induced by other agonists in cardiovascular patients. It was the objective of this study to characterise platelet reactivity in stable cardiovascular patients treated with aspirin and to derive a composite index integrating several aggregation pathways, suitable for selecting patients with extreme phenotypes for further proteomics analysis. Platelet reactivity to agonists was assessed in 110 patients twice, two weeks apart. Factorial analysis was used to determine whether the results obtained with the different agonists could be summarised in a single composite index. EPA correlated with the aggregation values obtained with each of the other agonists, with correlation coefficients of 0.44 to 0.55 (p < 0.001). We constructed a composite "platelet reactivity" index that included 60% of the information provided by each agonist. The results obtained at the first patient visit were consistent with those obtained at the second visit (r = 0.78, p<0.01). No clinical or biological parameters correlated with the composite index. The extreme phenotypes of six selected subjects were confirmed 12 months after the second visit. In conclusion, platelet reactivity in aspirin-treated cardiovascular patients is a global phenomenon that can be summarised by a composite index based on the aggregation responses to various agonists and integrating several activation pathways. This index is not dependent on clinical or biological variables, suggesting that genetic factors regulate platelet reactivity in these patients.
Collapse
Affiliation(s)
- Anne Zufferey
- Division of Angiology and Haemostasis, Geneva University Hospital and Faculty of Medicine, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Johnson AD. The genetics of common variation affecting platelet development, function and pharmaceutical targeting. J Thromb Haemost 2011; 9 Suppl 1:246-57. [PMID: 21781261 PMCID: PMC3151008 DOI: 10.1111/j.1538-7836.2011.04359.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Common variant effects on human platelet function and response to anti-platelet treatment have traditionally been studied using candidate gene approaches involving a limited number of variants and genes. These studies have often been undertaken in clinically defined cohorts. More recently, studies have applied genome-wide scans in larger population samples than prior candidate studies, in some cases scanning relatively healthy individuals. These studies demonstrate synergy with some prior candidate gene findings (e.g., GP6, ADRA2A) but also uncover novel loci involved in platelet function. Here, I summarise findings on common genetic variation influencing platelet development, function and therapeutics. Taken together, candidate gene and genome-wide studies begin to account for common variation in platelet function and provide information that may ultimately be useful in pharmacogenetic applications in the clinic. More than 50 loci have been identified with consistent associations with platelet phenotypes in ≥ 2 populations. Several variants are under further study in clinical trials relating to anti-platelet therapies. In order to have useful clinical applications, variants must have large effects on a modifiable outcome. Regardless of clinical applications, studies of common genetic influences, even of small effect, offer additional insights into platelet biology including the importance of intracellular signalling and novel receptors. Understanding of common platelet-related genetics remains behind parallel fields (e.g., lipids, blood pressure) due to challenges in phenotype ascertainment. Further work is necessary to discover and characterise loci for platelet function, and to assess whether these loci contribute to disease aetiologies or response to therapeutics.
Collapse
Affiliation(s)
- A D Johnson
- National Heart, Lung and Blood Institute's The Framingham Heart Study, Framingham, MA 01702, USA.
| |
Collapse
|
50
|
Nurden A, Nurden P. Advances in our understanding of the molecular basis of disorders of platelet function. J Thromb Haemost 2011; 9 Suppl 1:76-91. [PMID: 21781244 DOI: 10.1111/j.1538-7836.2011.04274.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic defects of platelet function give rise to mucocutaneous bleeding of varying severity because platelets fail to fulfil their haemostatic role after vessel injury. Abnormalities of pathways involving glycoprotein (GP) mediators of adhesion (Bernard-Soulier syndrome, platelet-type von Willebrand disease) and aggregation (Glanzmann thrombasthenia) are the most studied and affect the GPIb-IX-V complex and integrin αIIbβ3, respectively. Leukocyte adhesion deficiency-III combines Glanzmann thrombasthenia with infections and defects of kindlin-3, a mediator of integrin activation. Agonist-specific deficiencies in platelet aggregation relate to mutations of primary receptors for ADP (P2Y(12)), thromboxane A(2) (TXA2R) and collagen (GPVI); however, selective abnormalities of intracellular signalling pathways remain better understood in mouse models. Defects of secretion from δ-granules are accompanied by pigment defects in the Hermansky-Pudlak and Chediak-Higashi syndromes; they concern multiple genes and protein complexes involved in secretory organelle biogenesis and function. Quebec syndrome is linked to a tandem duplication of the urokinase plasminogen activator (PLAU) gene while locus assignment to chromosome 3p has advanced the search for the gene(s) responsible for α-granule deficiency in the gray platelet syndrome. Defects of α-granule biosynthesis also involve germline VPS33B mutations in the ARC (arthrogryposis, renal dysfunction and cholestasis) syndrome. A mutation in transmembrane protein 16F (TMEM16F) has been linked to a defective procoagulant activity and phosphatidylserine expression in the Scott syndrome. Cytoskeletal dysfunction (with platelet anisotrophy) occurs not only in the Wiskott-Aldrich syndrome but also in filamin A deficiency or MYH9-related disease while GATA1 mutations or RUNX1 haploinsufficiency can affect expression of multiple platelet proteins.
Collapse
Affiliation(s)
- A Nurden
- Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| | | |
Collapse
|