1
|
Hegde M, Ahmad MH, Mulet Lazaro R, Sugita M, Li R, Hu K, Gebhard C, Guzman ML, Bushweller JH, Zhu LJ, Brehm M, Wolfe SA, Delwel R, Castilla LH. The co-receptor Neuropilin-1 enhances proliferation in inv(16) acute myeloid leukemia via VEGF signaling. Leukemia 2025; 39:360-370. [PMID: 39572712 DOI: 10.1038/s41375-024-02471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 02/06/2025]
Abstract
Oncogenic programs regulate the proliferation and maintenance of cancer stem cells, and can define pharmacologic dependencies. In acute myeloid leukemia (AML) with the chromosome inversion 16 (inv(16)), the fusion oncoprotein CBFβ::MYH11 regulates pathways associated with leukemia stem cell activity. Here we demonstrate that expression of Neuropilin-1 (NRP1) is regulated by the fusion oncoprotein, and promotes AML expansion. Mechanistically, we show that the NRP1 locus has open chromatin in inv(16) AML, and that CBFβ::MYH11 modulates the local function of the transcription factors ERG, GATA2 and RUNX1 to sustain NRP1 levels. We found that ERG activates NRP1 expression, and that CBFβ::MYH11 knockdown represses ERG expression, thereby allowing the repressive activity of GATA2/RUNX1 at three NRP1 enhancers. Functionally, we demonstrate that NRP1 enhances the expansion of leukemic cells in vitro and in mice, and that this activity is dependent on its VEGFR-associated FV/FVIII domain. Finally, we show that treatment with VEGF inhibitor axitinib reduces AML cell growth and delays median leukemia latency in vivo. Our findings reveal that the NRP1/VEGF axis mediates proliferation in inv(16) AML blasts, and suggest that targeting NRP1 function could be promising in combination AML therapy.
Collapse
MESH Headings
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Cell Proliferation
- Animals
- Mice
- Signal Transduction
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Chromosome Inversion
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Chromosomes, Human, Pair 16/genetics
- Transcriptional Regulator ERG
- Cell Line, Tumor
Collapse
Affiliation(s)
- Mahesh Hegde
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Mohd H Ahmad
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Roger Mulet Lazaro
- Department of Hematology, Erasmus University Medical Center and Oncode Institute, Rotterdam, The Netherlands
| | - Mayumi Sugita
- Department of Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Claudia Gebhard
- Department of Internal Medicine III and Regensburg Centre for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Monica L Guzman
- Department of Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY, USA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center and Oncode Institute, Rotterdam, The Netherlands
| | - Lucio H Castilla
- Department of Molecular, Cell and Cancer Biology; University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, USA.
| |
Collapse
|
2
|
Lints R, Walker CA, Delfi O, Prouse M, PohLui De Silva M, Bohlander SK, Wood AC. Mutational cooperativity of RUNX1::RUNX1T1 isoform 9a and oncogenic NRAS in zebrafish myeloid leukaemia. Biol Open 2024; 13:bio060523. [PMID: 39177514 PMCID: PMC11381922 DOI: 10.1242/bio.060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
RUNX1::RUNX1T1 (R::RT1) acute myeloid leukaemia (AML) remains a clinical challenge, and further research is required to model and understand leukaemogenesis. Previous zebrafish R::RT1 models were hampered by embryonic lethality and low penetrance of the malignant phenotype. Here, we overcome this by developing an adult zebrafish model in which the human R::RT1 isoform 9a is co-expressed with the frequently co-occurring oncogenic NRASG12D mutation in haematopoietic stem and progenitor cells (HSPCs), using the Runx1+23 enhancer. Approximately 50% of F0 9a+NRASG12D transgenic zebrafish developed signs of haematological disease between 5 and 14 months, with 27% exhibiting AML-like pathology: myeloid precursor expansion, erythrocyte reduction, kidney marrow hypercellularity and the presence of blasts. Moreover, only 9a+NRASG12D transplant recipients developed leukaemia with high rates of mortality within 40 days, inferring the presence of leukaemia stem cells. These leukaemic features were rare or not observed in animals expressing either the NRAS or 9a oncogenes alone, suggesting 9a and NRAS cooperation drives leukaemogenesis. This novel adult AML zebrafish model provides a powerful new tool for investigating the basis of R::RT1 - NRAS cooperativity with the potential to uncover new therapeutic targets.
Collapse
Affiliation(s)
- Robyn Lints
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Christina A. Walker
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Omid Delfi
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Matthew Prouse
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | | | - Stefan K. Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Andrew C. Wood
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
- Starship Child Health, Starship Blood and Cancer Centre, Auckland 1023, New Zealand
| |
Collapse
|
3
|
Lai A, Liu W, Wei H, Wang Y, Lin D, Zhou C, Liu B, Gu R, Li Y, Wei S, Gong B, Liu K, Gong X, Liu Y, Zhang G, Zhang J, Mi Y, Wang J, Qiu S. The RTK-RAS signaling pathway is enriched in patients with rare acute myeloid leukemia harboring t(16;21)(p11;q22)/ FUS::ERG. BLOOD SCIENCE 2024; 6:e00188. [PMID: 38742238 PMCID: PMC11090622 DOI: 10.1097/bs9.0000000000000188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Acute myeloid leukemia (AML) with t(16;21)(p11;q22)/FUS::ERG is a rare AML subtype associated with poor prognosis. However, its clinical and molecular features remain poorly defined. We determined the clinicopathological, genomic, and transcriptomic characteristics and outcomes of patients with AML harboring FUS::ERG at our center. Thirty-six AML patients harboring FUS::ERG were identified, with an incidence rate of 0.3%. These patients were characterized by high lactate dehydrogenase levels (median: 838.5 U/L), elevated bone marrow blast counts (median: 71.5%), and a CD56-positive immunophenotype (94.3%). Notably, we found that RTK-RAS GTPase (RAS) pathway genes, including NRAS (33%) and PTPN11 (24%), were frequently mutated in this subtype. Transcriptome analysis revealed enrichment of the phosphatidylinositol-3-kinase-Akt (PI3K-Akt), mitogen-activated protein kinase (MAPK), and RAS signaling pathways and upregulation of BCL2, the target of venetoclax, in FUS::ERG AML compared to RUNX1::RUNX1T1 AML, a more common AML subtype with good prognosis. The median event-free survival in patients with FUS::ERG AML was 11.9 (95% confidence interval [CI]: 9.0-not available [NA]) months and the median overall survival was 18.2 (95% CI: 12.4-NA) months. Allogeneic hematopoietic stem cell transplantation failed to improve outcomes. Overall, the high incidence of RTK-RAS pathway mutations and high expression of BCL2 may indicate promising therapeutic targets in this high-risk AML subset.
Collapse
Affiliation(s)
- Anli Lai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wenbing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin 300020, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin 300020, China
| | - Dong Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Chunlin Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Bingcheng Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shuning Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Benfa Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Kaiqi Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaoyuan Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yuntao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Guangji Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Junping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin 300020, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin 300020, China
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin 300020, China
| |
Collapse
|
4
|
Peramangalam PS, Surapally S, Veltri AJ, Zheng S, Burns R, Zhu N, Rao S, Muller-Tidow C, Bushweller JH, Pulikkan JA. N-MYC regulates cell survival via eIF4G1 in inv(16) acute myeloid leukemia. SCIENCE ADVANCES 2024; 10:eadh8493. [PMID: 38416825 PMCID: PMC10901375 DOI: 10.1126/sciadv.adh8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
N-MYC (encoded by MYCN) is a critical regulator of hematopoietic stem cell function. While the role of N-MYC deregulation is well established in neuroblastoma, the importance of N-MYC deregulation in leukemogenesis remains elusive. Here, we demonstrate that N-MYC is overexpressed in acute myeloid leukemia (AML) cells with chromosome inversion inv(16) and contributes to the survival and maintenance of inv(16) leukemia. We identified a previously unknown MYCN enhancer, active in multiple AML subtypes, essential for MYCN mRNA levels and survival in inv(16) AML cells. We also identified eukaryotic translation initiation factor 4 gamma 1 (eIF4G1) as a key N-MYC target that sustains leukemic survival in inv(16) AML cells. The oncogenic role of eIF4G1 in AML has not been reported before. Our results reveal a mechanism whereby N-MYC drives a leukemic transcriptional program and provides a rationale for the therapeutic targeting of the N-MYC/eIF4G1 axis in myeloid leukemia.
Collapse
Affiliation(s)
| | - Sridevi Surapally
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Anthony J. Veltri
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Shikan Zheng
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Robert Burns
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Nan Zhu
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Hematology, Oncology, and Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carsten Muller-Tidow
- Department of Medicine, Hematology, Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - John A. Pulikkan
- Program in Stem Cell Biology and Hematopoiesis, Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Jin H, Zhu Y, Hong M, Wu Y, Qiu H, Wang R, Jin H, Sun Q, Fu J, Li J, Qian S, Qiao C. Co-occurrence of KIT and NRAS mutations defines an adverse prognostic core-binding factor acute myeloid leukemia. Leuk Lymphoma 2021; 62:2428-2437. [PMID: 34024223 DOI: 10.1080/10428194.2021.1919660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular abnormalities are frequent in core-binding factor (CBF) AMLs, but their prognostic relevance is controversial. Sixty-two patients were retrospectively analyzed and 47 harbored at least one gene mutation with a next-generation-sequencing assay. The most common molecular mutation was KIT mutation (30.6%), followed by NRAS (24.2%) and ASXL1 (14.5%) mutations, which was associated with a higher number of bone marrow blasts (p = .049) and older age (p = .027). The survival analysis showed KIT mutation adversely affected the overall survival (OS) (p = .046). NRAS mutation was associated with inferior OS (p = .016) and RFS (p = .039). Eight patients carried co-mutations of KIT and NRAS and had worse OS (p = .012) and RFS (p = .034). The multivariate analysis showed age ≥60 years and additional chromosomal abnormalities were significant adverse factors for OS. Thus, co-mutations of KIT and NRAS were significantly associated with a poor prognosis and should be taken into account when assessing for prognostic stratification in patients with CBF-AML.
Collapse
Affiliation(s)
- Huimin Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yujie Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hairong Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qian Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jianxin Fu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Sixuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Chun Qiao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Abstract
The core binding factor composed of CBFβ and RUNX subunits plays a critical role in most hematopoietic lineages and is deregulated in acute myeloid leukemia (AML). The fusion oncogene CBFβ-SMMHC expressed in AML with the chromosome inversion inv(16)(p13q22) acts as a driver oncogene in hematopoietic stem cells and induces AML. This review focuses on novel insights regarding the molecular mechanisms involved in CBFβ-SMMHC-driven leukemogenesis and recent advances in therapeutic approaches to target CBFβ-SMMHC in inv(16) AML.
Collapse
|
7
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
8
|
Zheng Q, Jiang C, Liu H, Hao W, Wang P, Huang H, Li Z, Qian J, Qian M, Zhang H. Down-Regulated FOXO1 in Refractory/Relapse Childhood B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2020; 10:579673. [PMID: 33262946 PMCID: PMC7686545 DOI: 10.3389/fonc.2020.579673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 12/03/2022] Open
Abstract
Background: Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, with an overall prevalence of 4/100,000, accounting for 25–30% of all childhood cancers. With advances in childhood ALL treatment, the cure rate for childhood ALL has exceeded 80% in most countries. However, refractory/relapsed ALL remains a leading cause of treatment failure and subsequent death. Forkhead box O1 (FOXO1) belongs to the forkhead family of transcription factors, but its role in B-cell ALL (B-ALL) has not been determined yet. Procedures: RNA sequencing was applied to an ALL case with induction failure (IF) to identify the possible genetic events. A cytokine-dependent growth assay in Ba/F3 cells was used to test the leukemic transformation capacity of MEIS1–FOXO1. The propidium iodide (PI) staining method was used to evaluate the effect of MEIS1–FOXO1 on cycle distribution. FOXO1 transactivity was examined using a luciferase reporter assay. FOXO1 mRNA expression levels were examined using real-time quantitative PCR among 40 children with B-ALL treated with the CCCG-ALL-2015 protocol. Association analysis was performed to test the correlation of FOXO1 transcription with childhood B-ALL prognosis and relapse in a series of GEO datasets. An MTT assay was performed to test the drug sensitivity. Results: In this ALL case with IF, we identified a novel MEIS1–FOXO1 fusion gene. The transactivity of MEIS1–FOXO1 was significantly lower than that of wild-type FOXO1. MEIS1–FOXO1 potentiated leukemia transformation and promoted Ba/F3 cell cycle S-phase entry. Low FOXO1 transcription levels were found to be strongly associated with unfavorable ALL subtype, minimal residual disease (MRD) positivity, and relapse. Lower FOXO1 expression was associated with prednisone and cyclophosphamide resistance. Conclusions: Low FOXO1 transcription was associated with high-risk stratification and relapse in children with B-ALL, probably due to multi-drug resistance.
Collapse
Affiliation(s)
- Qingqing Zheng
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Chuang Jiang
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wenge Hao
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Pengfei Wang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Haiying Huang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ziping Li
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jiabi Qian
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children’s Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
9
|
Pang Y, Zhao Y, Wang Y, Wang X, Wang R, Liu N, Li P, Ji M, Ye J, Sun T, Li J, Ma D, Lu F, Ji C. TNFAIP8 promotes AML chemoresistance by activating ERK signaling pathway through interaction with Rac1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:158. [PMID: 32795319 PMCID: PMC7427779 DOI: 10.1186/s13046-020-01658-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
Background Chemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and evasion of apoptosis is among the fundamental underlying mechanisms. Therefore, unraveling molecular networks that drive this process constitutes an urgent unmet need. Herein, we aim to characterize the role and molecular mechanism of the tumor necrosis factor ɑ-induced protein 8 (TNFAIP8), a novel anti-apoptotic molecule, in AML chemoresistance. Methods The expression levels of TNFAIP8 were assessed in AML patients and cell lines by RT-qPCR and western blots. The transcriptional regulation of TNFAIP8 was analyzed with luciferase reporter assay and ChIP followed by RT-qPCR. Functional experiments were conducted to evaluate the effects of TNFAIP8 on apoptosis, drug sensitivity and proliferation of AML cells. Potential effects of TNFAIP8 on the activation of extracellular signal-regulated kinase (ERK) pathway were detected by western blots. CoIP and P21-activated kinase (PAK) pull-down assay were performed to ascertain the upstream target. The overall effects of TNFAIP8 on AML were examined in murine models. Results Upregulated TNFAIP8 expression was first confirmed in human AML patients and cell lines. E74 like ETS transcription factor 1 (ELF1) was then identified to contribute to its aberrant expression. Through manipulating TNFAIP8 expression, we described its role in protecting AML cells from apoptosis induced by chemotherapeutic agents and in promoting drug resistance. Notably, the leukemia-promoting action of TNFAIP8 was mediated by sustaining activity of the ERK signaling pathway, through an interaction with Rac family small GTPase 1 (Rac1). In addition, in vivo experiments confirmed that TNFAIP8 suppression lowered leukemia infiltration and improved survival. Conclusion Our data provide a molecular basis for the role of TNFAIP8 in chemoresistance and progression of AML and highlight the unique function of TNFAIP8 as an attractive therapeutic target.
Collapse
Affiliation(s)
- Yihua Pang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yanan Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yan Wang
- Department of Hematology, Taian central hospital, Taian, 271000, Shandong, China
| | - Xinlu Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Min Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Skayneh H, Jishi B, Hleihel R, Hamieh M, Darwiche N, Bazarbachi A, El Sabban M, El Hajj H. A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology. Genes (Basel) 2019; 10:E614. [PMID: 31412687 PMCID: PMC6722578 DOI: 10.3390/genes10080614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most frequent, complex, and heterogeneous hematological malignancies. AML prognosis largely depends on acquired cytogenetic, epigenetic, and molecular abnormalities. Despite the improvement in understanding the biology of AML, survival rates remain quite low. Animal models offer a valuable tool to recapitulate different AML subtypes, and to assess the potential role of novel and known mutations in disease progression. This review provides a comprehensive and critical overview of select available AML animal models. These include the non-mammalian Zebrafish and Drosophila models as well as the mammalian rodent systems, comprising rats and mice. The suitability of each animal model, its contribution to the advancement of knowledge in AML pathophysiology and treatment, as well as its advantages and limitations are discussed. Despite some limitations, animal models represent a powerful approach to assess toxicity, and permit the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Hala Skayneh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Batoul Jishi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Maguy Hamieh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
11
|
Di Genua C, Norfo R, Rodriguez-Meira A, Wen WX, Drissen R, Booth CAG, Povinelli B, Repapi E, Gray N, Carrelha J, Kettyle LM, Jamieson L, Neo WH, Thongjuea S, Nerlov C, Mead AJ. Cell-intrinsic depletion of Aml1-ETO-expressing pre-leukemic hematopoietic stem cells by K-Ras activating mutation. Haematologica 2019; 104:2215-2224. [PMID: 30975913 PMCID: PMC6821613 DOI: 10.3324/haematol.2018.205351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
Somatic mutations in acute myeloid leukemia are acquired sequentially and hierarchically. First, pre-leukemic mutations, such as t(8;21) that encodes AML1-ETO, are acquired within the hematopoietic stem cell (HSC) compartment, while signaling pathway mutations, including KRAS activating mutations, are late events acquired during transformation of leukemic progenitor cells and are rarely detectable in HSC. This raises the possibility that signaling pathway mutations are detrimental to clonal expansion of pre-leukemic HSC. To address this hypothesis, we used conditional genetics to introduce Aml1-ETO and K-RasG12D into murine HSC, either individually or in combination. In the absence of activated Ras, Aml1-ETO-expressing HSC conferred a competitive advantage. However, activated K-Ras had a marked detrimental effect on Aml1-ETO-expressing HSC, leading to loss of both phenotypic and functional HSC. Cell cycle analysis revealed a loss of quiescence in HSC co-expressing Aml1-ETO and K-RasG12D, accompanied by an enrichment in E2F and Myc target gene expression and depletion of HSC self-renewal-associated gene expression. These findings provide a mechanistic basis for the observed absence of KRAS signaling mutations in the pre-malignant HSC compartment.
Collapse
Affiliation(s)
| | | | | | - Wei Xiong Wen
- MRC Molecular Haematology Unit.,WIMM Centre for Computational Biology
| | | | | | | | - Emmanouela Repapi
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicki Gray
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | - Supat Thongjuea
- MRC Molecular Haematology Unit.,WIMM Centre for Computational Biology
| | | | | |
Collapse
|
12
|
Wang Y, Richter L, Becker M, Amador C, Hyde RK. IL1RL1 is dynamically expressed on Cbfb-MYH11 + leukemia stem cells and promotes cell survival. Sci Rep 2019; 9:1729. [PMID: 30742053 PMCID: PMC6370767 DOI: 10.1038/s41598-018-38408-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is often characterized by the presence of specific, recurrent chromosomal abnormalities. One of the most common aberrations, inversion of chromosome 16 [inv(16)], generates the fusion oncogene CBFB-MYH11. Previously, we used a mouse knock-in model to show that Cbfb-MYH11 induces changes in gene expression and results in the accumulation of abnormal myeloid cells, a subset of which are enriched for leukemia stem cell (LSC) activity. One gene upregulated by Cbfb-MYH11 encodes the cytokine receptor IL1RL1 (ST2). IL1RL1 and its ligand IL-33 are known regulators of mature myeloid cells, but their roles in AML are not known. Here, we use Cbfb-MYH11 knock-in mice to show that IL1RL1 is expressed by cell populations with high LSC activity, and that the cell surface expression of IL1RL1 is dynamic, implying that the expression of IL1RL1 is not restricted to a specific stage of differentiation. We also show that treatment with IL-33 increased serial replating ability and expression of pro-survival proteins in vitro. Finally, we show that IL1RL1+ cells can survive chemotherapy better than IL1RL1− cells in vivo. Collectively, our results indicate that IL1RL1 is dynamically expressed in Cbfb-MYH11+ leukemia cells and promotes their survival.
Collapse
Affiliation(s)
- Yiqian Wang
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lisa Richter
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michelle Becker
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - R Katherine Hyde
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
13
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
14
|
Gurska LM, Ames K, Gritsman K. Signaling Pathways in Leukemic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:1-39. [PMID: 31338813 PMCID: PMC7249489 DOI: 10.1007/978-981-13-7342-8_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) utilize many of the same signaling pathways for their maintenance and survival. In this review, we will focus on several signaling pathways whose roles have been extensively studied in both HSCs and LSCs. Our main focus will be on the PI3K/AKT/mTOR pathway and several of its regulators and downstream effectors. We will also discuss several other signaling pathways of particular importance in LSCs, including the WNT/β-catenin pathway, the NOTCH pathway, and the TGFβ pathway. For each of these pathways, we will emphasize differences in how these pathways operate in LSCs, compared to their function in HSCs, to highlight opportunities for the specific therapeutic targeting of LSCs. We will also highlight areas of crosstalk between multiple signaling pathways that may affect LSC function.
Collapse
Affiliation(s)
- Lindsay M Gurska
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kristina Ames
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Medical Oncology, Montefiore Hospital, Bronx, New York, USA.
| |
Collapse
|
15
|
Potluri S, Coleman D, Bonifer C. Pharmacological inhibition of aberrant transcription factor complexes in inversion 16 acute myeloid leukemia. Stem Cell Investig 2018; 5:30. [PMID: 30363728 PMCID: PMC6182015 DOI: 10.21037/sci.2018.09.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Daniel Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Pulikkan JA, Hegde M, Ahmad HM, Belaghzal H, Illendula A, Yu J, O'Hagan K, Ou J, Muller-Tidow C, Wolfe SA, Zhu LJ, Dekker J, Bushweller JH, Castilla LH. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell 2018; 174:172-186.e21. [PMID: 29958106 PMCID: PMC6211564 DOI: 10.1016/j.cell.2018.05.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022]
Abstract
The fusion oncoprotein CBFβ-SMMHC, expressed in leukemia cases with chromosome 16 inversion, drives leukemia development and maintenance by altering the activity of the transcription factor RUNX1. Here, we demonstrate that CBFβ-SMMHC maintains cell viability by neutralizing RUNX1-mediated repression of MYC expression. Upon pharmacologic inhibition of the CBFβ-SMMHC/RUNX1 interaction, RUNX1 shows increased binding at three MYC distal enhancers, where it represses MYC expression by mediating the replacement of the SWI/SNF complex component BRG1 with the polycomb-repressive complex component RING1B, leading to apoptosis. Combining the CBFβ-SMMHC inhibitor with the BET inhibitor JQ1 eliminates inv(16) leukemia in human cells and a mouse model. Enhancer-interaction analysis indicated that the three enhancers are physically connected with the MYC promoter, and genome-editing analysis demonstrated that they are functionally implicated in deregulation of MYC expression. This study reveals a mechanism whereby CBFβ-SMMHC drives leukemia maintenance and suggests that inhibitors targeting chromatin activity may prove effective in inv(16) leukemia therapy.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Azepines/pharmacology
- Azepines/therapeutic use
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Cell Line, Tumor
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Inversion/drug effects
- Core Binding Factor Alpha 2 Subunit/chemistry
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA/chemistry
- DNA/metabolism
- DNA Helicases/metabolism
- Disease Models, Animal
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/metabolism
- Polycomb Repressive Complex 1/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Triazoles/pharmacology
- Triazoles/therapeutic use
Collapse
Affiliation(s)
- John Anto Pulikkan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mahesh Hegde
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hafiz Mohd Ahmad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Houda Belaghzal
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kelsey O'Hagan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Carsten Muller-Tidow
- Department of Medicine, Hematology, Oncology, and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - John Hackett Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lucio Hernán Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
17
|
Pulikkan JA, Castilla LH. Preleukemia and Leukemia-Initiating Cell Activity in inv(16) Acute Myeloid Leukemia. Front Oncol 2018; 8:129. [PMID: 29755956 PMCID: PMC5932169 DOI: 10.3389/fonc.2018.00129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/10/2018] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a collection of hematologic malignancies with specific driver mutations that direct the pathology of the disease. The understanding of the origin and function of these mutations at early stages of transformation is critical to understand the etiology of the disease and for the design of effective therapies. The chromosome inversion inv(16) is thought to arise as a founding mutation in a hematopoietic stem cell (HSC) to produce preleukemic HSCs (preL-HSCs) with myeloid bias and differentiation block, and predisposed to AML. Studies in mice and human AML cells have established that inv(16) AML follows a clonal evolution model, in which preL-HSCs expressing the fusion protein CBFβ–SMMHC persist asymptomatic in the bone marrow. The emerging leukemia-initiating cells (LICs) are composed by the inv(16) and a heterogeneous set of mutations. In this review, we will discuss the current understanding of inv(16) preleukemia development, and the function of CBFβ–SMMHC related to preleukemia progression and LIC activity. We also discuss important open mechanistic questions in the etiology of inv(16) AML.
Collapse
Affiliation(s)
- John Anto Pulikkan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lucio Hernán Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
18
|
Richter L, Wang Y, Hyde RK. Targeting binding partners of the CBFβ-SMMHC fusion protein for the treatment of inversion 16 acute myeloid leukemia. Oncotarget 2018; 7:66255-66266. [PMID: 27542261 PMCID: PMC5323231 DOI: 10.18632/oncotarget.11357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/09/2016] [Indexed: 11/25/2022] Open
Abstract
Inversion of chromosome 16 (inv(16)) generates the CBFβ-SMMHC fusion protein and is found in nearly all patients with acute myeloid leukemia subtype M4 with Eosinophilia (M4Eo). Expression of CBFβ-SMMHC is causative for leukemia development, but the molecular mechanisms underlying its activity are unclear. Recently, there have been important advances in defining the role of CBFβ-SMMHC and its binding partners, the transcription factor RUNX1 and the histone deacetylase HDAC8. Importantly, initial trials demonstrate that small molecules targeting these binding partners are effective against CBFβ-SMMHC induced leukemia. This review will discuss recent advances in defining the mechanism of CBFβ-SMMHC activity, as well as efforts to develop new therapies for inv(16) AML.
Collapse
Affiliation(s)
- Lisa Richter
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yiqian Wang
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Katherine Hyde
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Chen Y, Anastassiadis K, Kranz A, Stewart AF, Arndt K, Waskow C, Yokoyama A, Jones K, Neff T, Lee Y, Ernst P. MLL2, Not MLL1, Plays a Major Role in Sustaining MLL-Rearranged Acute Myeloid Leukemia. Cancer Cell 2017; 31:755-770.e6. [PMID: 28609655 PMCID: PMC5598468 DOI: 10.1016/j.ccell.2017.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/09/2017] [Accepted: 05/05/2017] [Indexed: 01/11/2023]
Abstract
The MLL1 histone methyltransferase gene undergoes many distinct chromosomal rearrangements to yield poor-prognosis leukemia. The remaining wild-type allele is most commonly, but not always, retained. To what extent the wild-type allele contributes to leukemogenesis is unclear. Here we show, using rigorous, independent animal models, that endogenous MLL1 is dispensable for MLL-rearranged leukemia. Potential redundancy was addressed by co-deleting the closest paralog, Mll2. Surprisingly, Mll2 deletion alone had a significant impact on survival of MLL-AF9-transformed cells, and additional Mll1 loss further reduced viability and proliferation. We show that MLL1/MLL2 collaboration is not through redundancy, but regulation of distinct pathways. These findings highlight the relevance of MLL2 as a drug target in MLL-rearranged leukemia and suggest its broader significance in AML.
Collapse
Affiliation(s)
- Yufei Chen
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Konstantinos Anastassiadis
- Genomics and Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Tatzberg 47, Dresden 01307, Germany
| | - Andrea Kranz
- Genomics and Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Tatzberg 47, Dresden 01307, Germany
| | - A Francis Stewart
- Genomics and Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Tatzberg 47, Dresden 01307, Germany
| | - Kathrin Arndt
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Kenneth Jones
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tobias Neff
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yoo Lee
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Espinoza JL, Elbadry MI, Taniwaki M, Harada K, Trung LQ, Nakagawa N, Takami A, Ishiyama K, Yamauchi T, Takenaka K, Nakao S. The simultaneous inhibition of the mTOR and MAPK pathways with Gnetin-C induces apoptosis in acute myeloid leukemia. Cancer Lett 2017; 400:127-136. [PMID: 28456658 DOI: 10.1016/j.canlet.2017.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/08/2017] [Accepted: 04/14/2017] [Indexed: 11/27/2022]
Abstract
Acute myelogenous leukemia (AML) is a clinically heterogeneous disease that is frequently associated with relapse and a poor prognosis. Among the various subtypes, AML with the monosomal karyotype (AML-MK) has an extremely unfavorable prognosis. We performed screening to identify antitumor compounds that are capable of inducing apoptosis in primary leukemia cells harboring the AML-MK karyotype and identified a naturally occurring stilbene, Gnetin-C, with potent anti-tumor activities against AML cells from patients with various cytogenetic abnormalities, including patients with the AML-MK karyotype. Gnetin-C simultaneously inhibits the ERK1/2 and the AKT/mTOR pathways, two signals that are essential for the survival of leukemia cells. A combination of Gnetin-C with low doses of chemotherapeutic drugs led to synergistic anti-tumor effects against AML cells. In an immunodeficient mouse model of human leukemia, Gnetin-C attenuated the formation of leukemia, depleted leukemia cells and improved survival. These findings suggest that Gnetin-C has antitumor activities in AML and supports the therapeutic potential of blocking two different pathways in AML.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology and Oncology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Mahmoud I Elbadry
- Department of Hematology and Oncology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masafumi Taniwaki
- Center for Molecular Diagnostic and Therapeutic, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenichi Harada
- Department of Human Pathology, Graduate School of Medical Science, Kanazawa University, Takara Machi 13-1, Kanazawa, Ishikawa, 920-8640, Japan
| | - Ly Quoc Trung
- Department of Hematology and Oncology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Noriharu Nakagawa
- Department of Hematology and Oncology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akiyoshi Takami
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Ken Ishiyama
- Department of Hematology and Oncology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Katsuto Takenaka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinji Nakao
- Department of Hematology and Oncology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
21
|
Molecular Basis and Targeted Inhibition of CBFβ-SMMHC Acute Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:229-244. [PMID: 28299661 DOI: 10.1007/978-981-10-3233-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by recurrent chromosomal rearrangements that encode for fusion proteins which drive leukemia initiation and maintenance. The inv(16) (p13q22) rearrangement is a founding mutation and the associated CBFβ-SMMHC fusion protein is essential for the survival of inv(16) AML cells. This Chapter will discuss our understanding of the function of this fusion protein in disrupting hematopoietic homeostasis and creating pre-leukemic blasts, in its cooperation with other co-occurring mutations during leukemia initiation, and in leukemia maintenance. In addition, this chapter will discuss the current approaches used for the treatment of inv(16) AML and the recent development of AI-10-49, a selective targeted inhibitor of CBFβ-SMMHC/RUNX1 binding, the first candidate targeted therapy for inv(16) AML.
Collapse
|
22
|
Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse. Front Med 2016; 9:412-20. [PMID: 26482067 DOI: 10.1007/s11684-015-0423-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
Genetic mutations are considered to drive the development of acute myeloid leukemia (AML). With therapid progress in sequencing technologies, many newly reported genes that are recurrently mutated in AML have been found to govern the initiation and relapse of AML. These findings suggest the need to distinguish the driver mutations, especially the most primitive single mutation, from the subsequent passenger mutations. Recent research on DNA methyltransferase 3A (DNMT3A) mutations provides the first proof-of-principle investigation on the identification of preleukemic stem cells (pre-LSCs) in AML patients. Although DNMT3A mutations alone may only transform hematopoietic stem cells into pre-LSCs without causing the full-blown leukemia, the function of this driver mutation appear to persist from AML initiation up to relapse. Therefore, identifying and targeting preleukemic mutations, such as DNMT3A mutations, in AML is a promising strategy for treatment and reduction of relapse risk.
Collapse
|
23
|
Mouse models for core binding factor leukemia. Leukemia 2015; 29:1970-80. [PMID: 26165235 DOI: 10.1038/leu.2015.181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models.
Collapse
|
24
|
Illendula A, Pulikkan JA, Zong H, Grembecka J, Xue L, Sen S, Zhou Y, Boulton A, Kuntimaddi A, Gao Y, Rajewski RA, Guzman ML, Castilla LH, Bushweller JH. Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFβ-SMMHC delays leukemia in mice. Science 2015; 347:779-84. [PMID: 25678665 DOI: 10.1126/science.aaa0314] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is the most common form of adult leukemia. The transcription factor fusion CBFβ-SMMHC (core binding factor β and the smooth-muscle myosin heavy chain), expressed in AML with the chromosome inversion inv(16)(p13q22), outcompetes wild-type CBFβ for binding to the transcription factor RUNX1, deregulates RUNX1 activity in hematopoiesis, and induces AML. Current inv(16) AML treatment with nonselective cytotoxic chemotherapy results in a good initial response but limited long-term survival. Here, we report the development of a protein-protein interaction inhibitor, AI-10-49, that selectively binds to CBFβ-SMMHC and disrupts its binding to RUNX1. AI-10-49 restores RUNX1 transcriptional activity, displays favorable pharmacokinetics, and delays leukemia progression in mice. Treatment of primary inv(16) AML patient blasts with AI-10-49 triggers selective cell death. These data suggest that direct inhibition of the oncogenic CBFβ-SMMHC fusion protein may be an effective therapeutic approach for inv(16) AML, and they provide support for transcription factor targeted therapy in other cancers.
Collapse
Affiliation(s)
- Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - John A Pulikkan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hongliang Zong
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liting Xue
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Siddhartha Sen
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Yunpeng Zhou
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam Boulton
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Aravinda Kuntimaddi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Yan Gao
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Roger A Rajewski
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Monica L Guzman
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Lucio H Castilla
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|