1
|
Oshima S, Arai Y, Kondo T, Yano S, Hirabayashi S, Uchida N, Onizuka M, Miyakoshi S, Tanaka M, Takahashi S, Hayashi M, Kawakita T, Uehara Y, Ota S, Izumi T, Sawa M, Nishida T, Katayama Y, Nagafuji K, Kato K, Ichinohe T, Atsuta Y, Yanada M. Myeloablative conditioning in cord blood transplantation for acute myeloid leukemia patients is efficacious only until age 55. Bone Marrow Transplant 2025; 60:458-466. [PMID: 39838078 PMCID: PMC11971039 DOI: 10.1038/s41409-025-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Umbilical cord blood transplantation (CBT) is accepted as an effective treatment for acute myeloid leukemia (AML), and reduced-intensity conditioning (RIC), rather than myeloablative conditioning (MAC) regimens allowed elderly patients to be treated safely. However, appropriate intensities of conditioning regimens are still unclear, especially for middle-aged patients. To compare outcomes after RIC and MAC regimens, we analyzed AML patients aged 16 years or older in the Japanese registry database, who underwent single cord unit CBT between 2010-2019. Median ages of the RIC group (n = 1353) and the MAC group (n = 2101) were 59 and 51 years (P < 0.001), respectively. 5-year overall survival (OS) after MAC was superior to that of RIC (38.3% vs 27.7%, P < 0.001) with lower incidence of relapse (33.9% vs 37.4%, P = 0.029) and better neutrophil engraftment (84.7% vs 75.9%, P < 0.001). Detailed subgroup analysis revealed that age at transplantation is the most important factor affecting 5-year OS in RIC and MAC. This analysis identified a threshold of 55 years, beyond which the superiority of MAC disappeared, irrespective of other factors such as disease status or performance status. In conclusion, RIC may be preferable for patients aged 56 or older in CBT for AML due to higher potential toxicities.
Collapse
Affiliation(s)
| | - Yasuyuki Arai
- Department of Hematology, Kyoto University Hospital, Kyoto, Japan.
| | - Tadakazu Kondo
- Department of Hematology, Kyoto University Hospital, Kyoto, Japan
| | - Shingo Yano
- Division of Clinical Oncology Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shigeki Hirabayashi
- Division of Precision Medicine, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospitalsociations Toranomon Hospital, Tokyo, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Tokyo, Japan
| | | | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Satoshi Takahashi
- Department of Hematology/Oncology, Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Toshiro Kawakita
- Department of Hematology, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Yasufumi Uehara
- Department of Hematology, Kitakyushu City Hospital Organization, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Hokkaido, Japan
| | - Toru Izumi
- Department of Hematology, National Hospital Organization Sendai Medical Center, Miyagi, Japan
| | - Masashi Sawa
- Department of Hematology and Oncology, Anjo Kosei Hospital, Aichi, Japan
| | - Tetsuya Nishida
- Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Aichi, Japan
| | - Yuta Katayama
- Department of Hematology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of Medicine, Kurume University Hospital, Fukuoka, Japan
| | - Koji Kato
- Central Japan Cord Blood Bank, Aichi, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation / Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Aichi, Japan
| | - Masamitsu Yanada
- Department of Hematology and Oncology, Nagoya City University East Medical Center, Aichi, Japan
| |
Collapse
|
2
|
Kent A, Gil KB, Jones MK, Linden B, Purev E, Haverkos B, Schwartz M, McMahon C, Amaya M, Smith CA, Bosma G, Abbott D, Rabinovitch R, Milgrom SA, Pollyea DA, Gutman JA. Outcomes of Haplo-Cord Versus Dual Cord Transplants: A Single-Center Retrospective Analysis. Transplant Cell Ther 2025; 31:267.e1-267.e11. [PMID: 39154914 DOI: 10.1016/j.jtct.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/07/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024]
Abstract
Despite the concurrent use of haploidentical cord (HCT) and dual cord (DCT) stem cell transplant approaches for over a decade, there have been few comparisons of their outcomes. Our objective in this study is to assess for differences in the outcomes and adverse effects associated with HCTs versus DCTs. Here we report a retrospective analysis of HCTs and DCTs at our institution. From October 2012 to October 2022, 70 HCT and 133 DCT transplants were performed following 50 mg/kg of IV cyclophosphamide, 150 mg/m2 of IV fludarabine, 10 mg/kg of IV thiotepa, and 4 Gy total body irradiation conditioning. With a median follow-up of 3.6 years among survivors, there was no difference in overall survival (OS) (3 years OS 65% DCT versus 63% HCT, P = 1) or relapse-free survival (3 years RFS 62% DCT versus 64% HCT, P = .97) for all patients. Time to neutrophil recovery was faster in HCT recipients (median 17 versus 22 days, P = .021), with no difference in platelet recovery to 20,000/μL (P = .12). Median hospitalization for HCT recipients was 20 days versus 24 days for DCT recipients (P < .0001). Engraftment syndrome treated with steroids occurred in 47/133 (35%) DCT recipients versus 42/70 (60%) HCT recipients (odds ratios 0.37, P value=.001). There was a significant increase in grade 3 to 4 acute graft-versus-host disease (aGVHD) in haplo-cord recipients (P = .007), but no difference in grade 2 to 4 aGVHD (P = .11), all chronic GVHD (cGVHD) (P = .9), or moderate-severe cGVHD (P = .3). Our outcomes demonstrate faster engraftment and shorter hospitalization in HCTs relative to DCTs, but more engraftment syndrome and higher grade 3 to 4 aGVHD. When both are options, these factors should guide the choice between HCTs and DCTs.
Collapse
Affiliation(s)
- Andrew Kent
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado
| | - Kellen B Gil
- Department of Internal Medicine, The University of Colorado School of Medicine, Aurora, Colorado
| | - Michael K Jones
- Department of Internal Medicine, The University of Colorado School of Medicine, Aurora, Colorado
| | - Brooke Linden
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado
| | - Enkhee Purev
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado
| | - Bradley Haverkos
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado
| | - Marc Schwartz
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado
| | - Christine McMahon
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado
| | - Maria Amaya
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado
| | - Clayton A Smith
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado
| | - Grace Bosma
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado
| | - Diana Abbott
- Department of Biostatistics and Informatics, The University of Colorado, Center for Innovative Design and Analysis, Aurora, Colorado
| | - Rachel Rabinovitch
- Department of Radiation Oncology, The University of Colorado School of Medicine, Aurora, Colorado
| | - Sarah A Milgrom
- Department of Radiation Oncology, The University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel A Pollyea
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado
| | - Jonathan A Gutman
- The University of Colorado School of Medicine, Division of Hematology, Aurora, Colorado.
| |
Collapse
|
3
|
Drozdov D, Kandil J, Long SE, Demorest CV, Cao Q, Lund TC, Gupta AO, Boelens JJ, Orchard PJ. Bodyweight and Absolute Lymphocyte Count-Based Dosing of Rabbit Anti-thymocyte Globulin Results in Early CD4 + Immune Reconstitution in Patients with Inborn Errors of Metabolism Undergoing Umbilical Cord Blood Transplantation. Transplant Cell Ther 2025; 31:263.e1-263.e7. [PMID: 39914492 DOI: 10.1016/j.jtct.2025.01.893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Rabbit anti-thymocyte globulin (rATG) decreases the risk of graft failure and graft-versus-host disease (GVHD) in a setting of allogenic hematopoietic cell transplantation (HCT) but has highly variable pharmacokinetics. Recently, it was shown that a dosing nomogram based on recipient bodyweight and absolute lymphocyte count reduced rATG overexposure, which led to faster immune reconstitution. The aim of this study is to evaluate the feasibility and benefits of using an rATG dosing nomogram to achieve early CD4+ immune reconstitution in pediatric patients with inborn errors of metabolism (IEM) undergoing umbilical cord blood transplantation. METHODS The rATG dosing nomogram in pediatric patients with IEM receiving an umbilical cord blood transplant with busulfan-based myeloablative conditioning at the University of Minnesota Masonic Children's Hospital was used prospectively since 2017. The primary endpoint was CD4+ immune reconstitution (>50 CD4+ T-cells/mL) within 100 days after HCT. Secondary endpoints included overall survival, graft failure, acute and chronic GVHD, and viral reactivations. RESULTS A total of 27 patients were included in the study. Median follow-up time was 31 months (interquartile range [IQR], 22-38) and median age was 1.5 years (IQR, 0.7-3.9). The underlying disease was Hurler syndrome in 17 (63%), Hunter syndrome in 4 (15%), and cerebral adrenoleukodystrophy in 4 (15%) patients; 2 patients were transplanted for other IEM. The CD4+ recovery (>50 CD4+ T cells/mL) at 100 days post-HCT was reached in 22 (85%) of 26 patients. Overall survival was 83% (95% confidence interval [CI], 67%-100%). No graft failure was observed. Two (7%) patients developed acute GVHD grade II to IV and no patients had chronic GVHD. Six patients (22%) had cytomegalovirus (CMV) viremia. One patient had Epstein-Barr virus reactivation requiring treatment. CONCLUSION In patients with IEM, individualized dosing of rATG was associated with a robust and early CD4+ immune reconstitution, with no graft failures and low GVHD incidence.
Collapse
Affiliation(s)
- Daniel Drozdov
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; Division of Stem Cell Transplantation and Cellular Therapies and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland; Division of Pediatric Hematology Oncology, Children's Hospital, Kantonsspital Aarau, Aarau, Switzerland.
| | - Jessica Kandil
- Division of Stem Cell Transplantation and Cellular Therapies and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland; University of Zürich, Zürich, Switzerland
| | - Susie E Long
- Acute Care Pharmacy Services, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota
| | - Connor V Demorest
- Biostatistics Core at Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics Core at Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Troy C Lund
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Ashish O Gupta
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul J Orchard
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Fu Z, Li B, Chai Y, Guo X, Chen X, Zhang L, Chen J, Wang D. Clinical Outcome of UCBT for Children With CAEBV: A Retrospective Analysis of a Single Center. Transplant Cell Ther 2025:S2666-6367(25)01063-2. [PMID: 40057192 DOI: 10.1016/j.jtct.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Chronic active Epstein-Barr virus (CAEBV) infection is a severe, life-threatening condition characterized by persistent Epstein-Barr virus (EBV) infection and the clonal expansion of infected T or NK cells, leading to systemic inflammation, organ damage, and complications such as hemophagocytic lymphohistiocytosis and lymphoma. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only effective treatment for eradicating EBV-infected cells; however, donor availability is limited. Umbilical cord blood stem cell transplantation (UCBT) is a promising alternative owing to its rapid availability and lower complication risk. However, there are fewer existing reports on UCBT in pediatric patients with CAEBV. This study aimed to assess the feasibility and clinical efficacy of UCBT as a potential treatment for pediatric patients with CAEBV. We investigated children with CAEBV who did not have matched donors and underwent UCBT in the First Affiliated Hospital of Zhengzhou University and Zhengzhou People's Hospital, China, between 2016 and 2022. We retrospectively analyzed the clinical characteristics, pretreatment regimens, transplantation-related complications, and clinical outcomes of this group of cases to explore the efficacy of UCBT in CAEBV treatment in children. Eight patients, including four males and four females, with a diagnosis age of 4 (1 to 8) years and a transplantation age of 4 (2-8) years, were enrolled in this study. The mean time from diagnosis to transplantation was 5 (2 to 14) months. The mean follow-up period for surviving patients was 49.75±29.66 months, with a maximum follow-up of 101.0 months. All eight patients exhibited successful engraftment. Acute GVHD was observed in six patients, while chronic GVHD was observed in only one patient, with the case being relatively mild. 2 patients developed CMV reactivation. EBV reactivation and post-transplant lymphoproliferative disease (PTLD) were not observed. Case 4 experienced relapse 10 months post-UCBT and achieved survival following a subsequent haplo-identical HSCT from her father. Case 8 succumbed to thrombotic microangiopathy (TMA) on post-transplant day 50. By the end of the follow-up, the 3-year overall survival rate (OS) was estimated to be 87.5% (95% CI: 0.529 to 0.994). The 3-year EFS rate was estimated to be 75% (95% CI: 0.409 to 0.956). The estimated 3-year GRFS rate was also 75.0% (95% CI: 0.409-0.956). UCBT emerges as a safe and effective treatment for CAEBV in children, serving as a viable alternative for patients without matched donors or emergency transplantation.
Collapse
Affiliation(s)
- Zhiyu Fu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Biyun Li
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujie Chai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xifeng Guo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinghua Chen
- Department of Pediatrics, Zhengzhou People's Hospital, Zhengzhou, China
| | - Lei Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Bia R, Mitchell G, Javan H, Nickel I, Pierce J, Selzman CH, Franklin S. Proteomic Characterization of Cardioprotective Human Acellular Amniotic Fluid. ACS OMEGA 2025; 10:6918-6926. [PMID: 40028051 PMCID: PMC11865990 DOI: 10.1021/acsomega.4c09451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/05/2025]
Abstract
Amniotic fluid-derived products are a promising resource for cell therapy and tissue engineering due to their anti-inflammatory, angiogenic, and antifibrotic properties. Human amniotic fluid (hAF) has been used in medical applications such as wound healing, skin disorders, and ophthalmic conditions. Recently, we demonstrated that hAF is an effective treatment for myocardial ischemia-reperfusion injury in adult rats. However, the protein composition of full-term acellular hAF has remained poorly characterized. To uncover the biologically active components underlying hAF's cardioprotective effects, we conducted a global proteomic analysis of hAF collected from six patients at full-term cesarean sections. Previously shown to improve cardiac function in ischemic rats, these samples were analyzed by using tandem mass spectrometry. We identified 657 proteins, including 148 unique to the deep learning platform Inferys. Bioinformatic analysis revealed that these proteins are involved in immunity, inflammatory responses, cell adhesion, and apoptotic signaling pathways. In addition, these proteins were highly modified, with methylation and deamidation being the most abundant modifications. This study represents the first mass-spectrometry-based characterization of full-term, acellular hAF, suggesting that hAF offers a wide array of immune-modulating proteins working together to provide robust cardioprotection and a valuable treatment for ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ryan Bia
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| | - Grace Mitchell
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
- Division
of Cardiothoracic Surgery, University of
Utah School of Medicine, Salt Lake
City, Utah 84112, United States
| | - Hadi Javan
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
- Division
of Cardiothoracic Surgery, University of
Utah School of Medicine, Salt Lake
City, Utah 84112, United States
| | - Ian Nickel
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
- Division
of Cardiothoracic Surgery, University of
Utah School of Medicine, Salt Lake
City, Utah 84112, United States
| | - Jan Pierce
- Cell
Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| | - Craig H. Selzman
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
- Division
of Cardiothoracic Surgery, University of
Utah School of Medicine, Salt Lake
City, Utah 84112, United States
| | - Sarah Franklin
- Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
- Department
of Internal Medicine, Cardiology Division, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Hans R, Schwalbach C, Adams RH, Miller H, Salzberg D, Sinno M, Beebe K, Giralt D, Stahlecker J, Crosby J, Lin J, Mirea L, Land K, Ngwube A. A Retrospective Analysis of Fresh versus Cryopreserved Allogenic Bone Marrow Transplant within a Pediatric Population: A Change in Practice Due to the COVID-19 Pandemic. Transplant Cell Ther 2025; 31:97.e1-97.e11. [PMID: 39681239 DOI: 10.1016/j.jtct.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Several adult studies show mixed reports in clinical outcomes between cryopreserved and fresh stem cell products, with majority reporting no significant differences and others report that there are differences in outcomes. There is limited literature reporting its impact on outcomes in pediatric hematopoietic cell transplantation (HSCT). OBJECTIVE To compare clinical outcomes between fresh vs cryopreserved stem cell treatment in pediatric HSCT. STUDY DESIGN A retrospective chart review was conducted on allogenic HSCT at Phoenix Children's Hospital between January 1, 2016, and March 31, 2023. The study included 181 patients, with 105 receiving fresh stem cell products and 76 receiving cryopreserved products. Clinical outcomes including, neutrophil and platelet recovery, graft versus host disease, immune reconstitution and survival outcome were compared. RESULTS Study subjects had median follow-up of 997 (range 12-2642) days. 92 patients were treated for a malignant disease (leukemia/lymphoma) and 89 were treated for a non-malignant disease (hemoglobinopathies, immunodeficiency/immune dysregulation, and bone marrow failure). 124 stem cell products were from bone marrow and 57 were from peripheral blood. Comparisons between fresh vs cryopreserved treatments found no significant difference in days to neutrophil engraftment (P = .47) or platelet engraftment (p=0.94). No difference in the incidence of acute graft versus host disease or chronic graft versus host disease (p = 0.70) between both groups. Immune reconstitution at 365 days post-transplant did not vary significantly between treatment groups for CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56/16+ NK cells. Overall survival at 2 years was similar in the fresh vs cryopreserved (86.7% vs 84.2%; P = .64). CONCLUSION These observations suggest that cryopreserved stem cell product is a reasonable alternative with comparable efficacy and potentially offering logistical advantages. Further research with larger pediatric cohorts is recommended to confirm non-inferiority of cryopreserved treatments in pediatric HSCT.
Collapse
Affiliation(s)
- Rhea Hans
- Division of Hematology and Oncology, Phoenix Children's, Phoenix, Arizona
| | | | - Roberta H Adams
- Division of Hematology and Oncology, Phoenix Children's, Phoenix, Arizona
| | - Holly Miller
- Division of Hematology and Oncology, Phoenix Children's, Phoenix, Arizona
| | - Dana Salzberg
- Division of Hematology and Oncology, Phoenix Children's, Phoenix, Arizona
| | - Mohamad Sinno
- Division of Hematology and Oncology, Phoenix Children's, Phoenix, Arizona
| | - Kristen Beebe
- Division of Hematology and Oncology, Phoenix Children's, Phoenix, Arizona
| | - Daniela Giralt
- Division of Hematology and Oncology, Phoenix Children's, Phoenix, Arizona
| | | | - Jeff Crosby
- Division of Hematology and Oncology, Phoenix Children's, Phoenix, Arizona
| | - Jefferson Lin
- Division of Biostatistics, Phoenix Children's, Phoenix, Arizona
| | - Lucia Mirea
- Division of Biostatistics, Phoenix Children's, Phoenix, Arizona
| | | | - Alexander Ngwube
- Division of Hematology and Oncology, Phoenix Children's, Phoenix, Arizona.
| |
Collapse
|
7
|
Harris DT, Badowski M. iPSC stem cell banks: is it really necessary if we already have cord blood banks? Regen Med 2025; 20:17-20. [PMID: 39815772 PMCID: PMC11881865 DOI: 10.1080/17460751.2025.2453332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
|
8
|
Thompson GB, Gilchrist AE, Lam VM, Nunes AC, Payan BA, Mora-Boza A, Serrano JF, García AJ, Harley BAC. Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation. J Biomed Mater Res A 2024; 112:2124-2135. [PMID: 38894666 PMCID: PMC11464195 DOI: 10.1002/jbm.a.37765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell-derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow-focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel-based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.
Collapse
Affiliation(s)
- Gunnar B Thompson
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Aidan E Gilchrist
- Department of Biomedical Engineering, University of California, Davis, USA
| | - Vincent M Lam
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Alison C Nunes
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Brittany A Payan
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ana Mora-Boza
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Julio F Serrano
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- George Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Yan L, Li J, Yang Y, Zhang X, Zhang C. Old drug, new use: Recent advances for G-CSF. Cytokine 2024; 184:156759. [PMID: 39293182 DOI: 10.1016/j.cyto.2024.156759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3 (CSF3), is a proinflammatory cytokine that primarily stimulates the survival, proliferation, differentiation and function of neutrophil granulocyte progenitor cells and mature neutrophils. Over the past years, G-CSF has mainly been used to cure patients with neutropenia and as a part of chemotherapy to induct the remission for refractory/relapse leukemia. Recent studies showed that C-CSF can been used as condition regimens and as a part of preventive methods after allogeneic transplantation to improve the survival of patients and also has immunoregulation, and has promote or inhibit the proliferation of solid tumors. Therefore, in this review, we firstly describe the structure for G-CSF. Then its functions and mechanism were reviewed including the neutrophil mobilization, differentiation, migration, and inhibiting apoptosis of neutrophils, and its immunoregulation. Finally, the clinical applications were further discussed.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Jing Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Yang Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| |
Collapse
|
10
|
Barriga F, Lima ACM. Donor selection in allogeneic stem cell transplantation. Curr Opin Hematol 2024; 31:261-269. [PMID: 39046889 DOI: 10.1097/moh.0000000000000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
PURPOSE OF REVIEW Recent progress in human leukocyte antigen (HLA) characterization, increased accrual of unrelated donors and cord blood units, and a new platform for haploidentical transplantation have resulted in the widespread availability of donors for allogeneic hematopoietic stem cell transplantation. RECENT FINDINGS Advances in HLA typing have identified an increasing number of loci and alleles that are crucial for successful transplantation. Newer HLA A, B, C, DRB1, and DQB1 alleles, DPB1 mismatches, and HLA B leader sequence matching are incorporated into donor selection algorithms. Donor selection is highly relevant because of recently published conflicting studies using different donor types. These studies are largely retrospective and compare patients with different diseases and stages, conditioning regimens, graft versus host disease (GVHD) prophylaxis, and time periods. A broad consensus indicates that the best donor is an available matched sibling, followed by a matched unrelated donor, and then alternative donors such as haploidentical, mismatched unrelated, and cord blood units. This consensus is being challenged by other factors, such as donor age, patient condition, urgency of transplantation, and costs involved. SUMMARY In this review, we will analyze the unique characteristics of each donor type, the HLA and non HLA factors that affect donor choices, and the outstanding comparative outcome studies of different donor usage in hematologic malignancies.
Collapse
Affiliation(s)
- Francisco Barriga
- Section of Hematology, Oncology and Stem Cell Transplantation, Pontificia Universidad Católica de Chile, Stem Cell Collection Center, Fundación de Beneficiencia Pública DKMS, Santiago, Chile
| | | |
Collapse
|
11
|
Leung CK, Zhu P, Loke I, Tang KF, Leung HC, Yeung CF. Development of a quantitative prediction algorithm for human cord blood-derived CD34 + hematopoietic stem-progenitor cells using parametric and non-parametric machine learning models. Sci Rep 2024; 14:25085. [PMID: 39443591 PMCID: PMC11500098 DOI: 10.1038/s41598-024-75731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The transplantation of CD34+ hematopoietic stem-progenitor cells (HSPCs) derived from cord blood serves as the standard treatment for selected hematological, oncological, metabolic, and immunodeficiency disorders, of which the dose is pivotal to the clinical outcome. Based on numerous maternal and neonatal parameters, we evaluated the predictive power of mathematical pipelines to the proportion of CD34+ cells in the final cryopreserved cord blood product adopting both parametric and non-parametric algorithms. Twenty-four predictor variables associated with the cord blood processing of 802 processed cord blood units randomly sampled in 2020-2022 were retrieved and analyzed. Prediction models were developed by adopting the parametric (multivariate linear regression) and non-parametric (random forest and back propagation neural network) statistical models to investigate the data patterns for determining the single outcome (i.e., the proportion of CD34+ cells). The multivariate linear regression model produced the lowest root-mean-square deviation (0.0982). However, the model created by the back propagation neural network produced the highest median absolute deviation (0.0689) and predictive power (56.99%) in comparison to the random forest and multivariate linear regression. The predictive model depending on a combination of continuous and discrete maternal with neonatal parameters associated with cord blood processing can predict the CD34+ dose in the final product for clinical utilization. The back propagation neural network algorithm produces a model with the highest predictive power which can be widely applied to assisting cell banks for optimal cord blood unit selection to ensure the highest chance of transplantation success.
Collapse
Affiliation(s)
- Chi-Kwan Leung
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore.
| | - Pengcheng Zhu
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore
| | - Ian Loke
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore
| | - Kin Fai Tang
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore
| | - Ho-Chuen Leung
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore
| | - Chin-Fung Yeung
- Group Laboratory Operations, Cordlife Group Limited, A'Posh Bizhub #06-01/09, 1 Yishun Industrial Street 1, Singapore, 768160, Singapore
| |
Collapse
|
12
|
Ballen K, Wang T, He N, Knight JM, Hong S, Frangoul H, Verdonck LF, Steinberg A, Diaz MA, LeMaistre CF, Badawy SM, Pu JJ, Hashem H, Savani B, Sharma A, Lazarus HM, Abid MB, Tay J, Rangarajan HG, Kindwall-Keller T, Freytes CO, Beitinjaneh A, Winestone LE, Gergis U, Farhadfar N, Bhatt NS, Schears RM, Gómez-Almaguer D, Aljurf M, Agrawal V, Kuwatsuka Y, Seo S, Marks DI, Lehmann L, Wood WA, Hashmi S, Saber W. Impact of Race and Ethnicity on Outcomes After Umbilical Cord Blood Transplantation. Transplant Cell Ther 2024; 30:1027.e1-1027.e14. [PMID: 39033978 PMCID: PMC11842128 DOI: 10.1016/j.jtct.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Umbilical cord blood transplant (UCBT) improves access to transplant for patients lacking a fully matched donor. Previous Center for International Blood and Marrow Transplant Research (CIBMTR) showed that Black patients had a lower overall survival (OS) than White patients following single UCBT. The current study draws on a larger modern cohort and compares outcomes among White, Latinx, Black, and Asian patients. OBJECTIVE To compare outcomes by social determinants of health. STUDY DESIGN We designed a retrospective study using CIBMTR data. US patients were between ages 1 and 80; 983 received single and 1529 double UCBT as reported to CIBMTR, following either a myeloablative (N = 1752) or reduced intensity conditioning (N = 759) for acute myeloid leukemia, acute lymphoid leukemia, or myelodysplasia. The primary outcome was 2-year OS. Secondary outcomes included disease free survival, transplant related mortality (TRM), acute and chronic graft vs host disease (GVHD), and GVHD free, relapse free survival (GRFS). RESULTS For 1705 adults, in univariate analysis, 2-year OS was 41.5% (99% CI, 37.6 to 45.3) for Whites, 36.1% (99% CI, 28.2 to 44.5) for Latinx, 45.8% (99% CI, 36.7 to 55.1) for Blacks, and 44.5% (99% CI, 33.6 to 55.6) for Asians. In multivariate analysis of adults, Latinx patients had inferior OS compared to black patients (p = .0005, HR 1.45, 99% CI 1.18 to 1.79). OS improved over time for all racial/ethnic groups. GVHD rates were comparable among the different racial/ethnic groups. In the 807 children, the 2-year OS in univariate analysis was 66.1% (99% CI, 59.7 to 72.2) for Whites, 57.1% (99%CI, 49 to 64.9) for Latinx, 46.8% (99%CI, 35.3 to 58.4) for Blacks, and 53.8% (99%CI, 32.7 to 74.2) for Asians. In multivariate analysis, no difference in OS was observed among racial/ethnic groups (p = .051). Grade III/IV acute GVHD was higher in Blacks compared with Whites (p = .0016, HR 2.25, 99% CI 1.36 to 3.74) and Latinx (p = .0016, HR 2.17, 99% CI 1.43 to 3.30). There was no survival advantage to receiving a UCB unit from a donor of similar race and ethnicity, for any racial/ethnic groups, for both children and adults. Black and Latinx adult patients were more likely to live in areas defined as high poverty. Patients from high poverty level areas had worse OS (p = .03), due to a higher rate of TRM (p=0.04). Educational level, and type of insurance did not impact overall survival, GVHD, TRM or other transplant outcomes. Children from areas with a higher poverty level had higher TRM, regardless of race and ethnicity (p = .02). Public health insurance, such as Medicaid, was also associated with a higher TRM (p = .02). However, poverty did not impact pediatric OS, DFS, or other post-transplant outcomes. CONCLUSIONS OS for UCBT has improved over time. In adults, OS is comparable among Whites, Blacks, and Asians and lower for Latinx patients. In children, OS is comparable among Whites, Blacks, Latinx, and Asians, but Grade III/IV acute GVHD was higher in Black patients. There was no survival benefit to matching UCB unit and patient by race and ethnicity for adults and children.
Collapse
Affiliation(s)
- Karen Ballen
- Division of Hematology/Oncology, University of Virginia Health System, Charlottesville, Virginia.
| | - Tao Wang
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin; CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Naya He
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer M Knight
- Section of BMT & Cellular Therapies; Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sanghee Hong
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Haydar Frangoul
- The Children's Hospital at TriStar Centennial Medical Center, Nashville, Tennessee; Sarah Cannon Research Institute, Nashville, Tennessee
| | - Leo F Verdonck
- Department of Hematology/Oncology, Isala Clinic, Zwolle, The Netherlands
| | | | - Miguel A Diaz
- Department of Hematology/Oncology, Hospital Infantil Universitario Niño Jesus, Madrid, Spain
| | | | - Sherif M Badawy
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Jeffrey J Pu
- VA Boston Medical Center/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hasan Hashem
- Division of Pediatric Hematology/Oncology and Bone Marrow Transplantation, King Hussein Cancer Center, Amman, Jordan
| | - Bipin Savani
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hillard M Lazarus
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Muhammad Bilal Abid
- Divisions of Hematology/Oncology & Infectious Diseases, BMT & Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jason Tay
- Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada
| | - Hemalatha G Rangarajan
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Nationwide Children's hospital, Columbus, Ohio
| | | | - Cesar O Freytes
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Amer Beitinjaneh
- Division of Transplantation and Cellular Therapy, University of Miami Hospital and Clinics, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Lena E Winestone
- Division of Allergy, Immunology, and Blood & Marrow Transplant, University of California San Francisco Benioff Children's Hospitals, San Francisco, California
| | - Usama Gergis
- Department of Medical Oncology, Division of Hematological Malignancies, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nosha Farhadfar
- Sarah Cannon Transplant & Cellular Program at Methodist Hospital, San Antonio, Texas
| | - Neel S Bhatt
- University of Washington School of Medicine, Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplant, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Raquel M Schears
- University of Central Florida, Department of Emergency Medicine, Orlando, Florida
| | - David Gómez-Almaguer
- Hospital Universitario Dr. José E. González, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Mahmoud Aljurf
- Oncology Center, King Faisal Specialist Hospital Center & Research, Riyadh, Saudi Arabia
| | - Vaibhav Agrawal
- Division of Leukemia, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - Yachiyo Kuwatsuka
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Sachiko Seo
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | - David I Marks
- Bristol Hematology and Oncology Unit, University of Bristol, Bristol, UK
| | - Leslie Lehmann
- Dana Farber Cancer Institute/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - William A Wood
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Shahrukh Hashmi
- Department of Medicine, Sheikh Shakhbout Medical City, Abu Dhabi, UAE; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Wael Saber
- CIBMTR® (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Mellet J, Hendricks CL, Stivaktas V, Durandt C, Ambele MA, Pepper MS. Extensive immunophenotypic sub-population analysis of StemRegenin1 expanded haematopoietic stem/progenitor cells. Stem Cell Res Ther 2024; 15:317. [PMID: 39304924 DOI: 10.1186/s13287-024-03895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Ex vivo haematopoietic stem/progenitor cell (HSPCs) expansion constitutes an important area of research, and has the potential to improve access to umbilical cord blood (UCB) as a source of stem cells for haematopoietic stem cell transplantation (HSCT). The ability to improve stem cell dose and thereby reduce delayed engraftment times, which has plagued the use of UCB as a stem cell source since inception, is a recognised advantage. The extent to which cluster of differentiation (CD)34 sub-populations are affected by expansion with StemRegenin1 (SR1), and whether a particular subtype may account for better engraftment than others, is currently unknown. The purpose of this study was to determine the impact of SR1-induced HSPC expansion on CD34+ immunophenotypic subsets and gene expression profiles. METHODS UCB-derived CD34+ HSPCs were characterised before (D0) and after expansion (D7) with SR1 using an extensive immunophenotypic panel. In addition, gene expression was assessed and differentially expressed genes were categorised into biological processes. RESULTS A dose-dependent increase in the number of CD34+ HSPCs was observed with SR1 treatment, and unbiased and extensive HSPC immunophenotyping proved to be a powerful tool in identifying unique sub-populations within the HSPC repertoire. In this regard, we found that SR1 promotes the emergence of HSPC subsets which may aid engraftment post expansion. In addition, we observed that SR1 has a minimal effect on the transcriptome of 7-day expanded CD34+ HSPCs when compared to cells expanded without SR1, with only two genes being downregulated in the former. CONCLUSION This study revealed that SR1 selects for potentially novel immunophenotypic HSPC subsets post expansion and has a minimal effect on the transcriptome of 7-day expanded HSPCs when compared to vehicle controls. Whether these distinct immunophenotypic sub-populations possess greater engraftment capacity remains to be tested in animal models.
Collapse
Affiliation(s)
- Juanita Mellet
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Candice L Hendricks
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Melvin A Ambele
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
14
|
Thanh-Ha LT, Nhat-Tung P, Thi-Thao C, Van-Phuc T, The-Dung N, Cong-Luc L, Kien-Thach N, My-Trinh NT, Van-Tinh N. Cord Blood Banking in Vietnam: Historical Perspective, Status, and Future Developments 2023. Biopreserv Biobank 2024. [PMID: 39258757 DOI: 10.1089/bio.2023.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
|
15
|
Riley JS, Berkowitz CL, Luks VL, Dave A, Cyril-Olutayo MC, Pogoriler J, Flake AW, Abdulmalik O, Peranteau WH. Immune modulation permits tolerance and engraftment in a murine model of late-gestation transplantation. Blood Adv 2024; 8:4523-4538. [PMID: 38941538 PMCID: PMC11395771 DOI: 10.1182/bloodadvances.2023012247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT In utero hematopoietic cell transplantation is an experimental nonmyeloablative therapy with potential applications in hematologic disorders, including sickle cell disease (SCD). Its clinical utility has been limited due to the early acquisition of T-cell immunity beginning at ∼14 weeks gestation, posing significant technical challenges and excluding treatment fetuses evaluated after the first trimester. Using murine neonatal transplantation at 20 days postcoitum (DPC) as a model for late-gestation transplantation (LGT) in humans, we investigated whether immune modulation with anti-CD3 monoclonal antibody (mAb) could achieve donor-specific tolerance and sustained allogeneic engraftment comparable with that of the early-gestation fetal recipient at 14 DPC. In allogeneic wild-type strain combinations, administration of anti-CD3 mAb with transplantation resulted in transient T-cell depletion followed by central tolerance induction confirmed by donor-specific clonal deletion and skin graft tolerance. Normal immune responses to third-party major histocompatibility complex and viral pathogens were preserved, and graft-versus-host disease did not occur. We further demonstrated the successful application of this approach in the Townes mouse model of SCD. These findings confirm the developing fetal T-cell response as a barrier to LGT and support transient T-cell depletion as a safe and effective immunomodulatory strategy to overcome it.
Collapse
Affiliation(s)
- John S. Riley
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Cara L. Berkowitz
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Valerie L. Luks
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Apeksha Dave
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mojisola C. Cyril-Olutayo
- Department of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jennifer Pogoriler
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Alan W. Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Osheiza Abdulmalik
- Department of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - William H Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
16
|
Henriksson HB, Hellström A, Nilsson AK, Sjöbom U, Jönsson B, Frändberg S. Bacterial species in cord blood and their significance in the context of clinical use. Transfus Apher Sci 2024; 63:103961. [PMID: 38981148 DOI: 10.1016/j.transci.2024.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Approximately 90 % of infants born before 28 full weeks(extremely-preterm-infants) receive erythrocyte transfusions in early life. Umbilical cord blood(UCB) has been investigated as an alternative source for erythrocyte transfusions to preterm neonates. This retrospective study aimed to compile/evaluate spectrum of bacteria groups/species intermittently detected in processed UCB at National-Swedish-Cord blood bank, (NS-CBB) during the years 2008-2020. Consecutive data from the years 2008-2020 were investigated. UCB from healthy newborns born after 37 full weeks of gestation was collected following clamping of cord (1 min) through cannulation of umbilical vein(vaginal-and C-section-deliveries). In total, 5194 cord blood units (UCBUs) that met NS-CBB-guidelines for total nucleated-cell-content(TNC) were manufactured from 8875 collections. Of 5194 UCBUs,77,6 % were from vaginal-and 22,4 % from C-section deliveries.Samples(10 mL) were collected from surplus eryhtrocyte fraction post-processing(n = 5194), transferred into BACT/ALERT® aerobic/anaerobic culture flasks and monitored 10 days using BACT/ALERT®-3D-Microbial-Detection-Systems. Positive samples were subcultured and typed for bacterial groups and/or species. Out of 5194 processed sampled UCB units,186 (3,6 %) were discarded due to positive sterility tests, 92 % were detected in samples from vaginal-deliveries and 8 % from C-section-deliveries. In all,16 different groups of bacteria and 27 species were identified. Common bacterial/groups and species were anaerobe gram-negative rods(n = 28),coagulase-negative-staphylococci(n = 21),gram-positive rods(n = 21),anaerobe-gram-positive cocci(n = 20) and viridans-streptococci(n = 13). Extracted from these results,in positive samples(n = 13) from C-section deliveries, bacteria were found:viridans-streptococci(n = 7),Aerococcus-urinae(n = 1), Staphylococcus lugdunensis(n = 1),other coagulase-negative staphylococci(n = 1) or a mix of aerobic/anaerobic bacteria(n = 3). Our results are in alignment with previously published contamination rates in processed UCBUs. Still, results point towards importance of strict microbial monitoring when manufacturing UCBUs to achieve patient-safe- products for stem-cell transplantation/transfusion.
Collapse
Affiliation(s)
- Helena Barreto Henriksson
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Research, Development, Education and Innovation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K Nilsson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Sjöbom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Learning and Leadership for Health Care Professionals at the Institute of Health and Care Science at Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Bodil Jönsson
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sofia Frändberg
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
17
|
Khoubila N, Sraidi S, Madani A, Tazi I. Anaplastic Large-cell Lymphoma in Children: State of the Art in 2023. J Pediatr Hematol Oncol 2024; 46:217-224. [PMID: 38912833 DOI: 10.1097/mph.0000000000002875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/04/2024] [Indexed: 06/25/2024]
Abstract
Anaplastic large-cell lymphoma is a rare disease and account for approximately 10% to 15% of pediatric non-Hodgkin lymphomas. They are characterized by extended stages, a high frequency of B signs and extra nodal involvement. Multiagent chemotherapy cures ∽60% to 75% of patients and relapse occurs in 35% of cases. For relapsed patients, various treatments ranging from vinblastine monotherapy to therapeutic intensification with hematopoietic stem cell transplantation have been evaluated, but there is currently no consensus on the optimal therapeutic strategy. New therapeutic perspectives are being evaluated for relapses and refractory forms as well as high-risk forms including monoclonal antibodies (Anti CD30), ALK inhibitors, and CART cells.
Collapse
Affiliation(s)
- Nisrine Khoubila
- Department of Hematology and Pediatric Oncology, Hospital 20 August 1953, CHU Ibn Rochd, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca
| | - Sofia Sraidi
- Department of Hematology and Pediatric Oncology, Hospital 20 August 1953, CHU Ibn Rochd, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca
| | - Abdellah Madani
- Department of Hematology and Pediatric Oncology, Hospital 20 August 1953, CHU Ibn Rochd, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca
| | - Illias Tazi
- Department of Clinical Hematology, CHU Mohamed VI, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
18
|
Li J, Ijaz I, Zhao L. Umbilical Artery Thrombosis Causing Fetal Distress: A Case Report. Cureus 2024; 16:e64624. [PMID: 39149688 PMCID: PMC11325117 DOI: 10.7759/cureus.64624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
The umbilical cord (UC) is vital to maintain blood circulation between the mother and the growing fetus, which is sometimes disrupted. The umbilical artery thrombosis (UAT) is an infrequent complication of pregnancy that can lead to extreme perinatal outcomes, ranging from intrauterine growth restriction stillbirth to neonatal death. The prenatal diagnosis of UAT is essential and sometimes challenging to detect in clinical practice. Once it is detected, the emergent delivery through a cesarean section is considered after the steroidal lung maturity of the fetus. We report a primigravida diagnosed with this rare pregnancy complication, the UAT at delivery, along with the nuchal cord and abnormally coiled UC. The patient had an uneventful course of pregnancy except for the premature rupture of membranes and continuous fetal distress in the second stage of labor. As the labor progression was optimal, and prioritizing the patient's desire, she was vigilantly observed under the premise of continuous electronic fetal monitoring (EFM) to facilitate any emergency, ultimately resulting in the spontaneous vaginal delivery of an alive and healthy baby boy. The fetal distress detected through EFM is an indicator of several stressors predisposing the fetus to some unknown danger that carries an increased risk of perinatal mortality. Based on our experience, it is suggested that radiologists should routinely conduct UC sonographic studies on regular antenatal scans; obstetricians should also have a brief and precise awareness of the critical lifesaving sonographic parameters to measure. The UAT, nuchal cord, and abnormal UC coiling, as found in our case, are all rare factors and related to some extent of fetal morbidity and mortality; once such complications are prenatally suspected, one should manage it through close monitoring and timely decision of appropriate delivery time.
Collapse
Affiliation(s)
- Jia Li
- Department of Gynecology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, CHN
| | - Iqra Ijaz
- Department of Obstetrics and Gynecology, Holy Family Hospital, Rawalpindi, Rawalpindi, PAK
- Sichuan Provincial Center for Gynecological and Breast Diseases, Southwest Medical University, Luzhou, CHN
| | - Liang Zhao
- Department of Gynecology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, CHN
| |
Collapse
|
19
|
Bahar R, Darabi S, Norouzian M, Roustaei S, Torkamani-Dordshaikh S, Hasanzadeh M, Vakili K, Fathi M, Khodagholi F, Kaveh N, Jahanbaz S, Moghaddam MH, Abbaszadeh HA, Aliaghaei A. Neuroprotective effect of human cord blood-derived extracellular vesicles by improved neuromuscular function and reduced gliosis in a rat model of Huntington's disease. J Chem Neuroanat 2024; 138:102419. [PMID: 38609056 DOI: 10.1016/j.jchemneu.2024.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Huntington's disease (HD) is a hereditary condition characterized by the gradual deterioration of nerve cells in the striatum. Recent scientific investigations have revealed the promising potential of Extracellular vesicles (EVs) as a therapy to mitigate inflammation and enhance motor function. This study aimed to examine the impact of administering EVs derived from human umbilical cord blood (HUCB) on the motor abilities and inflammation levels in a rat model of HD. After ultracentrifugation to prepare EVs from HUCB to determine the nature of the obtained contents, the expression of CD markers 81 and 9, the average size and also the morphology of its particles were investigated by DLS and Transmission electron microscopy (TEM). Then, in order to induce the HD model, 3-nitropropionic acid (3-NP) neurotoxin was injected intraperitoneal into the rats, after treatment by HUCB-EVs, rotarod, electromyogram (EMG) and the open field tests were performed on the rats. Finally, after rat sacrifice and the striatum was removed, Hematoxylin and eosin staining (H&E), stereology, immunohistochemistry, antioxidant tests, and western blot were performed. Our results showed that the contents of the HUCB-EVs express the CD9 and CD81 markers and have spherical shapes. In addition, the injection of HUCB-EVs improved motor and neuromuscular function, reduced gliosis, increased antioxidant activity and inflammatory factor, and partially prevented the decrease of neurons. The findings generally show that HUCB-EVs have neuroprotective effects and reduce neuroinflammation from the toxic effects of 3-NP, which can be beneficial for the recovery of HD.
Collapse
Affiliation(s)
- Reza Bahar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Roustaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shayesteh Torkamani-Dordshaikh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Hasanzadeh
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Kaveh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Jahanbaz
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Osada M, Yamamoto H, Watanabe O, Yamaguchi K, Kageyama K, Kaji D, Taya Y, Nishida A, Ishiwata K, Takagi S, Makino S, Asano-Mori Y, Yamamoto G, Taniguchi S, Wake A, Uchida N. Lymphocyte Crossmatch Testing or Donor HLA-DP and -DQ Allele Typing Effectiveness in Single Cord Blood Transplantation for Patients With Anti-HLA Antibodies Other Than Against HLA-A, -B, -C, and -DRB1. Transplant Cell Ther 2024; 30:696.e1-696.e14. [PMID: 38641011 DOI: 10.1016/j.jtct.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Anti-human leukocyte antigen (HLA) antibodies other than those against HLA-A, -B, -C, and DRB1 are a risk factor for engraftment delay and failure, especially in cord blood transplantation (CBT). The primary objective of this study was to assess the impact of the presence of anti-HLA antibodies on CBT and to evaluate the utility of lymphocyte crossmatch testing or additional HLA-DP and -DQ typing of CB units in improving transplant outcomes. We retrospectively assessed the engraftment rates and transplant outcomes of 772 patients who underwent their first CBT at our hospital between 2012 and 2021. Donors were routinely typed for HLA-A, -B, -C, and-DRB1 alleles, and the anti-HLA antibodies of recipients were screened before donor selection in all cases. Among patients who had antibodies against other than HLA-A, -B, -C, and DRB1 (n = 58), lymphocyte crossmatch testing (n = 32) or additional HLA-DP/-DQ alleles typing of CB (n = 15) was performed to avoid the use of units with corresponding alleles. The median patient age was 57 years (16 to 77). Overall, 75.7% had a high-risk disease status at transplantation, 83.5% received myeloablative conditioning regimens, and >80% were heavily transfused. Two hundred twenty-nine of the 772 recipients (29.6%) were positive for anti-HLA antibodies. There were no statistical differences in the number of infused CD34-positive cells between the anti-HLA antibody-positive and the anti-HLA antibody-negative patients. Of the 229 patients with anti-HLA antibodies, 168 (73.3%) had antibodies against HLA-A, -B, -C, and-DRB1 (Group A), whereas 58 (25.3%) had antibodies against HLA-DP, HLA-DQ, or -DRB3/4/5 with or without antibodies against HLA-A, -B, -C, and -DRB1 (Group B). No patients in both Groups A and B exhibited donor-specific anti-HLA antibodies against HLA-A, -B, -C, and -DRB1. The neutrophil engraftment rate was lower in patients with anti-HLA antibodies than in those without antibodies (89.9% versus 94.1%), whereas nonrelapse mortality (NRM) before engraftment was higher in antibody-positive patients (9.6% versus 4.9%). In patients who received 2 or more HLA allele-mismatched CB in the host-versus-graft (HVG) direction (n = 685), the neutrophil engraftment rate was lower in the anti-HLA antibody-positive recipients than in the antibody-negative recipients with significant differences (88.8% versus 93.8%) (P = .049). Similarly, transplant outcomes were worse in the antibody-positive patients with respect to 2-year overall survival (OS) (43.1% versus 52.3%) and NRM (44.0% versus 30.7%) than in the antibody-negative patients. In contrast, the results of Group B were comparable to those of the antibody-negative patients, while those of Group A were statistically worse than the antibody-negative patients in terms of all engraftment rate (88.6%), OS (34.2%), and NRM (49.0%). The presence of anti-HLA antibodies negatively impacts engraftment, NRM, and OS in CBT. However, HLA-DP/-DQ allele typing of CB units or lymphocyte crossmatch testing could be a useful strategy to overcome poor engraftment rates and transplant outcomes, especially in patients with anti-HLA antibodies against HLA-DP, HLA-DQ, or -DRB3/4/5.
Collapse
Affiliation(s)
- Makoto Osada
- Department of Hematology, Toranomon Hospital, Tokyo, Japan; Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo, Japan.
| | | | - Otoya Watanabe
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | | | - Kosei Kageyama
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Daisuke Kaji
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Yuki Taya
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Aya Nishida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | | | | | - Shigeyoshi Makino
- Department of Transfusion Medicine, Toranomon Hospital, Tokyo, Japan
| | - Yuki Asano-Mori
- Department of Transfusion Medicine, Toranomon Hospital, Tokyo, Japan
| | - Go Yamamoto
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | | | - Atsushi Wake
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| |
Collapse
|
21
|
Odutola PO, Olorunyomi PO, Olorunyomi I. Single vs double umbilical cord blood transplantation in acute leukemia: Systematic review and meta-analysis. Leuk Res 2024; 142:107517. [PMID: 38761563 DOI: 10.1016/j.leukres.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND AIMS Umbilical cord blood transplantation (UCBT) has emerged as a promising treatment option for patients with acute leukemia needing hematopoietic stem cell transplantation. Both single (sUCBT) and double cord blood units (dUCBT) demonstrate potential benefits, but studies comparing their effectiveness have shown mixed results. This meta-analysis aimed to determine the comparative safety and efficacy of sUCBT versus dUCBT in acute leukemia patients. METHODS Electronic databases were systematically examined to identify relevant studies comparing single vs double UCBT published until November 2023. Nine studies involving 3864 acute leukemia patients undergoing UCBT were included. Outcomes analyzed were acute graft-versus-host disease (GVHD), chronic GVHD, relapse, non-relapse mortality, leukemia-free survival and overall survival. Pooled risk ratios (RR) with 95% confidence intervals (CI) were calculated using a random effects model. RESULTS The risk of Grade II-IV acute GVHD (RR 1.55, 95% CI 1.19-2.03) and Grade III-IV acute GVHD (RR 1.25, 95% CI 1.07-1.46) were significantly higher with dUCBT. Relapse risk was lower with dUCBT (RR 0.57, 95% CI 0.38-0.88) while overall survival favored sUCBT (RR 1.25, 95% CI 1.06-1.46). No significant differences were observed for chronic GVHD, non-relapse mortality or leukemia-free survival. CONCLUSION Both single and double UCBT have potential as effective treatments for acute leukemia. The choice of treatment should consider various factors, including the risk of GVHD, relapse, and mortality. More research, especially randomized trials, is needed to provide definitive guidance on the optimal use of single and double unit UCBT in patients with acute leukemia.
Collapse
|
22
|
Kondo AT, Alvarez KCA, Cipolletta ANF, Sakashita AM, Kutner JM. Nucleated red blood cell: a feasible quality parameter of cord blood units. Hematol Transfus Cell Ther 2024; 46:221-227. [PMID: 36935342 PMCID: PMC11221323 DOI: 10.1016/j.htct.2023.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/20/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION Umbilical cord blood is an alternative source of hematopoietic progenitor cells for bone marrow transplantation; however, it is associated with a higher graft failure rate. The presence of a high rate of nucleated red blood cells (NRBCs) seems to be related to a greater capacity for engraftment, although is also associated with fetal distress conditions. We analyzed the correlation of the NRBC with quality parameters and its association with the utilization score of a cord blood unit. STUDY DESIGN AND METHOD Data of 3346 units collected in a public cord blood bank from May 2010 to December 2017 were analyzed, retrospectively, to identify factors associated with an increased number of nucleated red blood cells and its correlation with the engraftment capacity measured through total nucleated cells (TNCs) and CD34 positive cells. We also evaluated the utilization score of these units and identified an NRBC cutoff associated with a higher score. RESULTS The median volume collected was 104 mL (42-255), the pre-processing TNC count was 144.77 × 107 (95.46-477.18), the post-processing TNC count was 119.44 × 107 (42.7-477.18), the CD34 count was 4.67 × 106 (0.31-48.01), the NRBC count was 5 (0-202) and the utilization score was 0.0228 (0.00143-0.9740). The NRBC showed a correlation with the collected volume, TNC and CD34 positive cells and a higher utilization score and the receiver operating characteristic (ROC) curve analysis identified the five NRBC/100 leukocytes cutoff that correlates better with the probability of use. No association with pathological conditions and the NRBC rate was observed. CONCLUSIONS The NRBC is a feasible parameter for the screening of the cord blood unit (CBU) and the minimum cutoff of five NRBC/100 leukocytes can be a strategy in conjunction with the TNC to identify better units for cord blood bank sustainability.
Collapse
|
23
|
Aguadé-Gorgorió J, Jami-Alahmadi Y, Calvanese V, Kardouh M, Fares I, Johnson H, Rezek V, Ma F, Magnusson M, Wang Y, Shin JE, Nance KJ, Goodridge HS, Liebscher S, Schenke-Layland K, Crooks GM, Wohlschlegel JA, Mikkola HKA. MYCT1 controls environmental sensing in human haematopoietic stem cells. Nature 2024; 630:412-420. [PMID: 38839950 PMCID: PMC11168926 DOI: 10.1038/s41586-024-07478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.
Collapse
Affiliation(s)
- Júlia Aguadé-Gorgorió
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Pfizer, Cambridge, MA, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Laboratory for Molecular Cell Biology, University College London, London, UK
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Maya Kardouh
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Iman Fares
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Kite Pharma, Santa Monica, CA, USA
| | - Haley Johnson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Valerie Rezek
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- UCLA AIDS Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
- Amgen, Thousand Oaks, CA, USA
| | - Mattias Magnusson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Yanling Wang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Juliana E Shin
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Karina J Nance
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Helen S Goodridge
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simone Liebscher
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Gay M Crooks
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Rajput SN, Naeem BK, Ali A, Salim A, Khan I. Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine. World J Stem Cells 2024; 16:410-433. [PMID: 38690517 PMCID: PMC11056638 DOI: 10.4252/wjsc.v16.i4.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages. In humans, their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs. Studies suggested that mesenchymal stem cells (MSCs), necessary for repair and regeneration via transplantation, require doses ranging from 10 to 400 million cells. Furthermore, the limited expansion of MSCs restricts their therapeutic application. AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols. METHODS Human umbilical cord (hUC) tissue derived MSCs were obtained and re-cultured. These cultured cells were subjected to the following evaluation procedures: Immunophenotyping, immunocytochemical staining, trilineage differentiation, population doubling time and number, gene expression markers for proliferation, cell cycle progression, senescence-associated β-galactosidase assay, human telomerase reverse transcriptase (hTERT) expression, mycoplasma, cytomegalovirus and endotoxin detection. RESULTS Analysis of pluripotent gene markers Oct4, Sox2, and Nanog in recultured hUC-MSC revealed no significant differences. The immunophenotypic markers CD90, CD73, CD105, CD44, vimentin, CD29, Stro-1, and Lin28 were positively expressed by these recultured expanded MSCs, and were found negative for CD34, CD11b, CD19, CD45, and HLA-DR. The recultured hUC-MSC population continued to expand through passage 15. Proliferative gene expression of Pax6, BMP2, and TGFb1 showed no significant variation between recultured hUC-MSC groups. Nevertheless, a significant increase (P < 0.001) in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs. Cellular senescence markers (hTERT expression and β-galactosidase activity) did not show any negative effect on recultured hUC-MSCs. Additionally, quality control assessments consistently confirmed the absence of mycoplasma, cytomegalovirus, and endotoxin contamination. CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population. This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
Collapse
Affiliation(s)
- Shafiqa Naeem Rajput
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Bushra Kiran Naeem
- Surgical Unit 4, Dr. Ruth KM Pfau Civil Hospital, Karachi 74400, Pakistan
| | - Anwar Ali
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
- Center for Regenerative Medicine and Stem Cells Research, and Department of Ophthalmology and Visual Sciences, The Aga Khan University, Karachi 74800, Sindh, Pakistan.
| |
Collapse
|
25
|
Koch KC, Jadon N, Thesmar I, Tew GN, Minter LM. Combating bone marrow failure with polymer materials. Front Immunol 2024; 15:1396486. [PMID: 38694497 PMCID: PMC11061490 DOI: 10.3389/fimmu.2024.1396486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Bone marrow failure (BMF) has become one of the most studied autoimmune disorders, particularly due to its prevalence both as an inherited disease, but also as a result of chemotherapies. BMF is associated with severe symptoms such as bleeding episodes and susceptibility to infections, and often has underlying characteristics, such as anemia, thrombocytopenia, and neutropenia. The current treatment landscape for BMF requires stem cell transplantation or chemotherapies to induce immune suppression. However, there is limited donor cell availability or dose related toxicity associated with these treatments. Optimizing these treatments has become a necessity. Polymer-based materials have become increasingly popular, as current research efforts are focused on synthesizing novel cell matrices for stem cell expansion to solve limited donor cell availability, as well as applying polymer delivery vehicles to intracellularly deliver cargo that can aid in immunosuppression. Here, we discuss the importance and impact of polymer materials to enhance therapeutics in the context of BMF.
Collapse
Affiliation(s)
- Kayla C. Koch
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Nidhi Jadon
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Iris Thesmar
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Lisa M. Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
26
|
Okada Y, Usui Y, Hayashi H, Nishikubo M, Toubai T, Uchida N, Tanaka M, Onizuka M, Takahashi S, Doki N, Uehara Y, Maruyama Y, Ishiwata K, Kawakita T, Sawa M, Eto T, Ishimaru F, Kato K, Fukuda T, Atsuta Y, Kanda J, Yakushijin K, Nakasone H. Development of an umbilical cord blood transplantation-specific nonrelapse mortality risk assessment score. Blood Adv 2024; 8:1359-1368. [PMID: 38163321 PMCID: PMC10945135 DOI: 10.1182/bloodadvances.2023011837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
ABSTRACT Higher rate of nonrelapse mortality (NRM) remains yet to be resolved in umbilical cord blood transplantation (UCBT). Considering that UCBT has some unique features compared with allogeneic hematopoietic cell transplantation from other graft sources, a UCBT-specific NRM risk assessment system is required. Thus, in this study, we sought to develop a UCBT-specific NRM Risk Assessment (CoBRA) score. Using a nationwide registry database, we retrospectively analyzed 4437 recipients who had received their first single-unit UCBT. Using the backward elimination method, we constructed the CoBRA score in a training cohort (n = 2687), which consisted of recipients age ≥55 years (score 2), hematopoietic cell transplantation-specific comorbidity index ≥3 (score 2), male recipient, graft-versus-host disease prophylaxis other than tacrolimus in combination with methotrexate, performance status (PS) 2 to 4, HLA allele mismatch ≥ 2, refined Disease Risk Index high risk, myeloablative conditioning, and CD34+ cell doses < 0.82 × 105/kg (score 1 in each). The recipients were categorized into 3 groups: low (0-4 points), intermediate (5-7 points), and high (8-11 points) groups according to the CoBRA score. In the validation cohort (n = 1750), the cumulative incidence of NRM at 2 years was 14.9%, 25.5%, and 47.1% (P < .001), and 2-year overall survival (OS) was 74.2%, 52.7%, and 26.3% (P < .001) in the low, intermediate, and high groups, respectively. In summary, the CoBRA score could predict the NRM risk as well as OS after UCBT. Further external validation will be needed to confirm the significance of the CoBRA score.
Collapse
Affiliation(s)
- Yosuke Okada
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yoshiaki Usui
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiromi Hayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Nishikubo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tomomi Toubai
- Department of Internal Medicine III, Division of Hematology and Cell Therapy, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Satoshi Takahashi
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yasufumi Uehara
- Department of Hematology, Kitakyushu City Hospital Organization, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Yumiko Maruyama
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Kazuya Ishiwata
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, Kajigaya, Japan
| | - Toshiro Kawakita
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Masashi Sawa
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Fumihiko Ishimaru
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Koji Kato
- Central Japan Cord Blood Bank, Aichi, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Junya Kanda
- Department of Hematology, Kyoto University Hospital, Kyoto, Japan
| | - Kimikazu Yakushijin
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Division of Emerging Medicine for Integrated Therapeutics (EMIT), Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
27
|
Zhuxiao R, Jiangxue H, Yongsheng L, Jingjun P, Shuo Y, Fang X, Qi Z, Shandan Z, Chuan N, Jie Y. Umbilical cord blood cell characteristics in very preterm neonates for autologous cell therapy of preterm-associated complications. BMC Pediatr 2024; 24:214. [PMID: 38528484 DOI: 10.1186/s12887-024-04678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND There are emerging clinical evidence for umbilical cord blood mononuclear cells (UCBMNCs) intervention to improve preterm complications. The first critical step in cell therapy is to obtain high-quality cells. This retrospective study aimed to investigate the quantity and quality of UCBMNCs from very preterm infants (VPIs) for the purpose of autologous cell therapy in prevention and treatment of preterm complications. METHODS Very preterm infants (VPIs) born in Guangdong Women and Children Hospital from January 1, 2017, to December 8, 2022, from whom cord blood was successfully collected and separated for public or private banking, were enrolled. The UCBMNCs characters from route cord blood tests performed in cord blood bank, impact of perinatal factors on UCBMNCs, the relationship between UCBMNCs characteristics and preterm outcomes, and the correlation of UCBMNCs characteristics and peripheral blood cells in VPIs were analyzed. RESULTS Totally, 89 VPIs underwent UCB collection and processing successfully. The median cell number post processing was 2.6 × 108. To infuse a dose of 5 × 107 cells/kg, only 3.4% of infants required a volume of more than 20 mL/kg, which exceeded the maximum safe volume limit for VPIs. However, when infusing 10 × 107 cells/kg, 25.8% of infants required a volume of more than 20 ml/kg volume. Antenatal glucocorticoids use and preeclampsia was associated with lower original UCBMNCs concentration. Both CD34+ hematopoietic stem cells (HSC) frequency and colony forming unit - granulocyte and macrophage (CFU-GM) number correlated negatively with gestational age (GA). UCBMNCs characters had no significant effect on preterm outcomes, whereas a significant positive correlation was observed between UCBMNCs concentration and total white blood cell, neutrophil, lymphocyte and PLT counts in peripheral blood. CONCLUSION UCBMNCs collected from VPIs was feasible for autologous cell therapy in improving preterm complications. Setting the infusion dose of 5 × 107 cells/kg guaranteed a safe infusion volume in more than 95% of the targeted infants. UCBMNCs characters did not affect preterm complications; however, the effect of UCBMNCs concentration on peripheral blood classification count should be considered when evaluating the immunomodulation of UCBMNCs transfusion.
Collapse
Affiliation(s)
- Ren Zhuxiao
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control CenterNational Key Clinical Specialty Construction Unit, Guangzhou, 511442, China
| | - Han Jiangxue
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Li Yongsheng
- Guangdong Cord Blood Bank, Guangzhou, 511440, China
| | - Pei Jingjun
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 511400, China
| | - Yang Shuo
- Department of Medical Statistics, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xu Fang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control CenterNational Key Clinical Specialty Construction Unit, Guangzhou, 511442, China
| | - Zhang Qi
- Department of Clinic Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511442, China
| | - Zhang Shandan
- Department of Neonatology, The Maternal and Child Health Care Hospital of HuaDu District, GuangZhou City, Guangdong Medical University, Guangzhou, 510800, China
| | - Nie Chuan
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
- Guangdong Neonatal ICU Medical Quality Control CenterNational Key Clinical Specialty Construction Unit, Guangzhou, 511442, China.
- Department of Clinic Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511442, China.
| | - Yang Jie
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 511400, China.
| |
Collapse
|
28
|
Zhu D, Barabadi M, McDonald C, Kusuma G, Inocencio IM, Lim R. Implications of maternal-fetal health on perinatal stem cell banking. Gene Ther 2024; 31:65-73. [PMID: 37880336 PMCID: PMC10940157 DOI: 10.1038/s41434-023-00426-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Cell based therapies are being assessed for their therapeutic potential across a variety of diseases. Gestational tissues are attractive sources for cell therapy. The large number of births worldwide ensures sufficient access to gestational tissues, however, limited information has been reported around the impact of birth trends, delivery methods and pregnancy conditions on perinatal stem cell banking. This review describes the current state of banking of gestational tissues and their derived perinatal stem cells, discusses why the changes in birth trends and delivery methods could affect gestational tissue banking practices, and further explores how common pregnancy complications can potentially influence perinatal stem cell banking.
Collapse
Affiliation(s)
- Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia.
| | - Courtney McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia
| | - Gina Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia
| | - Ishmael Miguel Inocencio
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Monash, VIC, Australia
| |
Collapse
|
29
|
Sakurai M, Ishitsuka K, Becker HJ, Yamazaki S. Ex vivo expansion of human hematopoietic stem cells and clinical applications. Cancer Sci 2024; 115:698-705. [PMID: 38221718 PMCID: PMC10921004 DOI: 10.1111/cas.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare population of cells found in the bone marrow that play a critical role in lifelong hematopoiesis and the reconstitution of the hematopoietic system after hematopoietic stem cell transplantation. Hematopoietic stem cell transplantation remains the only curative treatment for patients with refractory hematologic disorders, and umbilical cord blood (CB) serves as an alternative stem cell source due to its several advantageous characteristics, including human leukocyte antigen flexibility and reduced donor burden. However, CB also has the disadvantage of containing a small number of cells, resulting in limited donor selection and a longer time for engraftment. Therefore, the development of techniques to expand HSCs ex vivo, particularly umbilical CB, is a goal in hematology. While various combinations of cytokines were once the mainstream approach, these protocols had limited expansion rates and did not lead to clinical application. However, in recent years, the development of a technique in which small molecules are added to cytokines has enabled the stable, long-term ex vivo expansion of human HSCs. Clinical trials of expanded umbilical CB using these techniques have been undertaken and have confirmed their efficacy and safety. In addition, we have successfully developed a recombinant-cytokine-free and albumin-free culture system for the long-term expansion of human HSCs. This approach could offer the potential for more selective expansion of human HSCs compared to previous protocols. This review discusses ex vivo culture protocols for expanding human HSCs and presents the results of clinical trials using these techniques, along with future perspectives.
Collapse
Affiliation(s)
- Masatoshi Sakurai
- Division of Hematology, Department of MedicineKeio University School of MedicineTokyoJapan
| | - Kantaro Ishitsuka
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Hans Jiro Becker
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Satoshi Yamazaki
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
- Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
30
|
Wang P, Qian X, Jiang W, Wang H, Wang Y, Zhou Y, Zhang Y, Huang Y, Zhai X. Cord Blood Transplantation for Very Early-Onset Inflammatory Bowel Disease Caused by Interleukin-10 Receptor Deficiency. J Clin Immunol 2024; 44:67. [PMID: 38372823 DOI: 10.1007/s10875-024-01669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE Interleukin-10 receptor (IL-10R) deficiency can result in life-threatening very early-onset inflammatory bowel disease (VEO-IBD). Umbilical cord blood transplantation (UCBT) is a curative therapy for patients with IL-10R deficiency. This study aimed to investigate the efficacy of UCBT in treating IL-10R deficiency and develop a predictive model based on pre-transplant factors. METHODS Eighty patients with IL-10R deficiency who underwent UCBT between July 2015 and April 2023 were retrospectively analyzed. Cox proportional hazards regression and random survival forest were used to develop a predictive model. RESULTS Median age at transplant was 13.0 months (interquartile range [IQR], 8.8-25.3 months). With a median follow-up time of 29.4 months (IQR, 3.2-57.1 months), the overall survival (OS) rate was 65.0% (95% confidence interval [CI], 55.3%-76.3%). The engraftment rate was 85% (95% CI, 77%-93%). The cumulative incidences of acute and chronic graft-versus-host disease were 48.2% (95% CI, 37.1%-59.4%) and 12.2% (95% CI, 4.7%-19.8%), respectively. VEO-IBD-associated clinical symptoms were resolved in all survivors. The multivariate analysis showed that IL-6 and stool occult blood were independent prognostic risk factors. The multivariate Cox proportional hazards regression model with stool occult blood, length- or height-for-age Z-score, medical history of sepsis, and cord blood total nucleated cells showed good discrimination ability, with a bootstrap concordance index of 0.767-0.775 in predicting OS. CONCLUSION Better inflammation control before transplantation and higher cord blood total nucleated cell levels can improve patient prognosis. The nomogram can successfully predict OS in patients with IL-10R deficiency undergoing UCBT.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaowen Qian
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Wenjin Jiang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Hongsheng Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yuhuan Wang
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Ying Zhou
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Ye Zhang
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
31
|
Konuma T, Yamasaki S, Ishiyama K, Mizuno S, Hayashi H, Uchida N, Shimabukuro M, Tanaka M, Kuriyama T, Onizuka M, Ishiwata K, Sawa M, Tanaka T, Ohigashi H, Fujiwara SI, Matsuoka KI, Ota S, Nishida T, Kanda Y, Fukuda T, Atsuta Y, Nakasone H, Yanada M. Comparison of Allogeneic Transplant Outcomes Between Matched Sibling Donors and Alternative Donors in Patients Over 50 Years of Age with Acute Myeloid Leukemia: 8/8 Allele-Matched Unrelated Donors and Unrelated Cord Blood Provide Better Leukemia-Free Survival Compared with Matched Sibling Donors During Nonremission Status. Transplant Cell Ther 2024; 30:215.e1-215.e18. [PMID: 38081415 DOI: 10.1016/j.jtct.2023.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 12/06/2023] [Indexed: 01/01/2024]
Abstract
Acute myeloid leukemia (AML) is the most common indication for allogeneic hematopoietic cell transplantation (HCT). The increased availability of alternative donor sources has broadened donor types for older patients without HLA-matched sibling donors (MSD). It is uncertain if an MSD should be the first option for allogeneic HCT in patients with AML over 50 years of age. The objective of this study was to compare survival and other post-transplant outcomes between MSDs, 8/8 allele-matched unrelated donors (MUDs), 7/8 allele-MUDs, unrelated cord blood (UCB), and haploidentical donors for patients with AML over 50 years of age. We conducted a retrospective study to compare outcomes in 5704 patients with AML over 50 years of age and receiving allogeneic HCT between 2013 and 2021, using either MSD, 8/8 allele-MUD, 7/8 allele-MUD, UCB, or haploidentical donors in Japan. Complete remission (CR) and nonremission at HCT were analyzed separately for all analyses. In total, 3041 patients were CR, and 2663 patients were nonremission at the time of HCT. In multivariate analysis, donor type did not determine overall survival, irrespective of disease status at HCT. Leukemia-free survival (LFS) was significantly better for 8/8 allele-MUD (hazard ratio [HR], 0.77; 95% confidence interval [CI], 0.64 to 0.93; P = .005) and UCB (HR, 0.76; 95% CI, 0.65 to 0.88; P < .001), but not for 7/8 allele-MUD (HR, 0.97; 95% CI, 0.79 to 1.19; P = .794), and haploidentical donor (HR, 0.86; 95% CI, 0.70 to 1.05; P = .146) compared to the MSD group in nonremission status. However, donor type did not determine LFS among CR status. Relapse rates were significantly lower for 8/8 allele-MUD and UCB, whereas nonrelapse mortality was higher for UCB compared to the MSD group among both CR and nonremission status. Our registry-based study demonstrated that MSDs do not lead to superior survival compared to alternative donors for patients with AML over 50 years of age. Furthermore, 8/8 allele-MUDs and UCB provide better LFS compared with MSDs during nonremission status. Therefore, MSD is not necessarily the best donor option for allogeneic HCT in this population.
Collapse
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Satoshi Yamasaki
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Ken Ishiyama
- Department of Hematology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hiromi Hayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Masashi Shimabukuro
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takuro Kuriyama
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Kazuya Ishiwata
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Masashi Sawa
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Takashi Tanaka
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | | | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Tetsuya Nishida
- Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Tochigi, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan; Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan; Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Masamitsu Yanada
- Department of Hematology and Oncology, Nagoya City University East Medical Center, Nagoya, Japan
| |
Collapse
|
32
|
Ngo AD, Nguyen HL, Caglayan S, Chu DT. RNA therapeutics for the treatment of blood disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:273-286. [PMID: 38360003 DOI: 10.1016/bs.pmbts.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Blood disorders are defined as diseases related to the structure, function, and formation of blood cells. These diseases lead to increased years of life loss, reduced quality of life, and increased financial burden for social security systems around the world. Common blood disorder treatments such as using chemical drugs, organ transplants, or stem cell therapy have not yet approached the best goals, and treatment costs are also very high. RNA with a research history dating back several decades has emerged as a potential method to treat hematological diseases. A number of clinical trials have been conducted to pave the way for the use of RNA molecules to cure blood disorders. This novel approach takes advantage of regulatory mechanisms and the versatility of RNA-based oligonucleotides to target genes and cellular pathways involved in the pathogenesis of specific diseases. Despite positive results, currently, there is no RNA drug to treat blood-related diseases approved or marketed. Before the clinical adoption of RNA-based therapies, challenges such as safe delivery of RNA molecules to the target site and off-target effects of injected RNA in the body need to be addressed. In brief, RNA-based therapies open novel avenues for the treatment of hematological diseases, and clinical trials for approval and practical use of RNA-targeted are crucial.
Collapse
Affiliation(s)
- Anh Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Hoang Lam Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | | | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
33
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
34
|
Ren Y, Cui Y, Feng J, Tan Y, Ren F, Zhang Y, Wang H. Synergistic effect and molecular mechanism of PVA and UM171 in ex vivo expansion of primitive hematopoietic stem cells. J Cell Biochem 2024; 125:79-88. [PMID: 37992216 DOI: 10.1002/jcb.30505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) used for transplantation; the number of cells in a single UCB is too small to quickly establish bone marrow (BM) implantation, and ex vivo expansion of HSCs has the potential to overcome this limitation. The purpose of this study is to explore the culture conditions conducive to the maintenance and expansion of hematopoietic stem and progenitor cells (HSPCs) and long-term hematopoietic stem cells (LT-HSCs) derived from human umbilical cord blood, compare the different effects of albumin (HSA) and polyvinyl alcohol (PVA), optimize the culture system using UM171 and investigate the molecular mechanism of PVA and UM171 promoting the expansion of primitive hematopoietic stem cells. CD34+ cells were purified from UCB using MacsCD34 beads, and then cultured in serum-free medium supplemented with cytokines for 12 days, with PVA or UM171 added according to experimental requirements; the relative percentage of different HSCs subsets after culture were detected by flow cytometry; CFU Assay Setup for detecting the multilineage differentiation potential of HSCs; RT-PCR detection of gene expression levels; reactive oxygen detection assessment of intracellular ROS levels. (1) The conditions of 20 ng/mlSCF, 100 ng/mlTPO, and 5% oxygen concentration are conducive to the maintenance of LT-HSCs. (2) Compared with HSA, PVA significantly increased the proportion of HSPCs and LT-HSCs, as well as dramatically promoted the expression of antioxidant enzymes and reduced the production of reactive oxygen species (ROS). (3) After adding UM171 to PVA-based medium, the proportion of HSPCs and LT-HSCs further increased, and downstream genes of Notch and Wnt pathways were selectively activated. (1) PVA may inhibit ROS production by upregulating the expression of antioxidant enzymes, which is beneficial for maintaining stemness and inhibiting differentiation of HSCs. (2) The antioxidant properties of PVA can delay differentiation, while UM171 can promote self-renewal by regulating the stem cell pathway, and the combination of them is beneficial for the maintenance and expansion of HSCs in vitro.
Collapse
Affiliation(s)
- Yan Ren
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Joint Laboratory of Stem Cell Clinical Transformation and Research in Shanxi Province, Taiyuan, China
| | - Yanni Cui
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Joint Laboratory of Stem Cell Clinical Transformation and Research in Shanxi Province, Taiyuan, China
| | - Jingyi Feng
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yanhong Tan
- Joint Laboratory of Stem Cell Clinical Transformation and Research in Shanxi Province, Taiyuan, China
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Molecular Diagnosis and Treatment of Blood Diseases in Shanxi Province, Taiyuan, China
| | - Fanggang Ren
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Molecular Diagnosis and Treatment of Blood Diseases in Shanxi Province, Taiyuan, China
| | - Yaofang Zhang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Molecular Diagnosis and Treatment of Blood Diseases in Shanxi Province, Taiyuan, China
| | - Hongwei Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Joint Laboratory of Stem Cell Clinical Transformation and Research in Shanxi Province, Taiyuan, China
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Molecular Diagnosis and Treatment of Blood Diseases in Shanxi Province, Taiyuan, China
| |
Collapse
|
35
|
Laue J, Ambühl J, Surbek D. Hybrid umbilical cord blood banking: literature review. Arch Gynecol Obstet 2024; 309:93-104. [PMID: 37093267 PMCID: PMC10124678 DOI: 10.1007/s00404-023-07003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/03/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE Interest gaps between public and private umbilical cord blood banks have led to the introduction of hybrid banking options. Hybrid models combine features of private and public banks as well as interests of parents, children and of patients, in order to find an optimized solution. While several different models of hybrid banks exist, there is a lack of literature about this novel model of cord blood stem cell banking. Therefore, the aim of this literature review is to assess different options of umbilical cord blood banking and whether hybrid banking could be a valuable alternative to the existing public and private cord blood banking models. METHODS We performed a systematic literature search, using five main databases. Five hybrid models regarding their advantages as well as their challenges are discussed in this review. RESULTS We found that a wealth of literature exists about public cord blood banking, while private and hybrid banking are understudied. Different modalities of hybrid cord blood banking are being described in several publications, providing the basis to assess different advantages and disadvantages as well as practicability. CONCLUSION Hybrid banks, especially the sequential model, seem to have potential as an alternative to the existing banking models worldwide. A previously conducted survey among pregnant women showed a preference for hybrid banking, if such an option was available. Nevertheless, opinions among stakeholders differ and more research is needed to evaluate, if hybrid banking provides the expected benefits.
Collapse
Affiliation(s)
- Jessica Laue
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland.
| | - Johanna Ambühl
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| |
Collapse
|
36
|
Li C, Shin H, Bhavanasi D, Liu M, Yu X, Peslak SA, Liu X, Alvarez-Dominguez JR, Blobel GA, Gregory BD, Huang J, Klein PS. Expansion of human hematopoietic stem cells by inhibiting translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568925. [PMID: 38077058 PMCID: PMC10705409 DOI: 10.1101/2023.11.28.568925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Hematopoietic stem cell (HSC) transplantation using umbilical cord blood (UCB) is a potentially life-saving treatment for leukemia and bone marrow failure but is limited by the low number of HSCs in UCB. The loss of HSCs after ex vivo manipulation is also a major obstacle to gene editing for inherited blood disorders. HSCs require a low rate of translation to maintain their capacity for self-renewal, but hematopoietic cytokines used to expand HSCs stimulate protein synthesis and impair long-term self-renewal. We previously described cytokine-free conditions that maintain but do not expand human and mouse HSCs ex vivo. Here we performed a high throughput screen and identified translation inhibitors that allow ex vivo expansion of human HSCs while minimizing cytokine exposure. Transplantation assays show a ~5-fold expansion of long-term HSCs from UCB after one week of culture in low cytokine conditions. Single cell transcriptomic analysis demonstrates maintenance of HSCs expressing mediators of the unfolded protein stress response, further supporting the importance of regulated proteostasis in HSC maintenance and expansion. This expansion method maintains and expands human HSCs after CRISPR/Cas9 editing of the BCL11A+58 enhancer, overcoming a major obstacle to ex vivo gene correction for human hemoglobinopathies.
Collapse
Affiliation(s)
- Chenchen Li
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Shin
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dheeraj Bhavanasi
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mai Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott A. Peslak
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xiaolei Liu
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juan R. Alvarez-Dominguez
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerd A. Blobel
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian Huang
- Coriell Institute for Medical Research; Camden, NJ, 08103, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Peter S. Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Sakurai M. Recent advances in ex vivo expansion of human hematopoietic stem cells. BLOOD CELL THERAPY 2023; 6:151-157. [PMID: 38149022 PMCID: PMC10749727 DOI: 10.31547/bct-2023-026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 12/28/2023]
Abstract
Hematopoietic stem cells (HSCs) are a rare cell population present in the bone marrow. They possess self-renewal and multipotent differentiation capacities and play a crucial role in lifelong hematopoiesis and reconstitution of the hematopoietic system after hematopoietic stem cell transplantation (HSCT). HSCT remains the only curative treatment for refractory hematologic disorders. Umbilical cord blood (CB) has several advantages as an alternative donor for HSCT, including HLA flexibility and lack of donor burden. However, CB has limitations in terms of cell dose, restricted donor options, and prolonged time to engraftment. Development of techniques for expanding HSCs ex vivo, especially those contained in CB, has become a goal in the field of hematology. Attempts have been made to use various combinations of cytokines for this purpose, but these protocols showed limited expansion rates and did not progress to clinical applications. Recent advances that include the addition of small molecules to cytokines have enabled long-term and stable ex vivo expansion of human HSCs. Clinical trials have been conducted with HSCs expanded in CB using these techniques, confirming their efficacy and safety. Furthermore, we recently developed a recombinant cytokine-free, albumin-free culture system for long-term expansion of human HSCs. This approach has the potential to selectively expand human HSCs more effectively than the previous protocols. We herein present an overview of ex vivo culture protocols for expanding human HSCs together with the results of clinical trials that utilized these techniques.
Collapse
Affiliation(s)
- Masatoshi Sakurai
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Mathews D, Abernethy A, Chaikof E, Charo RA, Daley GQ, Enriquez J, Gottlieb S, Kahn J, Klausner RD, Tavazoie S, Fabi R, Offodile Ii AC, Sherkow JS, Sullenger RD, Freiling E, Balatbat C. Regenerative Medicine: Case Study for Understanding and Anticipating Emerging Science and Technology. NAM Perspect 2023; 2023:202311d. [PMID: 38855738 PMCID: PMC11157685 DOI: 10.31478/202311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
|
39
|
Hurley K, Clow R, Jadhav A, Azzam EI, Wang Y. Mitigation of acute radiation syndrome (ARS) with human umbilical cord blood. Int J Radiat Biol 2023; 100:317-334. [PMID: 37967239 DOI: 10.1080/09553002.2023.2277372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/27/2023] [Indexed: 11/17/2023]
Abstract
PURPOSE The growing concern over potential unintended nuclear accidents or malicious activities involving nuclear/radiological devices cannot be overstated. Exposure to whole-body doses of radiation can result in acute radiation syndrome (ARS), colloquially known as "radiation sickness," which can severely damage various organ systems. Long-term health consequences, such as cancer and cardiovascular disease, can develop many years post-exposure. Identifying effective medical countermeasures and devising a strategic medical plan represents an urgent, unmet need. Various clinical studies have investigated the therapeutic use of umbilical cord blood (UCB) for a range of illnesses, including ARS. The objective of this review is to thoroughly discuss ARS and its sub-syndromes, and to highlight recent findings regarding the use of UCB for radiation injury. UCB, a rich source of stem cells, boasts numerous advantages over other stem cell sources, like bone marrow, owing to its ease of collection and relatively low risk of severe graft-versus-host disease. Preclinical studies suggest that treatment with UCB, and often UCB-derived mesenchymal stromal cells (MSCs), results in improved survival, accelerated hematopoietic recovery, reduced gastrointestinal tract damage, and mitigation of radiation-induced pneumonitis and pulmonary fibrosis. Interestingly, recent evidence suggests that UCB-derived exosomes and their microRNAs (miRNAs) might assist in treating radiation-induced damage, largely by inhibiting fibrotic pathways. CONCLUSION UCB holds substantial potential as a radiation countermeasure, and future research should focus on establishing treatment parameters for ARS victims.
Collapse
Affiliation(s)
- Kate Hurley
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Rachel Clow
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ashok Jadhav
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Edouard I Azzam
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
40
|
Samarkanova D, Codinach M, Montemurro T, Mykhailova L, Tancredi G, Gallerano P, Mallis P, Michalopoulos E, Wynn L, Calvo J, Pello OM, Gontica I, Rebulla P, Querol S. Multi-component cord blood banking: a proof-of-concept international exercise. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:526-537. [PMID: 37146297 PMCID: PMC10645353 DOI: 10.2450/bloodtransfus.492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/10/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Most public cord blood (CB) banks currently discard more than 80% of umbilical CB units not suitable for hemopoietic stem cell transplant due to low stem cell count. Although CB platelets, plasma, and red blood cells have been used for experimental allogeneic applications in wound healing, corneal ulcer treatment, and neonatal transfusion, no standard procedures for their preparation have been defined internationally. MATERIALS AND METHODS A network of 12 public CB banks in Spain, Italy, Greece, the UK, and Singapore developed a protocol to validate a procedure for the routine production of CB platelet concentrate (CB-PC), CB platelet-poor plasma (CB-PPP), and CB leukoreduced red blood cells (CB-LR-RBC) using locally available equipment and the commercial BioNest ABC and EF medical devices. CB units with >50 mL volume (excluding anticoagulant) and ≥150×109/L platelets were double centrifuged to obtain CB-PC, CB-PPP, and CB-RBC. The CB-RBC were diluted with saline-adenine-glucose-mannitol (SAGM), leukoreduced by filtration, stored at 2-6°C, and tested for hemolysis and potassium (K+) release over 15 days, with gamma irradiation performed on day 14. A set of acceptance criteria was pre-defined. This was for CB-PC: volume ≥5 mL and platelet count 800-1,200×109/L; for CB-PPP: platelet count <50×109/L; and for CB-LR-RBC: volume ≥20 mL, hematocrit 55-65%, residual leukocytes <0.2×106/unit, and hemolysis ≤0.8%. RESULTS Eight CB banks completed the validation exercise. Compliance with acceptance criteria was 99% for minimum volume and 86.1% for platelet count in CB-PC, and 90% for platelet count in CB-PPP. Compliance in CB-LR-RBC was 85.7% for minimum volume, 98.9% for residual leukocytes, and 90% for hematocrit. Compliance for hemolysis ≤0.8% decreased from 89.0 to 63.2% from day 0 to 15. K+ release increased from 3.0±1.8 to 25.0±7.0 mmol/L from day 0 to 15, respectively. DISCUSSION The MultiCord12 protocol was a useful tool to develop preliminary standardization of CB-PC, CB-PPP, and CB-LR-RBC.
Collapse
Affiliation(s)
- Dinara Samarkanova
- Banc de Sang i Teixits, Barcelona, Spain
- Transfusion medicine study group, Vall de Hebron, Barcelona, Spain
| | - Margarita Codinach
- Banc de Sang i Teixits, Barcelona, Spain
- Transfusion medicine study group, Vall de Hebron, Barcelona, Spain
| | - Tiziana Montemurro
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Larysa Mykhailova
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | - Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Liam Wynn
- Anthony Nolan Cell Therapy Centre, Nottingham, UK
| | - Javier Calvo
- Banc de Sang i Teixits de les Illes Balears, Cell Therapy and Tissue Engineering Group (TERCIT), Balearic Islands Health Research Institut (IdISBa), Palma, Spain
| | - Oscar M. Pello
- HSC Processing and Cell Therapy Unit, Marques de Valdecilla Foundation, Santander, Spain
- Hematologic Neoplasms and Hematopoietic Stem Cells Transplantation Group, Marques de Valdecilla Research Institute, Santander, Spain
| | - Ioanna Gontica
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, Crete, Greece
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, Crete, Greece
| | - Paolo Rebulla
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sergio Querol
- Banc de Sang i Teixits, Barcelona, Spain
- Transfusion medicine study group, Vall de Hebron, Barcelona, Spain
| |
Collapse
|
41
|
Hendricks CL, Mellet J, Durandt C, Brittain D, Pepper MS. Haematopoietic stem-cell transplantation in an HIV endemic area: time to consider donors exposed to or living with HIV. Lancet HIV 2023; 10:e742-e749. [PMID: 37837978 DOI: 10.1016/s2352-3018(23)00198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 10/16/2023]
Abstract
South Africa has more than 8 million people living with HIV. However, the number of patients undergoing haematopoietic stem-cell transplantation (HSCT) in South Africa is far below the target number. Donor numbers are insufficient to meet demand. Both HSCT and solid organ transplantation have proved successful in people living with HIV. Solid organ transplantation also has good outcomes when both donors and recipients have HIV. This Personal View explores the possible inclusion of people living with HIV and umbilical cord blood from HIV-negative infants exposed to HIV as donor sources for HSCT. Beyond the risk of HIV transmission, additional complications must be considered, such as delayed or inadequate immune reconstitution and an increased risk of haematological abnormalities and malignancies. Interactions between antiretroviral drugs and drugs used in the conditioning regimen, as well as the need to maintain virological suppression when gastrointestinal absorption deteriorates, are additional complicating factors. The process also requires more stringent ethical processes to be in place to minimise physical and emotional harm. However, in an HIV endemic country, people living with HIV or donors exposed to HIV must be considered as part of a multidisciplinary collaborative effort to provide more patients with the opportunity to have a life-saving HSCT.
Collapse
Affiliation(s)
- Candice Laverne Hendricks
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - David Brittain
- Alberts Cellular Therapy, Netcare Pretoria East Hospital, Pretoria, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
42
|
Cohen S, Bambace N, Ahmad I, Roy J, Tang X, Zhang MJ, Burns L, Barabé F, Bernard L, Delisle JS, Kiss T, Lachance S, Roy DC, Veilleux O, Sauvageau G. Improved outcomes of UM171-expanded cord blood transplantation compared with other graft sources: real-world evidence. Blood Adv 2023; 7:5717-5726. [PMID: 37467030 PMCID: PMC10539875 DOI: 10.1182/bloodadvances.2023010599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
Cord blood (CB) transplantation is hampered by low cell dose and high nonrelapse mortality (NRM). A phase 1-2 trial of UM171-expanded CB transplants demonstrated safety and favorable preliminary efficacy. The aim of the current analysis was to retrospectively compare results of the phase 1-2 trial with those after unmanipulated CB and matched-unrelated donor (MUD) transplants. Data from recipients of CB and MUD transplants were obtained from the Center for International Blood and Marrow Transplant Research (CIBMTR) database. Patients were directly matched for the number of previous allogeneic hematopoietic stem cell transplants (alloHCT), disease and refined Disease Risk Index. Patients were further matched by propensity score for age, comorbidity index, and performance status. Primary end points included NRM, progression-free survival (PFS), overall survival (OS), and graft-versus-host disease (GVHD)-free relapse-free survival (GRFS) at 1 and 2 years after alloHCT. Overall, 137 patients from CIBMTR (67 CB, 70 MUD) and 22 with UM171-expanded CB were included. NRM at 1 and 2 years was lower, PFS and GRFS at 2 years and OS at 1 year were improved for UM171-expanded CBs compared with CB controls. Compared with MUD controls, UM171 recipients had lower 1- and 2-year NRM, higher 2-year PFS, and higher 1- and 2-year GRFS. Furthermore, UM171-expanded CB recipients experienced less grades 3-4 acute GVHD and chronic GVHD compared with MUD graft recipients. Compared with real-world evidence with CB and MUD alloHCT, this study suggests that UM171-expanded CB recipients may benefit from lower NRM and higher GRFS. This trial was registered at www.clinicaltrials.gov as #NCT02668315.
Collapse
Affiliation(s)
- Sandra Cohen
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nadia Bambace
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Imran Ahmad
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jean Roy
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Xiaoying Tang
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
| | - Mei-Jie Zhang
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
| | - Linda Burns
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
| | - Frédéric Barabé
- Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Léa Bernard
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jean-Sébastien Delisle
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Thomas Kiss
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Silvy Lachance
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Denis-Claude Roy
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Olivier Veilleux
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Guy Sauvageau
- Institut Universitaire d'Hémato-Oncologie et de Thérapie Cellulaire, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
43
|
Baron F, Ruggeri A, Peczynski C, Labopin M, Bourhis JH, Michallet M, Chevallier P, Sanz J, Forcade E, Saccardi R, Potter V, Gluckman E, Nagler A, Mohty M. Outcomes of graft failure after umbilical cord blood transplantation in acute leukemia: a study from Eurocord and the Acute Leukemia Working Party of the EBMT. Bone Marrow Transplant 2023; 58:936-941. [PMID: 37165084 DOI: 10.1038/s41409-023-02000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Graft failure has remained a limitation of umbilical cord blood transplantation (CBT). Here, we assessed the outcomes of patients who experienced graft failure after CBT. Inclusion criteria were patients (age ≥ 18 years) experiencing graft failure after unrelated CBT (single or double) between 2005 and 2016, for acute myelogenous leukemia (AML) or acute lymphoblastic leukemia (ALL), no prior allogeneic or autologous transplantation, no other stem cell product. The study included 87 patients. At 1-year, cumulative incidence of relapse and nonrelapse mortality (NRM) was 35% and 37%, respectively. One-year overall survival (OS) and progression-free survival (PFS) was 40% and 29%, respectively. Forty-six patients underwent a salvage second transplantation with 1-year and 2-year OS and PFS from second transplantation 41% and 34% for OS, and 37% and 34% for PFS, respectively. In multivariate analysis, complete remission (CR) at CBT (HR = 0.45, 95% CI 0.25-0.83, P = 0.01) and reduced-intensity conditioning (HR = 0.51, 95% CI 0.29-0.91, P = 0.023) were associated with better OS. In conclusion, in this retrospective study, we observed that approximately one-quarter of patients experiencing graft failure after CBT remained alive without relapse 2 years later.
Collapse
Affiliation(s)
| | - Annalisa Ruggeri
- Eurocord, Saint Louis Hospital, Paris, France and Centre scientifique de Monaco, Paris, Monaco
- IRCCS San Raffaele Scientific Institute,department of Hematologogy and BMT, Milano, Italy
| | - Christophe Peczynski
- Department of Haematology, Saint Antoine Hospital, Paris, France
- EBMT Paris study office/CEREST-TC, Paris, France
- INSERM UMR 938, Paris, France
- Sorbonne university, Paris, France
| | - Myriam Labopin
- Department of Haematology, Saint Antoine Hospital, Paris, France
- EBMT Paris study office/CEREST-TC, Paris, France
- INSERM UMR 938, Paris, France
- Sorbonne university, Paris, France
| | - Jean-Henri Bourhis
- Gustave Roussy, institut de cancérologie, BMT Service, Division of Hematology, Villejuif, France
| | - Mauricette Michallet
- Service d'Hématologie du Centre de lutte contre le Cancer Léon Bérard, Lyon, France
| | | | - Jaime Sanz
- University Hospital La Fe, Hematology Department, Valencia, Spain
| | - Edouard Forcade
- Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, F-33000, Bordeaux, France
| | - Riccardo Saccardi
- Azienda Ospedaliera Universitaria Careggi, Cell Therapy and Transfusion Medicine Unit, Firenze, Italy
| | | | - Eliane Gluckman
- Eurocord, Saint Louis Hospital, Paris, France and Centre scientifique de Monaco, Paris, Monaco
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel and the EBMT Paris Office, Hospital Saint Antoine, Paris, France
| | - Mohamad Mohty
- Department of Haematology, Saint Antoine Hospital, Paris, France
- EBMT Paris study office/CEREST-TC, Paris, France
- INSERM UMR 938, Paris, France
- Sorbonne university, Paris, France
| |
Collapse
|
44
|
Dai K, Zhang W, Deng S, Wang J, Liu C. Sulfated Polysaccharide Regulates the Homing of HSPCs in a BMP-2-Triggered In Vivo Osteo-Organoid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301592. [PMID: 37357138 PMCID: PMC10460842 DOI: 10.1002/advs.202301592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Indexed: 06/27/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is a well-established method for a variety of acquired and congenital diseases. However, the limited number and sources of therapeutic hematopoietic stem/progenitor cells (HSPCs) hinder the further application of HSCT. A BMP-2 triggered in vivo osteo-organoid that is previously reported, serves as a kind of stem cell biogenerator, for obtaining therapeutic HSPCs via activating the residual regenerative capacity of mammals using bioactive biomaterials. Here, it is demonstrated that targeting the homing signaling of HSPCs elevates the proportions and biological functions of HSPCs in the in vivo osteo-organoid. Notably, it is identified that sulfonated chito-oligosaccharide, a degradation product of sulfonated chitosan, specifically elevates the expression of endothelial protein C receptor on HSPCs and vascular cell adhesion molecule-1 on macrophages in the in vivo osteo-organoid, ultimately leading to the production of adequate therapeutic HSPCs. This in vivo osteo-organoid approach has the potential to provide an alternative HSPCs source for HSCT and benefits more patients.
Collapse
Affiliation(s)
- Kai Dai
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenchao Zhang
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shunshu Deng
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
45
|
Koo J, Aghai ZH, Katheria A. Cord management in non-vigorous newborns. Semin Perinatol 2023; 47:151742. [PMID: 37031034 PMCID: PMC10239342 DOI: 10.1016/j.semperi.2023.151742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Cord management in non-vigorous newborns remains up for debate, as limited studies have validated strategies in this high-risk population. While multiple national and international governing bodies now recommend the routine practice of delayed cord clamping (DCC) in vigorous neonates, these organizations have not reached a consensus on the appropriate approach in non-vigorous neonates.1 Benefits of placental transfusion are greatly needed amongst non-vigorous neonates who are at risk of asphyxiation-associated mortality and morbidities, but the need for immediate resuscitation complicates matters. This chapter discusses the physiological benefits of placental transfusion for non-vigorous neonates and reviews the available literature on different umbilical cord management strategies for this population.
Collapse
Affiliation(s)
- Jenny Koo
- Sharp Mary Birch Hospital for Women and Newborns, Sharp Neonatal Research Institute, San Diego, CA, USA
| | - Zubair H Aghai
- Thomas Jefferson University/Nemours, Philadelphia, PA, USA
| | - Anup Katheria
- Sharp Mary Birch Hospital for Women and Newborns, Sharp Neonatal Research Institute, San Diego, CA, USA.
| |
Collapse
|
46
|
Wu H, Zhao Y, Gao F, Shi J, Luo Y, Yu J, Lai X, Liu L, Fu H, Qian P, Huang H, Zhao Y. Haploidentical transplants deliver equal outcomes to matched sibling transplants: a propensity score-matched analysis. J Transl Med 2023; 21:329. [PMID: 37198603 DOI: 10.1186/s12967-023-04168-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
The success of allogeneic hematopoietic stem cell transplant for hematological malignancies is heavily dependent on the availability of suitable donors. Haploidentical donor (HID) and matched sibling donor (MSD) are two important donor options providing faster and easier sources of stem cells, however, due to confounding factors present in most retrospective studies, the validity of comparing outcomes between these two donor types remains uncertain. We conducted a post-hoc analysis of a prospective clinical trial (trial registration: Chinese Clinical Trial Registry; #ChiCTR-OCH-12002490; registered 22 February 2012; https://www.chictr.org.cn/showproj.aspx?proj=7061 ) to compare outcomes of HID versus MSD peripheral blood stem cell-derived transplants in patients with hematologic malignancies between 2015 and 2022. All HID-receiving patients had antithymocyte globulin-based conditioning. Propensity score matching was employed to minimize potential confounding factors between the two cohorts. A total of 1060 patients were initially reviewed and then 663 patients were ultimately included in the analysis after propensity score matching. The overall survival, relapse-free survival, non-relapse mortality rate and cumulative incidence of relapse were similar between HID and MSD cohorts. Subgroup analysis revealed that patients with positive measurable residual disease in first complete remission may have better overall survival with an HID transplant. The present demonstrated that haploidentical transplants can provide outcomes comparable to conventional MSD transplants, and HID should be recommended as one of the optimal donor choices for patients with positive measurable residual disease in first complete remission.
Collapse
Affiliation(s)
- Hengwei Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yeqian Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China
| | - Fei Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China.
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Shangcheng District, Hangzhou, 310006, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
47
|
Lopedote P, Xue E, Chotivatanapong J, Pao EC, Wychera C, Dahlberg AE, Thur L, Roberts L, Baker K, Gooley TA, Hingorani S, Milano F. Acute kidney injury and chronic kidney disease in umbilical cord blood transplant recipients. Front Oncol 2023; 13:1186503. [PMID: 37260983 PMCID: PMC10229046 DOI: 10.3389/fonc.2023.1186503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Acute kidney injury (AKI) is a frequent early complication post hematopoietic stem cell transplant (HSCT), associated with high morbidity and mortality. Cord blood transplant (CBT) recipients are potentially exposed to more nephrotoxic insults, compared to patients undergoing HSCT from other donor sources. We aimed to identify risk factors for AKI in patients undergoing CBT. We also aimed to identify the impact of AKI on chronic kidney disease (CKD) and survival outcomes by one-year post-CBT. Methods Adults and children who underwent a first CBT at our Institution were retrospectively evaluated. AKI was staged according to Kidney Disease Improving Global Outcomes (KDIGO) definitions. Cox regression models were used to estimate the association of demographic factors and post-CBT parameters with the cause-specific hazard of AKI. Results We identified 276 patients. Median age was 32 years, 28% (77/276) were children (<18 years) and 129 (47%) were white. A myeloablative conditioning regimen was administered to 243 patients (88%) and 248 (90%) received cyclosporine for GVHD prophylaxis. One-hundred and eighty-six patients (67%) developed AKI by day 60 post-transplant, with 72 (26%) developing severe AKI (stage 2 and 3). In a multivariable analysis, each increase in bilirubin level of 1 mg/dL was associated with a 23% increase in the risk of severe AKI (adjusted HR 1.23, 95% CI 1.13 - 1.34, p<.0001). Conversely, systemic steroid administration appeared to be protective of severe AKI (unadjusted HR 0.36, 95% CI 0.18 - 0.72, p=.004) in a univariate model . Two-hundred-forty-seven patients were evaluable at the one-year time point. Among those, 100 patients (40%) developed CKD one-year post-CBT. Severe AKI was associated with a higher hazard of non-relapse mortality (adjusted HR=3.26, 95% CI 1.65-6.45, p=.001) and overall mortality (adjusted HR=2.28, 95% CI 1.22-4.27, p=.01). Discussion AKI is a frequent complication after CBT and is associated with worse outcomes. Questions remain as to the mechanism of the protective role of steroids on kidney function in the setting of CBT.
Collapse
Affiliation(s)
- Paolo Lopedote
- Department of Medicine, St. Elizabeth’s Medical Center, Boston University, Boston, MA, United States
| | - Elisabetta Xue
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Julie Chotivatanapong
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Emily C. Pao
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Chiara Wychera
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Ann E. Dahlberg
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Laurel Thur
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Laura Roberts
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Kelsey Baker
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Ted A. Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sangeeta Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Filippo Milano
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
48
|
Wang P, Liu C, Wei Z, Jiang W, Sun H, Wang Y, Hou J, Sun J, Huang Y, Wang H, Wang Y, He X, Wang X, Qian X, Zhai X. Nomogram for Predicting Early Mortality after Umbilical Cord Blood Transplantation in Children with Inborn Errors of Immunity. J Clin Immunol 2023:10.1007/s10875-023-01505-8. [PMID: 37155023 DOI: 10.1007/s10875-023-01505-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Pediatric patients with inborn errors of immunity (IEI) undergoing umbilical cord blood transplantation (UCBT) are at risk of early mortality. Our aim was to develop and validate a prediction model for early mortality after UCBT in pediatric IEI patients based on pretransplant factors. METHODS Data from 230 pediatric IEI patients who received their first UCBT between 2014 and 2021 at a single center were analyzed retrospectively. Data from 2014-2019 and 2020-2021 were used as training and validation sets, respectively. The primary outcome of interest was early mortality. Machine learning algorithms were used to identify risk factors associated with early mortality and to build predictive models. The model with the best performance was visualized using a nomogram. Discriminative ability was measured using the area under the curve (AUC) and decision curve analysis. RESULTS Fifty days was determined as the cutoff for distinguishing early mortality in pediatric IEI patients undergoing UCBT. Of the 230 patients, 43 (18.7%) suffered early mortality. Multivariate logistic regression with pretransplant albumin, CD4 (absolute count), elevated C-reactive protein, and medical history of sepsis showed good discriminant AUC values of 0.7385 (95% CI, 0.5824-0.8945) and 0.827 (95% CI, 0.7409-0.9132) in predicting early mortality in the validation and training sets, respectively. The sensitivity and specificity were 0.5385 and 0.8154 for validation and 0.7667 and 0.7705 for training, respectively. The final model yielded net benefits across a reasonable range of risk thresholds. CONCLUSION The developed nomogram can predict early mortality in pediatric IEI patients undergoing UCBT.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Chao Liu
- Yidu Cloud Technology Inc, Beijing, 100083, China
- Nanjing YiGenCloud Institute, Nanjing, 211899, China
| | - Zhongling Wei
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Wenjin Jiang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Hua Sun
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yuhuan Wang
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Hongsheng Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yao Wang
- Yidu Cloud Technology Inc, Beijing, 100083, China
| | - Xinjun He
- Yidu Cloud Technology Inc, Beijing, 100083, China
- Nanjing YiGenCloud Institute, Nanjing, 211899, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaowen Qian
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
49
|
Jekarl DW, Kim JK, Han JH, Lee H, Yoo J, Lim J, Kim Y. Transfusion support in hematopoietic stem cell transplantation. Blood Res 2023; 58:S1-S7. [PMID: 36843378 PMCID: PMC10133853 DOI: 10.5045/br.2023.2023004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/28/2023] Open
Abstract
Transfusion support for hematopoietic stem cell transplantation (HSCT) is an essential part of supportive care, and compatible blood should be transfused into recipients. As leukocyte antigen (HLA) matching is considered first and as the blood group does not impede HSCT, major, minor, bidirectional, and RhD incompatibilities occur that might hinder transfusion and cause adverse events. Leukocyte reduction in blood products is frequently used, and irradiation should be performed for blood products, except for plasma. To mitigate incompatibility and adverse events, local transfusion guidelines, hospital transfusion committees, and patient management should be considered.
Collapse
Affiliation(s)
- Dong Wook Jekarl
- Departments of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, Seoul, Korea
| | - Jae Kwon Kim
- Departments of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, Seoul, Korea
| | - Jay Ho Han
- Departments of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, Seoul, Korea
| | - Howon Lee
- Departments of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, Seoul, Korea
| | - Jaeeun Yoo
- Departments of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, Incheon, Korea
| | - Jihyang Lim
- Departments of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Departments of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Ravi S, Chokkakula LPP, Giri PS, Korra G, Dey SR, Rath SN. 3D Bioprintable Hypoxia-Mimicking PEG-Based Nano Bioink for Cartilage Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19921-19936. [PMID: 37058130 DOI: 10.1021/acsami.3c00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As hypoxia plays a significant role in the formation and maintenance of cartilage tissue, aiming to develop native hypoxia-mimicking tissue engineering scaffolds is an efficient method to treat articular cartilage (AC) defects. Cobalt (Co) is documented for its hypoxic-inducing effects in vitro by stabilizing the hypoxia-inducible factor-1α (HIF-1α), a chief regulator of stem cell fate. Considering this, we developed a novel three-dimensional (3D) bioprintable hypoxia-mimicking nano bioink wherein cobalt nanowires (Co NWs) were incorporated into the poly(ethylene glycol) diacrylate (PEGDA) hydrogel system as a hypoxia-inducing agent and encapsulated with umbilical cord-derived mesenchymal stem cells (UMSCs). In the current study, we investigated the impact of Co NWs on the chondrogenic differentiation of UMSCs in the PEGDA hydrogel system. Herein, the hypoxia-mimicking nano bioink (PEGDA+Co NW) was rheologically optimized to bioprint geometrically stable cartilaginous constructs. The bioprinted 3D constructs were evaluated for their physicochemical characterization, swelling-degradation behavior, mechanical properties, cell proliferation, and the expression of chondrogenic markers by histological, immunofluorescence, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) methods. The results disclosed that, compared to the control (PEGDA) group, the hypoxia-mimicking nano bioink (PEGDA+Co NW) group outperformed in print fidelity and mechanical properties. Furthermore, live/dead staining, double-stranded DNA (dsDNA) content, and glycosaminoglycans (GAGs) content demonstrated that adding low amounts of Co NWs (<20 ppm) into PEGDA hydrogel system supported UMSC adhesion, proliferation, and differentiation. Histological and immunofluorescence staining of the PEGDA+Co NW bioprinted structures revealed the production of type 2 collagen (COL2) and sulfated GAGs, rendering it a feasible option for cartilage repair. It was further corroborated by a significant upregulation of the hypoxia-mediated chondrogenic and downregulation of the hypertrophic/osteogenic marker expression. In conclusion, the hypoxia-mimicking hydrogel system, including PEGDA and Co2+ ions, synergistically directs the UMSCs toward the chondrocyte lineage without using expensive growth factors and provides an alternative strategy for translational applications in the cartilage tissue engineering field.
Collapse
Affiliation(s)
- Subhashini Ravi
- Regenerative Medicine and Stem cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India
| | - L P Pavithra Chokkakula
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India
| | - Pravin Shankar Giri
- Regenerative Medicine and Stem cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India
| | - Gayathri Korra
- Department of Obstetrics and Gynecology, Sri Manjeera Super Specialty Hospital, Sangareddy 502001, Medak, Telangana, India
| | - Suhash Ranjan Dey
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India
| |
Collapse
|