1
|
Bruhn-Olszewska B, Markljung E, Rychlicka-Buniowska E, Sarkisyan D, Filipowicz N, Dumanski JP. The effects of loss of Y chromosome on male health. Nat Rev Genet 2025; 26:320-335. [PMID: 39743536 DOI: 10.1038/s41576-024-00805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
Loss of Y chromosome (LOY) is the most commonly occurring post-zygotic (somatic) mutation in male individuals. The past decade of research suggests that LOY has important effects in shaping the activity of the immune system, and multiple studies have shown the effects of LOY on a range of diseases, including cancer, neurodegeneration, cardiovascular disease and acute infection. Epidemiological findings have been corroborated by functional analyses providing insights into the mechanisms by which LOY modulates the immune system; in particular, a causal role for LOY in cardiac fibrosis, bladder cancer and Alzheimer disease has been indicated. These insights show that LOY is a highly dynamic mutation (such that LOY clones expand and contract with time) and has pleiotropic, cell-type-specific effects. Here, we review the status of the field and highlight the potential of LOY as a biomarker and target of new therapeutics that aim to counteract its negative effects on the immune system.
Collapse
Affiliation(s)
| | - Ellen Markljung
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Daniil Sarkisyan
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Jan P Dumanski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
2
|
Courtois A, Allaume P, Raby M, Pastoret C, Droitcourt C, Le Naourès C, Adamski H, Dupuy A, Le Gall F, Kammerer-Jacquet SF. Differential Expression of p53 in Mycosis Fungoides, Sezary Syndromes, and Their Transformed Forms. Am J Dermatopathol 2025; 47:95-104. [PMID: 39660957 DOI: 10.1097/dad.0000000000002898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Mycosis fungoides (MF) and Sezary syndrome (SS) are common entities among primary cutaneous lymphomas. Large cell transformation is challenging for diagnosis and therapy. Molecular mechanisms by which these lymphomas undergo this transformation are poorly defined. We studied the immunohistochemical status of p53 in these entities and assessed whether p53 expression could be a useful tool for diagnosis and assessment of transformation. We extracted patients with transformed and untransformed SS or MF from the French Study Group on Cutaneous Lymphoma database between 2014 and 2021, followed in the Rennes University Hospital. An immunohistochemical study of p53 expression was performed on the biopsies sampled as part of routine care. We compared p53 overexpression in the different groups. We included 25 patients with MF, 7 patients with transformed MF (T-MF), 11 patients with SS, and 5 patients with transformed SS (T-SS). Using a cut-off set at 30% expression of neoplastic cells, we noted an overexpression of p53 in T-MF and T-SS compared with nontransformed forms (47% vs. 12%, respectively, P < 0.01) and in MF compared with SS (23% vs. 7%, respectively, P < 0.01). Overexpression of p53 with a cut-off at 30% therefore seems to be a discriminating tool in the differential diagnosis of MF/SS versus their transformed forms as well as the differential diagnosis between MF and SS.
Collapse
Affiliation(s)
- Anna Courtois
- Department of Pathology, Rennes University Hospital, France
| | - Pierre Allaume
- Department of Pathology, Rennes University Hospital, France
| | - Maxime Raby
- Department of Dermatology, Rennes University Hospital, France
| | - Cédric Pastoret
- Department of Hematology, Rennes University Hospital, France; and
| | | | | | - Henri Adamski
- Department of Dermatology, Rennes University Hospital, France
| | - Alain Dupuy
- Department of Dermatology, Rennes University Hospital, France
| | | | | |
Collapse
|
3
|
Fernandes Q, Therachiyil L, Younis SM, Dermime S, Al Moustafa AE. Oncoproteins E6/E7 of the human papillomavirus types 16 & 18 synergize in modulating oncogenes and tumor suppressor proteins in colorectal cancer. Expert Rev Proteomics 2025; 22:71-84. [PMID: 39815804 DOI: 10.1080/14789450.2025.2455104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/04/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVE Our study presents a novel analysis of the oncogenes and tumor suppressor proteins directly modulated by E6/E7 of high-risk HPV types 16 and 18, in colorectal cancer (CRC). METHODS HCT 116 (KRAS mutant) & HT-29 (TP53 mutant) cell models of CRC were transduced with E6/E7 of HPV16 and HPV18, individually and in combination. Further, we utilized a liquid chromatography mass spectrometry (LC-MS/MS) approach to analyze and compare the proteomes of both CRC cell models. RESULTS We generated six stably transduced cell lines. Our data revealed a significantly higher, HPV-induced modulation of oncogenes and tumor suppressor proteins in the TP53 mutant model, as compared to the KRAS mutant model (p ≤ 0.01). Less than 1% of the genes were commonly modulated by HPV, between both models. We also report that HT-29 cells, expressing E6/E7 of both HPV types, significantly reduced the suppression of oncogenes as compared to cells expressing E6/E7 of either HPV types individually (p-value ≤0.00001). CONCLUSION Our data imply that HPV coinfections leads to the sustenance of a pro-oncogenic environment in CRC. HPV modulates different oncogenes/tumor suppressor proteins in CRC of varying mutational backgrounds, thus highlighting the importance of personalized therapies for such diseases with mutational heterogeneity.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Shahd M Younis
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Oncology Department, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Saber S, Abdelhady R, Elhemely MA, Elmorsy EA, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, AlSheri AS, Youssef ME. PU-H71 (NSC 750424): a molecular masterpiece that targets HSP90 in cancer and beyond. Front Pharmacol 2024; 15:1475998. [PMID: 39564119 PMCID: PMC11573589 DOI: 10.3389/fphar.2024.1475998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Heat shock protein 90 (HSP90) is a pivotal molecular chaperone with multifaceted roles in cellular health and disease. Herein, we explore how HSP90 orchestrates cellular stress responses, particularly through its partnership with heat shock factor 1 (HSF-1). PU-H71, a selective inhibitor of HSP90, demonstrates significant potential in cancer therapy by targeting a wide array of oncogenic pathways. By inducing the degradation of multiple client proteins, PU-H71 disrupts critical signaling pathways such as MAPK, PI3K/Akt, JAK/STAT, EGFR, and mTOR, which are essential for cancer cell survival, proliferation, and metastasis. We examined its impact on combating triple-negative breast cancer and enhancing the effectiveness of carbon-ion beam therapy, offering new avenues for cancer treatment. Furthermore, the dual inhibition of HSP90A and HSP90B1 by PU-H71 proves highly effective in the context of myeloma, providing fresh hope for patients with this challenging malignancy. We delve into its potential to induce apoptosis in B-cell lymphomas that rely on Bcl6 for survival, highlighting its relevance in the realm of hematologic cancers. Shifting our focus to hepatocellular carcinoma, we explore innovative approaches to chemotherapy. Moreover, the current review elucidates the potential capacity of PU-H71 to suppress glial cell activation paving the way for developing novel therapeutic strategies for neuroinflammatory disorders. Additionally, the present report also suggests the promising role of PU-H71 in JAK2-dependent myeloproliferative neoplasms. Eventually, our report sheds more light on the multiple functions of HSP90 protein as well as the potential therapeutic benefit of its selective inhibitor PU-H71 in the context of an array of diseases, laying the foundations for the development of novel therapeutic approaches that could achieve better treatment outcomes.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Mai A Elhemely
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
5
|
de Haan LM, de Groen RAL, de Groot FA, Noordenbos T, van Wezel T, van Eijk R, Ruano D, Diepstra A, Koens L, Nicolae-Cristea A, Hartog WCED, Terpstra V, Ahsmann E, Dekker TJA, Sijs-Szabo A, Veelken H, Cleven AHG, Jansen PM, Vermaat JSP. Real-world routine diagnostic molecular analysis for TP53 mutational status is recommended over p53 immunohistochemistry in B-cell lymphomas. Virchows Arch 2024; 485:643-654. [PMID: 37851120 PMCID: PMC11522076 DOI: 10.1007/s00428-023-03676-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Previous studies in patients with mature B-cell lymphomas (MBCL) have shown that pathogenic TP53 aberrations are associated with inferior chemotherapeutic efficacy and survival outcomes. In solid malignancies, p53 immunohistochemistry is commonly used as a surrogate marker to assess TP53 mutations, but this correlation is not yet well-established in lymphomas. This study evaluated the accuracy of p53 immunohistochemistry as a surrogate marker for TP53 mutational analysis in a large real-world patient cohort of 354 MBCL patients within routine diagnostic practice. For each case, p53 IHC was assigned to one of three categories: wild type (staining 1-50% of tumor cells with variable nuclear staining), abnormal complete absence or abnormal overexpression (strong and diffuse staining > 50% of tumor cells). Pathogenic variants of TP53 were identified with a targeted next generation sequencing (tNGS) panel. Wild type p53 expression was observed in 267 cases (75.4%), complete absence in twenty cases (5.7%) and the overexpression pattern in 67 cases (18.9%). tNGS identified a pathogenic TP53 mutation in 102 patients (29%). The overall accuracy of p53 IHC was 84.5% (95% CI 80.3-88.1), with a robust specificity of 92.1% (95% CI 88.0- 95.1), but a low sensitivity of 65.7% (95% CI 55.7-74.8). These results suggest that the performance of p53 IHC is insufficient as a surrogate marker for TP53 mutations in our real-world routine diagnostic workup of MBCL patients. By using p53 immunohistochemistry alone, there is a significant risk a TP53 mutation will be missed, resulting in misevaluation of a high-risk patient. Therefore, molecular analysis is recommended in all MBCL patients, especially for further development of risk-directed therapies based on TP53 mutation status.
Collapse
Affiliation(s)
- Lorraine M de Haan
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands.
| | - Ruben A L de Groen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fleur A de Groot
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Troy Noordenbos
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
| | - Ronald van Eijk
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
| | - Arjan Diepstra
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Lianne Koens
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | | | - Valeska Terpstra
- Department of Pathology, Haaglanden Medical Centrum, The Hague, The Netherlands
| | - Els Ahsmann
- Department of Pathology, Groene Hart Ziekenhuis, Gouda, The Netherlands
| | - Tim J A Dekker
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aniko Sijs-Szabo
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjen H G Cleven
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Patty M Jansen
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. box 9600, 2300RC, Leiden, The Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
7
|
Nong T, Mehra S, Taylor J. Common Driver Mutations in AML: Biological Impact, Clinical Considerations, and Treatment Strategies. Cells 2024; 13:1392. [PMID: 39195279 PMCID: PMC11352998 DOI: 10.3390/cells13161392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Next-generation sequencing of samples from patients with acute myeloid leukemia (AML) has revealed several driver gene mutations in adult AML. However, unlike other cancers, AML is defined by relatively few mutations per patient, with a median of 4-5 depending on subtype. In this review, we will discuss the most common driver genes found in patients with AML and focus on the most clinically relevant ones that impact treatment strategies. The most common driver gene mutations in AML occur in NPM1 and FLT3, accounting for ~30% each. There are now targeted therapies being tested or already approved for these driver genes. Menin inhibitors, a novel targeted therapy that blocks the function of the menin protein, are in clinical trials for NPM1 driver gene mutant AML after relapse. A number of FLT3 inhibitors are now approved for FLT3 driver gene mutant AML in combination with chemotherapy in the frontline and also as single agent in relapse. Although mutations in IDH1/2 and TP53 only occur in around 10-20% of patients with AML each, they can affect the treatment strategy due to their association with prognosis and availability of targeted agents. While the impact of other driver gene mutations in AML is recognized, there is a lack of data on the actionable impact of those mutations.
Collapse
Affiliation(s)
| | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
8
|
Wen W, Zhang WL, Tan R, Zhong TT, Zhang MR, Fang XS. Progress in deciphering the role of p53 in diffuse large B-cell lymphoma: mechanisms and therapeutic targets. Am J Cancer Res 2024; 14:3280-3293. [PMID: 39113862 PMCID: PMC11301306 DOI: 10.62347/lhio8294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype, accounting for 30%-40% of non-Hodgkin lymphoma in adults. The mechanisms underlying DLBCL occurrence are extremely complex, and involve the B-cell receptor (BCR) and Toll-like receptor (TLR) signaling pathways, as well as genetic abnormalities and other factors. With the development of high-throughput sequencing, an increasing number of abnormal genes have been identified in DLBCL. Among them, the tumor protein p53 (TP53/p53) gene is important in DLBCL occurrence. Patients with DLBCL carrying TP53 gene abnormalities generally have poor prognosis and studies of p53 have potential to provide a better basis for their treatment. Normally, p53 is maintained at low levels through its interaction with murine double minute 2 (MDM2), and prevents tumorigenesis by mediating cell cycle arrest, apoptosis, and repair of damaged cells, among other processes. Therefore, the prognosis of patients with DLBCL harboring TP53 gene abnormalities (mutations, deletions, etc.) is poor, and targeting p53 for tumor therapy has become a research hotspot, following developments in molecular biology technologies. Current treatments targeting p53 mainly act by restoring the function or promoting degradation of mutant p53, and enhancing wild-type p53 protein stability and activity. Based on the current status of p53 research, exploration of existing therapeutic methods to improve the prognosis of patients with DLBCL with TP53 abnormalities is warranted.
Collapse
Affiliation(s)
- Wen Wen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Wen-Lu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Tan-Tan Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Mei-Rui Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Xiao-Sheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| |
Collapse
|
9
|
Negara I, Tomuleasa C, Buruiana S, Efremov DG. Molecular Subtypes and the Role of TP53 in Diffuse Large B-Cell Lymphoma and Richter Syndrome. Cancers (Basel) 2024; 16:2170. [PMID: 38927876 PMCID: PMC11201917 DOI: 10.3390/cancers16122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy and a heterogeneous entity comprised of several biologically distinct subtypes. Recently, novel genetic classifications of DLBCL have been resolved based on common mutational patterns indicative of distinct pathways of transformation. However, the complicated and costly nature of the novel classifiers has precluded their inclusion into routine practice. In view of this, the status of the TP53 gene, which is mutated or deleted in 20-30% of the cases, has emerged as an important prognostic factor for DLBCL patients, setting itself apart from other predictors. TP53 genetic lesions are particularly enriched in a genetic subtype of DLBCL that shares genomic features with Richter Syndrome, highlighting the possibility of a subset of DLBCL arising from the transformation of an occult chronic lymphocytic leukemia-like malignancy, such as monoclonal B-cell lymphocytosis. Patients with TP53-mutated DLBCL, including those with Richter Syndrome, have a particularly poor prognosis and display inferior responses to standard chemoimmunotherapy regimens. The data presented in this manuscript argue for the need for improved and more practical risk-stratification models for patients with DLBCL and show the potential for the use of TP53 mutational status for prognostication and, in prospect, treatment stratification in DLBCL.
Collapse
Affiliation(s)
- Ivan Negara
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
- Department of Internal Medicine, Hematology, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Sanda Buruiana
- Department of Internal Medicine, Hematology, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Dimitar G. Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
- Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia
| |
Collapse
|
10
|
Chen YZ, Bo JL, Hou SL. Effect of P53 expression on double-expressor lymphoma and characteristics of DLBCL co-expressing P53 and MYC: Clinical, pathological, and biological insights. Asian J Surg 2024; 47:2852-2855. [PMID: 38408882 DOI: 10.1016/j.asjsur.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Affiliation(s)
- Yi-Zhuo Chen
- Department of Lymphoid Oncology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jin-Ling Bo
- Department of Lymphoid Oncology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shu-Ling Hou
- Department of Lymphoid Oncology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
11
|
Zhao K, Li Q, Li P, Liu T, Liu X, Zhu F, Zhang L. Single-cell transcriptome sequencing provides insight into multiple chemotherapy resistance in a patient with refractory DLBCL: a case report. Front Immunol 2024; 15:1303310. [PMID: 38533514 PMCID: PMC10963401 DOI: 10.3389/fimmu.2024.1303310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Relapsed and refractory diffuse large B-cell lymphoma (DLBCL) is associated with poor prognosis. As such, a comprehensive analysis of intratumoral components, intratumoral heterogeneity, and the immune microenvironment is essential to elucidate the mechanisms driving the progression of DLBCL and to develop new therapeutics. Here, we used single-cell transcriptome sequencing and conventional bulk next-generation sequencing (NGS) to understand the composite tumor landscape of a single patient who had experienced multiple tumor recurrences following several chemotherapy treatments. NGS revealed several key somatic mutations that are known to contribute to drug resistance. Based on gene expression profiles at the single-cell level, we identified four clusters of malignant B cells with distinct transcriptional signatures, showing high intra-tumoral heterogeneity. Among them, heterogeneity was reflected in activating several key pathways, human leukocyte antigen (HLA)-related molecules' expression, and key oncogenes, which may lead to multi-drug resistance. In addition, FOXP3+ regulatory CD4+ T cells and exhausted cytotoxic CD8+ T cells were identified, accounted for a significant proportion, and showed highly immunosuppressive properties. Finally, cell communication analysis indicated complex interactions between malignant B cells and T cells. In conclusion, this case report demonstrates the value of single-cell RNA sequencing for visualizing the tumor microenvironment and identifying potential therapeutic targets in a patient with treatment-refractory DLBCL. The combination of NGS and single-cell RNA sequencing may facilitate clinical decision-making and drug selection in challenging DLBCL cases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Ali A, Mahla SB, Reza V, Hossein A, Bahareh K, Mohammad H, Fatemeh S, Mostafa AB, Leili R. MicroRNAs: Potential prognostic and theranostic biomarkers in chronic lymphocytic leukemia. EJHAEM 2024; 5:191-205. [PMID: 38406506 PMCID: PMC10887358 DOI: 10.1002/jha2.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Small noncoding ribonucleic acids called microRNAs coordinate numerous critical physiological and biological processes such as cell division, proliferation, and death. These regulatory molecules interfere with the function of many genes by binding the 3'-UTR region of target mRNAs to inhibit their translation or even degrade them. Given that a large proportion of miRNAs behave as either tumor suppressors or oncogenes, any genetic or epigenetic aberration changeing their structure and/or function could initiate tumor formation and development. An example of such cancers is chronic lymphocytic leukemia (CLL), the most prevalent adult leukemia in Western nations, which is caused by unregulated growth and buildup of defective cells in the peripheral blood and lymphoid organs. Genetic alterations at cellular and molecular levels play an important role in the occurrence and development of CLL. In this vein, it was noted that the development of this disease is noticeably affected by changes in the expression and function of miRNAs. Many studies on miRNAs have shown that these molecules are pivotal in the prognosis of different cancers, including CLL, and their epigenetic alterations (e.g., methylation) can predict disease progression and response to treatment. Furthermore, miRNAs are involved in the development of drug resistance in CLL, and targeting these molecules can be considered a new therapeutic approach for the treatment of this disease. MiRNA screening can offer important information on the etiology and development of CLL. Considering the importance of miRNAs in gene expression regulation, their application in the diagnosis, prognosis, and treatment of CLL is reviewed in this paper.
Collapse
Affiliation(s)
- Afgar Ali
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sattarzadeh Bardsiri Mahla
- Stem Cells and Regenerative Medicine Innovation CenterKerman University of Medical SciencesKermanIran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Vahidi Reza
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Arezoomand Hossein
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Kashani Bahareh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Hosseininaveh Mohammad
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sharifi Fatemeh
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| | - Amopour Bahnamiry Mostafa
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Rouhi Leili
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
13
|
Psatha K, Kollipara L, Drakos E, Deligianni E, Brintakis K, Patsouris E, Sickmann A, Rassidakis GZ, Aivaliotis M. Interruption of p53-MDM2 Interaction by Nutlin-3a in Human Lymphoma Cell Models Initiates a Cell-Dependent Global Effect on Transcriptome and Proteome Level. Cancers (Basel) 2023; 15:3903. [PMID: 37568720 PMCID: PMC10417430 DOI: 10.3390/cancers15153903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
In most lymphomas, p53 signaling pathway is inactivated by various mechanisms independent to p53 gene mutations or deletions. In many cases, p53 function is largely regulated by alterations in the protein abundance levels by the action of E3 ubiquitin-protein ligase MDM2, targeting p53 to proteasome-mediated degradation. In the present study, an integrating transcriptomics and proteomics analysis was employed to investigate the effect of p53 activation by a small-molecule MDM2-antagonist, nutlin-3a, on three lymphoma cell models following p53 activation. Our analysis revealed a system-wide nutlin-3a-associated effect in all examined lymphoma types, identifying in total of 4037 differentially affected proteins involved in a plethora of pathways, with significant heterogeneity among lymphomas. Our findings include known p53-targets and novel p53 activation effects, involving transcription, translation, or degradation of protein components of pathways, such as a decrease in key members of PI3K/mTOR pathway, heat-shock response, and glycolysis, and an increase in key members of oxidative phoshosphorylation, autophagy and mitochondrial translation. Combined inhibition of HSP90 or PI3K/mTOR pathway with nutlin-3a-mediated p53-activation enhanced the apoptotic effects suggesting a promising strategy against human lymphomas. Integrated omic profiling after p53 activation offered novel insights on the regulatory role specific proteins and pathways may have in lymphomagenesis.
Collapse
Affiliation(s)
- Konstantina Psatha
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, 70013 Heraklion, Greece; (K.P.); (E.D.)
- Department of Pathology, Medical School, University of Crete, 70013 Heraklion, Greece;
- First Department of Pathology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 54124 Thessaloniki, Greece
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., 44139 Dortmund, Germany; (L.K.); (A.S.)
| | - Elias Drakos
- Department of Pathology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, 70013 Heraklion, Greece; (K.P.); (E.D.)
| | - Konstantinos Brintakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece;
| | - Eustratios Patsouris
- First Department of Pathology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., 44139 Dortmund, Germany; (L.K.); (A.S.)
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - George Z. Rassidakis
- Department of Oncology-Pathology, Karolinska Institute, 17164 Stockholm, Sweden;
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, 70013 Heraklion, Greece; (K.P.); (E.D.)
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 54124 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Berta D, Girma M, Melku M, Adane T, Birke B, Yalew A. Role of RNA Splicing Mutations in Diffuse Large B Cell Lymphoma. Int J Gen Med 2023; 16:2469-2480. [PMID: 37342407 PMCID: PMC10278864 DOI: 10.2147/ijgm.s414106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Ribonucleic acid splicing is a crucial process to create a mature mRNA molecule by removing introns and ligating exons. This is a highly regulated process, but any alteration in splicing factors, splicing sites, or auxiliary components affects the final products of the gene. In diffuse large B-cell lymphoma, splicing mutations such as mutant splice sites, aberrant alternative splicing, exon skipping, and intron retention are detected. The alteration affects tumor suppression, DNA repair, cell cycle, cell differentiation, cell proliferation, and apoptosis. As a result, malignant transformation, cancer progression, and metastasis occurred in B cells at the germinal center. B-cell lymphoma 7 protein family member A (BCL7A), cluster of differentiation 79B (CD79B), myeloid differentiation primary response gene 88 (MYD88), tumor protein P53 (TP53), signal transducer and activator of transcription (STAT), serum- and glucose-regulated kinase 1 (SGK1), Pou class 2 associating factor 1 (POU2AF1), and neurogenic locus notch homolog protein 1 (NOTCH) are the most common genes affected by splicing mutations in diffuse large B cell lymphoma.
Collapse
Affiliation(s)
- Dereje Berta
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mekonnen Girma
- Department of Quality Assurance and Laboratory Management, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulugeta Melku
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tiruneh Adane
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bisrat Birke
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Aregawi Yalew
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
15
|
Pang Y, Lu T, Xu-Monette ZY, Young KH. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma. Int J Mol Sci 2023; 24:5493. [PMID: 36982568 PMCID: PMC10052731 DOI: 10.3390/ijms24065493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Lymphoma is a heterogeneous group of diseases that often require their metabolism program to fulfill the demand of cell proliferation. Features of metabolism in lymphoma cells include high glucose uptake, deregulated expression of enzymes related to glycolysis, dual capacity for glycolytic and oxidative metabolism, elevated glutamine metabolism, and fatty acid synthesis. These aberrant metabolic changes lead to tumorigenesis, disease progression, and resistance to lymphoma chemotherapy. This metabolic reprogramming, including glucose, nucleic acid, fatty acid, and amino acid metabolism, is a dynamic process caused not only by genetic and epigenetic changes, but also by changes in the microenvironment affected by viral infections. Notably, some critical metabolic enzymes and metabolites may play vital roles in lymphomagenesis and progression. Recent studies have uncovered that metabolic pathways might have clinical impacts on the diagnosis, characterization, and treatment of lymphoma subtypes. However, determining the clinical relevance of biomarkers and therapeutic targets related to lymphoma metabolism is still challenging. In this review, we systematically summarize current studies on metabolism reprogramming in lymphoma, and we mainly focus on disorders of glucose, amino acids, and lipid metabolisms, as well as dysregulation of molecules in metabolic pathways, oncometabolites, and potential metabolic biomarkers. We then discuss strategies directly or indirectly for those potential therapeutic targets. Finally, we prospect the future directions of lymphoma treatment on metabolic reprogramming.
Collapse
Affiliation(s)
- Yuyang Pang
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Hematology, Ninth People’s Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Tingxun Lu
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Zijun Y. Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
16
|
Kuntawala DH, Martins F, Vitorino R, Rebelo S. Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2283. [PMID: 36767649 PMCID: PMC9915907 DOI: 10.3390/ijerph20032283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.
Collapse
|
17
|
Zhu G, Cai J, Zhong H. TP53 signal pathway confers potential therapy target in acute myeloid leukemia. Eur J Haematol 2023; 110:480-489. [PMID: 36692074 DOI: 10.1111/ejh.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
TP53 mutation is a frequent tumor suppressor mutation and a critical prognostic indicator across studies in many malignant tumors including hematologic malignancies. However, the role of TP53 and its correlative pathway in acute myeloid leukemia (AML) is enigmatic, which may provide possible emerging strategies with the potential to improve outcomes in AML. Accordingly, we focus not only on the TP53 mutation but also on the underlying mechanisms of the mutated TP53 signal pathway. While it is now generally accepted that TP53 mutations are widely associated with a dismal prognosis, resistance to chemotherapy, and high incidence of relapse and refractory AML. Hereby, the current therapeutics targeting TP53 mutant AML are summarized in this review. This will address emerging TP53-based therapeutic approaches, facilizing the TP53-targeted treatment options.
Collapse
Affiliation(s)
- Gelan Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Shi YF, Gao ZF, Li XH, Guo LG, Zheng QL, Long MP, Deng LJ, Du TT, Jia L, Zhao W, Song XX, Li M. [Investigation for pathological interpretation criteria and its prognostic value for P53 expression in Chinese diffuse large B-cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:1010-1015. [PMID: 36709106 PMCID: PMC9939333 DOI: 10.3760/cma.j.issn.0253-2727.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 01/30/2023]
Abstract
Objective: To explore the feasibility of predicting TP53 mutation risk by immunohistochemical staining (IHC) pattern of P53 in Chinese diffuse large B-cell lymphoma (DLBCL) and its correlation with a prognostic difference. Methods: Between January 2021 and December 2021, 51 DLBCL cases at Beijing Boren Hospital were gathered. These cases had both IHC and next-generation sequencing (NGS) results. IHC classified the P53 protein expression pattern into a loss (<1% ) , diffuse (>80% ) , and heterogeneous (1% -80% ) . The sensitivity and specificity of the predicting TP53 mutation by IHC were assessed by comparing the results of the NGS, and the TP53 high mutation risk group included both loss and diffuse expression of P53. From June 2016 to September 2019, Peking University Cancer Hospital collected 131 DLBCL cases with thorough clinicopathological and follow-up data. From their tumor blocks, tissue microarray blocks were made for IHC evaluation of P53 expression pattern, and prognosis effect of P53 studies. Results: Among 51 cases with both IHC and NGS results, 23 cases were classified as TP53 high mutation risk (7 cases loss and 16 cases diffuse) , 22/23 cases were proved with mutated TP53 by NGS. Only 1 of the 28 cases classified as TP53 low mutation risk was proved with mutated TP53 by NGS. IHC had a sensitivity and specificity of 95.7% and 96.4% for predicting TP53 mutation. NGS identified a total of 26 TP53 mutations with a mutation frequency of 61.57% (13.41% -86.25% ) . In the diffuse group, 16 missense mutations and 2 splice mutations were detected; 6 truncating mutations and 1 splice mutation were detected in the loss group; 1 truncating mutation was detected in the heterogeneous group. Multivariate analysis demonstrated that TP53 cases with high mutation risk have impartial adverse significance for the 131 patients included in survival analysis (HR=2.612, 95% CI 1.145-5.956, P=0.022) . Conclusion: IHC of P53 exhibiting loss (<1% ) or diffuse (>80% ) pattern indicated TP53 high mutation risk, IHC can predict TP53 mutation with high specificity and sensitivity. TP53 high mutation risk is an independent predictor for adverse survival.
Collapse
Affiliation(s)
- Y F Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Z F Gao
- Department of Pathology, Peking University Third Hospital, Beijing 100191, China Department of Pathology, Beijing Boren Hospital, Beijing 100070, China
| | - X H Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - L G Guo
- Department of Pathology, Beijing Boren Hospital, Beijing 100070, China
| | - Q L Zheng
- Medical Laboratory of Molecular Diagnostic Laboratory, Beijing Boren Hospital Department, Beijing 100070, China
| | - M P Long
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - L J Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) , Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - T T Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) , Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - L Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - W Zhao
- Clinical Laboratory Center, Capital Medical University, Beijing 100069, China
| | - X X Song
- Department of Pathology, Hebei Eye Hospital, Shijiazhuang 054001, China
| | - M Li
- Department of Pathology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
19
|
Vermeersch G, Delforge M, Havelange V, Graux C, Michaux L, Devos T. Case report: Chronic neutrophilic leukemia associated with monoclonal gammopathies. A case series and review of genetic characteristics and practical management. Front Oncol 2022; 12:1014671. [PMID: 36568246 PMCID: PMC9768602 DOI: 10.3389/fonc.2022.1014671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic neutrophilic leukemia (CNL) is a rare but potentially aggressive BCR::ABL1 negative myeloproliferative neoplasm, characterized by sustained mature, neutrophilic leukocytosis. The discovery of key driver mutations in the colony-stimulating-factor-3 receptor (CSF3R) gene resulted in the updated World Health Organization (WHO) diagnostic criteria in 2016. A significant number of CNL cases have been associated with plasma cell dyscrasias, predominantly multiple myeloma (MM) and monoclonal gammopathy of unknown significance (MGUS). Compared to pure CNL, mutated CSF3R is infrequently reported in CNL cases associated with monoclonal gammopathies (MG). Until now it remains unclear whether CNL and occurring plasma cell neoplasms are clonally related or CNL is developing secondary to the underlying dyscrasia. Owing to its rarity, currently no standard of care management exists for CNL and MG-associated CNL. In this case series we report the multi-center experience of five MG-associated CNL cases with a median age of diagnosis of 69 years. Three patients (66%) showed predominance of lambda light chain expression. Four (80%) eventually evolved to MM, and one CNL-MGUS patient developed secondary acute myeloid leukemia (AML). Mutated CSF3R was present in the patient who developed AML but was absent in other cases. To assess possible associated genetic aberrations we performed recurrent analysis with next-generation sequencing (NGS). Two patients (40%) deceased with a median time of survival of 8 years after CNL diagnosis. Three (60%) are currently in follow-up with no reoccurring leukocytosis. This case series, followed by a short review, provides a long-term clinical and genetic overview of five CNL cases associated with MG.
Collapse
Affiliation(s)
- Gaël Vermeersch
- Department of Hematology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Michel Delforge
- Department of Hematology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Violaine Havelange
- Department of Hematology, Université Catholique de Louvain Saint-Luc, Woluwe-Saint-Lambert, Belgium
| | - Carlos Graux
- Department of Hematology, Université Catholique de Louvain, CHU UCL Namur - site Godinne, Yvoir, Belgium
| | | | - Timothy Devos
- Department of Hematology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
De Ramón C, Rojas EA, Cardona‐Benavides IJ, Mateos M, Corchete LA, Gutiérrez NC. Transcriptional signature of TP53 biallelic inactivation identifies a group of multiple myeloma patients without this genetic condition but with dismal outcome. Br J Haematol 2022; 199:344-354. [PMID: 35983648 PMCID: PMC9804640 DOI: 10.1111/bjh.18410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 01/09/2023]
Abstract
Biallelic inactivation of TP53 has been included in the definition of double-hit (DH) multiple myeloma (MM), which entails an ominous prognosis. However, this condition, or even the presence of high-risk cytogenetic abnormalities, cannot accurately capture the 15%-20% of the MM population with a median overall survival below 24 months. This prompted us to look for other MM patients who might have transcriptional characteristics similar to those with DH-TP53. In the present study, we analysed RNA-seq, whole-genome and whole-exome sequencing data from 660 newly diagnosed MM (NDMM) patients from the MMRF (Multiple Myeloma Research Foundation) CoMMpass study to characterize the transcriptional signature of TP53 double-hit (DH-TP53) MM. We found 78 genes that were exclusively deregulated in DH-TP53 patients. A score based on these genes identified a group of 50 patients who shared the same transcriptional profile (DH-TP53-like group) whose prognosis was particularly unfavourable [median overall survival (OS) < 2 years], despite not harbouring the biallelic inactivation of TP53. The prognostic value of the DH-TP53 score was externally validated using gene expression data from 850 NDMM patients analysed by microarrays. Furthermore, our DH-TP53 score refined the traditional prognostic stratification of MM patients according to the cytogenetic abnormalities and International Staging System (ISS).
Collapse
Affiliation(s)
- Cristina De Ramón
- Hematology DepartmentUniversity Hospital of Salamanca, IBSALSalamancaSpain,Cancer Research Center‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Elizabeta A. Rojas
- Hematology DepartmentUniversity Hospital of Salamanca, IBSALSalamancaSpain,Cancer Research Center‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Ignacio J. Cardona‐Benavides
- Hematology DepartmentUniversity Hospital of Salamanca, IBSALSalamancaSpain,Cancer Research Center‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Maria‐Victoria Mateos
- Hematology DepartmentUniversity Hospital of Salamanca, IBSALSalamancaSpain,Cancer Research Center‐IBMCC (USAL‐CSIC)SalamancaSpain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233)SalamancaSpain
| | - Luis A. Corchete
- Hematology DepartmentUniversity Hospital of Salamanca, IBSALSalamancaSpain,Cancer Research Center‐IBMCC (USAL‐CSIC)SalamancaSpain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233)SalamancaSpain
| | - Norma C. Gutiérrez
- Hematology DepartmentUniversity Hospital of Salamanca, IBSALSalamancaSpain,Cancer Research Center‐IBMCC (USAL‐CSIC)SalamancaSpain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233)SalamancaSpain
| |
Collapse
|
21
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Tang SH, Tian L, Zhao W, Wang J, Ke XY. [Clinical features and prognosis of 166 cases of MYC/BCL2 double-expression diffuse large B-cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:771-777. [PMID: 36709172 PMCID: PMC9613496 DOI: 10.3760/cma.j.issn.0253-2727.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 01/30/2023]
Abstract
Objective: To investigate the clinical features and prognosis of MYC/BCL2 double-expression diffuse large B-cell lymphoma (DEL) . Methods: The clinical data, including clinical characteristics, survival, and prognostic factors, of 166 patients with DEL treated at Peking University Third Hospital from January 2016 to December 2020 were retrospectively analyzed. Results: A total of 410 patients with diffuse large B-cell lymphoma were collected, including 166 cases (40.5%) of DEL. There were 82 males and 84 females with a median age of 63.5 (21-95) years at diagnosis. A total of 110 patients (66.3%) were aged over 60 years at initial diagnosis, 106 patients (106/163, 65.0%) had elevated lactate dehydrogenase (LDH) at diagnosis, 74 patients (74/160, 46.2%) had β(2) microglobulin level over 3 mg/L at diagnosis, and 107 patients (107/163, 65.6%) had≥2 extranodal involvement. Sixty-five patients (65/166, 39.2%) had B symptoms, 131 patients (131/165, 79.4%) had stage Ⅲ and Ⅳ disease at initial diagnosis, 41 patients (41/161, 25.5%) had an International Prognostic Index (IPI) score of 0-2 at initial diagnosis, and 38 patients (38/161, 23.6%) had an IPI score of 3 at initial diagnosis. Eighty-two patients (82/161, 50.9%) had an IPI score of 4-5 at initial diagnosis. Nine (9/56, 16.1%) patients with DEL had MYD88 and CD79B mutations. Univariate analysis showed that age over 60 years (P=0.004) , increased β(2) microglobulin level (P=0.002) , and high IPI score (P=0.003) were associated with poor overall survival (OS) . Increased β(2) microglobulin level (P=0.031) , LDH level (P=0.017) , stage Ⅲ-Ⅳ (P=0.001) , high IPI score (P=0.013) , immunohistochemical p53 mutation (P=0.049) , and PIM1 mutation (P=0.039) were associated with poor progression-free survival (PFS) . Multivariate analysis showed that IPI score of 4-5 was an independent risk factor for the prognosis of DEL (HR=2.622, 95% CI 1.398-4.917, P=0.003) . Survival analysis showed that there was a significant difference in the PFS between patients with DEL and those without DEL (65.6% vs 75.1%, P=0.002) . However, there was no significant difference in the OS (81.8% vs 83.6%, P=0.226) . In patients with DEL, the overall response rate of R-EPOCH regimen was higher than that of RCHOP or RCHOP-like regimen (81.5% vs 63.4%, P=0.004) . Conclusion: DEL is a group of aggressive lymphomas with relatively poor PFS. The R-EPOCH regimen may improve the overall prognosis of patients.
Collapse
Affiliation(s)
- S H Tang
- Department of Hematology, Peking University Third Hospital, Beijing 100083, China
| | - L Tian
- Department of Hematology, Peking University Third Hospital, Beijing 100083, China
| | - W Zhao
- Department of Hematology, Peking University Third Hospital, Beijing 100083, China
| | - J Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100083, China
| | - X Y Ke
- Department of Hematology, Peking University Third Hospital, Beijing 100083, China
| |
Collapse
|
23
|
Yurttaş NÖ, Eşkazan AE. Clinical Application of Biomarkers for Hematologic Malignancies. Biomark Med 2022. [DOI: 10.2174/9789815040463122010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decade, significant advancements have been made in the
molecular mechanisms, diagnostic methods, prognostication, and treatment options in
hematologic malignancies. As the treatment landscape continues to expand,
personalized treatment is much more important.
With the development of new technologies, more sensitive evaluation of residual
disease using flow cytometry and next generation sequencing is possible nowadays.
Although some conventional biomarkers preserve their significance, novel potential
biomarkers accurately detect the mutational landscape of different cancers, and also,
serve as prognostic and predictive biomarkers, which can be used in evaluating therapy
responses and relapses. It is likely that we will be able to offer a more targeted and
risk-adapted therapeutic approach to patients with hematologic malignancies guided by
these potential biomarkers. This chapter summarizes the biomarkers used (or proposed
to be used) in the diagnosis and/or monitoring of hematologic neoplasms.;
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
24
|
EBV-Mir-BART5-5p targets p53 independent pathway in cytoplasm: Potential role in EBV lymphomagenesis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Malenge MM, Maaland AF, Repetto-Llamazares A, Middleton B, Nijland M, Visser L, Patzke S, Heyerdahl H, Kolstad A, Stokke T, Ree AH, Dahle J. Anti-CD37 radioimmunotherapy with 177Lu-NNV003 synergizes with the PARP inhibitor olaparib in treatment of non-Hodgkin’s lymphoma in vitro. PLoS One 2022; 17:e0267543. [PMID: 35486574 PMCID: PMC9053826 DOI: 10.1371/journal.pone.0267543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background and purpose
PARP inhibitors have been shown to increase the efficacy of radiotherapy in preclinical models. Radioimmunotherapy results in selective radiation cytotoxicity of targeted tumour cells. Here we investigate the combined effect of anti-CD37 β-emitting 177Lu-NNV003 radioimmunotherapy and the PARP inhibitor olaparib, and gene expression profiles in CD37 positive non-Hodgkin’s lymphoma cell lines.
Materials and methods
The combined effect of 177Lu-NNV003 and olaparib was studied in seven cell lines using a fixed-ratio ray design, and combination index was calculated for each combination concentration. mRNA was extracted before and after treatment with the drug combination. After RNA-sequencing, hierarchical clustering was performed on basal gene expression profiles and on differentially expressed genes after combination treatment from baseline. Functional gene annotation analysis of significant differentially expressed genes after combination treatment was performed to identify enriched biological processes.
Results
The combination of olaparib and 177Lu-NNV003 was synergistic in four of seven cell lines, antagonistic in one and both synergistic and antagonistic (conditionally synergistic) in two, depending on the concentration ratio between olaparib and 177Lu-NNV003. Cells treated with the combination significantly overexpressed genes in the TP53 signalling pathway. However, cluster analysis did not identify gene clusters that correlate with the sensitivity of cells to single agent or combination treatment.
Conclusion
The cytotoxic effect of the combination of the PARP inhibitor olaparib and the β-emitting radioimmunoconjugate 177Lu-NNV003 was synergistic in the majority of tested lymphoma cell lines.
Collapse
Affiliation(s)
- Marion M. Malenge
- Nordic Nanovector ASA, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Astri Fjelde Maaland
- Nordic Nanovector ASA, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Marcel Nijland
- University Medical Center Groningen, Groningen, The Netherlands
| | - Lydia Visser
- University Medical Center Groningen, Groningen, The Netherlands
| | - Sebastian Patzke
- Nordic Nanovector ASA, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Arne Kolstad
- Department of Oncology, Innlandet Sykehus, Lillehammer, Norway
| | - Trond Stokke
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anne Hansen Ree
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | | |
Collapse
|
26
|
Wang J, Shen K, Mu W, Li W, Zhang M, Zhang W, Li Z, Ge T, Zhu Z, Zhang S, Chen C, Xing S, Zhu L, Chen L, Wang N, Huang L, Li D, Xiao M, Zhou J. T Cell Defects: New Insights Into the Primary Resistance Factor to CD19/CD22 Cocktail CAR T-Cell Immunotherapy in Diffuse Large B-Cell Lymphoma. Front Immunol 2022; 13:873789. [PMID: 35572515 PMCID: PMC9094425 DOI: 10.3389/fimmu.2022.873789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/21/2022] [Indexed: 12/05/2022] Open
Abstract
Despite impressive progress, a significant portion of patients still experience primary or secondary resistance to chimeric antigen receptor (CAR) T-cell immunotherapy for relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL). The mechanism of primary resistance involves T-cell extrinsic and intrinsic dysfunction. In the present study, a total of 135 patients of DLBCL treated with murine CD19/CD22 cocktail CAR T-therapy were assessed retrospectively. Based on four criteria (maximal expansion of the transgene/CAR-positive T-cell levels post-infusion [Cmax], initial persistence of the transgene by the CAR transgene level at +3 months [Tlast], CD19+ B-cell levels [B-cell recovery], and the initial response to CAR T-cell therapy), 48 patients were included in the research and divided into two groups (a T-normal group [n=22] and a T-defect [n=26] group). According to univariate and multivariate regression analyses, higher lactate dehydrogenase (LDH) levels before leukapheresis (hazard ratio (HR) = 1.922; p = 0.045) and lower cytokine release syndrome (CRS) grade after CAR T-cell infusion (HR = 0.150; p = 0.026) were independent risk factors of T-cell dysfunction. Moreover, using whole-exon sequencing, we found that germline variants in 47 genes were significantly enriched in the T-defect group compared to the T-normal group (96% vs. 41%; p<0.0001), these genes consisted of CAR structure genes (n=3), T-cell signal 1 to signal 3 genes (n=13), T cell immune regulation- and checkpoint-related genes (n=9), cytokine- and chemokine-related genes (n=13), and T-cell metabolism-related genes (n=9). Heterozygous germline UNC13D mutations had the highest intergroup differences (26.9% vs. 0%; p=0.008). Compound heterozygous CX3CR1I249/M280 variants, referred to as pathogenic and risk factors according to the ClinVar database, were enriched in the T-defect group (3 of 26). In summary, the clinical characteristics and T-cell immunodeficiency genetic features may help explain the underlying mechanism of treatment primary resistance and provide novel insights into CAR T-cell immunotherapy.
Collapse
Affiliation(s)
- Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Weigang Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Wei Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Zhe Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | | | | | - Caixia Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Shugang Xing
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| |
Collapse
|
27
|
Wei J, Xiao M, Mao Z, Wang N, Cao Y, Xiao Y, Meng F, Sun W, Wang Y, Yang X, Chen L, Zhang Y, Zhu H, Zhang S, Zhang T, Zhou J, Huang L. Outcome of aggressive B-cell lymphoma with TP53 alterations administered with CAR T-cell cocktail alone or in combination with ASCT. Signal Transduct Target Ther 2022; 7:101. [PMID: 35399106 PMCID: PMC8995369 DOI: 10.1038/s41392-022-00924-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 01/23/2023] Open
Abstract
TP53 gene alteration confers inferior prognosis in refractory/relapse aggressive B-cell non-Hodgkin lymphoma (r/r B-NHL). From September 2016 to September 2020, 257 r/r B-NHL patients were assessed for eligibility for two trials in our center, assessing anti-CD19 and anti-CD22 chimeric antigen receptor (CAR19/22) T-cell cocktail treatment alone or in combination with autologous stem cell transplantation (ASCT). TP53 alterations were screened in 123 enrolled patients and confirmed in 60. CAR19/22 T-cell administration resulted in best objective (ORR) and complete (CRR) response rate of 87.1% and 45.2% in patients with TP53 alterations, respectively. Following a median follow-up of 16.7 months, median progression-free survival (PFS) was 14.8 months, and 24-month overall survival (OS) was estimated at 56.3%. Comparable ORR, PFS, and OS were determined in individuals with or without TP53 alterations, and in individuals at different risk levels based on functional stratification of TP53 alterations. CAR19/22 T-cell treatment in combination with ASCT resulted in higher ORR, CRR, PFS, and OS, but reduced occurrence of severe CRS in this patient population, even in individuals showing stable or progressive disease before transplantation. The best ORR and CRR in patients with TP53 alterations were 92.9% and 82.1%, respectively. Following a median follow-up of 21.2 months, 24-month PFS and OS rates in patients with TP53 alterations were estimated at 77.5% and 89.3%, respectively. In multivariable analysis, this combination strategy predicted improved OS. In conclusion, CAR19/22 T-cell therapy is efficacious in r/r aggressive B-NHL with TP53 alterations. Combining CAR-T cell administration with ASCT further improves long-term outcome of these patients.
Collapse
Affiliation(s)
- Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Zekai Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Weimin Sun
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Haichuan Zhu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
- Wuhan Bio-Raid Biotechnology CO., LTD, Wuhan, Hubei, 430078, China
| | - Shangkun Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
- Wuhan Bio-Raid Biotechnology CO., LTD, Wuhan, Hubei, 430078, China
| | - Tongcun Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
- Wuhan Bio-Raid Biotechnology CO., LTD, Wuhan, Hubei, 430078, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China.
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China.
| |
Collapse
|
28
|
Kurarinone induced p53-Independent G0/G1 cell cycle arrest by degradation of K-RAS via WDR76 in human colorectal cancer cells. Eur J Pharmacol 2022; 923:174938. [DOI: 10.1016/j.ejphar.2022.174938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
|
29
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
30
|
Minson A, Tam C, Dickinson M, Seymour JF. Targeted Agents in the Treatment of Indolent B-Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:1276. [PMID: 35267584 PMCID: PMC8908980 DOI: 10.3390/cancers14051276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Targeted therapies continue to change the landscape of lymphoma treatment, resulting in improved therapy options and patient outcomes. Numerous agents are now approved for use in the indolent lymphomas and many others under development demonstrate significant promise. In this article, we review the landscape of targeted agents that apply to the indolent lymphomas, predominantly follicular lymphoma, lymphoplasmacytic lymphoma/Waldenstrom macroglobulinaemia and marginal zone lymphoma. The review covers small molecule inhibitors, immunomodulators and targeted immunotherapies, as well as presenting emerging and promising combination therapies.
Collapse
Affiliation(s)
- Adrian Minson
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Constantine Tam
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Dickinson
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F. Seymour
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
31
|
Genomic abnormalities of TP53 define distinct risk groups of paediatric B-cell non-Hodgkin lymphoma. Leukemia 2022; 36:781-789. [PMID: 34675373 PMCID: PMC8885412 DOI: 10.1038/s41375-021-01444-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Children with B-cell non-Hodgkin lymphoma (B-NHL) have an excellent chance of survival, however, current clinical risk stratification places as many as half of patients in a high-risk group receiving very intensive chemo-immunotherapy. TP53 alterations are associated with adverse outcome in many malignancies; however, whilst common in paediatric B-NHL, their utility as a risk classifier is unknown. We evaluated the clinical significance of TP53 abnormalities (mutations, deletion and/or copy number neutral loss of heterozygosity) in a large UK paediatric B-NHL cohort and determined their impact on survival. TP53 abnormalities were present in 54.7% of cases and were independently associated with a significantly inferior survival compared to those without a TP53 abnormality (PFS 70.0% vs 100%, p < 0.001, OS 78.0% vs 100%, p = 0.002). Moreover, amongst patients clinically defined as high-risk (stage III with high LDH or stage IV), those without a TP53 abnormality have superior survival compared to those with TP53 abnormalities (PFS 100% vs 55.6%, p = 0.005, OS 100% vs 66.7%, p = 0.019). Biallelic TP53 abnormalities were either maintained from the presentation or acquired at progression in all paired diagnosis/progression Burkitt lymphoma cases. TP53 abnormalities thus define clinical risk groups within paediatric B-NHL and offer a novel molecular risk stratifier, allowing more personalised treatment protocols.
Collapse
|
32
|
Huang HS, Chu SC, Chen PC, Lee MH, Huang CY, Chou HM, Chu TY. Insuline-Like Growth Factor-2 (IGF2) and Hepatocyte Growth Factor (HGF) Promote Lymphomagenesis in p53-null Mice in Tissue-specific and Estrogen-signaling Dependent Manners. J Cancer 2021; 12:6021-6030. [PMID: 34539876 PMCID: PMC8425200 DOI: 10.7150/jca.60120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/31/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Trp53-/- mice are prone to develop lymphomas at old ages. Factors promoting this tumorigenesis are unknown. Here, we showed human ovulatory follicular fluid (FF) largely promotes lymphomagenesis in Trp53-/- mice at earlier ages. Meanwhile, we clarified that IGF2 and HGF are important cell transforming factors within FF. Methods: To induce tumor formation, 5% FFs, 100 ng/ml IGF2, 20 ng/ml HGF, or both IGF2 and HGF in a volume of 200 µl PBS, was injected into 8-wk-old female Trp53 -/- mice at the mammary fat pad. The injection was repeated weekly for up to 7 weeks or extending to 13 weeks to observe the accumulative incidence of lymphomagenesis. Immunohistochemistry staining and gene rearrangement analysis were used to identify the tumor type. Results: By injecting FF into the mammary fat pad weekly, lymphomas developed in 8/16 (50%) of mice by seven weeks. We identified IGF2 and HGF in FF is largely responsible for this activity. The same weekly injection of IGF2, HGF, and their combination induced lymphomas in 4/11 (36%), 3/8 (38%), and 6/9 (67%) mice, respectively. Interestingly, tumorigenesis was induced only when those were injected into the adipose tissues in the mammary gland, but not when injected into non-adipose sites. We also found this tumor-promoting activity is estradiol (E2)-dependent and relies on estrogen receptor (ER) α expression in the adipose stroma. No tumor or only tiny tumor was yielded when the ovaries were resected or when ER is antagonized. Finally, an extension of the weekly FF-injection to 13 weeks did not further increase the lymphomagenesis rate, suggesting an effect on pre-initiated cancer cells. Conclusions: Taken together, the study disclosed a robust tumor-promoting effect of IGF2 and HGF in the p53 loss-initiated lymphomagenesis depending on an adipose microenvironment in the presence of E2. In light of the clarity of this spontaneous tumor promotion model, we provide a new tool for studying p53-mediated lymphomagenesis and suggest that, as a chemoprevention test, this is a practical model to perform.
Collapse
Affiliation(s)
- Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,School of Medicine, College of Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Ming-Hsun Lee
- Department of Pathology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Chi-Ya Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Hsien-Ming Chou
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.,Department of Life Science, Tzu Chi University, Hualien 970, Taiwan, ROC
| |
Collapse
|
33
|
Abstract
Tazemetostat represents the first epigenetic therapy approved for the treatment of follicular lymphoma (FL). It inhibits the activity of the enhancer of zeste homolog 2 (EZH2) histone methyltransferase, the first of a multitude of epigenetic regulators that have been identified as recurrently mutated in FL and germinal center diffuse large B-cell lymphoma. In this review, we discuss the initial discovery and ongoing exploration of the functional role of EZH2 mutations in lymphomagenesis. We also explore the path from the preclinical development of tazemetostat to its approval for the treatment of relapsed FL, and potential future therapeutic applications. We discuss the clinical data that led to the approval of tazemetostat and ongoing research into the function of EZH2 and of tazemetostat in lymphomas that derive from the germinal center, which could increase the applicability of this drug in the future.
Collapse
|
34
|
Bonzheim I, Quintanilla-Martinez L. All activated signaling pathways lead to anaplastic large cell lymphoma (ALCL). Leuk Lymphoma 2021; 62:1541-1543. [PMID: 34020569 DOI: 10.1080/10428194.2021.1924373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Irina Bonzheim
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Wang TS, Tian W, Fang Y, Guo KR, Li AQ, Sun Y, Wu HT, Zheng GQ, Feng NN, Xing CH, Au WW, Sun DY, Xia ZL. Changes in miR-222 expression, DNA repair capacity, and MDM2-p53 axis in association with low-dose benzene genotoxicity and hematotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142740. [PMID: 33071125 DOI: 10.1016/j.scitotenv.2020.142740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023]
Abstract
Mechanisms for hematotoxicity and health effects from exposure to low doses of benzene (BZ) remain to be identified. To address the information gap, our investigation was focused onto using appropriate populations and cell cultures to investigate novel BZ-induced effects such as disruption of DNA repair capacity (DRC). From our study, abnormal miRNAs were identified and validated using lymphocytes from 56 BZ-poisoned workers and 53 controls. In addition, 173 current BZ-exposed workers and 58 controls were investigated for key miRNA expression using RT-PCR and for cellular DRC using a challenge assay. Subsequently, the observed activities in lymphocytes were verified using human HL-60 (p53 null) and TK6 (p53 wild-type) cells via 1,4-benzoquinone (1,4-BQ) treatment and miR-222 interferences. The targeting of MDM2 by miR-222 was validated using a luciferase reporter. Our results indicate induction of genotoxicity in lymphocytes from workers with low exposure doses to BZ. In addition, miR-222 expression was up-regulated among both BZ-poisoned and BZ-exposed workers together with inverse association with DRC. Our in vitro validation studies using both cell lines indicate that 1,4-BQ exposure increased expression of miR-222 and Comet tail length but decreased DRC. Loss of miR-222 reduced DNA damage, but induced S-phase arrest and apoptosis. However, silencing of MDM2 failed to activate p53 in TK6 cells. In conclusion, our in vivo observations were confirmed by in vitro studies showing that BZ/1,4-BQ exposures caused genotoxicity and high expression of miR-222 which obstructed expression of the MDM2-p53 axis that led to failed activation of p53, abnormal DRC and serious biological consequences.
Collapse
Affiliation(s)
- Tong-Shuai Wang
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wei Tian
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yan Fang
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Kong-Rong Guo
- Department of Occupational Disease, Shanghai Pulmonary Hospital/Shanghai Hospital for Occupational Disease Prevention and Treatment, Shanghai 200082, China
| | - An-Qi Li
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuan Sun
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, 200040, China
| | - Han-Tian Wu
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Guo-Qiao Zheng
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Nan-Nan Feng
- School of Public Health, School of Medicine of Shanghai Jiaotong University, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai 200050, China
| | - Cai-Hong Xing
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100032, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania; Shantou University Medical College, Shantou 515000, China
| | - Dao-Yuan Sun
- Department of Occupational Disease, Shanghai Pulmonary Hospital/Shanghai Hospital for Occupational Disease Prevention and Treatment, Shanghai 200082, China.
| | - Zhao-Lin Xia
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
36
|
Sinatkas V, Stathopoulou K, Xagoraris I, Ye J, Vyrla D, Atsaves V, Leventaki V, Medeiros LJ, Rassidakis GZ, Drakos E. MDMX/MDM4 is highly expressed and contributes to cell growth and survival in anaplastic large cell lymphoma. Leuk Lymphoma 2021; 62:1563-1573. [PMID: 33569988 DOI: 10.1080/10428194.2021.1876871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We hypothesized that murine double minute X (MDMX), a negative p53-regulator, may be involved in dysfunctional p53-signaling in anaplastic large cell lymphoma (ALCL), anaplastic lymphoma kinase (ALK)-positive and ALK-negative, characterized frequently by non-mutated TP53 (wt-p53). By western blot analysis, MDMX was highly expressed in ALK + ALCL and expressed at variable levels in ALK- ALCL cell lines. By immunohistochemistry, high MDMX levels were observed more frequently in ALK + ALCL (36/46; 78%), compared with ALK- ALCL tumors (12/29; 41%) (p < .0018, Mann-Whitney-test). FISH analysis showed MDMX-amplification in 1 of 13 (8%) ALK- ALCL tumors, and low-level MDMX copy gains in 2 of 13 (15%) ALK- ALCL and 3 of 11 (27%) ALK + ALCL tumors. MDMX-pharmacologic inhibition or siRNA-mediated MDMX-silencing were associated with activated p53 signaling, growth inhibition and apoptotic cell death in wt-p53 ALCL cells, providing evidence that targeting MDMX may provide a new therapeutic approach for ALCL patients with wt-p53.
Collapse
Affiliation(s)
- Vaios Sinatkas
- Department of Pathology, University of Crete, Medical School, Heraklion, Greece
| | | | - Ioanna Xagoraris
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jingjing Ye
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Dimitra Vyrla
- Department of Pathology, University of Crete, Medical School, Heraklion, Greece
| | - Vasilios Atsaves
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Vasiliki Leventaki
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Drakos
- Department of Pathology, University of Crete, Medical School, Heraklion, Greece.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Zhou W, Chen W. Development of molecular intervention strategies for B-cell lymphoma. Expert Rev Hematol 2021; 14:241-252. [PMID: 33263441 DOI: 10.1080/17474086.2021.1856652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION There are many genetic mutations involved in B-cell lymphomagenesis. These mutations contribute to the prognosis of B-cell lymphomas and can be used for and targeted for intervention. AREAS COVERED This review provides an overview of targeted gene therapies for B-cell lymphoma that were newly approved or are under clinical development. These include, TP53 mutations and related pathways, such as BTK inhibitors, MDM2/4 inhibitors, and XPO1 inhibitors; new drugs targeting EZH2 mutations through competitive inhibition, such as tazemetostat and GSK126; BCL-2-targeted therapeutics, including venetoclax and ABT-263; BTK, IRAK 1/4, HCK, and myddosome complex that targets the MYD88 mutation and the related pathways. In addition, we have also discussed gene mutations that have been reported as potential therapeutic targets, such as TNFAIP3, CARD11. EXPERT OPINION The mechanisms underlying the role of several genetic mutations in lymphomagenesis have been reported, and several studies have designed and developed drugs targeting these mutations. Many of these drugs have been approved for clinical use, while several are still under clinical development. Recent studies have identified additional genetic mutations and gene targets for BCL-2 treatment; however, effective molecular interventions targeting these new targets are yet to be developed.
Collapse
Affiliation(s)
- Wenyujing Zhou
- Department of Hematology, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Weihong Chen
- Department of Hematology, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Qin Y, Jiang S, Liu P, Yang J, Yang S, He X, Zhou S, Gui L, Lin J, Du X, Yi Y, Sun Y, Shi Y. Characteristics and Management of TP53-Mutated Diffuse Large B-Cell Lymphoma Patients. Cancer Manag Res 2020; 12:11515-11522. [PMID: 33204162 PMCID: PMC7666999 DOI: 10.2147/cmar.s269624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023] Open
Abstract
Background/Aim TP53 mutation is recognized as a negative prognostic factor for patients with diffuse large B-cell lymphoma (DLBCL). Here, we present the characteristics of TP53mut DLBCL patients following investigation of the effect of a treatment approach on survival of TP53mut DLBCL patients. Methods A total of 44 DLBCL patients with TP53mut and treated with an R-CHOP regimen were included for analysis. Patients who failed to achieve a complete response (CR) to initial treatment or relapsed in the first 6 months after initial CR were deemed to have primary refractory disease. Results Among 44 patients harboring TP53 mutations who underwent upfront R-CHOP or R-CHOP–like treatment, 21 (47.7%) had limited-stage and 23 (52.3%) presented advanced-stage disease. Apart from the seven patients receiving upfront surgical resection, 37 had measurable disease under the R-CHOP regimen, with 59.1% (n=26) developing primary refractory disease. Seven limited-stage patients after early complete resection and one with residue resection remained event-free at median follow-up of 37 months. Multivariate analysis revealed that elevated baseline lactate dehydrogenase (LDH), extranodal involvement (two or more), Ann Arbor stage, and locoregional treatment (surgery or radiation therapy) were independent indicators for progression-free survival (PFS). After adjustment for baseline LDH and extranodal involvement, adding locoregional treatment including surgery and radiation to the R-CHOP regimen significantly improved PFS (p=0.008) and overall survival (p=0.017) in limited-stage TP53mut DLBCL patients compared to R-CHOP–only treatment. Conclusion This study presents the characteristics of TP53-mutated DLBCL and implies a potential benefit of locoregional treatment in limited-stage DLBCL patients with TP53 mutations.
Collapse
Affiliation(s)
- Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Shiyu Jiang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Xiaohui He
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Jing Lin
- Burning Rock Biotech, Guangzhou, Mainland China
| | - Xinhua Du
- Geneplus Beijing, Beijing, People's Republic of China
| | - Yuting Yi
- Geneplus Beijing, Beijing, People's Republic of China
| | - Yan Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| |
Collapse
|
39
|
Cupido-Sánchez MG, Herrera-González NE, Mendoza CCB, Hernández MLM, Ramón-Gallegos E. In silico analysis of the association of hsa-miR-16 expression and cell survival in MDA-MB-231 breast cancer cells subjected to photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 33:102106. [PMID: 33217568 DOI: 10.1016/j.pdpdt.2020.102106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Breast cancer is the most common malignancy effecting women, and the triple-negative breast cancer (TNBC) subtype is particularly aggressive. This study aimed to evaluate the differential expression pattern of microRNAs (miRNAs) between untreated MDA-MB-231 cells (TNBC cell model) and those that survived photodynamic therapy (PDT) to gain insights into cell survival mechanisms. METHODS Two PDT cycles were applied to MDA-MB-231 cells, using δ-aminolevulinic acid (ALA) followed by laser light at 635 nm. RNA was obtained from cells surviving PDT and untreated cells. The miRNAs expression profile was analyzed to detect the differences between the two groups. The potential target network of hsa-miR-16 was examined in silico with the integrative database Ingenuity® Pathway Analysis software. RESULTS After the first and second PDT cycles, 17.8% and 49.6% of the MDA-MB-231 cells were viable. Microarray profiling of miRNAs showed decreased hsa-miR-16 expression (p < 0.05) in MDA-MB-231 cells surviving PDT when compared to the control cells. The predicted downstream targets of hsa-miR-16 were: 1) tumor suppressor protein 53; 2) molecules related to the cell cycle, such as cyclin D1, D3, and E1, and checkpoint kinase 1; 3) cell proliferation molecules, including fibroblast growth factor 1, 2 and 7 and fibroblast growth factor receptor 1; and 4) apoptosis-related molecules, consisting of BCL-2, B-cell leukemia/lymphoma 2, caspase 3, and cytochrome c. CONCLUSIONS The differential expression of hsa-miR-16 between untreated MDA-MB-231 cells and those surviving PDT has not been previously reported. There was a lower expression of hsa-miR-16 in treated cells, which probably altered its downstream target network. In silico analysis predicted, a network related to the cell cycle, proliferation and apoptosis. These results are congruent with previous descriptions of hsa-miR-16 as a tumor suppressor and suggest that the treated population has increased their capacity to survive.
Collapse
Affiliation(s)
- María Guadalupe Cupido-Sánchez
- Molecular Oncology Lab, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, 11340, Ciudad de México, Mexico.
| | - Norma Estela Herrera-González
- Molecular Oncology Lab, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, 11340, Ciudad de México, Mexico.
| | - Columba Citlalli Barrera Mendoza
- Environmental Cytopathology Lab, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Wilfrido Massieu, Esq. Cda. Manuel Stampa Zacatenco, Gustavo A. Madero, 07736, Ciudad de México, Mexico.
| | - María Luisa Morales Hernández
- Environmental Cytopathology Lab, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Wilfrido Massieu, Esq. Cda. Manuel Stampa Zacatenco, Gustavo A. Madero, 07736, Ciudad de México, Mexico.
| | - Eva Ramón-Gallegos
- Environmental Cytopathology Lab, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Wilfrido Massieu, Esq. Cda. Manuel Stampa Zacatenco, Gustavo A. Madero, 07736, Ciudad de México, Mexico.
| |
Collapse
|
40
|
Gifford G, Stevenson W, Best G. Combination of the dual PIM/PI3-kinase inhibitor IBL-202 and venetoclax is effective in diffuse large B-cell lymphoma. Leuk Lymphoma 2020; 61:3165-3176. [PMID: 32723130 DOI: 10.1080/10428194.2020.1795156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Current chemoimmunotherapy is unable to cure up to 40% of patients diagnosed with diffuse large B-cell lymphoma (DLBCL). Targeting the mechanisms by which DLBCL evades apoptosis is crucial to overcoming treatment failure in this heterogeneous disease as both current and novel treatments depend on the apoptosis of malignant cells. Despite the common overexpression of BCL-2, venetoclax is ineffective in DLBCL due to MCL-1 co-expression. This is driven by pro-growth PI3-kinase signaling, which is promoted in turn by PIM kinases. In this study, the novel dual-kinase inhibitor, IBL-202, was combined with venetoclax against a panel of DLBCL cell lines that have variable expression of pro-survival proteins. The results support the efficacy of simultaneously targeting inter-related molecules to overcome apoptotic escape in this biologically heterogeneous disease. As venetoclax, pan-PIM-kinase and pan-PI3-kinase inhibitors have, or are currently being studied in clinical trials, it may be rational to consider these drugs in combination for the treatment of DLBCL.
Collapse
Affiliation(s)
- Grace Gifford
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney. St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| | - William Stevenson
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney. St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| | - Giles Best
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney. St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
41
|
Jiang S, Qin Y, Jiang H, Liu B, Shi J, Meng F, Liu P, Yang J, Yang S, He X, Zhou S, Gui L, Liu H, Lin J, Han-Zhang H, Shi Y. Molecular profiling of Chinese R-CHOP treated DLBCL patients: Identifying a high-risk subgroup. Int J Cancer 2020; 147:2611-2620. [PMID: 32399964 DOI: 10.1002/ijc.33049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically aggressive and heterogenous disease. Although most patients can be cured by immunochemotherapy, 30% to 40% patient will ultimately develop relapsed or refractory disease. Here, we investigated the molecular landscapes of patients with diverse responses to R-CHOP. We performed capture-based targeted sequencing on baseline samples of 105 DLBCL patients using a panel consisting of 112 lymphoma-related genes. Subsequently, 81 treatment-naïve patients with measurable disease and followed for over 1 year were included for survival analysis. Collectively, the most commonly seen mutations included IGH fusion (69%), PIM1(33%), MYD88 (29%), BCL2 (29%), TP53 (29%), CD79B (25%) and KMT2D (24%). Patients with TP53 mutations were more likely to have primary refractory disease (87.0% vs 50.0%, P = .009). For those with TP53 disruptive mutations, 91.7% patients were in the primary refractory group. Interestingly, BCL-2 somatic hypermutation was only seen in patients without primary refractory disease (P = .014). In multivariate analysis, BCL-2 amplification (hazard ratio [HR] = 2.94, P = .022), B2M mutation (HR = 2.99, P = .017) and TP53 mutation (HR = 3.19, P < .001) were independently associated with shorter time to progression (TTP). Furthermore, TP53 mutations was correlated with worse overall survival (P = .049). Next, we investigated mutation landscape in patients with wild-type (WT) TP53 (n = 58) and found that patients harboring MYD88 L265P had significantly inferior TTP than those with WT or non-265P (P = .046). Our study reveals the mutation spectrum of treatment-naive Chinese DLBCL patients. It also confirms the clinical significance of TP53 mutations and indicates the prognostic value of MYD88 L265P in TP53 WT patients.
Collapse
Affiliation(s)
- Shiyu Jiang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Hongxin Jiang
- Department of Medical Oncology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Biao Liu
- Department of Pathology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianming Shi
- Department of Medical Oncology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Fanlu Meng
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xiaohui He
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Hao Liu
- Burning Rock Biotech, Guangzhou, China
| | - Jing Lin
- Burning Rock Biotech, Guangzhou, China
| | | | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| |
Collapse
|
42
|
BCL-2 Proteins in Pathogenesis and Therapy of B-Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2020; 12:cancers12040938. [PMID: 32290241 PMCID: PMC7226356 DOI: 10.3390/cancers12040938] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
The ability to inhibit mitochondrial apoptosis is a hallmark of B-cell non-Hodgkin lymphomas (B-NHL). Activation of mitochondrial apoptosis is tightly controlled by members of B-cell leukemia/lymphoma-2 (BCL-2) family proteins via protein-protein interactions. Altering the balance between anti-apoptotic and pro-apoptotic BCL-2 proteins leads to apoptosis evasion and extended survival of malignant cells. The pro-survival BCL-2 proteins: B-cell leukemia/lymphoma-2 (BCL-2/BCL2), myeloid cell leukemia-1 (MCL-1/MCL1) and B-cell lymphoma-extra large (BCL-XL/BCL2L1) are frequently (over)expressed in B-NHL, which plays a crucial role in lymphoma pathogenesis, disease progression, and drug resistance. The efforts to develop inhibitors of anti-apoptotic BCL-2 proteins have been underway for several decades and molecules targeting anti-apoptotic BCL-2 proteins are in various stages of clinical testing. Venetoclax is a highly specific BCL-2 inhibitor, which has been approved by the US Food and Drug Agency (FDA) for the treatment of patients with chronic lymphocytic leukemia (CLL) and is in advanced clinical testing in other types of B-NHL. In this review, we summarize the biology of BCL-2 proteins and the mechanisms of how these proteins are deregulated in distinct B-NHL subtypes. We describe the mechanism of action of BH3-mimetics and the status of their clinical development in B-NHL. Finally, we summarize the mechanisms of sensitivity/resistance to venetoclax.
Collapse
|
43
|
Cohen JA, Bomben R, Pozzo F, Tissino E, Härzschel A, Hartmann TN, Zucchetto A, Gattei V. An Updated Perspective on Current Prognostic and Predictive Biomarkers in Chronic Lymphocytic Leukemia in the Context of Chemoimmunotherapy and Novel Targeted Therapy. Cancers (Basel) 2020; 12:cancers12040894. [PMID: 32272636 PMCID: PMC7226446 DOI: 10.3390/cancers12040894] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with a variable clinical course. Novel biomarkers discovered over the past 20 years have revolutionized the way clinicians approach prognostication and treatment especially in the chemotherapy-free era. Herein, we review the best established prognostic and predictive biomarkers in the setting of chemoimmunotherapy (CIT) and novel targeted therapy. We propose that TP53 disruption (defined as either TP53 mutation or chromosome 17p deletion), unmutated immunoglobulin heavy chain variable region gene status (UM IGHV), NOTCH1 mutation, and CD49d expression are the strongest prognosticators of disease progression and overall survival in the field of novel biomarkers including recurrent gene mutations. We also highlight the predictive role of TP53 disruption, UM IGHV, and NOTCH1 mutation in the setting of CIT and TP53 disruption and CD49d expression in the setting of novel targeted therapy employing B-cell receptor (BCR) and B-cell lymphoma-2 (BCL2) inhibition. Finally, we discuss future directions in the field of biomarker development to identify those with relapsed/refractory disease at risk for progression despite treatment with novel therapies.
Collapse
Affiliation(s)
- Jared A. Cohen
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Andrea Härzschel
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (A.H.); (T.N.H.)
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (A.H.); (T.N.H.)
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
- Correspondence: ; Tel.: +39-0434-659720; Fax: +39-0434-659409
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| |
Collapse
|
44
|
Drug Resistance in Non-Hodgkin Lymphomas. Int J Mol Sci 2020; 21:ijms21062081. [PMID: 32197371 PMCID: PMC7139754 DOI: 10.3390/ijms21062081] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) are lymphoid tumors that arise by a complex process of malignant transformation of mature lymphocytes during various stages of differentiation. The WHO classification of NHL recognizes more than 90 nosological units with peculiar pathophysiology and prognosis. Since the end of the 20th century, our increasing knowledge of the molecular biology of lymphoma subtypes led to the identification of novel druggable targets and subsequent testing and clinical approval of novel anti-lymphoma agents, which translated into significant improvement of patients’ outcome. Despite immense progress, our effort to control or even eradicate malignant lymphoma clones has been frequently hampered by the development of drug resistance with ensuing unmet medical need to cope with relapsed or treatment-refractory disease. A better understanding of the molecular mechanisms that underlie inherent or acquired drug resistance might lead to the design of more effective front-line treatment algorithms based on reliable predictive markers or personalized salvage therapy, tailored to overcome resistant clones, by targeting weak spots of lymphoma cells resistant to previous line(s) of therapy. This review focuses on the history and recent advances in our understanding of molecular mechanisms of resistance to genotoxic and targeted agents used in clinical practice for the therapy of NHL.
Collapse
|
45
|
Kurihara M, Komatsu K, Awane R, Inoue YH. Loss of Histone Locus Bodies in the Mature Hemocytes of Larval Lymph Gland Result in Hyperplasia of the Tissue in mxc Mutants of Drosophila. Int J Mol Sci 2020; 21:E1586. [PMID: 32111032 PMCID: PMC7084650 DOI: 10.3390/ijms21051586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
Mutations in the multi sex combs (mxc) gene in Drosophila results in malignant hyperplasia in larval hematopoietic tissues, called lymph glands (LG). mxc encodes a component of the histone locus body (HLB) that is essential for cell cycle-dependent transcription and processing of histone mRNAs. The mammalian nuclear protein ataxia-telangiectasia (NPAT) gene, encoded by the responsible gene for ataxia telangiectasia, is a functional Mxc orthologue. However, their roles in tumorigenesis are unclear. Genetic analyses of the mxc mutants and larvae having LG-specific depletion revealed that a reduced activity of the gene resulted in the hyperplasia, which is caused by hyper-proliferation of immature LG cells. The depletion of mxc in mature hemocytes of the LG resulted in the hyperplasia. Furthermore, the inhibition of HLB formation was required for LG hyperplasia. In the mutant larvae, the total mRNA levels of the five canonical histones decreased, and abnormal forms of polyadenylated histone mRNAs, detected rarely in normal larvae, were generated. The ectopic expression of the polyadenylated mRNAs was sufficient for the reproduction of the hyperplasia. The loss of HLB function, especially 3-end processing of histone mRNAs, is critical for malignant LG hyperplasia in this leukemia model in Drosophila. We propose that mxc is involved in the activation to induce adenosine deaminase-related growth factor A (Adgf-A), which suppresses immature cell proliferation in LG.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan; (M.K.); (K.K.); (R.A.)
| |
Collapse
|
46
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
47
|
Aitken MJL, Lee HJ, Post SM. Emerging treatment options for patients with p53-pathway-deficient CLL. Ther Adv Hematol 2019; 10:2040620719891356. [PMID: 31839919 PMCID: PMC6896129 DOI: 10.1177/2040620719891356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022] Open
Abstract
Over the past 40 years, p53 has been the most widely studied protein in cancer biology. Originally thought to be an oncogene due to its stabilization in many cancers, it is now considered to be one of the most critical tumor suppressors in a cell's ability to combat neoplastic transformation. Due to its critical roles in apoptosis, cell-cycle arrest, and senescence, TP53 deletions and mutations are commonly observed and are often a portent of treatment failures and poor clinical outcomes. This is particularly true in chronic lymphocytic leukemia (CLL), as patients with p53 alterations have historically had dismal outcomes. As such, the tremendous efforts made to better understand the functions of p53 in CLL have contributed substantially to recent advances in treating patients with p53-pathway-deficient CLL.
Collapse
Affiliation(s)
- Marisa J L Aitken
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hun J Lee
- Department of Lymphoma and Multiple Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030-4000, USA
| |
Collapse
|
48
|
Advani P, Paulus A, Ailawadhi S. Updates in prognostication and treatment of Waldenström’s macroglobulinemia. Hematol Oncol Stem Cell Ther 2019; 12:179-188. [DOI: 10.1016/j.hemonc.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/22/2019] [Accepted: 05/05/2019] [Indexed: 11/30/2022] Open
|
49
|
Ma Z, Niu J, Cao Y, Pang X, Cui W, Zhang W, Li X. Clinical significance of 'double-hit' and 'double-expression' lymphomas. J Clin Pathol 2019; 73:126-138. [PMID: 31615842 DOI: 10.1136/jclinpath-2019-206199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND 'Double-hit' lymphoma (DHL) and 'double-expression' lymphoma (DEL) involving gene rearrangement and protein expression of MYC and BCL2/BCL6 have recently become the most commonly used terms to describe the poor prognostic types of diffuse large B-cell lymphoma (DLBCL). However, the clinical and pathological spectra of these rare entities have not been well defined. The aim of this study was to determine the frequency of DHL and DEL in DLBCL and their prognostic impacts in the era of cyclophosphamide, doxorubicin, vincristine and prednisone plus rituximab therapy. METHODS The data and tissues from 98 patients diagnosed with DLBCL were used in this study. Formalin-fixed and paraffin-embedded tissues were constructed for immunohistochemistry (IHC) and interphase fluorescene in situ hybridisation (FISH) analysis for MYC, BCL6 and BCL2 rearrangements. RESULTS There were 14 cases (14.29%, 14/98) and 34 cases (34.70%, 34/98) of lymphomas with the DHL and DEL of MYC and BCL2/BCL6, respectively. DLBCL patients with MYC/BCL2 rearrangements more frequently had bone marrow involvement (p=0.002), and their tumours were commonly of the germinal centre B cell (GCB) subtype. Patients with MYC+/BCL2 +coexpression were more often assessed using the International Prognostic Index (IPI), (Performance Status) PS score and bone marrow involvement. Patients with MYC+/BCL6 +coexpression were associated with their IPI values, Eastern Cooperative Oncology Group scores and occurrence of B symptoms. Their lymphomas were more often of the non-GCB subtype (p=0.010). Multivariate analysis showed that IPI, bone marrow involvement, rearrangements of BCL2, BCL6 and MYC, expression concurrent with rearrangements and coexpression were all significantly associated with overall survival and progression-free survival, with the exception of MYC+/BCL6 +coexpression. CONCLUSIONS MYC/BCL2 DHL, MYC/BCL6 DHL and MYC/BCL2 DEL are an aggressive B cell lymphoma and patients have a poor prognosis. IPI and bone marrow involvement were independent prognostic factors for DHL and DEL. BCL2, BCL6 and MYC rearrangements translocation, expression concurrent rearrangements and coexpression were were independent prognostic factors for survival. POTENTIAL IMPLICATIONS The present study analysed the genomic alterations and protein expression levels of MYC, BCL2 and BCL6 using FISH and IHC in Chinese patients with DLBCL.We assessed the frequency, clinicopathological features and the prognostic impacts of DHL and DEL in a cohort of de novo DLBCL patients and evaluated the role of each genetic translocation separately and in combination in order to provide reliable conclusions and practical recommendations for diagnostic workups and prognostic predictions.
Collapse
Affiliation(s)
- Zhiping Ma
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Niu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Medical University, Urumqi, China
| | - Yanzhen Cao
- Department of Pathology, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University, Urumqi, China
| | - Xuelian Pang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenli Cui
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinxia Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
50
|
Miao Y, Medeiros LJ, Li Y, Li J, Young KH. Genetic alterations and their clinical implications in DLBCL. Nat Rev Clin Oncol 2019; 16:634-652. [PMID: 31127191 DOI: 10.1038/s41571-019-0225-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous lymphoid neoplasm with variations in gene expression profiles and genetic alterations, which lead to substantial variations in clinical course and response to therapy. The advent of high-throughput genome sequencing platforms, and especially whole-exome sequencing, has helped to define the genetic landscape of DLBCL. In the past 10 years, these studies have identified many genetic alterations in DLBCL, some of which are specific to B cell lymphomas, whereas others can also be observed in other types of cancer. These aberrations result in altered activation of a wide range of signalling pathways and other cellular processes, including those involved in B cell differentiation, B cell receptor signalling, activation of the NF-κB pathway, apoptosis and epigenetic regulation. Further elaboration of the genetics of DLBCL will not only improve our understanding of disease pathogenesis but also provide further insight into disease classification, prognostication and therapeutic targets. In this Review, we describe the current understanding of the prevalence and causes of specific genetic alterations in DLBCL and their role in disease development and progression. We also summarize the available clinical data on therapies designed to target the aberrant pathways driven by these alterations.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|