1
|
Choi JH, Kim S. Biochemical Properties and Antithrombotic Effect of a Serine Protease Isolated from the Medicinal Mushroom Pycnoporus coccineus (Agaricomycetes). Int J Med Mushrooms 2024; 26:53-68. [PMID: 38801087 DOI: 10.1615/intjmedmushrooms.2024053631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The purification of a fibrinolytic enzyme from the fruiting bodies of wild-growing medicinal mushroom, Pycnoporus coccineus was achieved through a two-step procedure, resulting in its homogeneity. This purification process yielded a significant 4.13-fold increase in specific activity and an 8.0% recovery rate. The molecular weight of P. coccineus fibrinolytic enzyme (PCFE) was estimated to be 23 kDa using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. PCFE demonstrated its optimal activity at a temperature of 40 °C and pH 8. Notably, the enzymatic activity was inhibited by the presence of zinc or copper metal ions, as well as serine protease inhibitors, such as phenylmethylsulfonyl fluoride and 4-amidinophenylmethanesulfonyl fluoride. PCFE exhibited remarkable specificity towards a synthetic chromogenic substrate for thrombin. The enzyme demonstrated the Michaelis-Menten constant (Km), maximal velocity (V ), and catalytic rate constant (Kcat) values of 3.01 mM, 0.33 mM min-1 μg-1, and 764.1 s-1, respectively. In vitro assays showed PCFE's ability to effectively degrade fibrin and blood clots. The enzyme induced alterations in the density and structural characteristics of fibrin clots. PCFE exhibited significant effects on various clotting parameters, including recalcification time, activated partial thromboplastin time, prothrombin time, serotonin secretion from thrombin-activated platelets, and thrombin-induced acute thromboembolism. These findings suggest that P. coccineus holds potential as an antithrombotic biomaterials and resources for cardiovascular research.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Food Science and Biotechnology, Gwangju University, Gwangju 61743, Republic of Korea
| | | |
Collapse
|
2
|
Jia L, Limeng D, Xiaoyin T, Junwen W, Xintong Z, Gang X, Yun B, Hong G. A Novel Splicing Mutation c.335-1 G > A in the Cardiac Transcription Factor NKX2-5 Leads to Familial Atrial Septal Defect Through miR-19 and PYK2. Stem Cell Rev Rep 2022; 18:2646-2661. [PMID: 35778654 DOI: 10.1007/s12015-022-10400-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 10/17/2022]
Abstract
Mutations of NKX2-5 largely contribute to congenital heart diseases (CHDs), especially atrial septal defect (ASD). We identified a novel heterozygous splicing mutation c.335-1G > A in NKX2-5 gene in an ASD family via whole exome sequencing (WES) and linkage analysis. Utilizing the human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) as a disease model, we showed that haploinsufficiency of NKX2-5 contributed to aberrant orchestration of apoptosis and proliferation in ASD patient-derived hiPSC-CMs. RNA-seq profiling and dual-luciferase reporter assay revealed that NKX2-5 acts upstream of PYK2 via miR-19a and miR-19b (miR-19a/b) to regulate cardiomyocyte apoptosis. Meanwhile, miR-19a/b are also downstream mediators of NKX2-5 during cardiomyocyte proliferation. The novel splicing mutation c.335-1G > A in NKX2-5 and its potential pathogenic roles in ASD were demonstrated. Our work provides clues not only for deep understanding of NKX2-5 in cardia development, but also for better knowledge in the molecular mechanisms of CHDs.
Collapse
Affiliation(s)
- Li Jia
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Dai Limeng
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Tan Xiaoyin
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Wang Junwen
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Zhu Xintong
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Xiong Gang
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Bai Yun
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038.
| | - Guo Hong
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038.
| |
Collapse
|
3
|
Yue M, Hu M, Fu F, Ruan H, Wu C. Emerging Roles of Platelets in Allergic Asthma. Front Immunol 2022; 13:846055. [PMID: 35432313 PMCID: PMC9010873 DOI: 10.3389/fimmu.2022.846055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Allergic asthma is a complex chronic inflammatory disease of the airways, driven by Th2 immune responses and characterized by eosinophilic pulmonary inflammation, airway hyperresponsiveness, excessive mucus production, and airway remodeling. Overwhelming evidence from studies in animal models and allergic asthmatic patients suggests that platelets are aberrantly activated and recruited to the lungs. It has been established that platelets can interact with other immune cells and secrete various biochemical mediators to promote allergic sensitization and airway inflammatory response, and platelet deficiency may alleviate the pathological features and symptoms of allergic asthma. However, the comprehensive roles of platelets in allergic asthma have not been fully clarified, leaving attempts to treat allergic asthma with antiplatelet agents questionable. In this review, we summarize the role of platelet activation and pulmonary accumulation in allergic asthma; emphasis is placed on the different interactions between platelets with crucial immune cell types and the contribution of platelet-derived mediators in this context. Furthermore, clinical antiplatelet approaches to treat allergic asthma are discussed. This review provides a clearer understanding of the roles of platelets in the pathogenesis of allergic asthma and could be informative in the development of novel strategies for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengjiao Hu
- Department of Immunology and Microbiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Local blood coagulation drives cancer cell arrest and brain metastasis in a mouse model. Blood 2021; 137:1219-1232. [PMID: 33270819 DOI: 10.1182/blood.2020005710] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Clinically relevant brain metastases (BMs) frequently form in cancer patients, with limited options for effective treatment. Circulating cancer cells must first permanently arrest in brain microvessels to colonize the brain, but the critical factors in this process are not well understood. Here, in vivo multiphoton laser-scanning microscopy of the entire brain metastatic cascade allowed unprecedented insights into how blood clot formation and von Willebrand factor (VWF) deposition determine the arrest of circulating cancer cells and subsequent brain colonization in mice. Clot formation in brain microvessels occurred frequently (>95%) and specifically at intravascularly arrested cancer cells, allowing their long-term arrest. An extensive clot embedded ∼20% of brain-arrested cancer cells, and those were more likely to successfully extravasate and form a macrometastasis. Mechanistically, the generation of tissue factor-mediated thrombin by cancer cells accounted for local activation of plasmatic coagulation in the brain. Thrombin inhibition by treatment with low molecular weight heparin or dabigatran and an anti-VWF antibody prevented clot formation, cancer cell arrest, extravasation, and the formation of brain macrometastases. In contrast, tumor cells were not able to directly activate platelets, and antiplatelet treatments did reduce platelet dispositions at intravascular cancer cells but did not reduce overall formation of BMs. In conclusion, our data show that plasmatic coagulation is activated early by intravascular tumor cells in the brain with subsequent clot formation, which led us to discover a novel and specific mechanism that is crucial for brain colonization. Direct or indirect thrombin and VWF inhibitors emerge as promising drug candidates for trials on prevention of BMs.
Collapse
|
5
|
Irfan M, Lee YY, Lee KJ, Kim SD, Rhee MH. Comparative antiplatelet and antithrombotic effects of red ginseng and fermented red ginseng extracts. J Ginseng Res 2021; 46:387-395. [PMID: 35600768 PMCID: PMC9120646 DOI: 10.1016/j.jgr.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/10/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Muhammad Irfan
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuan Yee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ki-Ja Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Dae Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author. Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
6
|
Ginsenoside Rk1 suppresses platelet mediated thrombus formation by downregulation of granule release and α IIbβ 3 activation. J Ginseng Res 2020; 45:490-497. [PMID: 34295209 PMCID: PMC8282495 DOI: 10.1016/j.jgr.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
Background and objective Synthetic ginsenoside compounds G-Rp (1,3, and 4) and natural ginsenosides in Panax ginseng 20(S)-Rg3, Rg6, F4 and Ro have inhibitory actions on human platelets. However, the inhibitory mechanism of ginsenoside Rk1 (G-Rk1) is still unclear thus, we initiated investigation of the anti-platelet mechanism by G-Rk1 from Panax ginseng. Methodology Our study focused to investigate the action of G-Rk1 on agonist-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding with integrin αIIbβ3 using flow cytometry, intracellular calcium mobilization, fibronectin adhesion, dense granule secretion, and thromboxane B2 secretion. Thrombin-induced clot retraction was also observed in human platelets. Key Results Collagen, thrombin, and U46619-stimulated human platelet aggregation were dose-dependently inhibited by G-Rk1, while it demonstrated a more effective suppression on collagen-stimulated platelet aggregation using human platelets. Moreover, G-Rk1 suppressed collagen-induced elevation of Ca2+ release from endoplasmic reticulum, granule release, and αIIbβ3 activity without any cytotoxicity. Conclusions and implications These results indicate that G-Rk1 possess strong anti-platelet effect, proposing a new drug candidate for treatment and prevention of platelet-mediated thrombosis in cardiovascular disease.
Collapse
|
7
|
Chaudhary PK, Kim S, Jee Y, Lee SH, Kim S. Characterization of Integrin αIIbβ3-Mediated Outside-in Signaling by Protein Kinase Cδ in Platelets. Int J Mol Sci 2020; 21:ijms21186563. [PMID: 32911704 PMCID: PMC7555476 DOI: 10.3390/ijms21186563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Engagement of integrin αIIbβ3 promotes platelet-platelet interaction and stimulates outside-in signaling that amplifies activation. Protein kinase Cδ (PKCδ) is known to play an important role in platelet activation, but its role in outside-in signaling has not been established. In the present study, we determined the role of PKCδ and its signaling pathways in integrin αIIbβ3-mediated outside-in signaling in platelets using PKCδ-deficient platelets. Platelet spreading to immobilized fibrinogen resulted in PKCδ phosphorylation, suggesting that αIIbβ3 activation caused PKCδ activation. αIIbβ3-mediated phosphorylation of Akt was significantly inhibited in PKCδ -/- platelets, indicating a role of PKCδ in outside-in signaling. αIIbβ3-mediated PKCδ phosphorylation was inhibited by proline-rich tyrosine kinase 2 (Pyk2) selective inhibitor, suggesting that Pyk2 contributes to the regulation of PKCδ phosphorylation in outside-in signaling. Additionally, Src-family kinase inhibitor PP2 inhibited integrin-mediated Pyk2 and PKCδ phosphorylation. Lastly, platelet spreading was inhibited in PKCδ -/- platelets compared to the wild-type (WT) platelets, and clot retraction from PKCδ -/- platelets was markedly delayed, indicating that PKCδ is involved in the regulation of αIIbβ3-dependent interactivities with cytoskeleton elements. Together, these results provide evidence that PKCδ plays an important role in outside-in signaling, which is regulated by Pyk2 in platelets.
Collapse
Affiliation(s)
- Preeti Kumari Chaudhary
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.)
| | - Sanggu Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.)
| | - Youngheun Jee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Seung-Hun Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.)
| | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (P.K.C.); (S.K.); (S.-H.L.)
- Correspondence: ; Tel.: +82-43-249-1846
| |
Collapse
|
8
|
Yang Y, Wang B, Tian Q, Li B. Purification and Characterization of Novel Collagen Peptides against Platelet Aggregation and Thrombosis from Salmo salar. ACS OMEGA 2020; 5:19995-20003. [PMID: 32832753 PMCID: PMC7439260 DOI: 10.1021/acsomega.0c01340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Collagen is a rich source of bioactive peptides and is widely distributed in the skin and bone tissue. In this study, collagen from Salmo salar skin was hydrolyzed with Alcalase or Protamex followed by simulated digestion, YMC ODS-A C18 separation, and ESI-MS/MS analysis. A total of 19 peptides were identified and synthesized for investigation of their antiplatelet activities. Hyp-Gly-Glu-Phe-Gly (OGEFG) and Asp-Glu-Gly-Pro (DEGP) exhibited the most potent activity against ADP-induced platelet aggregation among them with IC50 values of 277.17 and 290.00 μM, respectively, and inhibited the release of β-TG and 5-HT in a dose-dependent manner significantly. Single oral administration of OGEFG and DEGP also inhibited thrombus formation in a ferric chloride-induced arterial thrombosis model at a dose of 200 μmol/kg body weight and did not prolong the bleeding time or cause an immune response in mice. Therefore, our findings indicated that collagen peptides had a potential to be developed into an effective specific medical food in the prevention of thrombotic diseases.
Collapse
Affiliation(s)
- Yijie Yang
- College
of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Wang
- College
of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qi Tian
- College
of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- College
of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key
Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| |
Collapse
|
9
|
Canino J, Guidetti GF, Galgano L, Vismara M, Minetti G, Torti M, Canobbio I. The proline-rich tyrosine kinase Pyk2 modulates integrin-mediated neutrophil adhesion and reactive oxygen species generation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118799. [PMID: 32693110 DOI: 10.1016/j.bbamcr.2020.118799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 01/05/2023]
Abstract
Neutrophils are first responders in infection and inflammation. They are able to roll, adhere and transmigrate through the endothelium to reach the site of infection, where they fight pathogens through secretion of granule contents, production of reactive oxygen species, extrusion of neutrophil extracellular traps, and phagocytosis. In this study we explored the role of the non-receptor focal adhesion kinase Pyk2 in neutrophil adhesion and activation. Using a specific Pyk2 pharmacological inhibitor, PF-4594755, as well as Pyk2-deficient murine neutrophils, we found that Pyk2 is activated upon integrin αMβ2-mediated neutrophil adhesion to fibrinogen. This process is triggered by Src family kinases-mediated phosphorylation and supported by Pyk2 autophosphorylation on Y402. In neutrophil adherent to fibrinogen, Pyk2 activates PI3K-dependent pathways promoting the phosphorylation of Akt and of its downstream effector GSK3. Pyk2 also dynamically regulates MAP kinases in fibrinogen-adherent neutrophils, as it stimulates p38MAPK but negatively regulates ERK1/2. Pharmacological inhibition of Pyk2 significantly prevented adhesion of human neutrophils to fibrinogen, and neutrophils from Pyk2-knockout mice showed a reduced ability to adhere compared to wildtype cells. Accordingly, neutrophil adhesion to fibrinogen was reduced upon inhibition of p38MAPK but potentiated by ERK1/2 inhibition. Neutrophil adherent to fibrinogen, but not to polylysine, were able to produce ROS upon lipopolysaccharide challenge and ROS production was completely suppressed upon inhibition of Pyk2. By contrast PMA-induced ROS production by neutrophil adherent to either fibrinogen or polylysine was independent from Pyk2. Altogether these results demonstrate that Pyk2 is an important effector in the coordinated puzzle regulating neutrophil adhesion and activation.
Collapse
Affiliation(s)
- Jessica Canino
- Department of Biology and Biotechnology, University of Pavia, Italy; Scuola Universitaria Superiore, IUSS, Pavia, Italy
| | | | - Luca Galgano
- Department of Biology and Biotechnology, University of Pavia, Italy; Scuola Universitaria Superiore, IUSS, Pavia, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia, Italy
| | | | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Italy.
| |
Collapse
|
10
|
Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res 2020; 44:24-32. [PMID: 32095094 PMCID: PMC7033355 DOI: 10.1016/j.jgr.2019.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases prevail among modern societies and underdeveloped countries, and a high mortality rate has also been reported by the World Health Organization affecting millions of people worldwide. Hyperactive platelets are the major culprits in thrombotic disorders. A group of drugs is available to deal with such platelet-related disorders; however, sometimes, side effects and complications caused by these drugs outweigh their benefits. Ginseng and its nutraceuticals have been reported to reduce the impact of thrombotic conditions and improve cardiovascular health by antiplatelet mechanisms. This review provides (1) a comprehensive insight into the available pharmacological options from ginseng and ginsenosides (saponin and nonsaponin fractions) for platelet-originated cardiovascular disorders; (2) a discussion on the impact of specific functional groups on the modulation of platelet functions and how structural modifications among ginsenosides affect platelet activation, which may further provide a basis for drug design, optimization, and the development of ginsenoside scaffolds as pharmacological antiplatelet agents; (3) an insight into the synergistic effects of ginsenosides on platelet functions; and (4) a perspective on future research and the development of ginseng and ginsenosides as super nutraceuticals.
Collapse
Key Words
- AA, arachidonic acid
- AC, adenylyl cyclase
- ADP, adenosine diphosphate
- ASA, acetylsalicylic acid
- ATP, adenosine triphosphate
- Akt, protein kinase B
- Antiplatelet
- COX, cyclooxygenase
- CRP, collagen-related peptide
- CSF, crude saponin fraction
- ERK, extracellular signal–regulated kinase
- GPVI, glycoprotein VI
- Ginsenosides
- IC50, half maximal (50%) inhibitory concentration
- IP3, inositol-1,4,5-triphosphate
- JNK, c-Jun N-terminal kinase
- MAPK, mitogen-activated protein kinase
- MKK4, mitogen-activated protein kinase kinase 4
- MLC, myosin light chain
- Nutraceutical
- PAF, platelet-activating factor
- PAR, proteinase-activated receptor
- PI3K, phosphatidylinositol 3-kinase
- PKA, protein kinase A
- PKC, protein kinase C
- PKG, protein kinase G
- PLA2, phospholipase A2
- PLCγ2, phospholipase C gamma-2
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- PT, prothrombin time
- ROCK, Rho-associated protein kinase
- SFK, Src family kinase
- Structural modification
- Syk, spleen tyrosine kinase
- Synergism
- TS, total saponin
- TxA2, thromboxane A2
- TxAS, thromboxane-A synthase
- TxB2, thromboxane B2
- TxR, thromboxane receptor
- VASP, vasodilator-stimulated phosphoprotein
- [Ca2+]i, intracellular calcium ion
- aPTT, activated partial thromboplastin time
- cAMP, cyclic adenosine monophosphate
- cPLA2α, cytosolic phospholipase A2α
- vWF, von Willebrand factor
Collapse
Affiliation(s)
| | | | - Man Hee Rhee
- Laboratory of Veterinary Physiology and Cell Signaling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
11
|
Wang L, Li Y, Guo R, Li S, Chang A, Zhu Z, Tu P. Optimized bioluminescence analysis of adenosine triphosphate (ATP) released by platelets and its application in the high throughput screening of platelet inhibitors. PLoS One 2019; 14:e0223096. [PMID: 31600247 PMCID: PMC6786574 DOI: 10.1371/journal.pone.0223096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/15/2019] [Indexed: 11/18/2022] Open
Abstract
Activated platelets release adenosine trisphosphate (ATP) and bioluminescence analysis of ATP release is usually used to monitor activation of platelets induced by various stimulants. However, bioluminescence analysis of ATP possesses poor linearity, the signal is quickly attenuated, and the accuracy of ATP release from platelets is hard to determine accurately enough to be used in a high throughput screening of platelet inhibitors. The present study was designed to optimize bioluminescence analysis of ATP released by platelets and expand its application in high throughput screening of platelet inhibitors. The results showed that accuracy of ATP analysis was significantly improved by adding coenzyme A (CoA) and signal attenuation of ATP analysis was greatly postponed by adding bovine serum albumin (BSA) both in Hank’s balanced salt solution (HBSS) and Tyrode’s buffer. Furthermore, ATP release of activated platelets and inhibitory effects of Ly294002 and Staurosporine on platelet activation were accurately determined by our optimized bioluminescence analysis of ATP. Thus, we have successfully constructed an optimized bioluminescence analysis of ATP which can be used in high throughput screening of platelet inhibitors.
Collapse
Affiliation(s)
- Lili Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yunqian Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Guo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Anqi Chang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- * E-mail: (ZZ); (PT)
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- * E-mail: (ZZ); (PT)
| |
Collapse
|
12
|
Shimizu M, Natori T, Tsuda K, Yoshida M, Kamada A, Oi K, Ishigaku Y, Oura K, Narumi S, Yamamoto M, Terayama Y. Thrombin-induced platelet aggregation −effect of dabigatran using automated platelet aggregometry−. Platelets 2019; 31:360-364. [DOI: 10.1080/09537104.2019.1624707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mie Shimizu
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
- Department of Clinical Research, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Tatsunori Natori
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Keisuke Tsuda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Makiko Yoshida
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Asami Kamada
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kiyotaka Oi
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yoko Ishigaku
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazumasa Oura
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Shinsuke Narumi
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Masahiro Yamamoto
- Department of Clinical Research, Yokohama Brain and Spine Center, Yokohama, Japan
| | - Yasuo Terayama
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
13
|
Guidetti GF, Torti M, Canobbio I. Focal Adhesion Kinases in Platelet Function and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:857-868. [DOI: 10.1161/atvbaha.118.311787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The focal adhesion kinase family includes 2 homolog members, FAK and Pyk2 (proline-rich tyrosine kinase 2), primarily known for their roles in nucleated cells as regulators of cytoskeletal dynamics and cell adhesion. FAK and Pyk2 are also expressed in megakaryocytes and platelets and are activated by soluble agonists and on adhesion to the subendothelial matrix. Despite high sequence homology and similar molecular organization, FAK and Pyk2 play different roles in platelet function. Whereas FAK serves mostly as a traditional focal adhesion kinase activated downstream of integrins, Pyk2 coordinates multiple signals from different receptors. FAK, but not Pyk2, is involved in megakaryocyte maturation and platelet production. In circulating platelets, FAK is recruited by integrin αIIbβ3 to regulate hemostasis, whereas it plays minimal roles in thrombosis. By contrast, Pyk2 is implicated in platelet activation and is an important regulator of thrombosis. The direct activation of Pyk2 by calcium ions provides a connection between GPCRs (G-protein coupled receptors) and Src family kinases. In this review, we provide the comprehensive overview of >20 years of investigations on the role and regulation of focal adhesion kinases in blood platelets, highlighting common and distinctive features of FAK and Pyk2 in hemostasis and thrombosis.
Collapse
Affiliation(s)
| | - Mauro Torti
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ilaria Canobbio
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| |
Collapse
|
14
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Irfan M, Jeong D, Kwon HW, Shin JH, Park SJ, Kwak D, Kim TH, Lee DH, Park HJ, Rhee MH. Ginsenoside-Rp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling. Vascul Pharmacol 2018; 109:45-55. [DOI: 10.1016/j.vph.2018.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/11/2018] [Accepted: 06/02/2018] [Indexed: 11/25/2022]
|
16
|
Manne BK, Rondina MT. PDK1 governs thromboxane generation and thrombosis in platelets by regulating activation of Raf1 in the MAPK pathway: reply. J Thromb Haemost 2018; 16:1904-1905. [PMID: 29981265 PMCID: PMC6156920 DOI: 10.1111/jth.14230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 11/28/2022]
Affiliation(s)
- B K Manne
- Department of Internal Medicine and Pathology and the Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - M T Rondina
- Department of Internal Medicine and Pathology and the Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine and the Geriatrics Research, Education, and Clinical Care Center (GRECC), George E. Wahlen VAMC, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Irfan M, Jeong D, Saba E, Kwon HW, Shin JH, Jeon BR, Kim S, Kim SD, Lee DH, Nah SY, Rhee MH. Gintonin modulates platelet function and inhibits thrombus formation via impaired glycoprotein VI signaling. Platelets 2018; 30:589-598. [PMID: 29870296 DOI: 10.1080/09537104.2018.1479033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Panax ginseng (P. ginseng), one of the most valuable medicinal plants, is known for its healing and immunobooster properties and has been widely used in folk medicine against cardiovascular diseases, including stroke and heart attack. In this study, we explored the anti-platelet activity of gintonin (a recently discovered non-saponin fraction of ginseng) against agonist-induced platelet activation. In vitro effects of gintonin on agonist-induced human and rat platelet aggregation, granule secretion, integrin αIIbβ3 activation, and intracellular calcium ion ([Ca2+]i) mobilization were examined. Western blot analysis and immunoprecipitation techniques were used to estimate the expression of mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and interaction of glycoprotein VI (GPVI) signaling pathway molecules such as Src family kinases (SFK), tyrosine kinase Syk, and PLCγ2. In vivo effects were studied using acute pulmonary thromboembolism model in mice. Gintonin remarkably inhibited collagen-induced platelet aggregation and suppressed granule secretion, [Ca2+]i mobilization, and fibrinogen binding to integrin αIIbβ3 in a dose-dependent manner and clot retraction. Gintonin attenuated the activation of MAPK molecules and PI3K/Akt pathway. It also inhibited SFK, Syk, and PLCγ2 activation and protected mice from thrombosis. Gintonin inhibited agonist-induced platelet activation and thrombus formation through impairment in GPVI signaling molecules, including activation of SFK, Syk, PLCγ2, MAPK, and PI3K/Akt; suggesting its therapeutic potential against platelet related CVD.
Collapse
Affiliation(s)
- Muhammad Irfan
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Dahye Jeong
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Evelyn Saba
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Hyuk-Woo Kwon
- b Department of Biomedical Laboratory Science , Far East University , Eumseong , Korea
| | - Jung-Hae Shin
- c Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering , Inje University , Gyungnam , Korea
| | - Bo-Ra Jeon
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Suk Kim
- d Institute of Animal Medicine, College of Veterinary Medicine , Gyeongsang National University , Jinju , Republic of Korea
| | - Sung-Dae Kim
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Dong-Ha Lee
- e Department of Biomedical Laboratory Science , Korea Nazarene University , Cheonan, Chungnam , Republic of Korea.,f Molecular Diagnostics Research Institute , Namseoul University , Cheonan, Chungnam , Republic of Korea
| | - Seung-Yeol Nah
- g Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine , Konkuk University , Seoul , Republic of Korea
| | - Man Hee Rhee
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
18
|
Manne BK, Münzer P, Badolia R, Walker-Allgaier B, Campbell RA, Middleton E, Weyrich AS, Kunapuli SP, Borst O, Rondina MT. PDK1 governs thromboxane generation and thrombosis in platelets by regulating activation of Raf1 in the MAPK pathway. J Thromb Haemost 2018; 16:1211-1225. [PMID: 29575487 PMCID: PMC5984143 DOI: 10.1111/jth.14005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 01/02/2023]
Abstract
Essentials Phosphoinositide 3-kinase and MAPK pathways crosstalk via PDK1. PDK1 is required for adenosine diphosphate-induced platelet activation and thromboxane generation. PDK1 regulates RAF proto-oncogene Ser/Thr kinase (Raf1) activation in the MAPK pathway. Genetic ablation of PDK1 protects against platelet-dependent thrombosis in vivo. SUMMARY Background Platelets are dynamic effector cells with functions that span hemostatic, thrombotic and inflammatory continua. Phosphoinositide-dependent protein kinase 1 (PDK1) regulates protease-activated receptor 4-induced platelet activation and thrombus formation through glycogen synthase kinase3β. However, whether PDK1 also signals through the ADP receptor and its functional importance in vivo remain unknown. Objective To establish the mechanism of PDK1 in ADP-induced platelet activation and thrombosis. Methods We assessed the role of PDK1 on 2MeSADP-induced platelet activation by measuring aggregation, thromboxane generation and phosphorylation events in the presence of BX-795, which inhibits PDK1, or by using platelet-specific PDK1 knockout mice and performing western blot analysis. PDK1 function in thrombus formation was assessed with an in vivo pulmonary embolism model. Results PDK1 inhibition with BX-795 reduced 2-methylthio-ADP (2MeSADP)-induced aggregation of human and murine platelets by abolishing thromboxane generation. Similar results were observed in pdk1-/- mice. PDK1 was also necessary for the phosphorylation of mitogen-activated protein kinase kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2, and cytosolic phospholipase A2, indicating that PDK1 regulates an upstream kinase in the mitogen-activated protein kinase (MAPK) pathway. We next determined that this upstream kinase is Raf-1, a serine/threonine kinase that is necessary for the phosphorylation of MEK1/2, as pharmacological inhibition and genetic ablation of PDK1 were sufficient to prevent Raf1 phosphorylation. Furthermore, in vivo inhibition or genetic ablation of PDK1 protected mice from collagen/epinephrine-induced pulmonary embolism. Conclusion PDK1 governs thromboxane generation and thrombosis in platelets that are stimulated with 2MeSADP by regulating activation of the MAPK pathway.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Patrick Münzer
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, 72076 Germany
| | - Rachit Badolia
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, 19140 USA
| | - Britta Walker-Allgaier
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, 72076 Germany
| | - Robert A Campbell
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Elizabeth Middleton
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Andrew S Weyrich
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, 19140 USA
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, 72076 Germany
| | - Matthew T. Rondina
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Internal Medicine, GRECC, George E. Wahlen VAMC, Salt Lake City, UT, 84148
| |
Collapse
|
19
|
Zarà M, Canobbio I, Visconte C, Di Nunzio G, Torti M, Guidetti G. Novel pharmacological inhibitors demonstrate the role of the tyrosine kinase Pyk2 in adhesion and aggregation of human platelets. Thromb Haemost 2017; 116:904-917. [DOI: 10.1160/th16-01-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/13/2016] [Indexed: 11/05/2022]
Abstract
SummaryPyk2 is a Ca2+-regulated kinase predominantly expressed in neuronal and in haematopoietic cells. Previous studies on Pyk2-null mice have demonstrated that Pyk2 plays a crucial role in platelet activation and thrombus formation, thus representing a possible target for antithrombotic therapy. Very limited information is available about the role of Pyk2 in human platelets, mainly because of the lack of specific pharmacological inhibitors. In this work, we have tested two novel Pyk2 inhibitors, PF-4594755 and PF-4520440, to validate their specificity and to investigate their ability to modulate platelet activation. Both molecules were able to efficiently block Pyk2 activity in human and mouse platelets stimulated with thrombin or with the Ca2+-ionophore. In wild-type murine platelets, PF-4594755 and PF-4520440 reduced thrombin-induced aggregation to the level observed in Pyk2 knockout platelets, but did not affect aggregation induced by GPVI stimulation. Importantly, neither compounds affected the residual thrombin-induced aggregation of Pyk2-null platelets, thus excluding possible off-target effects. In human platelets, PF-4594755 and PF-4520440 significantly reduced aggregation stimulated by thrombin, but not by the GPVI agonist convulxin. Both inhibitors reduced platelet adhesion on fibrinogen and prevented Akt phosphorylation in adherent cells, indicating that Pyk2 regulates PI3K and cell spreading downstream of integrins in human platelets. Finally, the Pyk2 inhibitors significantly inhibited thrombus formation upon blood perfusion on immobilized collagen under arterial flow rate. These results demonstrate that PF-4594755 and PF-4520440 are specific inhibitors of Pyk2 in intact platelets and allowed to reliably document that this kinase plays a relevant role in human platelet activation.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
20
|
Abstract
Integrin αIIbβ3 is a highly abundant heterodimeric platelet receptor that can transmit information bidirectionally across the plasma membrane, and plays a critical role in hemostasis and thrombosis. Upon platelet activation, inside-out signaling pathways increase the affinity of αIIbβ3 for fibrinogen and other ligands. Ligand binding and integrin clustering subsequently stimulate outside-in signaling, which initiates and amplifies a range of cellular events driving essential platelet processes such as spreading, thrombus consolidation, and clot retraction. Integrin αIIbβ3 has served as an excellent model for the study of integrin biology, and it has become clear that integrin outside-in signaling is highly complex and involves a vast array of enzymes, signaling adaptors, and cytoskeletal components. In this review, we provide a concise but comprehensive overview of αIIbβ3 outside-in signaling, focusing on the key players involved, and how they cooperate to orchestrate this critical aspect of platelet biology. We also discuss gaps in the current understanding of αIIbβ3 outside-in signaling and highlight avenues for future investigation.
Collapse
|
21
|
Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice. Blood 2017; 130:527-536. [DOI: 10.1182/blood-2017-01-764910] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022] Open
Abstract
Key Points
APP is dispensable for platelet activation and arterial thrombosis. APP is an important novel regulator of vein thrombosis and controls coagulation and neutrophil extracellular traps formation.
Collapse
|
22
|
Jeong D, Irfan M, Kim SD, Kim S, Oh JH, Park CK, Kim HK, Rhee MH. Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation. J Ginseng Res 2017; 41:548-555. [PMID: 29021703 PMCID: PMC5628340 DOI: 10.1016/j.jgr.2016.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 11/27/2022] Open
Abstract
Background Korean Red Ginseng has been used for several decades to treat many diseases, enhancing both immunity and physical strength. Previous studies have documented the therapeutic effects of ginseng, including its anticancer, antiaging, and anti-inflammatory activities. These activities are mediated by ginsenosides present in the ginseng plant. Ginsenoside Rg3, an effective compound from red ginseng, has been shown to have antiplatelet activity in addition to its anticancer and anti-inflammatory activities. Platelets are important for both primary hemostasis and the repair of the vessels after injury; however, they also play a crucial role in the development of acute coronary diseases. We prepared ginsenoside Rg3-enriched red ginseng extract (Rg3-RGE) to examine its role in platelet physiology. Methods To examine the effect of Rg3-RGE on platelet activation in vitro, platelet aggregation, granule secretion, intracellular calcium ([Ca2+]i) mobilization, flow cytometry, and immunoblot analysis were carried out using rat platelets. To examine the effect of Rg3-RGE on platelet activation in vivo, a collagen plus epinephrine-induced acute pulmonary thromboembolism mouse model was used. Results We found that Rg3-RGE significantly inhibited collagen-induced platelet aggregation and [Ca2+]i mobilization in a dose-dependent manner in addition to reducing ATP release from collagen-stimulated platelets. Furthermore, using immunoblot analysis, we found that Rg3-RGE markedly suppressed mitogen-activated protein kinase phosphorylation (i.e., extracellular stimuli-responsive kinase, Jun N-terminal kinase, p38) as well as the PI3K (phosphatidylinositol 3 kinase)/Akt pathway. Moreover, Rg3-RGE effectively reduced collagen plus epinephrine-induced mortality in mice. Conclusion These data suggest that ginsenoside Rg3-RGE could be potentially be used as an antiplatelet therapeutic agent against platelet-mediated cardiovascular disorders.
Collapse
Affiliation(s)
- Dahye Jeong
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Irfan
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sung-Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jun-Hwan Oh
- Research and Development Headquarters, Korean Ginseng Corporation, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Research and Development Headquarters, Korean Ginseng Corporation, Daejeon, Republic of Korea
| | - Hyun-Kyoung Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
23
|
Canobbio I, Visconte C, Oliviero B, Guidetti G, Zarà M, Pula G, Torti M. Increased platelet adhesion and thrombus formation in a mouse model of Alzheimer's disease. Cell Signal 2016; 28:1863-1871. [PMID: 27593518 DOI: 10.1016/j.cellsig.2016.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/01/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Vascular dysfunctions and Alzheimer's disease show significant similarities and overlaps. Cardiovascular risk factors (hypercholesterolemia, hypertension, obesity, atherosclerosis and diabetes) increase the risk of vascular dementia and Alzheimer's disease. Conversely, Alzheimer's patients have considerably increased predisposition of ischemic and hemorrhagic strokes. Platelets are major players in haemostasis and thrombosis and are involved in inflammation. We have investigated morphology and function of platelets in 3xTg-AD animals, a consolidate murine model for Alzheimer's disease. Platelets from aged 3xTg-AD mice are normal in number and glycoprotein expression, but adhere more avidly on matrices such as fibrillar collagen, von Willebrand factor, fibrinogen and amyloid peptides compared to platelets from age-matching wild type mice. 3xTg-AD washed platelets adherent to collagen also show increased phosphorylation of selected signaling proteins, including tyrosine kinase Pyk2, PI3 kinase effector Akt, p38MAP kinase and myosin light chain kinase, and increased ability to form thrombi under shear. In contrast, aggregation and integrin αIIbβ3 activation induced by several agonists in 3xTg-AD mice are similar to wild type platelets. These results demonstrated that Alzheimer's mutations result in a significant hyper-activated state of circulating platelets, evident with the progression of the disease.
Collapse
Affiliation(s)
- Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Caterina Visconte
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Barbara Oliviero
- Research Laboratories, Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gianni Guidetti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Marta Zarà
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Giordano Pula
- Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
24
|
Abstract
Autophagy is important for maintaining cellular homeostasis, and thus its deficiency is implicated in a broad spectrum of human diseases. Its role in platelet function has only recently been examined. Our biochemical and imaging studies demonstrate that the core autophagy machinery exists in platelets, and that autophagy is constitutively active in resting platelets. Moreover, autophagy is induced upon platelet activation, as indicated by agonist-induced loss of the autophagy marker LC3II. Additional experiments, using inhibitors of platelet activation, proteases, and lysosomal acidification, as well as platelets from knockout mouse strains, show that agonist-induced LC3II loss is a consequence of platelet signaling cascades and requires proteases, acidic compartments, and membrane fusion. To assess the physiological role of platelet autophagy, we generated a mouse strain with a megakaryocyte- and platelet-specific deletion of Atg7, an enzyme required for LC3II production. Ex vivo analysis of platelets from these mice shows modest defects in aggregation and granule cargo packaging. Although these mice have normal platelet numbers and size distributions, they exhibit a robust bleeding diathesis in the tail-bleeding assay and a prolonged occlusion time in the FeCl3-induced carotid injury model. Our results demonstrate that autophagy occurs in platelets and is important for hemostasis and thrombosis.
Collapse
|
25
|
The focal adhesion kinase Pyk2 links Ca2+ signalling to Src family kinase activation and protein tyrosine phosphorylation in thrombin-stimulated platelets. Biochem J 2015; 469:199-210. [DOI: 10.1042/bj20150048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
Abstract
We address the mechanism for Src family kinases activation downstream of G-protein-coupled receptors (GPCRs) in thrombin-stimulated blood platelets and we describe a novel interplay between Pyk2 and the Src kinases Fyn and Lyn in the regulation of Ca2+-dependent protein-tyrosine phosphorylation.
Collapse
|
26
|
Chien PTY, Lin CC, Hsiao LD, Yang CM. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol 2015; 409:59-72. [PMID: 25869400 DOI: 10.1016/j.mce.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/27/2022]
Abstract
Thrombin and COX-2 regulating cardiac hypertrophy are via various signaling cascades. Several transcriptional factors including CREB involve in COX-2 expression. However, the interplay among thrombin, CREB, and COX-2 in primary human neonatal ventricular cardiomyocytes remains unclear. In this study, thrombin-induced COX-2 promoter activity, mRNA and protein expression, and PGE2 synthesis were attenuated by pretreatment with the inhibitors of c-Src (PP1), Pyk2 (PF431396), EGFR (AG1478), PI3K/Akt (LY294002/SH-5), and p300 (GR343), or transfection with siRNAs of c-Src, Pyk2, EGFR, p110, Akt, CREB, and p300. Moreover, thrombin-stimulated phosphorylation of c-Src, Pyk2, EGFR, Akt, CREB and p300 was attenuated by their respective inhibitors. These results indicate that thrombin-induced COX-2 expression is mediated through PAR-1/c-Src/Pyk2/EGFR/PI3K/Akt linking to CREB and p300 cascades. Functionally, thrombin-induced hypertrophy and ANF/BNP release were, at least in part, mediated through a PAR-1/COX-2-dependent pathway. We uncover the importance of COX-2 regarding human cardiomyocyte hypertrophy that will provide a therapeutic intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Peter Tzu-Yu Chien
- Graduate Institute of Biomedical Sciences, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Sciences, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
| |
Collapse
|
27
|
Manganaro D, Consonni A, Guidetti GF, Canobbio I, Visconte C, Kim S, Okigaki M, Falasca M, Hirsch E, Kunapuli SP, Torti M. Activation of phosphatidylinositol 3-kinase β by the platelet collagen receptors integrin α2β1 and GPVI: The role of Pyk2 and c-Cbl. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1879-88. [PMID: 25960397 DOI: 10.1016/j.bbamcr.2015.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/23/2015] [Accepted: 05/02/2015] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol 3-kinaseβ (PI3Kβ) plays a predominant role in integrin outside-in signaling and in platelet activation by GPVI engagement. We have shown that the tyrosine kinase Pyk2 mediates PI3Kβ activation downstream of integrin αIIbβ3, and promotes the phosphorylation of the PI3K-associated adaptor protein c-Cbl. In this study, we compared the functional correlation between Pyk2 and PI3Kβ upon recruitment of the two main platelet collagen receptors, integrin α2β1 and GPVI. PI3Kβ-mediated phosphorylation of Akt was inhibited in Pyk2-deficient platelets adherent to monomeric collagen through integrin α2β1, but occurred normally upon GPVI ligation. Integrin α2β1 engagement led to Pyk2-independent association of c-Cbl with PI3K. However, c-Cbl was not phosphorylated in adherent platelets, and phosphorylation of Akt occurred normally in c-Cbl-deficient platelets, indicating that the c-Cbl is dispensable for Pyk2-mediated PI3Kβ activation. Stimulation of platelets with CRP, a selective GPVI ligand, induced c-Cbl phosphorylation in the absence of Pyk2, but failed to promote its association with PI3K. Pyk2 activation was completely abrogated in PI3KβKD, but not in PI3KγKD platelets, and was strongly inhibited by Src kinases and phospholipase C inhibitors, and by BAPTA-AM. The absence of PI3Kβ activity also hampered GPVI-induced tyrosine-phosphorylation and activation of PLCγ2, preventing intracellular Ca2+ increase and phosphorylation of pleckstrin. Moreover, GPVI-induced intracellular Ca2+ increase and pleckstrin phosphorylation were also strongly inhibited in human platelets treated with the PI3Kβ inhibitor TGX-221. These results outline important differences in the regulation of PI3Kβ by GPVI and integrin α2β1 and suggest that inhibition of Pyk2 may target PI3Kβ activation in a selective context of platelet stimulation.
Collapse
Affiliation(s)
- Daria Manganaro
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy
| | - Alessandra Consonni
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy
| | - Gianni F Guidetti
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy
| | - Caterina Visconte
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy
| | - Soochong Kim
- Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Mitsuhiko Okigaki
- Department of Cardiovascular Medicine, Kyoto Prefectural University, Japan
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia, Australia
| | - Emilio Hirsch
- Molecular Biotechnology Center, University of Turin, Italy
| | - Satya P Kunapuli
- Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Mauro Torti
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy.
| |
Collapse
|
28
|
Carrim N, Walsh TG, Consonni A, Torti M, Berndt MC, Metharom P. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation. PLoS One 2014; 9:e113679. [PMID: 25415317 PMCID: PMC4240642 DOI: 10.1371/journal.pone.0113679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/29/2014] [Indexed: 01/22/2023] Open
Abstract
Background We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI. Aims To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway. Methods and Results Human and mouse washed platelets (from WT or Pyk2 KO mice) were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively) and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P) surface expression) and integrin αIIbβ3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk), PI3-K and Bruton's tyrosine kinase (Btk) and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbβ3 activation. Conclusion Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.
Collapse
Affiliation(s)
- Naadiya Carrim
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tony G. Walsh
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alessandra Consonni
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michael C. Berndt
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Pat Metharom
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Australia
- * E-mail:
| |
Collapse
|
29
|
Abstract
Class IA phosphoinositide 3-kinase β (PI3Kβ) is considered a potential drug target in arterial thrombosis, which is a major cause of death worldwide. Here we show that a striking phenotype of mice with selective p110β deletion in the megakaryocyte lineage is thrombus instability at a high shear rate, which is an effect that is not detected in the absence of p110α in platelets. The high shear rate-dependent thrombus instability in the absence of p110β is observed both ex vivo and in vivo with the formation of platelet emboli. Moreover, PI3Kβ is required for the recruitment of new platelets to a growing thrombus when a pathological high shear is applied. Treatment of human blood with AZD6482, a selective PI3Kβ inhibitor, phenocopies p110β deletion in mouse platelets, which highlights the role of the kinase activity of p110β. Within the growing platelet thrombus, p110β inactivation impairs the activating phosphorylations of Akt and the inhibitory phosphorylation of GSK3. In accord with these data, pharmacologic inhibition of GSK3 restores thrombus stability. Thus, platelet PI3Kβ is not essential for thrombus growth and stability at normal arterial shear but has a specific and critical role in maintaining the integrity of the formed thrombus on elevation of shear rate, suggesting a potential risk of embolization on treatment with PI3Kβ inhibitors.
Collapse
|
30
|
Amyloid β-peptide-dependent activation of human platelets: essential role for Ca2+ and ADP in aggregation and thrombus formation. Biochem J 2014; 462:513-23. [PMID: 24984073 DOI: 10.1042/bj20140307] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is associated with the accumulation of Aβ (amyloid β)-peptides in the brain. Besides their cytotoxic effect on neurons, Aβ-peptides are thought to be responsible for the atherothrombotic complications associated with Alzheimer's disease, which are collectively known as cerebrovascular disease. In the present study, we investigated the effect of Aβ-peptides on human platelet signal transduction and function. We discovered that the 25-35 domain of Aβ-peptides induce an increase in platelet intracellular Ca2+ that stimulates α-granule and dense granule secretion and leads to the release of the secondary agonist ADP. Released ADP acts in an autocrine manner as a stimulant for critical signalling pathways leading to the activation of platelets. This includes the activation of the protein kinases Syk, protein kinase C, Akt and mitogen-activated protein kinases. Ca2+-dependent release of ADP is also the main component of the activation of the small GTPase Rap1b and the fibrinogen receptor integrin αIIbβ3, which leads to increased platelet aggregation and increased thrombus formation in human whole blood. Our discoveries complement existing understanding of cerebrovascular dementia and suggest that Aβ-peptides can induce vascular complications of Alzheimer's disease by stimulating platelets in an intracellular Ca2+-dependent manner. Despite a marginal ADP-independent component suggested by low levels of signalling activity in the presence of apyrase or P2Y receptor inhibitors, Ca2+-dependent release of ADP by Aβ-peptides clearly plays a critical role in platelet activation. Targeting ADP signalling may therefore represent an important strategy to manage the cerebrovascular component of Alzheimer's disease.
Collapse
|
31
|
Choi JH, Sapkota K, Kim S, Kim SJ. Starase: A bi-functional fibrinolytic protease from hepatic caeca of Asterina pectinifera displays antithrombotic potential. Biochimie 2014; 105:45-57. [DOI: 10.1016/j.biochi.2014.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022]
|
32
|
Choi JH, Sapkota K, Kim MK, Kim S, Kim SJ. Undariase, a direct-acting fibrin(ogen)olytic enzyme from Undaria pinnatifida, inhibits thrombosis in vivo and exhibits in vitro thrombolytic properties. Appl Biochem Biotechnol 2014; 173:1985-2004. [PMID: 24938821 DOI: 10.1007/s12010-014-0981-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022]
Abstract
A direct-acting fibrinolytic serine protease named undariase possessing anticoagulant and antiplatelet properties was purified from Undaria pinnatifida. Undariase showed a molecular weight of 50 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. It displayed a strong fibrin zymogram lysis band corresponding to the same molecular mass. The N-terminal sequence of undariase, LTATTCEELAAAPTD, does not match with any known fibrinolytic enzyme. The enzyme was stable and active at high temperatures (35-70 °C). The fibrinolytic activity of undariase was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF) and 4-(amidinophenyl) methanesulfonyl fluoride (APMSF). The K m and V max values for substrate S-2251 were determined as 6.15 mM and 90.91 mM/min/ml, respectively. Undariase resulted in clot lysis by directly cleaving α and β chains of fibrin. Similarly, it preferentially acted on the Aα chain of fibrinogen followed by cleavage of the Bβ chain. It significantly prolonged the PFA-100 closure times of citrated whole human blood. In addition, undariase delayed the coagulation time and increased activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). Undariase exerted a significant protective effect against collagen plus epinephrine-induced pulmonary thromboembolism in mice. It prevented carrageenan-induced thrombus formation in the tail of mice. It also resulted in prolongation of APTT ex vivo. In conclusion, these results suggested a therapeutic potential of undariase for thrombosis.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Life Science & BK21-Plus Research Team for Bioactive Control Technology, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea
| | | | | | | | | |
Collapse
|
33
|
Achilli C, Jadhav SA, Guidetti GF, Ciana A, Abbonante V, Malara A, Fagnoni M, Torti M, Balduini A, Balduini C, Minetti G. Folic acid-conjugated 4-amino-phenylboronate, a boron-containing compound designed for boron neutron capture therapy, is an unexpected agonist for human neutrophils and platelets. Chem Biol Drug Des 2014; 83:532-40. [PMID: 24666508 DOI: 10.1111/cbdd.12264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/09/2013] [Accepted: 11/15/2013] [Indexed: 01/19/2023]
Abstract
Boron neutron capture therapy (BNCT) is an anticancer treatment based on the accumulation in the tumor cells of (10) B-containing molecules and subsequent irradiation with low-energy neutrons, which bring about the decay of (10) B to very toxic (7) Li(3+) and (4) He(2+) ions. The effectiveness of BNCT is limited by the low delivery and accumulation of the used (10) B-containing compounds. Here, we report the development of folic acid-conjugated 4-amino-phenylboronate as a novel possible compound for the selective delivery of (10) B in BNCT. An extensive analysis about its biocompatibility to mature blood cells and platelet progenitors revealed that the compound markedly supports platelet aggregation, neutrophil oxidative burst, and inhibition of megakaryocyte development, while it does not have any manifest effect on red blood cells.
Collapse
Affiliation(s)
- Cesare Achilli
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, via Bassi, 21, Pavia, 27100, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim S, Cipolla L, Guidetti G, Okigaki M, Jin J, Torti M, Kunapuli SP. Distinct role of Pyk2 in mediating thromboxane generation downstream of both G12/13 and integrin αIIbβ3 in platelets. J Biol Chem 2013; 288:18194-203. [PMID: 23640884 DOI: 10.1074/jbc.m113.461087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is activated by various agonists in platelets. We evaluated the signaling mechanism and the functional role of Pyk2 in platelets by using pharmacological inhibitors and Pyk2-deficient platelets. We found that platelet aggregation and secretion in response to 2-methylthio-ADP (2-MeSADP) and AYPGKF were diminished in the presence of Pyk2 inhibitors or in Pyk2-deficient platelets, suggesting that Pyk2 plays a positive regulatory role in platelet functional responses. It has been shown that ADP-, but not thrombin-induced thromboxane (TxA2) generation depends on integrin signaling. Unlike ADP, thrombin activates G12/13 pathways, and G12/13 pathways can substitute for integrin signaling for TxA2 generation. We found that Pyk2 was activated downstream of both G12/13 and integrin-mediated pathways, and both 2-MeSADP- and AYPGKF-induced TxA2 generation was significantly diminished in Pyk2-deficient platelets. In addition, TxA2 generation induced by co-stimulation of Gi and Gz pathways, which is dependent on integrin signaling, was inhibited by blocking Pyk2. Furthermore, inhibition of 2-MeSADP-induced TxA2 generation by fibrinogen receptor antagonist was not rescued by co-stimulation of G12/13 pathways in the presence of Pyk2 inhibitor. We conclude that Pyk2 is a common signaling effector downstream of both G12/13 and integrin αIIbβ3 signaling, which contributes to thromboxane generation.
Collapse
Affiliation(s)
- Soochong Kim
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|