1
|
Darmusey L, Bagley AJ, Nguyen TT, Carlson HL, Blaylock H, Shrestha SB, Pang A, Tauchmann S, Taylor SC, Foley AC, Niño KE, Pietras EM, Braun TP, Maxson JE. Dual ASXL1 and CSF3R mutations drive myeloid-biased stem cell expansion and enhance neutrophil differentiation. Blood Adv 2025; 9:1593-1607. [PMID: 39777477 PMCID: PMC11986226 DOI: 10.1182/bloodadvances.2024014362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Mutations in the epigenetic regulator Additional Sex Combs-Like 1 (ASXL1) are frequently observed in chronic neutrophilic leukemia (CNL). CNL is a myeloproliferative neoplasm (MPN) driven by activating mutations in the Colony Stimulating Factor 3 Receptor (CSF3R), which cause excessive neutrophil production. Despite the high rates of co-occurrence, the interplay between ASXL1 and CSF3R mutations in hematopoiesis and leukemia remains poorly understood. Here, we present a new mouse model with both Asxl1Y588X and Csf3rT621I mutations, which recapitulates features of human MPNs. Csf3r-mutant mice exhibit an age-associated depletion of hematopoietic stem cells, which is tempered by adding Asxl1Y588X. This combination of mutations causes an expansion of myeloid-biased long-term hematopoietic stem cells. As the mice age, they develop neutrophilia, but leukemia is rare, suggesting additional mutations may be required for transformation. Using models of myeloid differentiation, we find that Asxl1 truncation enhances CSF3RT618I-driven neutrophil differentiation, activating inflammatory pathways associated with mature myeloid cell production. Moreover, cells with both mutations have increased H3K4me1 at neutrophil-associated enhancers. Mutant ASXL1 is known to decrease the genome-wide abundance of the repressive histone mark H2AK119ub. Although we see the expected decrease in H2AK119ub in Asxl1-mutant cells, this effect is reversed when CSF3R is also mutated, suggesting a complex interplay between these mutations in regulating chromatin dynamics during hematopoiesis. Our findings highlight context-dependent effects of ASXL1 mutation in myeloid disorders and provide insights into the mechanisms underlying neutrophil differentiation in ASXL1 and CSF3R dual-mutant MPN.
Collapse
Affiliation(s)
- Lucie Darmusey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Anna J. Bagley
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Thai T. Nguyen
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Hanqian L. Carlson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Hunter Blaylock
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Shawn B. Shrestha
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Amara Pang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Samantha Tauchmann
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Sarah C. Taylor
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Amy C. Foley
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Katia E. Niño
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eric M. Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Julia E. Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
2
|
Schuermans A, Honigberg MC. Clonal haematopoiesis in cardiovascular disease: prognostic role and novel therapeutic target. Nat Rev Cardiol 2025:10.1038/s41569-025-01148-9. [PMID: 40175709 DOI: 10.1038/s41569-025-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Clonal haematopoiesis is the clonal expansion of blood stem cells with acquired mutations. Clonal haematopoiesis of indeterminate potential (CHIP), traditionally defined as clonal haematopoiesis driven by a pre-leukaemic mutation in at least 2% of sequenced alleles, affects 10-20% of individuals aged >70 years. Although CHIP is considered a precursor condition for haematological malignancies, population-based data suggest that the majority of CHIP-associated mortality is attributable to non-malignant conditions, such as cardiovascular disease. Observational human studies have shown that CHIP is a strong and independent predictor of the onset and progression of atherosclerotic cardiovascular disease, heart failure and arrhythmia. In addition, findings from animal experiments suggest that CHIP is causally involved in these diseases and might be a risk factor that can be targeted with therapeutics. As our understanding of the cardiovascular implications of CHIP and other types of clonal haematopoiesis rapidly expands, it has become increasingly clear that clonal haematopoiesis subtypes have substantial heterogeneity with respect to magnitude of effect and underlying mechanisms for different cardiovascular diseases. In this Review, we discuss clonal haematopoiesis as a prognostic factor for numerous cardiovascular diseases, highlight its potential as a therapeutic target and propose a potential role for CHIP in cardiovascular precision medicine.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Michael C Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Yu K, Meng G, He H, Li W, Wang L, Li Y, Wang X, Huang Y, He J, Zhao M, Xie T, Zhen Z, Li D. Does H3K27me3 expression play a role in patients with Blastic plasmacytoid dendritic cell neoplasm? A clinicopathologic analysis of 14 patients. Ann Diagn Pathol 2025; 74:152413. [PMID: 39608294 DOI: 10.1016/j.anndiagpath.2024.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive lymphohematopoietic malignancy associated with poor prognosis. We aimed to improve the understanding of BPDCN, explore its prognostic significance, and identify potential therapeutic targets. Data from 14 BPDCN patients were retrospectively collected and analyzed, focusing on their clinicopathological characteristics, diagnostic features, immunophenotype, treatment regimens, and prognostic factors. Additionally, immunohistochemistry was used to detect the expression of multiple oncogenes in BPDCN. The cohort comprised 14 patients (10 males, 4 females) with a median age of 63.5 years at the time of diagnosis. Of these specimens, H3K27me3, ASXL1, BAP1, RAC1, TCF4 and AURKA were highly expressed in BPDCN, with expression rates of 71.4 % (10/14), 92.9 % (13/14), 85.7 % (12/14), 100 % (13/13), 12/14 (85.7 %) and 46.2 % (6/13), respectively. The survival of patients in this cohort ranged from 1 to 84 months, with a median overall survival (OS) of 18.5 months. The survival rates for 1, 2, 3, 4 and 5 years were 71.43 %, 53.57 %, 44.64 %, 44.64 %, and 44.64 %, respectively. In the overall BPDCN cohort, patients with positive expression of H3K27me3 exhibited significantly better overall survival compared to those with negative expression H3K27me3 (P = 0.0056). Our analysis showed that the absence of H3K27me3 expression may indicate a poor prognosis in patients with BPDCN, and H3K27me3 may be a potential prognostic indicator for BPDCN.
Collapse
Affiliation(s)
- Kuai Yu
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong He
- Department of Internal Medicine, the First Branch, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixin Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanxin Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Clinical Molecular Medical Detection Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhao
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xie
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Zeng Zhen
- Laboratory of Neuropsycholinguistics, Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Franco S, Godley LA. Genetic and environmental risks for clonal hematopoiesis and cancer. J Exp Med 2025; 222:e20230931. [PMID: 39626264 PMCID: PMC11614460 DOI: 10.1084/jem.20230931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
Somatic variants accumulate in all organs with age, with a positive selection of clonal populations that provide a fitness advantage during times of heightened cellular stress leading to clonal expansion. Easily measured within the hematopoietic compartment, clonal hematopoiesis (CH) is now recognized as a common process in which hematopoietic clones with somatic variants associated with hematopoietic neoplasms exist within the blood or bone marrow of individuals without evidence of malignancy. Most cases of CH involve a limited number of genes, most commonly DNMT3A, TET2, and ASXL1. CH confers risk for solid and hematopoietic malignancies as well as cardiovascular and numerous inflammatory diseases and offers opportunities for cancer prevention. Here, we explore the genetic and environmental factors that predispose individuals to CH with unique variant signatures and discuss how CH drives cancer progression with the goals of improving individual cancer risk stratification, identifying key intervention opportunities, and understanding how CH impacts therapeutic strategies and outcomes.
Collapse
Affiliation(s)
| | - Lucy A. Godley
- Department of Medicine, Northwestern Medicine, Chicago, IL, USA
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Lin I, Awamleh Z, Sinvhal M, Wan A, Bondhus L, Wei A, Russell BE, Weksberg R, Arboleda VA. ASXL1 truncating variants in BOS and myeloid leukemia drive shared disruption of Wnt-signaling pathways but have differential isoform usage of RUNX3. BMC Med Genomics 2024; 17:282. [PMID: 39614348 DOI: 10.1186/s12920-024-02039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Rare variants in epigenes (a.k.a. chromatin modifiers), a class of genes that control epigenetic regulation, are commonly identified in both pediatric neurodevelopmental syndromes and as somatic variants in cancer. However, little is known about the extent of the shared disruption of signaling pathways by the same epigene across different diseases. To address this, we study an epigene, Additional Sex Combs-like 1 (ASXL1), where truncating heterozygous variants cause Bohring-Opitz syndrome (BOS, OMIM #605039), a germline neurodevelopmental disorder, while somatic variants are driver events in acute myeloid leukemia (AML). No BOS patients have been reported to have AML. METHODS This study explores common pathways dysregulated by ASXL1 variants in patients with BOS and AML. We analyzed whole blood transcriptomic and DNA methylation data from patients with BOS and AML with ASXL1-variant (AML-ASXL1) and examined differential exon usage and cell proportions. RESULTS Our analyses identified common molecular signatures between BOS and AML-ASXL1 and highlighted key biomarkers, including VANGL2, GRIK5 and GREM2, that are dysregulated across samples with ASXL1 variants, regardless of disease type. Notably, our data revealed significant de-repression of posterior homeobox A (HOXA) genes and upregulation of Wnt-signaling and hematopoietic regulator HOXB4. While we discovered many shared epigenetic and transcriptomic features, we also identified differential splice isoforms in RUNX3 where the long isoform, p46, is preferentially expressed in BOS, while the shorter p44 isoform is expressed in AML-ASXL1. CONCLUSION Our findings highlight the strong effects of ASXL1 variants that supersede cell-type and even disease states. This is the first direct comparison of transcriptomic and methylation profiles driven by pathogenic variants in a chromatin modifier gene in distinct diseases. Similar to RASopathies, in which pathogenic variants in many genes lead to overlapping phenotypes that can be treated by inhibiting a common pathway, our data identifies common pathways for ASXL1 variants that can be targeted for both disease states. Comparative approaches of high-penetrance genetic variants across cell types and disease states can identify targetable pathways to treat multiple diseases. Finally, our work highlights the connections of epigenes, such as ASXL1, to an underlying stem-cell state in both early development and in malignancy.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mili Sinvhal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Andrew Wan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Leroy Bondhus
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Angela Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bianca E Russell
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, Division of Clinical Genetics, UCLA, Los Angeles, CA, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Interdepartmental Bioinformatics Program, UCLA, Los Angeles, CA, USA.
- Molecular Biology institute, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
6
|
García R, Alkayyali T, Gomez LM, Wright C, Chen W, Oliver D, Koduru P. Recurrent cytogenetic abnormalities reveal alterations that promote progression and transformation in myelodysplastic syndrome. Cancer Genet 2024; 288-289:92-105. [PMID: 39499993 DOI: 10.1016/j.cancergen.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/05/2024] [Accepted: 10/14/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE To illustrate patterns of cytogenetic abnormalities that promote progression and/or transformation in myelodysplastic syndrome. METHODS In this study we evaluated three different data sets to identify recurrent cytogenetic abnormalities (RCAs) to delineate the cytogenetic evolutionary trajectories and their clinical significance. RESULTS Datasets 1 and 2 were 2402 cross sectional samples from Mitelman database of Chromosome Aberrations and Gene Fusions in Cancer; these were used to discover RCAs and to validate them. Dataset 3 was a cohort of 163 institutional patients with serial samples from 35 % of them. This was used to further validate RCAs identified in the cross-sectional data, and their clinical impact. We identified MDS subtype associated RCAs, and some exclusive RCAs (Xp-, 2q-, 17q-, 21q-) that led to disease progression or transformation to leukemia. Evolutionary pathway analysis had shown temporal acquisition of RCAs. Therefore, presence of two or more RCAs suggests cooperative or complementary role in disease progression or transformation. Patients with one or more of these RCAs had poor prognosis and high risk for transformation. Genes frequently altered in MDS are mapped to some of the RCAs and suggest a close correlation between RCAs and molecular alterations in MDS. Karyotypic complexity, clonal evolution, loss of 17p had poor clinical outcomes. CONCLUSION This study identified a unique combination of RCAs that are components in distinct cytogenetic trajectories. Some of these were primary changes while others were secondary or tertiary changes. Acquiring specific additional aberrations predicts progression or transformation to leukemia.
Collapse
Affiliation(s)
- Rolando García
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States.
| | - Tasnim Alkayyali
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Luis Mosquera Gomez
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Carter Wright
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Dwight Oliver
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| | - Prasad Koduru
- Department of Pathology, UT Southwestern Medical Center, Dallas TX, United States
| |
Collapse
|
7
|
Wang W, Zhang X, Li Y, Shen J, Li Y, Xing W, Bai J, Shi J, Zhou Y. Generation and Characterization of Induced Pluripotent Stem Cells Carrying An ASXL1 Mutation. Stem Cell Rev Rep 2024; 20:1889-1901. [PMID: 38884929 DOI: 10.1007/s12015-024-10737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Additional sex combs-like 1 (ASXL1) is an epigenetic modulator frequently mutated in myeloid malignancies, generally associated with poor prognosis. Current models for ASXL1-mutated diseases are mainly based on the complete deletion of Asxl1 or overexpression of C-terminal truncations in mice models. However, these models cannot fully recapitulate the pathogenesis of myeloid malignancies. Patient-derived induced pluripotent stem cells (iPSCs) provide valuable disease models that allow us to understand disease-related molecular pathways and develop novel targeted therapies. Here, we generated iPSCs from a patient with myeloproliferative neoplasm carrying a heterozygous ASXL1 mutation. The iPSCs we generated exhibited the morphology of pluripotent cells, highly expressed pluripotent markers, excellent differentiation potency in vivo, and normal karyotype. Subsequently, iPSCs with or without ASXL1 mutation were induced to differentiate into hematopoietic stem/progenitor cells, and we found that ASXL1 mutation led to myeloid-biased output and impaired erythroid differentiation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that terms related to embryonic development, myeloid differentiation, and immune- and neural-related processes were most enriched in the differentially expressed genes. Western blot demonstrated that the global level of H2AK119ub was significantly decreased when mutant ASXL1 was present. Chromatin Immunoprecipitation Sequencing showed that most genes associated with stem cell maintenance were upregulated, whereas occupancies of H2AK119ub around these genes were significantly decreased. Thus, the iPSC model carrying ASXL1 mutation could serve as a potential tool to study the pathogenesis of myeloid malignancies and to screen targeted therapy for patients.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yunan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jun Shen
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yihan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jie Bai
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
8
|
Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. J Clin Invest 2024; 134:e180065. [PMID: 39352393 PMCID: PMC11444162 DOI: 10.1172/jci180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
Collapse
Affiliation(s)
- William G. Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Matthew A. McLoughlin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
9
|
Petrone G, Turker I, Natarajan P, Bolton KL. Clinical and Therapeutic Implications of Clonal Hematopoiesis. Annu Rev Genomics Hum Genet 2024; 25:329-351. [PMID: 39190914 DOI: 10.1146/annurev-genom-120722-100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Clonal hematopoiesis (CH) is an age-related process whereby hematopoietic stem and progenitor cells (HSPCs) acquire mutations that lead to a proliferative advantage and clonal expansion. The most commonly mutated genes are epigenetic regulators, DNA damage response genes, and splicing factors, which are essential to maintain functional HSPCs and are frequently involved in the development of hematologic malignancies. Established risk factors for CH, including age, prior cytotoxic therapy, and smoking, increase the risk of acquiring CH and/or may increase CH fitness. CH has emerged as a novel risk factor in many age-related diseases, such as hematologic malignancies, cardiovascular disease, diabetes, and autoimmune disorders, among others. Future characterization of the mechanisms driving CH evolution will be critical to develop preventative and therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Petrone
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Isik Turker
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kelly L Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
10
|
Yao M, Jiang X, Xiao F, Lv X, Sheng M, Xing W, Bai J, Zhou Y. Targeting BIRC5 as a therapeutic approach to overcome ASXL1-associated decitabine resistance. Cancer Lett 2024; 593:216949. [PMID: 38729558 DOI: 10.1016/j.canlet.2024.216949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Hypomethylating agents (HMAs) are widely employed in the treatment of myeloid malignancies. However, unresponsive or resistant to HMAs occurs in approximately 50 % of patients. ASXL1, one of the most commonly mutated genes across the full spectrum of myeloid malignancies, has been reported to predict a lower overall response rate to HMAs, suggesting an essential need to develop effective therapeutic strategies for the patients with HMA failure. Here, we investigated the impact of ASXL1 on cellular responsiveness to decitabine treatment. ASXL1 deficiency increased resistance to decitabine treatment in AML cell lines and mouse bone marrow cells. Transcriptome sequencing revealed significant alterations in genes regulating cell cycle, apoptosis, and histone modification in ASXL1 deficient cells that resistant to decitabine. BIRC5 was identified as a potential target for overcoming decitabine resistance in ASXL1 deficient cells. Furthermore, our experimental evidence demonstrated that the small-molecule inhibitor of BIRC5 (YM-155) synergistically sensitized ASXL1 deficient cells to decitabine treatment. This study sheds light on the molecular mechanisms underlying the ASXL1-associated HMA resistance and proposes a promising therapeutic strategy for improving treatment outcomes in affected individuals.
Collapse
MESH Headings
- Animals
- Decitabine/pharmacology
- Humans
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Survivin/genetics
- Survivin/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Mice
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Imidazoles
- Naphthoquinones
Collapse
Affiliation(s)
- Ming Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiao Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai, 200032, China
| | - Fangnan Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xue Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mengyao Sheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai, 200032, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jie Bai
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
11
|
Kim N, Byun S, Um SJ. Additional Sex Combs-like Family Associated with Epigenetic Regulation. Int J Mol Sci 2024; 25:5119. [PMID: 38791157 PMCID: PMC11121404 DOI: 10.3390/ijms25105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The additional sex combs-like (ASXL) family, a mammalian homolog of the additional sex combs (Asx) of Drosophila, has been implicated in transcriptional regulation via chromatin modifications. Abnormal expression of ASXL family genes leads to myelodysplastic syndromes and various types of leukemia. De novo mutation of these genes also causes developmental disorders. Genes in this family and their neighbor genes are evolutionary conserved in humans and mice. This review provides a comprehensive summary of epigenetic regulations associated with ASXL family genes. Their expression is commonly regulated by DNA methylation at CpG islands preceding transcription starting sites. Their proteins primarily engage in histone tail modifications through interactions with chromatin regulators (PRC2, TrxG, PR-DUB, SRC1, HP1α, and BET proteins) and with transcription factors, including nuclear hormone receptors (RAR, PPAR, ER, and LXR). Histone modifications associated with these factors include histone H3K9 acetylation and methylation, H3K4 methylation, H3K27 methylation, and H2AK119 deubiquitination. Recently, non-coding RNAs have been identified following mutations in the ASXL1 or ASXL3 gene, along with circular ASXLs and microRNAs that regulate ASXL1 expression. The diverse epigenetic regulations linked to ASXL family genes collectively contribute to tumor suppression and developmental processes. Our understanding of ASXL-regulated epigenetics may provide insights into the development of therapeutic epigenetic drugs.
Collapse
Affiliation(s)
| | | | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, Republic of Korea; (N.K.)
| |
Collapse
|
12
|
Santoro N, Salutari P, Di Ianni M, Marra A. Precision Medicine Approaches in Acute Myeloid Leukemia with Adverse Genetics. Int J Mol Sci 2024; 25:4259. [PMID: 38673842 PMCID: PMC11050344 DOI: 10.3390/ijms25084259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The treatment of acute myeloid leukemia (AML) with adverse genetics remains unsatisfactory, with very low response rates to standard chemotherapy and shorter durations of remission commonly observed in these patients. The complex biology of AML with adverse genetics is continuously evolving. Herein, we discuss recent advances in the field focusing on the contribution of molecular drivers of leukemia biogenesis and evolution and on the alterations of the immune system that can be exploited with immune-based therapeutic strategies. We focus on the biological rationales for combining targeted therapy and immunotherapy, which are currently being investigated in ongoing trials, and could hopefully ameliorate the poor outcomes of patients affected by AML with adverse genetics.
Collapse
Affiliation(s)
- Nicole Santoro
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
| | - Prassede Salutari
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
| | - Mauro Di Ianni
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
- Department of Medicine and Science of Aging, “G.D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Marra
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00196 Rome, Italy
| |
Collapse
|
13
|
Collins TB, Laranjeira ABA, Kong T, Fulbright MC, Fisher DAC, Sturgeon CM, Batista LFZ, Oh ST. Altered erythropoiesis via JAK2 and ASXL1 mutations in myeloproliferative neoplasms. Exp Hematol 2024; 132:104178. [PMID: 38340948 PMCID: PMC10978257 DOI: 10.1016/j.exphem.2024.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.
Collapse
Affiliation(s)
- Taylor B Collins
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Angelo B A Laranjeira
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mary C Fulbright
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Christopher M Sturgeon
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luis F Z Batista
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO; Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
14
|
Gutierrez-Rodrigues F, Wells KV, Jones AI, Hironaka D, Rankin C, Gadina M, Sikora KA, Alemu L, Calado RT, Quinn KA, Patel B, Young NS, Grayson PC. Clonal haematopoiesis across the age spectrum of vasculitis patients with Takayasu's arteritis, ANCA-associated vasculitis and giant cell arteritis. Ann Rheum Dis 2024; 83:508-517. [PMID: 38049983 PMCID: PMC10939924 DOI: 10.1136/ard-2023-224933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES Ageing and inflammation are associated with clonal haematopoiesis (CH), the emergence of somatic mutations in haematopoietic cells. This study details CH in patients with systemic vasculitis in association with clinical, haematological and immunological parameters. METHODS Patients with three forms of vasculitis were screened for CH in peripheral blood by error-corrected sequencing. Relative contributions of age and vasculitis on CH prevalence were calculated using multivariable logistic regression. Clonal hierarchies were assessed by proteogenomic single-cell DNA sequencing, and functional experiments were performed in association with CH status. RESULTS Patients with Takayasu's arteritis (TAK; n=70; mean age=33.2 years), antineutrophil cytoplasmic antibody-associated vasculitis (AAV; n=47; mean age=55.3 years) and giant cell arteritis (GCA; n=59; mean age=71.2 years) were studied. CH, most commonly in DNMT3A and TET2, was detected in 34% (60/176) of patients versus 18% (28/151) of age-matched controls (p<0.01). Prevalence of CH was independently associated with age (standardised B=0.96, p<0.01) and vasculitis (standardised B=0.46, p<0.01), occurring in 61%, 32% and 13% of patients with GCA, AAV and TAK, respectively. Both branched and linear clonal trajectories showed myeloid-lineage bias, and CH was associated with markers of cellular activation. In GCA, mutations were detected in temporal artery biopsies, and clinical relapse correlated with CH in a dose-dependent relationship with clone size. CONCLUSIONS Age was more strongly associated with CH prevalence than inflammation in systemic vasculitis. Clonal profile was dominated by DNMT3A mutations which were associated with relapse in GCA. CH is not likely a primary causal factor in systemic vasculitis but may contribute to inflammation.
Collapse
Affiliation(s)
- Fernanda Gutierrez-Rodrigues
- Hematology Branch, National Heart Lung and Blood Institute Division of Intramural Research, Bethesda, Maryland, USA
| | - Kristina V Wells
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Adrianna I Jones
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Dalton Hironaka
- Hematology Branch, National Heart Lung and Blood Institute Division of Intramural Research, Bethesda, Maryland, USA
| | - Cameron Rankin
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Massimo Gadina
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Keith A Sikora
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Lemlem Alemu
- Hematology Branch, National Heart Lung and Blood Institute Division of Intramural Research, Bethesda, Maryland, USA
| | - Rodrigo T Calado
- Medical Imaging, Hematology, and Oncology, University of São Paulo, Sao Paulo, Brazil
| | - Kaitlin A Quinn
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Bhavisha Patel
- Hematology Branch, National Heart Lung and Blood Institute Division of Intramural Research, Bethesda, Maryland, USA
| | - Neal S Young
- Hematology Branch, National Heart Lung and Blood Institute Division of Intramural Research, Bethesda, Maryland, USA
| | - Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Johnson SM, Haberberger J, Galeotti J, Ramkissoon L, Coombs CC, Richardson DR, Foster MC, Duncan D, Montgomery ND, Ferguson NL, Zeidner JF. Comprehensive genomic profiling reveals molecular subsets of ASXL1-mutated myeloid neoplasms. Leuk Lymphoma 2024; 65:209-218. [PMID: 37921062 DOI: 10.1080/10428194.2023.2277672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
A large-scale genomic analysis of patients with ASXL1-mutated myeloid disease has not been performed to date. We reviewed comprehensive genomic profiling results from 6043 adults to characterize clinicopathologic features and co-mutation patterns by ASXL1 mutation status. ASXL1 mutations occurred in 1414 patients (23%). Mutation co-occurrence testing revealed strong co-occurrence (p < 0.01) between mutations in ASXL1 and nine genes (SRSF2, U2AF1, RUNX1, SETBP1, EZH2, STAG2, CUX1, CSF3R, CBL). Further analysis of patients with these co-mutations yielded several novel findings. Co-mutation patterns supported that ASXL1/SF3B1 co-mutation may be biologically distinct from ASXL1/non-SF3B1 spliceosome co-mutation. In AML, ASXL1/SRSF2 co-mutated patients frequently harbored STAG2 mutations (42%), which were dependent on the presence of both ASXL1 and SRSF2 mutation (p < 0.05). STAG2 and SETBP1 mutations were also exclusive in ASXL1/SRSF2 co-mutated patients and associated with divergent chronic myeloid phenotypes. Our findings support that certain multi-mutant genotypes may be biologically relevant in ASXL1-mutated myeloid disease.
Collapse
Affiliation(s)
- Steven M Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | - Jonathan Galeotti
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Catherine C Coombs
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- UC Irvine, Irvine, CA, USA
| | - Daniel R Richardson
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew C Foster
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Novartis Pharmaceuticals, Cambridge, MA, USA
| | - Daniel Duncan
- Foundation Medicine, Inc, Cambridge, MA, USA
- GRAIL, Inc, Durham, NC, USA
| | - Nathan D Montgomery
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- NeoGenomics Laboratories, Aliso Viejo, CA, USA
| | | | - Joshua F Zeidner
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Ge G, Zhang P, Sui P, Chen S, Yang H, Guo Y, Rubalcava IP, Noor A, Delma CR, Agosto-Peña J, Geng H, Medina EA, Liang Y, Nimer SD, Mesa R, Abdel-Wahab O, Xu M, Yang FC. Targeting lysine demethylase 6B ameliorates ASXL1 truncation-mediated myeloid malignancies in preclinical models. J Clin Invest 2024; 134:e163964. [PMID: 37917239 PMCID: PMC10760961 DOI: 10.1172/jci163964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
ASXL1 mutation frequently occurs in all forms of myeloid malignancies and is associated with aggressive disease and poor prognosis. ASXL1 recruits Polycomb repressive complex 2 (PRC2) to specific gene loci to repress transcription through trimethylation of histone H3 on lysine 27 (H3K27me3). ASXL1 alterations reduce H3K27me3 levels, which results in leukemogenic gene expression and the development of myeloid malignancies. Standard therapies for myeloid malignancies have limited efficacy when mutated ASXL1 is present. We discovered upregulation of lysine demethylase 6B (KDM6B), a demethylase for H3K27me3, in ASXL1-mutant leukemic cells, which further reduces H3K27me3 levels and facilitates myeloid transformation. Here, we demonstrated that heterozygous deletion of Kdm6b restored H3K27me3 levels and normalized dysregulated gene expression in Asxl1Y588XTg hematopoietic stem/progenitor cells (HSPCs). Furthermore, heterozygous deletion of Kdm6b decreased the HSPC pool, restored their self-renewal capacity, prevented biased myeloid differentiation, and abrogated progression to myeloid malignancies in Asxl1Y588XTg mice. Importantly, administration of GSK-J4, a KDM6B inhibitor, not only restored H3K27me3 levels but also reduced the disease burden in NSG mice xenografted with human ASXL1-mutant leukemic cells in vivo. This preclinical finding provides compelling evidence that targeting KDM6B may be a therapeutic strategy for myeloid malignancies with ASXL1 mutations.
Collapse
Affiliation(s)
- Guo Ge
- Department of Cell Systems and Anatomy
| | - Peng Zhang
- Department of Cell Systems and Anatomy
- Mays Cancer Center
| | - Pinpin Sui
- Department of Cell Systems and Anatomy
- Mays Cancer Center
| | - Shi Chen
- Department of Molecular Medicine, and
| | - Hui Yang
- Department of Cell Systems and Anatomy
| | - Ying Guo
- Department of Cell Systems and Anatomy
| | | | - Asra Noor
- Department of Cell Systems and Anatomy
| | - Caroline R. Delma
- Department of Cell Systems and Anatomy
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Hui Geng
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Edward A. Medina
- Mays Cancer Center
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ying Liang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mingjiang Xu
- Mays Cancer Center
- Department of Molecular Medicine, and
| | - Feng-Chun Yang
- Department of Cell Systems and Anatomy
- Mays Cancer Center
| |
Collapse
|
17
|
Casalin I, De Stefano A, Ceneri E, Cappellini A, Finelli C, Curti A, Paolini S, Parisi S, Zannoni L, Boultwood J, McCubrey JA, Suh PG, Ramazzotti G, Fiume R, Ratti S, Manzoli L, Cocco L, Follo MY. Deciphering signaling pathways in hematopoietic stem cells: the molecular complexity of Myelodysplastic Syndromes (MDS) and leukemic progression. Adv Biol Regul 2024; 91:101014. [PMID: 38242820 DOI: 10.1016/j.jbior.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Myelodysplastic Syndromes, a heterogeneous group of hematological disorders, are characterized by abnormalities in phosphoinositide-dependent signaling, epigenetic regulators, apoptosis, and cytokine interactions within the bone marrow microenvironment, contributing to disease pathogenesis and neoplastic growth. Comprehensive knowledge of these pathways is crucial for the development of innovative therapies that aim to restore normal apoptosis and improve patient outcomes.
Collapse
Affiliation(s)
- Irene Casalin
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy.
| | - Alessia De Stefano
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Eleonora Ceneri
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Letizia Zannoni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Giulia Ramazzotti
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Jin JC, Chen BY, Deng CH, Chen JN, Xu F, Tao Y, Hu CL, Xu CH, Chang BH, Wang Y, Fei MY, Liu P, Yu PC, Li ZJ, Li XY, Chen SB, Jiang YL, Chen XC, Zong LJ, Zhang JY, Ren YY, Xu FH, Liu Q, Huang XH, Guo J, He Q, Song LX, Zhou LY, Su JY, Xiao C, Zhang YM, Yan M, Zhang Z, Wu D, Chang CK, Li X, Wang L, Wu LY. ROBO1 deficiency impairs HSPC homeostasis and erythropoiesis via CDC42 and predicts poor prognosis in MDS. SCIENCE ADVANCES 2023; 9:eadi7375. [PMID: 38019913 DOI: 10.1126/sciadv.adi7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.
Collapse
Affiliation(s)
- Jia-Cheng Jin
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Han Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Nan Chen
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Tao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-He Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xi-Ya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Bei Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Lun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Chi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Yi Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fan-Huan Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin-Hui Huang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu-Mei Zhang
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Meng Yan
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
19
|
Zhang A, Wang S, Ren Q, Wang Y, Jiang Z. Prognostic value of ASXL1 mutations in patients with myelodysplastic syndromes and acute myeloid leukemia: A meta-analysis. Asia Pac J Clin Oncol 2023; 19:e183-e194. [PMID: 36471477 DOI: 10.1111/ajco.13897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/25/2022] [Accepted: 10/22/2022] [Indexed: 12/12/2022]
Abstract
Additional sex combs-like 1 (ASXL1) mutations, a hotspot in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), have been frequently reported for their potential prognostic value, but the results are controversial. Therefore, a meta-analysis was performed. Databases, including PubMed, Embase, and Cochrane Library, were searched for relevant studies published up to January 13, 2022. STATA v16.0 software was used to calculate the combined hazard ratios (HRs) and their 95% confidence intervals (CIs) for overall survival (OS) and AML transformation. Subgroup analysis was used to explore the effects of the grouping factors on heterogeneity.Ten studies on ASXL1 mutations and the prognosis of MDS were selected. Our results indicate that ASXL1 mutations have an adverse prognostic impact on OS (HR = 1.68,95%CI:1.45-1.94, p < .0001) and AML transformation (HR = 2.20,95% CI:1.68-2.87, p < .0001). The results for different age groups were not significantly different (HR = 1.87,95% CI: 1.31-2.67; HR = 1.62,95% CI:1.35-2.07). Ten studies covering 5816 patients with AML were included. The pooled HR for OS was 1.37 (95% CI:1.20-1.56, p < .0001). ASXL1 mutations were especially associated with a poorer OS in the subgroup aged ≥60 years (HR = 2.86, 95% CI:1.34-6.08, p = .006); when considering cytogenetically normal AML (CN-AML), the HR was 1.78(95% CI:1.27-2.49, p = .001). This meta-analysis indicates an independent, adverse prognostic impact of ASXL1 mutations in patients with MDS and AML, which also applies to patients with CN-AML. Age was a risk factor for patients with AML and ASXL1 mutations but not for patients with MDS.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuxing Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Quanlei Ren
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yizhu Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Wang J, Chen A, Xue Z, Liu J, He Y, Liu G, Zhao Z, Li W, Zhang Q, Chen A, Wang J, Li X, Wang X, Huang B. BCL2L13 promotes mitophagy through DNM1L-mediated mitochondrial fission in glioblastoma. Cell Death Dis 2023; 14:585. [PMID: 37660127 PMCID: PMC10475114 DOI: 10.1038/s41419-023-06112-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
There is an urgent need for novel diagnostic and therapeutic strategies for patients with Glioblastoma multiforme (GBM). Previous studies have shown that BCL2 like 13 (BCL2L13) is a member of the BCL2 family regulating cell growth and apoptosis in different types of tumors. However, the clinical significance, biological role, and potential mechanism in GBM remain unexplored. In this study, we showed that BCL2L13 expression is significantly upregulated in GBM cell lines and clinical GBM tissue samples. Mechanistically, BCL2L13 targeted DNM1L at the Ser616 site, leading to mitochondrial fission and high mitophagy flux. Functionally, these alterations significantly promoted the proliferation and invasion of GBM cells both in vitro and in vivo. Overall, our findings demonstrated that BCL2L13 plays a significant role in promoting mitophagy via DNM1L-mediated mitochondrial fission in GBM. Therefore, the regulation and biological function of BCL2L13 render it a candidate molecular target for treating GBM.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Anbin Chen
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 200092, Shanghai, China
| | - Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Junzhi Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Ying He
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guowei Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Zhimin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China.
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China.
| |
Collapse
|
21
|
Lin I, Wei A, Awamleh Z, Singh M, Ning A, Herrera A, Russell BE, Weksberg R, Arboleda VA. Multiomics of Bohring-Opitz syndrome truncating ASXL1 mutations identify canonical and noncanonical Wnt signaling dysregulation. JCI Insight 2023; 8:e167744. [PMID: 37053013 PMCID: PMC10322691 DOI: 10.1172/jci.insight.167744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
ASXL1 (additional sex combs-like 1) plays key roles in epigenetic regulation of early developmental gene expression. De novo protein-truncating mutations in ASXL1 cause Bohring-Opitz syndrome (BOS; OMIM #605039), a rare neurodevelopmental condition characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, increased risk of Wilms tumor, and variable congenital anomalies, including heart defects and severe skeletal defects giving rise to a typical BOS posture. These BOS-causing ASXL1 variants are also high-prevalence somatic driver mutations in acute myeloid leukemia. We used primary cells from individuals with BOS (n = 18) and controls (n = 49) to dissect gene regulatory changes caused by ASXL1 mutations using comprehensive multiomics assays for chromatin accessibility (ATAC-seq), DNA methylation, histone methylation binding, and transcriptome in peripheral blood and skin fibroblasts. Our data show that regardless of cell type, ASXL1 mutations drive strong cross-tissue effects that disrupt multiple layers of the epigenome. The data showed a broad activation of canonical Wnt signaling at the transcriptional and protein levels and upregulation of VANGL2, which encodes a planar cell polarity pathway protein that acts through noncanonical Wnt signaling to direct tissue patterning and cell migration. This multiomics approach identifies the core impact of ASXL1 mutations and therapeutic targets for BOS and myeloid leukemias.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Angela Wei
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meghna Singh
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Aileen Ning
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Analeyla Herrera
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | | | - Bianca E. Russell
- Division of Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Valerie A. Arboleda
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
22
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
23
|
Reed SC, Croessmann S, Park BH. CHIP Happens: Clonal Hematopoiesis of Indeterminate Potential and Its Relationship to Solid Tumors. Clin Cancer Res 2023; 29:1403-1411. [PMID: 36454121 PMCID: PMC10106364 DOI: 10.1158/1078-0432.ccr-22-2598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the expansion of hematopoietic cells harboring leukemia-associated somatic mutations in otherwise healthy people and occurs in at least 10% of adults over 70. It is well established that people with CHIP have increased rates of hematologic malignancy, increased risk of cardiovascular disease, and worse all-cause mortality compared with those without CHIP. Despite recent advancements in understanding CHIP as it relates to these known outcomes, much remains to be learned about the development and role of CHIP in other disease states. Emerging research has identified high rates of CHIP in patients with solid tumors, driven in part by oncologic therapy, and revealed associations between CHIP and differential outcomes in both solid tumors and other diseases. Recent studies have demonstrated that CHIP can contribute to dysregulated inflammatory signaling in multiple contexts, underscoring the importance of interrogating how CHIP might alter tumor immunology. Here, we review the role of CHIP mutations in clonal expansion of hematopoietic cells, explore the relationship between CHIP and solid tumors, and discuss the potential roles of CHIP in inflammation and solid tumor biology.
Collapse
Affiliation(s)
- Sarah C. Reed
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sarah Croessmann
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ben Ho Park
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol 2022; 10:1065702. [PMID: 36589739 PMCID: PMC9800997 DOI: 10.3389/fcell.2022.1065702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play an essential role in the regulation of cellular stress responses, including cell death. Damaged mitochondria are removed by fission and fusion cycles and mitophagy, which counteract cell death. BCL-2 family proteins possess one to four BCL-2 homology domains and regulate apoptosis signaling at mitochondria. BCL-RAMBO, also known as BCL2-like 13 (BCL2L13), was initially identified as one of the BCL-2 family proteins inducing apoptosis. Mitophagy receptors recruit the ATG8 family proteins MAP1LC3/GABARAP via the MAP1LC3-interacting region (LIR) motif to initiate mitophagy. In addition to apoptosis, BCL-RAMBO has recently been identified as a mitophagy receptor that possesses the LIR motif and regulates mitochondrial fragmentation and mitophagy. In the 20 years since its discovery, many important findings on BCL-RAMBO have been increasingly reported. The biological properties of BCL-RAMBO are reviewed herein.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan,Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Takao Kataoka,
| |
Collapse
|
25
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
26
|
Di Fede E, Grazioli P, Lettieri A, Parodi C, Castiglioni S, Taci E, Colombo EA, Ancona S, Priori A, Gervasini C, Massa V. Epigenetic disorders: Lessons from the animals–animal models in chromatinopathies. Front Cell Dev Biol 2022; 10:979512. [PMID: 36225316 PMCID: PMC9548571 DOI: 10.3389/fcell.2022.979512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatinopathies are defined as genetic disorders caused by mutations in genes coding for protein involved in the chromatin state balance. So far 82 human conditions have been described belonging to this group of congenital disorders, sharing some molecular features and clinical signs. For almost all of these conditions, no specific treatment is available. For better understanding the molecular cascade caused by chromatin imbalance and for envisaging possible therapeutic strategies it is fundamental to combine clinical and basic research studies. To this end, animal modelling systems represent an invaluable tool to study chromatinopathies. In this review, we focused on available data in the literature of animal models mimicking the human genetic conditions. Importantly, affected organs and abnormalities are shared in the different animal models and most of these abnormalities are reported as clinical manifestation, underlying the parallelism between clinics and translational research.
Collapse
Affiliation(s)
- Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Alberto Priori
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
- *Correspondence: Valentina Massa,
| |
Collapse
|
27
|
Medina EA, Delma CR, Yang FC. ASXL1/2 mutations and myeloid malignancies. J Hematol Oncol 2022; 15:127. [PMID: 36068610 PMCID: PMC9450349 DOI: 10.1186/s13045-022-01336-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Myeloid malignancies develop through the accumulation of genetic and epigenetic alterations that dysregulate hematopoietic stem cell (HSC) self-renewal, stimulate HSC proliferation and result in differentiation defects. The polycomb group (PcG) and trithorax group (TrxG) of epigenetic regulators act antagonistically to regulate the expression of genes key to stem cell functions. The genes encoding these proteins, and the proteins that interact with them or affect their occupancy at chromatin, are frequently mutated in myeloid malignancies. PcG and TrxG proteins are regulated by Enhancers of Trithorax and Polycomb (ETP) proteins. ASXL1 and ASXL2 are ETP proteins that assemble chromatin modification complexes and transcription factors. ASXL1 mutations frequently occur in myeloid malignancies and are associated with a poor prognosis, whereas ASXL2 mutations frequently occur in AML with t(8;21)/RUNX1-RUNX1T1 and less frequently in other subtypes of myeloid malignancies. Herein, we review the role of ASXL1 and ASXL2 in normal and malignant hematopoiesis by summarizing the findings of mouse model systems and discussing their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Edward A Medina
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Caroline R Delma
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Feng-Chun Yang
- Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
28
|
Testa U, Castelli G, Pelosi E. Clonal Hematopoiesis: Role in Hematologic and Non-Hematologic Malignancies. Mediterr J Hematol Infect Dis 2022; 14:e2022069. [PMID: 36119457 PMCID: PMC9448266 DOI: 10.4084/mjhid.2022.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) ensure the coordinated and balanced production of all hematopoietic cell types throughout life. Aging is associated with a gradual decline of the self-renewal and regenerative potential of HSCs and with the development of clonal hematopoiesis. Clonal hematopoiesis of indeterminate potential (CHIP) defines the clonal expansion of genetically variant hematopoietic cells bearing one or more gene mutations and/or structural variants (such as copy number alterations). CHIP increases exponentially with age and is associated with cancers, including hematologic neoplasia, cardiovascular and other diseases. The presence of CHIP consistently increases the risk of hematologic malignancy, particularly in individuals who have CHIP in association with peripheral blood cytopenia.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
29
|
Taha I, Foroni S, Valli R, Frattini A, Roccia P, Porta G, Zecca M, Bergami E, Cipolli M, Pasquali F, Danesino C, Scotti C, Minelli A. Case Report: Heterozygous Germline Variant in EIF6 Additional to Biallelic SBDS Pathogenic Variants in a Patient With Ribosomopathy Shwachman–Diamond Syndrome. Front Genet 2022; 13:896749. [PMID: 36035165 PMCID: PMC9411639 DOI: 10.3389/fgene.2022.896749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Shwachman–Diamond syndrome (SDS) is a rare autosomal recessive ribosomopathy mainly characterized by exocrine pancreatic insufficiency, skeletal alterations, neutropenia, and a relevant risk of hematological transformation. At least 90% of SDS patients have pathogenic variants in SBDS, the first gene associated with the disease with very low allelic heterogeneity; three variants, derived from events of genetic conversion between SBDS and its pseudogene, SBDSP1, provided the alleles observed in about 62% of SDS patients. Methods: We performed a reanalysis of the available WES files of a group of SDS patients with biallelic SBDS pathogenic variants, studying the results by next bioinformatic and protein structural analysis. Parallelly, careful clinical attention was given to the patient focused in this study. Results: We found and confirmed in one SDS patient a germline heterozygous missense variant (c.100T>C; p.Phe34Leu) in the EIF6 gene. This variant, inherited from his mother, has a very low frequency, and it is predicted as pathogenic, according to several in silico prediction tools. The protein structural analysis also envisages the variant could reduce the binding to the nascent 60S ribosomal. Conclusion: This study focused on the hypothesis that the EIF6 germline variant mimics the effect of somatic deletions of chromosome 20, always including the locus of this gene, and similarly may rescue the ribosomal stress and ribosomal dysfunction due to SBDS mutations. It is likely that this rescue may contribute to the stable and not severe hematological status of the proband, but a definite answer on the role of this EIF6 variant can be obtained only by adding a functional layer of evidence. In the future, these results are likely to be useful for selected cases in personalized medicine and therapy.
Collapse
Affiliation(s)
- Ibrahim Taha
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Selena Foroni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Valli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Frattini
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Istituto di Ricerca Genetica e Biomedica, CNR, Milano, Italy
| | - Pamela Roccia
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Porta
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S, Matteo, Pavia, Italy
| | - Elena Bergami
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S, Matteo, Pavia, Italy
| | - Marco Cipolli
- Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Francesco Pasquali
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cesare Danesino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Claudia Scotti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Antonella Minelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Minelli,
| |
Collapse
|
30
|
Morita Y, Nannya Y, Ichikawa M, Hanamoto H, Shibayama H, Maeda Y, Hata T, Miyamoto T, Kawabata H, Takeuchi K, Tanaka H, Kishimoto J, Miyano S, Matsumura I, Ogawa S, Akashi K, Kanakura Y, Mitani K. ASXL1 mutations with serum EPO levels predict poor response to darbepoetin alfa in lower-risk MDS: W-JHS MDS01 trial. Int J Hematol 2022; 116:659-668. [PMID: 35821550 PMCID: PMC9588475 DOI: 10.1007/s12185-022-03414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Darbepoetin alfa (DA) is used to treat anemia in lower-risk (IPSS low or int-1) myelodysplastic syndromes (MDS). However, whether mutations can predict the effectiveness of DA has not been examined. The present study aimed to determine predictive gene mutations. The primary endpoint was a correlation between the presence of highly frequent (≥ 10%) mutations and hematological improvement-erythroid according to IWG criteria 2006 by DA (240 μg/week) until week 16. The study included 79 patients (age 29–90, median 77.0 years; 52 [65.8%] male). Frequently (≥ 10%) mutated genes were SF3B1 (24 cases, 30.4%), TET2 (20, 25.3%), SRSF2 (10, 12.7%), ASXL1 (9, 11.4%), and DNMT3A (8, 10.1%). Overall response rate to DA was 70.9%. Multivariable analysis including baseline erythropoietin levels and red blood cell transfusion volumes as variables revealed that erythropoietin levels and mutations of ASXL1 gene were significantly associated with worse response (odds ratio 0.146, 95% confidence interval 0.042–0.503; p = 0.0023, odds ratio 0.175, 95% confidence interval 0.033–0.928; p = 0.0406, respectively). This study indicated that anemic patients who have higher erythropoietin levels and harbor ASXL1 gene mutations may respond poorly to DA. Alternative strategies are needed for the treatment of anemia in this population. Trial registration number and date of registration: UMIN000022185 and 09/05/2016.
Collapse
Affiliation(s)
- Yasuyoshi Morita
- Divison of Hematology and Rheumatology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan.,Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motoshi Ichikawa
- Department of Hematology and Oncology, Dokkyo Medical University, 880, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Hitoshi Hanamoto
- Department of Hematology, Faculty of Medicine, Nara Hospital Kindai University, Nara, Japan
| | - Hirohiko Shibayama
- Department of Hematology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Tomoko Hata
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Hiroshi Kawabata
- Department of Hematology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kazuto Takeuchi
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroko Tanaka
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Itaru Matsumura
- Divison of Hematology and Rheumatology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Department of Medicine, Kyoto University, Kyoto, Japan.,Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Sumitomo Hospital, Osaka, Japan
| | - Kinuko Mitani
- Department of Hematology and Oncology, Dokkyo Medical University, 880, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan.
| |
Collapse
|
31
|
Xu J, Hao Z, Chen X, Hong M, Muyey DM, Chen X, Wang H. The characteristics and clinical prognosis analysis of ASXL1 mutations in Chinese adult patients with primary cytogenetically normal acute myeloid leukemia by next-generation sequencing. Leuk Lymphoma 2022; 63:2321-2329. [PMID: 35652795 DOI: 10.1080/10428194.2022.2081323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We analyzed 156 adult patients with primary cytogenetically normal AML for ASXL1 mutations and co-mutations using targeted next-generation sequencing with a panel of 34 genes associated with myeloid neoplasms. ASXL1mut were identified in 15(10%) patients, more frequent at an older age (≥60years) (p = .014), and had significant associations with co-mutations in TET2, KIT, CBL and SRSF2, whereas inversely correlated to NPM1 and CEBPA mutations. ASXL1mut clustered in ELN2017 intermediate-risk group (p = .028). In the context of intermediate-risk, ASXL1mut had a worse overall survival(OS) (p = .038) and Relapse-free survival(RFS) (p = .016) than ASXL1wt. When coexisting DNMT3A or TET2 mutations, ASXL1mut/DNMT3Amut genetype revealed a superior OS than ASXL1mut/DNMT3Awt (p = .027), and ASXL1mut/TET2mut confered a worse RFS than ASXL1mut/TET2wt (p = .031). No significant prognosis impact of VAF (a cutoff value of 30%) and clone ranks of ASXL1mut were observed in this corhort. Our study provided a new understanding of characteristics of ASXL1mut AML.
Collapse
Affiliation(s)
- Jing Xu
- Shanxi Medical University, Taiyuan, China
| | - Zhuanghui Hao
- Shanxi Medical University, Taiyuan, China.,Institute of Hematology, The Second Hospital of Shanxi Medical University, China
| | - Xian Chen
- Shanxi Medical University, Taiyuan, China.,Institute of Hematology, The Second Hospital of Shanxi Medical University, China
| | - Minglin Hong
- Shanxi Medical University, Taiyuan, China.,Institute of Hematology, The Second Hospital of Shanxi Medical University, China
| | - Daniel Muteb Muyey
- Shanxi Medical University, Taiyuan, China.,Institute of Hematology, The Second Hospital of Shanxi Medical University, China
| | - Xiuhua Chen
- Shanxi Medical University, Taiyuan, China.,Institute of Hematology, The Second Hospital of Shanxi Medical University, China
| | - Hongwei Wang
- Shanxi Medical University, Taiyuan, China.,Institute of Hematology, The Second Hospital of Shanxi Medical University, China
| |
Collapse
|
32
|
Liu W, Teodorescu P, Halene S, Ghiaur G. The Coming of Age of Preclinical Models of MDS. Front Oncol 2022; 12:815037. [PMID: 35372085 PMCID: PMC8966105 DOI: 10.3389/fonc.2022.815037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone-marrow diseases with ineffective hematopoiesis resulting in cytopenias and morphologic dysplasia of hematopoietic cells. MDS carry a wide spectrum of genetic abnormalities, ranging from chromosomal abnormalities such as deletions/additions, to recurrent mutations affecting the spliceosome, epigenetic modifiers, or transcription factors. As opposed to AML, research in MDS has been hindered by the lack of preclinical models that faithfully replicate the complexity of the disease and capture the heterogeneity. The complex molecular landscape of the disease poses a unique challenge when creating transgenic mouse-models. In addition, primary MDS cells are difficult to manipulate ex vivo limiting in vitro studies and resulting in a paucity of cell lines and patient derived xenograft models. In recent years, progress has been made in the development of both transgenic and xenograft murine models advancing our understanding of individual contributors to MDS pathology as well as the complex primary interplay of genetic and microenvironment aberrations. We here present a comprehensive review of these transgenic and xenograft models for MDS and future directions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Patric Teodorescu
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Menendez-Gonzalez JB, Rodrigues NP. Exploring the Associations Between Clonal Hematopoiesis of Indeterminate Potential, Myeloid Malignancy, and Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:73-88. [PMID: 35237959 DOI: 10.1007/978-1-0716-1924-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Outgrowth of a mutated hematopoietic stem/progenitor clone and its descendants, also known as clonal hematopoiesis, has long been considered as either a potential forerunner to hematologic malignancy or as a clinically silent phase in leukemia that antedates symptomatic disease. That definition of clonal hematopoiesis has now been expanded to encompass patients who harbor specific genetic/epigenetic mutations that lead to clonal hematopoiesis of indeterminate potential (CHIP) and, with it, a relatively heightened risk for both myeloid malignancy and atherosclerosis during aging. In this review, we provide contemporary insights into the cellular and molecular basis for CHIP and explore the relationship of CHIP to myeloid malignancy and atherosclerosis. We also discuss emerging strategies to explore CHIP biology and clinical targeting of CHIP related malignancy and cardiovascular disease.
Collapse
Affiliation(s)
- Juan Bautista Menendez-Gonzalez
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
34
|
Asxl1 loss cooperates with oncogenic Nras in mice to reprogram the immune microenvironment and drive leukemic transformation. Blood 2022; 139:1066-1079. [PMID: 34699595 PMCID: PMC8854684 DOI: 10.1182/blood.2021012519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Mutations in chromatin regulator ASXL1 are frequently identified in myeloid malignancies, in particular ∼40% of patients with chronic myelomonocytic leukemia (CMML). ASXL1 mutations are associated with poor prognosis in CMML and significantly co-occur with NRAS mutations. Here, we show that concurrent ASXL1 and NRAS mutations defined a population of CMML patients who had shorter leukemia-free survival than those with ASXL1 mutation only. Corroborating this human data, Asxl1-/- accelerated CMML progression and promoted CMML transformation to acute myeloid leukemia (AML) in NrasG12D/+ mice. NrasG12D/+;Asxl1-/- (NA) leukemia cells displayed hyperactivation of MEK/ERK signaling, increased global levels of H3K27ac, upregulation of Flt3. Moreover, we find that NA-AML cells overexpressed all the major inhibitory immune checkpoint ligands: programmed death-ligand 1 (PD-L1)/PD-L2, CD155, and CD80/CD86. Among them, overexpression of PD-L1 and CD86 correlated with upregulation of AP-1 transcription factors (TFs) in NA-AML cells. An AP-1 inhibitor or short hairpin RNAs against AP-1 TF Jun decreased PD-L1 and CD86 expression in NA-AML cells. Once NA-AML cells were transplanted into syngeneic recipients, NA-derived T cells were not detectable. Host-derived wild-type T cells overexpressed programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) receptors, leading to a predominant exhausted T-cell phenotype. Combined inhibition of MEK and BET resulted in downregulation of Flt3 and AP-1 expression, partial restoration of the immune microenvironment, enhancement of CD8 T-cell cytotoxicity, and prolonged survival in NA-AML mice. Our study suggests that combined targeted therapy and immunotherapy may be beneficial for treating secondary AML with concurrent ASXL1 and NRAS mutations.
Collapse
|
35
|
Luo H, Zhu G, Eshelman MA, Fung TK, Lai Q, Wang F, Zeisig BB, Lesperance J, Ma X, Chen S, Cesari N, Cogle C, Chen B, Xu B, Yang FC, So CWE, Qiu Y, Xu M, Huang S. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Mol Cell 2022; 82:833-851.e11. [PMID: 35180428 PMCID: PMC8985430 DOI: 10.1016/j.molcel.2022.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
HOTTIP lncRNA is highly expressed in acute myeloid leukemia (AML) driven by MLL rearrangements or NPM1 mutations to mediate HOXA topologically associated domain (TAD) formation and drive aberrant transcription. However, the mechanism through which HOTTIP accesses CCCTC-binding factor (CTCF) chromatin boundaries and regulates CTCF-mediated genome topology remains unknown. Here, we show that HOTTIP directly interacts with and regulates a fraction of CTCF-binding sites (CBSs) in the AML genome by recruiting CTCF/cohesin complex and R-loop-associated regulators to form R-loops. HOTTIP-mediated R-loops reinforce the CTCF boundary and facilitate formation of TADs to drive gene transcription. Either deleting CBS or targeting RNase H to eliminate R-loops in the boundary CBS of β-catenin TAD impaired CTCF boundary activity, inhibited promoter/enhancer interactions, reduced β-catenin target expression, and mitigated leukemogenesis in xenograft mouse models with aberrant HOTTIP expression. Thus, HOTTIP-mediated R-loop formation directly reinforces CTCF chromatin boundary activity and TAD integrity to drive oncogene transcription and leukemia development.
Collapse
MESH Headings
- Animals
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Gene Expression Regulation, Leukemic
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Transgenic
- R-Loop Structures
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Structure-Activity Relationship
- Transcription, Genetic
- Transcriptional Activation
- beta Catenin/genetics
- beta Catenin/metabolism
- Cohesins
Collapse
Affiliation(s)
- Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ganqian Zhu
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Melanie A Eshelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tsz Kan Fung
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Qian Lai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Fei Wang
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Bernd B Zeisig
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Julia Lesperance
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xiaoyan Ma
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Shi Chen
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Nicholas Cesari
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher Cogle
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Baoan Chen
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Feng-Chun Yang
- Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA; Mays Cancer Center, Joe R. & Teresa Lozano Long School of Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Chi Wai Eric So
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK.
| | - Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mingjiang Xu
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA; Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA.
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
36
|
Christen F, Hablesreiter R, Hoyer K, Hennch C, Maluck-Böttcher A, Segler A, Madadi A, Frick M, Bullinger L, Briest F, Damm F. Modeling clonal hematopoiesis in umbilical cord blood cells by CRISPR/Cas9. Leukemia 2022; 36:1102-1110. [PMID: 34782715 PMCID: PMC8979818 DOI: 10.1038/s41375-021-01469-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022]
Abstract
To investigate clonal hematopoiesis associated gene mutations in vitro and to unravel the direct impact on the human stem and progenitor cell (HSPC) compartment, we targeted healthy, young hematopoietic progenitor cells, derived from umbilical cord blood samples, with CRISPR/Cas9 technology. Site-specific mutations were introduced in defined regions of DNMT3A, TET2, and ASXL1 in CD34+ progenitor cells that were subsequently analyzed in short-term as well as long-term in vitro culture assays to assess self-renewal and differentiation capacities. Colony-forming unit (CFU) assays revealed enhanced self-renewal of TET2 mutated (TET2mut) cells, whereas ASXL1mut as well as DNMT3Amut cells did not reveal significant changes in short-term culture. Strikingly, enhanced colony formation could be detected in long-term culture experiments in all mutants, indicating increased self-renewal capacities. While we could also demonstrate preferential clonal expansion of distinct cell clones for all mutants, the clonal composition after long-term culture revealed a mutation-specific impact on HSPCs. Thus, by using primary umbilical cord blood cells, we were able to investigate epigenetic driver mutations without confounding factors like age or a complex mutational landscape, and our findings provide evidence for a direct impact of clonal hematopoiesis-associated mutations on self-renewal and clonal composition of human stem and progenitor cells.
Collapse
Affiliation(s)
- Friederike Christen
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Raphael Hablesreiter
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Kaja Hoyer
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Cornelius Hennch
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Antje Maluck-Böttcher
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Angela Segler
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Gynecology with Center for Oncological Surgery, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Obstetrics, Berlin, Germany
| | - Annett Madadi
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Obstetrics, Berlin, Germany
| | - Mareike Frick
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Bullinger
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Briest
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Frederik Damm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
37
|
Kurtz KJ, Conneely SE, O'Keefe M, Wohlan K, Rau RE. Murine Models of Acute Myeloid Leukemia. Front Oncol 2022; 12:854973. [PMID: 35756660 PMCID: PMC9214208 DOI: 10.3389/fonc.2022.854973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a phenotypically and genetically heterogeneous hematologic malignancy. Extensive sequencing efforts have mapped the genomic landscape of adult and pediatric AML revealing a number of biologically and prognostically relevant driver lesions. Beyond identifying recurrent genetic aberrations, it is of critical importance to fully delineate the complex mechanisms by which they contribute to the initiation and evolution of disease to ultimately facilitate the development of targeted therapies. Towards these aims, murine models of AML are indispensable research tools. The rapid evolution of genetic engineering techniques over the past 20 years has greatly advanced the use of murine models to mirror specific genetic subtypes of human AML, define cell-intrinsic and extrinsic disease mechanisms, study the interaction between co-occurring genetic lesions, and test novel therapeutic approaches. This review summarizes the mouse model systems that have been developed to recapitulate the most common genomic subtypes of AML. We will discuss the strengths and weaknesses of varying modeling strategies, highlight major discoveries emanating from these model systems, and outline future opportunities to leverage emerging technologies for mechanistic and preclinical investigations.
Collapse
Affiliation(s)
- Kristen J Kurtz
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Madeleine O'Keefe
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Rachel E Rau
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
38
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
39
|
Fontana D, Gambacorti-Passerini C, Piazza R. Molecular Pathogenesis of BCR-ABL-Negative Atypical Chronic Myeloid Leukemia. Front Oncol 2021; 11:756348. [PMID: 34858828 PMCID: PMC8631780 DOI: 10.3389/fonc.2021.756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Atypical chronic myeloid leukemia is a rare disease whose pathogenesis has long been debated. It currently belongs to the group of myelodysplastic/myeloproliferative disorders. In this review, an overview on the current knowledge about diagnosis, prognosis, and genetics is presented, with a major focus on the recent molecular findings. We describe here the molecular pathogenesis of the disease, focusing on the mechanisms of action of the main mutations as well as on gene expression profiling. We also present the treatment options focusing on emerging targeted therapies.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
40
|
Geissler K. Molecular Pathogenesis of Chronic Myelomonocytic Leukemia and Potential Molecular Targets for Treatment Approaches. Front Oncol 2021; 11:751668. [PMID: 34660314 PMCID: PMC8514979 DOI: 10.3389/fonc.2021.751668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Numerous examples in oncology have shown that better understanding the pathophysiology of a malignancy may be followed by the development of targeted treatment concepts with higher efficacy and lower toxicity as compared to unspecific treatment. The pathophysiology of chronic myelomonocytic leukemia (CMML) is heterogenous and complex but applying different research technologies have yielded a better and more comprehensive understanding of this disease. At the moment treatment for CMML is largely restricted to the unspecific use of cytotoxic drugs and hypomethylating agents (HMA). Numerous potential molecular targets have been recently detected by preclinical research which may ultimately lead to treatment concepts that will provide meaningful benefits for certain subgroups of patients.
Collapse
Affiliation(s)
- Klaus Geissler
- Medical School, Sigmund Freud University, Vienna, Austria.,Department of Internal Medicine V with Hematology, Oncology and Palliative Care, Hospital Hietzing, Vienna, Austria
| |
Collapse
|
41
|
Man N, Mas G, Karl DL, Sun J, Liu F, Yang Q, Torres-Martin M, Itonaga H, Martinez C, Chen S, Xu Y, Duffort S, Hamard PJ, Chen C, Zucconi BE, Cimmino L, Yang FC, Xu M, Cole PA, Figueroa ME, Nimer SD. p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia. JCI Insight 2021; 6:138478. [PMID: 34622806 PMCID: PMC8525640 DOI: 10.1172/jci.insight.138478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem and progenitor cell (HSPC) malignancies characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Epigenetic regulators are recurrently mutated in MDS, directly implicating epigenetic dysregulation in MDS pathogenesis. Here, we identified a tumor suppressor role of the acetyltransferase p300 in clinically relevant MDS models driven by mutations in the epigenetic regulators TET2, ASXL1, and SRSF2. The loss of p300 enhanced the proliferation and self-renewal capacity of Tet2-deficient HSPCs, resulting in an increased HSPC pool and leukemogenicity in primary and transplantation mouse models. Mechanistically, the loss of p300 in Tet2-deficient HSPCs altered enhancer accessibility and the expression of genes associated with differentiation, proliferation, and leukemia development. Particularly, p300 loss led to an increased expression of Myb, and the depletion of Myb attenuated the proliferation of HSPCs and improved the survival of leukemia-bearing mice. Additionally, we show that chemical inhibition of p300 acetyltransferase activity phenocopied Ep300 deletion in Tet2-deficient HSPCs, whereas activation of p300 activity with a small molecule impaired the self-renewal and leukemogenicity of Tet2-deficient cells. This suggests a potential therapeutic application of p300 activators in the treatment of MDS with TET2 inactivating mutations.
Collapse
Affiliation(s)
- Na Man
- Sylvester Comprehensive Cancer Center
| | | | | | - Jun Sun
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and
| | - Fan Liu
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Qin Yang
- Sylvester Comprehensive Cancer Center
| | | | | | | | - Shi Chen
- Sylvester Comprehensive Cancer Center
| | - Ye Xu
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and
| | | | | | | | - Beth E Zucconi
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
42
|
Ebian HF, Elshorbagy S, Mohamed H, Embaby A, Khamis T, Sameh R, Sabbah NA, Hussein S. Clinical implication and prognostic significance of FLT3-ITD and ASXL1 mutations in Egyptian AML patients: A single-center study. Cancer Biomark 2021; 32:379-389. [PMID: 34487021 DOI: 10.3233/cbm-210024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Both Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and Additional Sex Comb-like 1 (ASXL1) mutations are frequent and early genetic alteration events in acute myeloid leukemia (AML) patients. These genetic alterations may be associated with an unfavorable prognosis. OBJECTIVE Up to our knowledge, this is the first study performed to evaluate the clinical implication and prognostic significance of FLT3-ITD and ASXL1 mutations and their coexistence on the outcome of Egyptian AML patients. METHODS Our study included 83 patients with AML who were subjected to immunophenotyping and detection of FLT3-ITD and ASXL1 gene mutation by polymerase chain reaction (PCR) and real-time PCR, respectively. RESULTS FLT3-ITD and ASXL1 mutations were detected in 20.5% and 18.1% of AML patients respectively. Seven patients (8.4%) had co-expression of both genes' mutations. FLT3-ITD mutation was significantly higher in younger age, higher WBCs count and poor cytogenetic risk patients (P= 0.01, < 0.001 and 0.008 respectively). ASXL1 mutation was significantly higher in intermediate cytogenetic risk patients (P= 0.2). The mean period of survival and relapse-free survival (RFS) were significantly reduced in FLT3-ITD and ASXL1 mutations compared with their non-mutant types (P= 0.01 and 0.03 respectively). Both mutations were independent risk factors for overall survival (OS) and (RFS) in univariate and multivariate analysis in AML patients. CONCLUSION FLT3-ITD and ASXL1 gene mutations or their coexistence can predict a poor prognosis in AML patients.
Collapse
Affiliation(s)
- Huda F Ebian
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherin Elshorbagy
- Oncology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haitham Mohamed
- Hematology Oncology Unit/Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmad Embaby
- Hematology Oncology Unit/Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham Sameh
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan A Sabbah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
43
|
Cao L, Xia X, Kong Y, Jia F, Yuan B, Li R, Li Q, Wang Y, Cui M, Dai Z, Zheng H, Christensen J, Zhou Y, Wu X. Deregulation of tumor suppressive ASXL1-PTEN/AKT axis in myeloid malignancies. J Mol Cell Biol 2021; 12:688-699. [PMID: 32236560 PMCID: PMC7749738 DOI: 10.1093/jmcb/mjaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations of epigenetic regulators are pervasive in human tumors. ASXL1 is frequently mutated in myeloid malignancies. We previously found that ASXL1 forms together with BAP1 a complex that can deubiquitinylate mono-ubiquitinylated lysine 119 on histone H2A (H2AK119ub1), a Polycomb repressive mark. However, a complete mechanistic understanding of ASXL1 in transcriptional regulation and tumor suppression remains to be defined. Here, we find that depletion of Asxl1 confers murine 32D cells to IL3-independent growth at least partly due to sustained activation of PI3K/AKT signaling. Consistently, Asxl1 is critical for the transcriptional activation of Pten, a key negative regulator of AKT activity. Then we confirm that Asxl1 is specifically enriched and required for H2AK119 deubiquitylation at the Pten promoter. Interestingly, ASXL1 and PTEN expression levels are positively correlated in human blood cells and ASXL1 mutations are associated with lower expression levels of PTEN in human myeloid malignancies. Furthermore, malignant cells with ASXL1 downregulation or mutations exhibit higher sensitivity to the AKT inhibitor MK2206. Collectively, this study has linked the PTEN/AKT signaling axis to deregulated epigenetic changes in myeloid malignancies. It also provides a rationale for mechanism-based therapy for patients with ASXL1 mutations.
Collapse
Affiliation(s)
- Lei Cao
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xianyou Xia
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yu Kong
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Fengqin Jia
- National Demonstration Center for Experimental Basic Medical Science Education, Tianjin Medical University, Tianjin 300070, China
| | - Bo Yuan
- National Demonstration Center for Experimental Basic Medical Science Education, Tianjin Medical University, Tianjin 300070, China
| | - Rui Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Qian Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yuxin Wang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Mingrui Cui
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhongye Dai
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Huimin Zheng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Jesper Christensen
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xudong Wu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
44
|
Martín I, Villamón E, Abellán R, Calasanz MJ, Irigoyen A, Sanz G, Such E, Mora E, Gutiérrez M, Collado R, García-Serra R, Vara M, Blanco ML, Oiartzabal I, Álvarez S, Bernal T, Granada I, Xicoy B, Jerez A, Calabuig M, Diez R, Gil Á, Díez-Campelo M, Solano C, Tormo M. Myelodysplastic syndromes with 20q deletion: incidence, prognostic value and impact on response to azacitidine of ASXL1 chromosomal deletion and genetic mutations. Br J Haematol 2021; 194:708-717. [PMID: 34296432 DOI: 10.1111/bjh.17675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
In myelodysplastic syndromes (MDS), the 20q deletion [del(20q)] may cause deletion of the ASXL1 gene. We studied 153 patients with MDS and del(20q) to assess the incidence, prognostic value and impact on response to azacitidine (AZA) of ASXL1 chromosomal alterations and genetic mutations. Additionally, in vitro assay of the response to AZA in HAP1 (HAP1WT ) and HAP1 ASXL1 knockout (HAP1KN ) cells was performed. ASXL1 chromosomal alterations were detected in 44 patients (28·5%): 34 patients (22%) with a gene deletion (ASXL1DEL ) and 10 patients (6·5%) with additional gene copies. ASXL1DEL was associated with a lower platelet count. The most frequently mutated genes were U2AF1 (16%), ASXL1 (14%), SF3B1 (11%), TP53 (7%) and SRSF2 (6%). ASXL1 alteration due to chromosomal deletion or genetic mutation (ASXL1DEL /ASXL1MUT ) was linked by multivariable analysis with shorter overall survival [hazard ratio, (HR) 1·84; 95% confidence interval, (CI): 1·11-3·04; P = 0·018] and a higher rate for acute myeloid leukaemia progression (HR 2·47; 95% CI: 1·07-5·70, P = 0·034). ASXL1DEL /ASXL1MUT patients were correlated by univariable analysis with a worse response to AZA. HAP1KN cells showed more resistance to AZA compared to HAP1WT cells. In conclusion, ASXL1 alteration exerts a negative impact on MDS with del(20q) and could become useful for prognostic risk stratification and treatment decisions.
Collapse
Affiliation(s)
- Iván Martín
- Hematology Department, Hospital Clínico Universitario de Valencia, INCLIVA Research Institute, University of Valencia, Valencia, Spain
| | - Eva Villamón
- Hematology Department, Hospital Clínico Universitario de Valencia, INCLIVA Research Institute, University of Valencia, Valencia, Spain
| | - Rosario Abellán
- Biochemistry and Molecular Pathology Department, Hospital Clínico Universitario de Valencia, INCLIVA Research Institute, Valencia, Spain
| | | | - Aroa Irigoyen
- CIMA LAB Diagnostics, Universidad de Navarra, Pamplona, Spain
| | - Guillermo Sanz
- Hematology Department, Hospital Universitario y Politécnico La Fe, Health Research Institute Hospital La Fe, IIS La Fe, Valencia, Spain
| | - Esperanza Such
- Hematology Department, Hospital Universitario y Politécnico La Fe, Health Research Institute Hospital La Fe, IIS La Fe, Valencia, Spain
| | - Elvira Mora
- Hematology Department, Hospital Universitario y Politécnico La Fe, Health Research Institute Hospital La Fe, IIS La Fe, Valencia, Spain
| | - Míriam Gutiérrez
- Genetics Department, Hospital Universitario Infanta Sofía, Madrid, Spain
| | - Rosa Collado
- Hematology Department, Consorcio Hospital General Universitario de Valencia, Research Foundation of the General University Hospital of Valencia, Valencia, Spain
| | - Rocío García-Serra
- Hematology Department, Consorcio Hospital General Universitario de Valencia, Research Foundation of the General University Hospital of Valencia, Valencia, Spain
| | - Míriam Vara
- Hematology Department, Hospital Universitario de Cruces, Barakaldo, Spain
| | - Mª Laura Blanco
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Itziar Oiartzabal
- Hematology Department, Hospital de Txagorritxu, Vitoria-Gasteiz, Spain
| | - Sara Álvarez
- NIMGenetics, Genómica y Medicina, Madrid, Spain.,Hematology Department, Hospital HM Sanchinarro, Madrid, Spain
| | - Teresa Bernal
- Hematology Department, Hospital Universidad de Asturias, IISPA, IUOPA, Oviedo, Spain
| | - Isabel Granada
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català d'Oncologia, Josep Carreras Leukaemia Research Institute (IJC), Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Blanca Xicoy
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català d'Oncologia, Josep Carreras Leukaemia Research Institute (IJC), Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Andrés Jerez
- Hematology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Marisa Calabuig
- Hematology Department, Hospital Clínico Universitario de Valencia, INCLIVA Research Institute, University of Valencia, Valencia, Spain
| | - Rosana Diez
- Hematology Department, Hospital Universitario Miguel Servet de Zaragoza, Zaragoza, Spain
| | - Ángela Gil
- Hematology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - María Díez-Campelo
- Hematology Department, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Carlos Solano
- Hematology Department, Hospital Clínico Universitario de Valencia, INCLIVA Research Institute, University of Valencia, Valencia, Spain.,Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Mar Tormo
- Hematology Department, Hospital Clínico Universitario de Valencia, INCLIVA Research Institute, University of Valencia, Valencia, Spain
| | | |
Collapse
|
45
|
Bai J, Chen Z, Chen C, Zhang M, Zhang Y, Song J, Yuan J, Jiang X, Xing W, Yang J, Bai J, Zhou Y. Reducing hyperactivated BAP1 attenuates mutant ASXL1-driven myeloid malignancies in human haematopoietic cells. Cancer Lett 2021; 519:78-90. [PMID: 34186160 DOI: 10.1016/j.canlet.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
Additional sex combs-like 1 (ASXL1) is frequently mutated in a variety of myeloid malignancies, resulting in expression of a C-terminal-truncated ASXL1 protein that confers gain of function on the ASXL1-BAP1 deubiquitinase (DUB) complex. Several studies have reported that hyperactivity of BRCA-1-associated protein 1 (BAP1) in deubiquitinating mono-ubiquitinated histone H2AK119 is one of the critical molecular mechanisms in ASXL1 mutation-driven myeloid malignancies in mice. In this study, we found that human haematopoietic stem and progenitor cells (HSPCs) overexpressing truncated ASXL1 (ASXL1Y591X) developed an MDS-like phenotype similar to that induced by overexpression of BAP1. We then used shRNAs targeting BAP1 in ASXL1Y591X-overexpressing HSPCs and primary leukaemia cells with ASXL1 mutation, demonstrating that reduced BAP1 expression can partially rescue the pathological consequences. RNA sequencing and chromatin immunoprecipitation coupled with quantitative PCR analyses revealed that reduced BAP1 expression suppressed upregulation of the transcription factors AP-1 and EGR1/2, as well as myeloid dysplasia-associated genes, by retarding H2AK119Ub removal caused by ASXL1 mutation. This study indicates that targeting the hyperactive ASXL1-BAP1 DUB complex can attenuate mutant ASXL1-driven myeloid malignancies in human.
Collapse
Affiliation(s)
- Jiaojiao Bai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Chao Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Mingying Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuhui Zhang
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Junzhe Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jiajia Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiao Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jing Yang
- International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Bai
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
46
|
Perez-Garcia V, Lea G, Lopez-Jimenez P, Okkenhaug H, Burton GJ, Moffett A, Turco MY, Hemberger M. BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion. eLife 2021; 10:63254. [PMID: 34170818 PMCID: PMC8233037 DOI: 10.7554/elife.63254] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Normal function of the placenta depends on the earliest developmental stages when trophoblast cells differentiate and invade into the endometrium to establish the definitive maternal-fetal interface. Previously, we identified the ubiquitously expressed tumour suppressor BRCA1-associated protein 1 (BAP1) as a central factor of a novel molecular node controlling early mouse placentation. However, functional insights into how BAP1 regulates trophoblast biology are still missing. Using CRISPR/Cas9 knockout and overexpression technology in mouse trophoblast stem cells, here we demonstrate that the downregulation of BAP1 protein is essential to trigger epithelial-mesenchymal transition (EMT) during trophoblast differentiation associated with a gain of invasiveness. Moreover, we show that the function of BAP1 in suppressing EMT progression is dependent on the binding of BAP1 to additional sex comb-like (ASXL1/2) proteins to form the polycomb repressive deubiquitinase (PR-DUB) complex. Finally, both endogenous expression patterns and BAP1 overexpression experiments in human trophoblast stem cells suggest that the molecular function of BAP1 in regulating trophoblast differentiation and EMT progression is conserved in mice and humans. Our results reveal that the physiological modulation of BAP1 determines the invasive properties of the trophoblast, delineating a new role of the BAP1 PR-DUB complex in regulating early placentation.
Collapse
Affiliation(s)
- Vicente Perez-Garcia
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.,Centre for Trophoblast Research, Department of Physiology, Development and Neurosicence, University of Cambridge, Cambridge, United Kingdom.,Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, Valencia, Spain.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Georgia Lea
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Hanneke Okkenhaug
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neurosicence, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Moffett
- Centre for Trophoblast Research, Department of Physiology, Development and Neurosicence, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Margherita Y Turco
- Centre for Trophoblast Research, Department of Physiology, Development and Neurosicence, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.,Centre for Trophoblast Research, Department of Physiology, Development and Neurosicence, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
47
|
Epigenetic dysregulation in myeloid malignancies. Blood 2021; 138:613-624. [PMID: 34157099 DOI: 10.1182/blood.2019004262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic deregulation is now a well-recognized -though not yet fully understood- mechanism that contributes to the development and progression of myeloid malignancies. In the past 15 years, next generation sequencing studies have revealed patterns of aberrant DNA methylation, altered chromatin states, and mutations in chromatin modifiers across the spectrum of myeloid malignancies. Studies into the mechanisms that drive these diseases through mouse modeling have helped identify new avenues for therapeutic interventions, from initial treatment to resistant, relapsed disease. This is particularly significant when chemotherapy with cytotoxic agents remains the general standard of care. In this review, we will discuss some of the recent findings of epigenetic mechanisms and how these are informing the development of more targeted strategies for therapeutic intervention in myeloid malignancies.
Collapse
|
48
|
Park S, Zhu X, Kim M, Zhao L, Cheng SY. Thyroid Hormone Receptor α1 Mutants Impair B Lymphocyte Development in a Mouse Model. Thyroid 2021; 31:994-1002. [PMID: 33267733 PMCID: PMC8349714 DOI: 10.1089/thy.2019.0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Mutations of the thyroid hormone receptor α (THRA) gene cause resistance to thyroid hormone (RTHα). RTHα patients exhibit very mild abnormal thyroid function test results (serum triiodothyronine can be high-normal to high; thyroxine normal to low; thyrotropin is normal or mildly raised) but manifest hypothyroid symptoms with growth retardation, delayed bone development, and anemia. Much has been learned about the in vivo molecular actions in TRα1 mutants affecting abnormal growth, bone development, and anemia by using a mouse model of RTHα (Thra1PV/+ mice). However, it is not clear whether TRα1 mutants affect lymphopoiesis in RTHα patients. The present study addressed the question of whether TRα1 mutants could cause defective lymphopoiesis. Methods: We assessed lymphocyte abundance in the peripheral circulation and in the lymphoid organs of Thra1PV/+ mice. We evaluated the effect of thyroid hormone on B cell development in the bone and spleen of these mice. We identified key transcription factors that are directly regulated by TRα1 in the regulation of B cell development. Results: Compared with wild-type mice, a significant reduction in B cells, but not in T cells, was detected in the peripheral circulation, bone marrow, and spleen of Thra1PV/+ mice. The expression of key transcription regulators of B cell development, such as Ebf1, Tcf3, and Pax5, was significantly decreased in the bone marrow and spleen of Thra1PV/+ mice. We further elucidated that the Ebf1 gene, essential for lineage specification in the early B cell development, was directly regulated by TRα1. Thus, mutations of TRα1 could impair B cell development in the bone marrow via suppression of key regulators of B lymphopoiesis. Conclusions: Analysis of lymphopoiesis in a mouse model of RTHα showed that B cell lymphopoiesis was suppressed by TRα1 mutations. The suppressed development of B cells was, at least in part, via inhibition of the expression of key regulators, Ebf1, Tcf3, and Pax5, by TRα1 mutations. These findings suggest that the mutations of the THRA gene in patients could lead to B cell deficiency.
Collapse
Affiliation(s)
- Sunmi Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Minjun Kim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Address correspondence to: Sheue-Yann Cheng, PhD, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Building 37, Room: 5128A2, 37 Convent Drive MSC 4264, Bethesda, MD 20892-4264, USA
| |
Collapse
|
49
|
Veiga CB, Lawrence EM, Murphy AJ, Herold MJ, Dragoljevic D. Myelodysplasia Syndrome, Clonal Hematopoiesis and Cardiovascular Disease. Cancers (Basel) 2021; 13:cancers13081968. [PMID: 33921778 PMCID: PMC8073047 DOI: 10.3390/cancers13081968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The development of blood cancers is a complex process that involves the acquisition of specific blood disorders that precede cancer. These blood disorders are often driven by the accumulation of genetic abnormalities, which are discussed in this review. Likewise, predicting the rate of progression of these diseases is difficult, but it appears to be linked to which specific gene mutations are present in blood cells. In this review, we discuss a variety of genetic abnormalities that drive blood cancer, conditions that precede clinical symptoms of blood cancer, and how alterations in these genes change blood cell function. Additionally, we discuss the novel links between blood cancer development and heart disease. Abstract The development of myelodysplasia syndromes (MDS) is multiphasic and can be driven by a plethora of genetic mutations and/or abnormalities. MDS is characterized by a hematopoietic differentiation block, evidenced by increased immature hematopoietic cells, termed blast cells and decreased mature circulating leukocytes in at least one lineage (i.e., cytopenia). Clonal hematopoiesis of indeterminate potential (CHIP) is a recently described phenomenon preceding MDS development that is driven by somatic mutations in hemopoietic stem cells (HSCs). These mutant HSCs have a competitive advantage over healthy cells, resulting in an expansion of these clonal mutated leukocytes. In this review, we discuss the multiphasic development of MDS, the common mutations found in both MDS and CHIP, how a loss-of-function in these CHIP-related genes can alter HSC function and leukocyte development and the potential disease outcomes that can occur with dysfunctional HSCs. In particular, we discuss the novel connections between MDS development and cardiovascular disease.
Collapse
Affiliation(s)
- Camilla Bertuzzo Veiga
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Erin M. Lawrence
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Marco J. Herold
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Dragana Dragoljevic
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
- Correspondence:
| |
Collapse
|
50
|
Benlabiod C, Dagher T, Marty C, Villeval JL. Lessons from mouse models of MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:125-185. [PMID: 35153003 DOI: 10.1016/bs.ircmb.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past decades, a variety of MPN mouse models have been developed to express in HSC the main mutations identified in patients: JAK2V617F, CALRdel52 or ins5 and MPLW515L. These models mimic quite faithfully human PV or ET with their natural evolutions into MF and their hemostasis complications, demonstrating the driver function of these mutations in MPN. Here, we review these models and show how they have improved our general understanding of MPN regarding (1) the mechanisms of fibrosis, thrombosis/hemorrhages and disease initiation, (2) the roles of additional mutations and signaling pathways in disease progression and (3) the preclinical development of novel therapies. We also address controversial results between these models and remind how these models may differ from human MPN onset and also how basically mice are not humans, encouraging caution when one draw lessons from mice to humans. Furthermore, the contribution of germline genetic predisposition, HSC and niche aging, metabolic, oxidative, replicative or genotoxic stress, inflammation, immune escape and additional mutations need to be considered in further investigations to encompass the full complexity of human MPN in mice.
Collapse
Affiliation(s)
- Camelia Benlabiod
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Tracy Dagher
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| | - Jean-Luc Villeval
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| |
Collapse
|