1
|
Mougiakakos D, Meyer EH, Schett G. CAR T cells in autoimmunity: game changer or stepping stone? Blood 2025; 145:1841-1849. [PMID: 39700499 DOI: 10.1182/blood.2024025413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
ABSTRACT The advent of chimeric antigen receptor (CAR) T cells has revolutionized the treatment landscape for hematologic malignancies, and emerging evidence suggests their potential in autoimmune diseases (AIDs). This article evaluates the early successes and future implications of B-cell-targeting CAR T-cell therapy in AIDs. Initial applications, particularly in refractory systemic lupus erythematosus, have demonstrated significant and durable clinical remissions, with accompanying evaluation of the immune system suggesting a so-called "reset" of innate inflammation and adaptive autoimmunity. This has generated widespread interest in expanding this therapeutic approach. CAR T cells offer unique advantages over other treatment modalities, including very deep B-cell depletion and unique therapeutic activity within inflamed tissues and associated lymphoid structures. However, the field must address key concerns, including long-term toxicity, particularly the risk of secondary malignancies, and future accessibility given the higher prevalence of AIDs compared with malignancies. Technological advances in cell therapy, such as next-generation CAR T cells, allogeneic off-the-shelf products, and alternative cell types, such as regulatory CAR T cells, are being explored in AIDs to improve efficacy and safety. In addition, bispecific antibodies are emerging as potential alternatives or complements to CAR T cells, potentially offering comparable efficacy without the need for complex logistics, lymphodepletion, and the risk of insertional mutagenesis. As the field evolves, cellular therapists will play a critical role in the multidisciplinary teams managing these complex cases. The transformative potential of CAR T cells in AIDs is undeniable, but careful consideration of safety, efficacy, and implementation is essential as this novel therapeutic approach moves forward.
Collapse
Affiliation(s)
- Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto von Guericke University, Magdeburg, Germany
| | - Everett H Meyer
- Cellular Immune Tolerance Program, Blood and Marrow Transplantation and Cellular Therapy Division, Stanford School of Medicine, Stanford University, Stanford, CA
| | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University, Erlangen, Germany
| |
Collapse
|
2
|
D'Souza LJ, Young JN, Coffman H, Petrow EP, Bhattacharya D. A genome wide CRISPR screen reveals novel determinants of long-lived plasma cell secretory capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640639. [PMID: 40060628 PMCID: PMC11888458 DOI: 10.1101/2025.02.28.640639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Plasma cell subsets vary in their lifespans and ability to sustain humoral immunity. We conducted a genome-wide CRISPR-Cas9 screen in a myeloma cell line for factors that promote surface expression of CD98, a marker of longevity in primary mouse plasma cells. A large fraction of genes found to promote CD98 expression in this screen are involved in secretory and other vesicles, including many subunits of the V-type ATPase complex. Chemical inhibition or genetic ablation of V-type ATPases in myeloma cells reduced antibody secretion. Primary mouse and human long-lived plasma cells had greater numbers of acidified vesicles than did their short-lived counterparts, and this correlated with increased secretory capacity of IgM, IgG, and IgA. The screen also identified PI4KB, which promoted acidified vesicle numbers and secretory capacity, and DDX3X, an ATP-dependent RNA helicase, the deletion of which reduced immunoglobulin secretion independently of vesicular acidification. Finally, we report a plasma-cell intrinsic function of the signaling adapter MYD88 in both antibody secretion and plasma cell survival in vivo. These data reveal novel regulators of plasma cell secretory capacity, including those that also promote lifespan.
Collapse
Affiliation(s)
- Lucas J D'Souza
- Department of Immunobiology, University of Arizona; Tucson, AZ
| | - Jonathan N Young
- Department of Otolaryngology, University of Arizona; Tucson, AZ
- Current Address: Department of Otolaryngology, Sutter Medical Group; Sacramento, CA
| | - Heather Coffman
- Department of Otolaryngology, University of Arizona; Tucson, AZ
- Current Address: Phoenix Indian Medical Center; Phoenix, AZ
| | | | | |
Collapse
|
3
|
Nguyen DC, Hentenaar IT, Morrison-Porter A, Solano D, Haddad NS, Castrillon C, Runnstrom MC, Lamothe PA, Andrews J, Roberts D, Lonial S, Sanz I, Lee FEH. SARS-CoV-2-specific plasma cells are not durably established in the bone marrow long-lived compartment after mRNA vaccination. Nat Med 2025; 31:235-244. [PMID: 39333316 PMCID: PMC11750719 DOI: 10.1038/s41591-024-03278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines are effective at protecting from severe disease, but the protective antibodies wane rapidly even though SARS-CoV-2-specific plasma cells can be found in the bone marrow (BM). Here, to explore this paradox, we enrolled 19 healthy adults at 2.5-33 months after receipt of a SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus- or SARS-CoV-2-specific antibody-secreting cells (ASCs) in long-lived plasma cell (LLPC) and non-LLPC subsets within the BM. Only influenza- and tetanus-specific ASCs were readily detected in the LLPCs, whereas SARS-CoV-2 specificities were mostly absent. The ratios of non-LLPC:LLPC for influenza, tetanus and SARS-CoV-2 were 0.61, 0.44 and 29.07, respectively. In five patients with known PCR-proven history of recent infection and vaccination, SARS-CoV-2-specific ASCs were mostly absent from the LLPCs. We show similar results with measurement for secreted antibodies from BM ASC culture supernatant. While serum IgG titers specific for influenza and tetanus correlated with IgG LLPCs, serum IgG levels for SARS-CoV-2, which waned within 3-6 months after vaccination, were associated with IgG non-LLPCs. In all, our studies suggest that rapid waning of SARS-CoV-2-specific serum antibodies could be accounted for by the absence of BM LLPCs after these mRNA vaccines.
Collapse
Affiliation(s)
- Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ian T Hentenaar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Andrea Morrison-Porter
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - David Solano
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Natalie S Haddad
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Carlos Castrillon
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, US
| | - Martin C Runnstrom
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
- Department of Medicine, Atlanta Veterans Affairs Healthcare System, Atlanta, GA, USA
| | - Pedro A Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Joel Andrews
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Danielle Roberts
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, US
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA.
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Tejedor Vaquero S, Neuman H, Comerma L, Marcos-Fa X, Corral-Vazquez C, Uzzan M, Pybus M, Segura-Garzón D, Guerra J, Perruzza L, Tachó-Piñot R, Sintes J, Rosenstein A, Grasset EK, Iglesias M, Gonzalez Farré M, Lop J, Patriaca-Amiano ME, Larrubia-Loring M, Santiago-Diaz P, Perera-Bel J, Berenguer-Molins P, Martinez Gallo M, Martin-Nalda A, Varela E, Garrido-Pontnou M, Grassi F, Guarner F, Mehandru S, Márquez-Mosquera L, Mehr R, Cerutti A, Magri G. Immunomolecular and reactivity landscapes of gut IgA subclasses in homeostasis and inflammatory bowel disease. J Exp Med 2024; 221:e20230079. [PMID: 39560666 PMCID: PMC11577441 DOI: 10.1084/jem.20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
The human gut includes plasma cells (PCs) expressing immunoglobulin A1 (IgA1) or IgA2, two structurally distinct IgA subclasses with elusive regulation, function, and reactivity. We show here that intestinal IgA1+ and IgA2+ PCs co-emerged early in life, comparably accumulated somatic mutations, and were enriched within short-lived CD19+ and long-lived CD19- PC subsets, respectively. IgA2+ PCs were extensively clonally related to IgA1+ PCs and a subset of them presumably emerged from IgA1+ precursors. Of note, secretory IgA1 (SIgA1) and SIgA2 dually coated a large fraction of mucus-embedded bacteria, including Akkermansia muciniphila. Disruption of homeostasis by inflammatory bowel disease (IBD) was associated with an increase in actively proliferating IgA1+ plasmablasts, a depletion in long-lived IgA2+ PCs, and increased SIgA1+SIgA2+ gut microbiota. Such increase featured enhanced IgA1 reactivity to pathobionts, including Escherichia coli, combined with depletion of beneficial A. muciniphila. Thus, gut IgA1 and IgA2 emerge from clonally related PCs and show unique changes in both frequency and reactivity in IBD.
Collapse
Affiliation(s)
- Sonia Tejedor Vaquero
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Hadas Neuman
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Laura Comerma
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Xavi Marcos-Fa
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Celia Corral-Vazquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Mathieu Uzzan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Marc Pybus
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Daniel Segura-Garzón
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Joana Guerra
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Roser Tachó-Piñot
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Sintes
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Adam Rosenstein
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Emilie K. Grasset
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Joan Lop
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Júlia Perera-Bel
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Pau Berenguer-Molins
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Monica Martinez Gallo
- Immunology Division, Vall d’Hebron University Hospital and Translational Immunology Research Group, Vall d’Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Andrea Martin-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Encarna Varela
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | | | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Francisco Guarner
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | - Saurabh Mehandru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Lucia Márquez-Mosquera
- Department of Gastroenterology, Hospital del Mar Medical Research Institute Barcelona, Barcelona, Spain
| | - Ramit Mehr
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Andrea Cerutti
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Giuliana Magri
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
5
|
Dörner T, Lipsky PE. The essential roles of memory B cells in the pathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2024; 20:770-782. [PMID: 39511302 DOI: 10.1038/s41584-024-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Emerging evidence indicates that memory B cells are dysfunctional in systemic lupus erythematosus (SLE). They are hyporesponsive to signalling through the B cell receptor (BCR) but retain responsiveness to Toll-like receptor (TLR) and type I interferon signalling, as well as to T cell-mediated activation via CD40-CD154. Chronic exposure to immune complexes of ribonucleoprotein (RNP)-specific autoantibodies and TLR-engaging or BCR-engaging cargo is likely to contribute to this partially anergic phenotype. TLR7 or TLR8 signalling and the resulting production of type I interferon, as well as the sustained activation by bystander T cells, fuel a positive feedforward loop in memory B cells that can evade negative selection and permit preferential expansion of anti-RNP autoantibodies. Clinical trials of autologous stem cell transplantation or of B cell-targeted monoclonal antibodies and chimeric antigen receptor (CAR) T cells have correlated replenishment of the memory B cell population with relapse of SLE. Moreover, the BCR hyporesponsiveness of memory B cells might explain the failure of non-depleting B cell-targeting approaches in SLE, including BTK inhibitors and anti-CD22 monoclonal antibodies. Thus, targeting of dysfunctional memory B cells might prove effective in SLE, while also avoiding the adverse events of broad-spectrum targeting of B cell and plasma cell subsets that are not directly involved in disease pathogenesis.
Collapse
Affiliation(s)
- Thomas Dörner
- Department Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin & Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany.
| | | |
Collapse
|
6
|
von La Roche D, Schumacher M, Kohn M, Trapp J, Schusser B, Rautenschlein S, Härtle S. Characterization of class-switched B cells in chickens. Front Immunol 2024; 15:1484288. [PMID: 39640270 PMCID: PMC11617357 DOI: 10.3389/fimmu.2024.1484288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
While B cell development in the birds' primary B cell organ, the bursa Fabricius, is relatively well understood, very little is known about post bursal B cell differentiation into plasma and memory cells though these cells are essential for a protecting antibody response and so far, no specific markers for these cells were available. Since immunoglobulin class switch is one part of the B cell differentiation process, our objective was to conduct a first detailed investigation of class-switched chicken B cells. As only very few IgY and IgA expressing cells were detected in lymphoid organs of young chickens, we used CD40L and IL-10 to establish a prolonged in vitro culture system, which induces B cell proliferation, class switch to IgY and IgA and enhanced antibody secretion. This enabled a phenotypic analysis of differentiating B cells. Importantly, these cells lost surface expression of the B cell markers chB6 and BAFF-R. B cell receptor surface expression remained unchanged, showing that while differentiating toward plasma cells, B cells can be addressed by L chain staining. Newly generated potential plasma cell markers CD138 and TACI showed only a transient expression on cultured cells and rather act as markers for B cell activation than plasma/memory cells in general. CD57 upregulation was connected to activation and blast formation but not to class switch. We also examined potential changes in class-switched cells in different age groups and post vaccination. Surprisingly, bursa involution, laying and age had no distinct effects on the presence of class-switched cells, but we detected significantly more class-switched B cells post vaccination. Hence, we are now able to generate class-switched plasmablasts in vitro for a more detailed characterization and can address them under different conditions in chickens for further analysis of their B cell response.
Collapse
Affiliation(s)
- Dominik von La Roche
- Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Magdalena Schumacher
- Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Marina Kohn
- Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Johanna Trapp
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Benjamin Schusser
- Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- Center of Infection Prevention (ZIP), Technische Universität München, Freising, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany
| |
Collapse
|
7
|
Xue B, Li J, Xie D, Weng Y, Zhang X, Li X, Xia J, Lin J. Effects of early intervention in neuromyelitis optica spectrum disorder patients with seropositive AQP4 antibodies. Front Immunol 2024; 15:1458556. [PMID: 39555058 PMCID: PMC11563946 DOI: 10.3389/fimmu.2024.1458556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Background The impact of early intervention with immunosuppressive treatment (IST) in anti-Aquaporin4-antibody (AQP4-ab) seropositive neuromyelitis optica spectrum disorder (NMOSD) has not been thoroughly evaluated. Objective This study aims to assess the effects of early IST intervention in patients with NMOSD. Methods This retrospective cohort study included 174 treatments from 137 NMOSD patients seropositive for AQP4-antibody, treated with ISTs such as rituximab, mycophenolate mofetil, azathioprine, or tacrolimus. Multiple statistical analyses, including regression discontinuity design (RDD), kaplan-meier analyze, Cox proportional hazards regression model, were employed to evaluate the effects of early IST intervention on annualized relapse rate (ARR) change, Expanded Disability Status Scale (EDSS) change, and time to next relapse. Results A total of 174 treatments from 137 patients were analyzed. Patients exhibited significant improvement in ARR[1.95 vs.0, IQR (0.70-6.0 vs. 0-0.42), p<0.001] and EDSS [3.0 vs. 2.5, IQR (2.0-4.0 vs. 1.0-3.0) p<0.001]after IST, although the ARR change was not significant in patients treated with TAC. Early IST initiation was associated with greater improvements in both ARR and EDSS compared to later initiation. RDD analysis demonstrated a time-dependent effect of ARR-change, indicating greater efficacy with early IST intervention. Conclusions Early intervention with ISTs in AQP4-antibody-positive NMOSD patients is associated with better outcomes in terms of reducing relapse rate and improving disability. These findings underscore the importance of early treatment in NMOSD.
Collapse
Affiliation(s)
- Binbin Xue
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dewei Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junhui Xia
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Konitsioti AM, Prüss H, Laurent S, Fink GR, Heesen C, Warnke C. Chimeric antigen receptor T-cell therapy for autoimmune diseases of the central nervous system: a systematic literature review. J Neurol 2024; 271:6526-6542. [PMID: 39276207 PMCID: PMC11446985 DOI: 10.1007/s00415-024-12642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
IMPORTANCE B-cell-targeting monoclonal antibodies have demonstrated safety and efficacy in multiple sclerosis or anti-aquaporin-4 IgG positive neuromyelitis optica spectrum disorder. However, these therapies do not facilitate drug-free remission, which may become possible with cell-based therapies, including chimeric antigen receptor (CAR) T cells. CAR T-cell therapy holds promise for addressing other antibody-mediated CNS disorders, e.g., MOG-associated disease or autoimmune encephalitis. OBJECTIVE To provide an overview of the current clinical knowledge on CAR T-cell therapy in central nervous system autoimmunity. EVIDENCE REVIEW We searched PubMed, Embase, Google Scholar, PsycINFO, and clinicaltrials.gov using the terms 'CAR T cell' and 'multiple sclerosis/MS' or 'neuromyelitis optica/spectrum diseases/NMOSD' or 'MOG-associated disease/MOGAD 'or' autoimmune encephalitis' or 'neuroimmunology'. FINDINGS An ongoing phase I clinical trial has indicated the safety and benefits of anti-BCMA CAR T cells in 12 patients with AQP4-IgG seropositive neuromyelitis optica spectrum disorder. Case reports involving two individuals with progressive multiple sclerosis and one patient with stiff-person syndrome demonstrated a manageable safety profile following treatment with anti-CD19 CAR T cells. Recruitment has commenced for two larger studies in MS, and a phase I open-label basket study is underway to evaluate BCMA-directed CAR T cells in various antibody-associated inflammatory diseases, including MOG-associated disease. Preclinical research on NMDA receptor antibody autoimmune encephalitis treated with chimeric autoantibody receptor T cells generated promising data. CONCLUSIONS AND RELEVANCE There is minimal evidence of the benefits of CAR T-cell therapy in individuals with central nervous system-directed autoimmunity. Nevertheless, multicenter controlled clinical trials with a manageable safety profile appear feasible and are warranted due to very promising case experiences.
Collapse
Affiliation(s)
- Agni M Konitsioti
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Laurent
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM3), Research Center Jülich, Jülich, Germany
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Christoph Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Clemens Warnke
- Department of Neurology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Wang W, He S, Zhang W, Zhang H, DeStefano VM, Wada M, Pinz K, Deener G, Shah D, Hagag N, Wang M, Hong M, Zeng R, Lan T, Ma Y, Li F, Liang Y, Guo Z, Zou C, Wang M, Ding L, Ma Y, Yuan Y. BCMA-CD19 compound CAR T cells for systemic lupus erythematosus: a phase 1 open-label clinical trial. Ann Rheum Dis 2024; 83:1304-1314. [PMID: 38777376 DOI: 10.1136/ard-2024-225785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES This study aims to evaluate the safety and efficacy of BCMA-CD19 compound chimeric antigen receptor T cells (cCAR) to dual reset the humoral and B cell immune system in patients with systemic lupus erythematosus (SLE) with lupus nephritis (LN). METHODS This is a single-arm open-label multicentre phase 1 study of BCMA and CD19-directed cCAR in patients suffering from SLE/LN with autoantibodies produced by B cells and plasma/long-lived plasma cells. In this clinical trial, we sequentially assigned biopsy-confirmed (classes III-V) LN patients to receive 3×106 cCAR cells/kg postcessation of all SLE medications and conditioning. The primary endpoint of safety and toxicity was assessed. Complete immune reset was indicated by B cell receptor (BCR) deep sequencing and flow cytometry analysis. Patient 11 (P11) had insufficient lymphocyte counts and was underdosed as compassionate use. RESULTS P1 and P2 achieved symptom and medication-free remission (MFR) from SLE and complete remission from lymphoma. P3-P13 (excluding P11) received an initial dose of 3×106 cCAR cells /kg and were negative for all autoantibodies, including those derived from long-lived plasma cells, 3 months post-cCAR and the complement returned to normal levels. These patients achieved symptom and MFR with post-cCAR follow-up to 46 months. Complete recovery of B cells was seen in 2-6 months post-cCAR. Mean SLE Disease Activity Index 2000 reduced from 10.6 (baseline) to 2.7 (3 months), and renal function significantly improved in 10 LN patients ≤90 days post-cCAR. cCAR T therapy was well tolerant with mild cytokine-release syndrome. CONCLUSIONS Data suggest that cCAR therapy was safe and effective in inducing MFR and depleting disease-causing autoantibodies in patients with SLE.
Collapse
Affiliation(s)
- Weijia Wang
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Shanzhi He
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Wenli Zhang
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hongyu Zhang
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | | | - Masayuki Wada
- iCell Gene Therapeutics Inc, New York, New York, USA
| | - Kevin Pinz
- iCell Gene Therapeutics Inc, New York, New York, USA
| | - Greg Deener
- iCell Gene Therapeutics Inc, New York, New York, USA
| | - Darshi Shah
- iCell Gene Therapeutics Inc, New York, New York, USA
| | - Nabil Hagag
- iCell Gene Therapeutics Inc, New York, New York, USA
| | - Min Wang
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Ming Hong
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Ronghao Zeng
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Ting Lan
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Yu Ma
- CAR Bio Therapeutics Ltd, zhongshan, China
| | - Fugui Li
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Yingwen Liang
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Zhencong Guo
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Chanjuan Zou
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Mingxia Wang
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Ling Ding
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Yupo Ma
- iCell Gene Therapeutics Inc, New York, New York, USA
| | - Yong Yuan
- Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
10
|
Magalhães-Gama F, Malheiros Araújo Silvestrini M, Neves JCF, Araújo ND, Alves-Hanna FS, Kerr MWA, Carvalho MPSS, Tarragô AM, Soares Pontes G, Martins-Filho OA, Malheiro A, Teixeira-Carvalho A, Costa AG. Exploring cell-derived extracellular vesicles in peripheral blood and bone marrow of B-cell acute lymphoblastic leukemia pediatric patients: proof-of-concept study. Front Immunol 2024; 15:1421036. [PMID: 39234258 PMCID: PMC11371606 DOI: 10.3389/fimmu.2024.1421036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous, phospholipid membrane enclosed particles that are secreted by healthy and cancerous cells. EVs are present in diverse biological fluids and have been associated with the severity of diseases, which indicates their potential as biomarkers for diagnosis, prognosis and as therapeutic targets. This study investigated the phenotypic characteristics of EVs derived from peripheral blood (PB) and bone marrow (BM) in pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) during different treatment stages. PB and BM plasma were collected from 20 B-ALL patients at three time points during induction therapy, referred to as: diagnosis baseline (D0), day 15 of induction therapy (D15) and the end of the induction therapy (D35). In addition, PB samples were collected from 10 healthy children at a single time point. The EVs were measured using CytoFLEX S flow cytometer. Calibration beads were employed to ensure accurate size analysis. The following, fluorescent-labeled specific cellular markers were used to label the EVs: Annexin V (phosphatidylserine), CD235a (erythrocyte), CD41a (platelet), CD51 (endothelial cell), CD45 (leukocyte), CD66b (neutrophil), CD14 (monocyte), CD3 (T lymphocyte), CD19, CD34 and CD10 (B lymphoblast/leukemic blast). Our results demonstrate that B-ALL patients had a marked production of EV-CD51/61+, EV-CD10+, EV-CD19+ and EV-CD10+CD19+ (double-positive) with a decrease in EV-CD41a+ on D0. However, the kinetics and signature of production during induction therapy revealed a clear decline in EV-CD10+ and EV-CD19+, with an increase of EV-CD41a+ on D35. Furthermore, B-ALL patients showed a complex biological network, exhibiting distinct profiles on D0 and D35. Interestingly, fold change and ROC curve analysis demonstrated that EV-CD10+CD19+ were associated with B-ALL patients, exhibited excellent clinical performance and standing out as a potential diagnostic biomarker. In conclusion, our data indicate that EVs represent a promising field of investigation in B-ALL, offering the possibility of identifying potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Fábio Magalhães-Gama
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Marina Malheiros Araújo Silvestrini
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
| | - Juliana Costa Ferreira Neves
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Nilberto Dias Araújo
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, UEA, Manaus, Brazil
| | - Fabíola Silva Alves-Hanna
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Marlon Wendell Athaydes Kerr
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, UEA, Manaus, Brazil
| | - Maria Perpétuo Socorro Sampaio Carvalho
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, UEA, Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, UEA, Manaus, Brazil
| | - Gemilson Soares Pontes
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, UEA, Manaus, Brazil
- Laboratório de Virologia e Imunologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Olindo Assis Martins-Filho
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, UEA, Manaus, Brazil
| | - Adriana Malheiro
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, UEA, Manaus, Brazil
| | - Andréa Teixeira-Carvalho
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, Brazil
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, UEA, Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, UEA, Manaus, Brazil
| |
Collapse
|
11
|
Hill TF, Narvekar P, Asher GD, Edelstein JN, Camp ND, Grimm A, Thomas KR, Leiken MD, Molloy KM, Cook PJ, Arlauckas SP, Morgan RA, Tasian SK, Rawlings DJ, James RG. Human plasma cells engineered to secrete bispecifics drive effective in vivo leukemia killing. Mol Ther 2024; 32:2676-2691. [PMID: 38959896 PMCID: PMC11405176 DOI: 10.1016/j.ymthe.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Bispecific antibodies are an important tool for the management and treatment of acute leukemias. As a next step toward clinical translation of engineered plasma cells, we describe approaches for secretion of bispecific antibodies by human plasma cells. We show that human plasma cells expressing either fragment crystallizable domain-deficient anti-CD19 × anti-CD3 (blinatumomab) or anti-CD33 × anti-CD3 bispecific antibodies mediate T cell activation and direct T cell killing of B acute lymphoblastic leukemia or acute myeloid leukemia cell lines in vitro. We demonstrate that knockout of the self-expressed antigen, CD19, boosts anti-CD19-bispecific secretion by plasma cells and prevents self-targeting. Plasma cells secreting anti-CD19-bispecific antibodies elicited in vivo control of acute lymphoblastic leukemia patient-derived xenografts in immunodeficient mice co-engrafted with autologous T cells. In these studies, we found that leukemic control elicited by engineered plasma cells was similar to CD19-targeted chimeric antigen receptor-expressing T cells. Finally, the steady-state concentration of anti-CD19 bispecifics in serum 1 month after cell delivery and tumor eradication was comparable with that observed in patients treated with a steady-state infusion of blinatumomab. These findings support further development of ePCs for use as a durable delivery system for the treatment of acute leukemias, and potentially other cancers.
Collapse
Affiliation(s)
- Tyler F Hill
- University of Washington, Medical Scientist Training Program, Seattle, WA, USA; Seattle Children's Research Institute, Center for Immunity and Immunotherapy, Seattle, WA, USA
| | - Parnal Narvekar
- Seattle Children's Research Institute, Center for Immunity and Immunotherapy, Seattle, WA, USA
| | - Gregory D Asher
- Seattle Children's Research Institute, Center for Immunity and Immunotherapy, Seattle, WA, USA
| | | | - Nathan D Camp
- Seattle Children's Research Institute, Center for Immunity and Immunotherapy, Seattle, WA, USA
| | - Annaiz Grimm
- Seattle Children's Research Institute, Center for Immunity and Immunotherapy, Seattle, WA, USA
| | - Kerri R Thomas
- Seattle Children's Research Institute, Center for Immunity and Immunotherapy, Seattle, WA, USA
| | | | | | - Peter J Cook
- Seattle Children's Research Institute, Center for Immunity and Immunotherapy, Seattle, WA, USA
| | | | | | - Sarah K Tasian
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research, Philadelphia, PA, USA; Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David J Rawlings
- Seattle Children's Research Institute, Center for Immunity and Immunotherapy, Seattle, WA, USA; University of Washington, Departments of Pediatrics and Immunology, Seattle, WA, USA
| | - Richard G James
- Seattle Children's Research Institute, Center for Immunity and Immunotherapy, Seattle, WA, USA; University of Washington, Departments of Pediatrics and Pharmacology, Seattle, WA, USA.
| |
Collapse
|
12
|
Shah K, Leandro M, Cragg M, Kollert F, Schuler F, Klein C, Reddy V. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy? Clin Exp Immunol 2024; 217:15-30. [PMID: 38642912 PMCID: PMC11188544 DOI: 10.1093/cei/uxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024] Open
Abstract
B and T cells collaborate to drive autoimmune disease (AID). Historically, B- and T-cell (B-T cell) co-interaction was targeted through different pathways such as alemtuzumab, abatacept, and dapirolizumab with variable impact on B-cell depletion (BCD), whereas the majority of patients with AID including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and organ transplantation benefit from targeted BCD with anti-CD20 monoclonal antibodies such as rituximab, ocrelizumab, or ofatumumab. Refractory AID is a significant problem for patients with incomplete BCD with a greater frequency of IgD-CD27+ switched memory B cells, CD19+CD20- B cells, and plasma cells that are not directly targeted by anti-CD20 antibodies, whereas most lymphoid tissue plasma cells express CD19. Furthermore, B-T-cell collaboration is predominant in lymphoid tissues and at sites of inflammation such as the joint and kidney, where BCD may be inefficient, due to limited access to key effector cells. In the treatment of cancer, chimeric antigen receptor (CAR) T-cell therapy and T-cell engagers (TCE) that recruit T cells to induce B-cell cytotoxicity have delivered promising results for anti-CD19 CAR T-cell therapies, the CD19 TCE blinatumomab and CD20 TCE such as mosunetuzumab, glofitamab, or epcoritamab. Limited evidence suggests that anti-CD19 CAR T-cell therapy may be effective in managing refractory AID whereas we await evaluation of TCE for use in non-oncological indications. Therefore, here, we discuss the potential mechanistic advantages of novel therapies that rely on T cells as effector cells to disrupt B-T-cell collaboration toward overcoming rituximab-resistant AID.
Collapse
Affiliation(s)
| | - Maria Leandro
- Centre for Rheumatology, UCLH, London,UK
- Department of Rheumatology, University College London Hospital, London, UK
| | - Mark Cragg
- University of Southampton Faculty of Medicine, Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Florian Kollert
- Roche Innovation Center Basel, Early Development Immunology, Infectious Diseases & Ophthalmology, Basel, Switzerland
| | - Franz Schuler
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Cancer Immunotherapy Discovery, Oncology Discovery & Translational Area, Schlieren, Switzerland
| | - Venkat Reddy
- Centre for Rheumatology, UCLH, London,UK
- Department of Rheumatology, University College London Hospital, London, UK
| |
Collapse
|
13
|
Ferreira-Gomes M, Chen Y, Durek P, Rincon-Arevalo H, Heinrich F, Bauer L, Szelinski F, Guerra GM, Stefanski AL, Niedobitek A, Wiedemann A, Bondareva M, Ritter J, Lehmann K, Hardt S, Hipfl C, Hein S, Hildt E, Matz M, Mei HE, Cheng Q, Dang VD, Witkowski M, Lino AC, Kruglov A, Melchers F, Perka C, Schrezenmeier EV, Hutloff A, Radbruch A, Dörner T, Mashreghi MF. Recruitment of plasma cells from IL-21-dependent and IL-21-independent immune reactions to the bone marrow. Nat Commun 2024; 15:4182. [PMID: 38755157 PMCID: PMC11099182 DOI: 10.1038/s41467-024-48570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.
Collapse
Affiliation(s)
- Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Yidan Chen
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Hector Rincon-Arevalo
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Laura Bauer
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Szelinski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Ana-Luisa Stefanski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Annika Wiedemann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Bondareva
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Jacob Ritter
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Sebastian Hardt
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hipfl
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sascha Hein
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen, Germany
| | - Mareen Matz
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Qingyu Cheng
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Witkowski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreia C Lino
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrey Kruglov
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Carsten Perka
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eva V Schrezenmeier
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Hutloff
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany.
| |
Collapse
|
14
|
Daamen AR, Lipsky PE. Potential and pitfalls of repurposing the CAR-T cell regimen for the treatment of autoimmune disease. Ann Rheum Dis 2024; 83:696-699. [PMID: 38637134 DOI: 10.1136/ard-2024-225638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024]
Abstract
Chimeric antigen receptors (CARs) are synthetic proteins designed to direct an immune response toward a specific target and have been used in immunotherapeutic applications through the adoptive transfer of T cells genetically engineered to express CARs. This technology received early attention in oncology with particular success in treatment of B cell malignancies leading to the launch of numerous successful clinical trials and the US Food and Drug Administration approval of several CAR-T-based therapies. Many CAR-T constructs have been employed, but have always been administered following a lymphodepletion regimen. The success of CAR-T cell treatment in targeting malignant B cells has led many to consider the potential for using these regimens to delete pathogenic B cells in autoimmune diseases. Preliminary results have suggested efficacy, but the sample size remains small, controlled trials have not been done, the role of immunodepletion has not been established, the most effective CAR-T constructs have not been identified and the most appropriate patient subsets for treatment have not been established.
Collapse
|
15
|
Zhou G, Zhan Q, Huang L, Dou X, Cui J, Xiang L, Qi Y, Wu S, Liu L, Xiao Q, Chen J, Tang X, Zhang H, Wang X, Luo X, Ren G, Yang Z, Liu L, Yan X, Luo Q, Pei C, Dai Y, Zhu Y, Zhou H, Ren G, Wang L. The dynamics of B-cell reconstitution post allogeneic hematopoietic stem cell transplantation: A real-world study. J Intern Med 2024; 295:634-650. [PMID: 38439117 DOI: 10.1111/joim.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
BACKGROUND The immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is crucial for preventing infections and relapse and enhancing graft-versus-tumor effects. B cells play an important role in humoral immunity and immune regulation, but their reconstitution after allo-HSCT has not been well studied. METHODS In this study, we analyzed the dynamics of B cells in 252 patients who underwent allo-HSCT for 2 years and assessed the impact of factors on B-cell reconstitution and their correlations with survival outcomes, as well as the development stages of B cells in the bone marrow and the subsets in the peripheral blood. RESULTS We found that the B-cell reconstitution in the bone marrow was consistent with the peripheral blood (p = 0.232). B-cell reconstitution was delayed by the male gender, age >50, older donor age, the occurrence of chronic and acute graft-versus-host disease, and the infections of fungi and cytomegalovirus. The survival analysis revealed that patients with lower B cells had higher risks of death and relapse. More importantly, we used propensity score matching to obtain the conclusion that post-1-year B-cell reconstitution is better in females. Meanwhile, using mediation analysis, we proposed the age-B cells-survival axis and found that B-cell reconstitution at month 12 posttransplant mediated the effect of age on patient survival (p = 0.013). We also found that younger patients showed more immature B cells in the bone marrow after transplantation (p = 0.037). CONCLUSION Our findings provide valuable insights for optimizing the management of B-cell reconstitution and improving the efficacy and safety of allo-HSCT.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qian Zhan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lingle Huang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xi Dou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jin Cui
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lin Xiang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yuhong Qi
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Sicen Wu
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jianbin Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaoqiong Tang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Hongbin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaohua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lanxiang Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xinyu Yan
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qin Luo
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Caixia Pei
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yulian Dai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Hao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Guilin Ren
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
16
|
Ding Z, Tarlinton D. Chimeric antigen receptor T cells in the fast lane among autoimmune disease therapies. Clin Transl Immunology 2024; 13:e1502. [PMID: 38616983 PMCID: PMC11010258 DOI: 10.1002/cti2.1502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
In this commentary, we highlight recent studies demonstrating the feasibility and promise of chimeric antigen receptor (CAR) T-cell therapy in treating a number of autoimmune disorders including systemic lupus erythematosus and compare CAR T cells to other therapies aimed at depleting B-lineage cells in treating such diseases.
Collapse
Affiliation(s)
- Zhoujie Ding
- Department of ImmunologyMonash UniversityMelbourneVICAustralia
| | - David Tarlinton
- Department of ImmunologyMonash UniversityMelbourneVICAustralia
| |
Collapse
|
17
|
Sosnoski HM, Posey AD. Therapeutic intersections: Expanding benefits of CD19 CAR T cells from cancer to autoimmunity. Cell Stem Cell 2024; 31:437-438. [PMID: 38579681 DOI: 10.1016/j.stem.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Anti-CD19 CAR T cells were among the last decade's scientific breakthroughs, achieving remarkable remissions in patients with B cell leukemias and lymphomas. Now, the engineered cell therapies are traversing disease indications into autoimmunity and resolving disease symptoms in patients with systemic lupus erythematosus (SLE), idiopathic inflammatory myositis, and systemic sclerosis.1.
Collapse
Affiliation(s)
- Heather M Sosnoski
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Taubmann J, Müller F, Yalcin Mutlu M, Völkl S, Aigner M, Bozec A, Mackensen A, Grieshaber-Bouyer R, Schett G. CD19 Chimeric Antigen Receptor T Cell Treatment: Unraveling the Role of B Cells in Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:497-504. [PMID: 38114423 DOI: 10.1002/art.42784] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
B cell generation of autoantibodies is a crucial step in the pathogenesis of systemic lupus erythematosus (SLE). After their differentiation in the bone marrow, B cells populate the secondary lymphatic organs, where they undergo further maturation leading to the development of memory B cells as well as antibody-producing plasmablasts and plasma cells. Targeting B cells is an important strategy to treat autoimmune diseases such as SLE, in which B cell tolerance is disturbed and autoimmune B cells and autoantibodies emerge. This review discusses the functional aspects of antibody- and cell-based B cell-depleting therapy in SLE. It thereby particularly focuses on lessons learned from chimeric antigen receptor (CAR) T cell treatment on the role of B cells in SLE for understanding B cell pathology in SLE. CAR T cells model a deep B cell depletion and thereby allow understanding the role of aberrant B cell activation in the pathogenesis of SLE. Furthermore, the effects of B cell depletion on autoantibody production can be better described, ie, explaining the concept of different cellular sources of (auto-) antibodies in the form of short-lived plasmablasts and long-lived plasma cells, which differ in their susceptibility to B cell depletion and require different targeted therapeutic approaches. Finally, the safety of deep B cell depletion in autoimmune disease is discussed.
Collapse
Affiliation(s)
- Jule Taubmann
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fabian Müller
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melek Yalcin Mutlu
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Aigner
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ricardo Grieshaber-Bouyer
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
19
|
Lee F, Nguyen D, Hentenaar I, Morrison-Porter A, Solano D, Haddad N, Castrillon C, Lamothe P, Andrews J, Roberts D, Lonial S, Sanz I. The Majority of SARS-CoV-2 Plasma Cells are Excluded from the Bone Marrow Long-Lived Compartment 33 Months after mRNA Vaccination. RESEARCH SQUARE 2024:rs.3.rs-3979237. [PMID: 38559048 PMCID: PMC10980156 DOI: 10.21203/rs.3.rs-3979237/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19-) and non-LLPC (CD19+) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.
Collapse
|
20
|
Nguyen DC, Hentenaar IT, Morrison-Porter A, Solano D, Haddad NS, Castrillon C, Lamothe PA, Andrews J, Roberts D, Lonial S, Sanz I, Lee FEH. The Majority of SARS-CoV-2 Plasma Cells are Excluded from the Bone Marrow Long-Lived Compartment 33 Months after mRNA Vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.02.24303242. [PMID: 38496525 PMCID: PMC10942531 DOI: 10.1101/2024.03.02.24303242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19 - ) and non-LLPC (CD19 + ) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.
Collapse
|
21
|
Chen W, Hong SH, Jenks SA, Anam FA, Tipton CM, Woodruff MC, Hom JR, Cashman KS, Faliti CE, Wang X, Kyu S, Wei C, Scharer CD, Mi T, Hicks S, Hartson L, Nguyen DC, Khosroshahi A, Lee S, Wang Y, Bugrovsky R, Ishii Y, Lee FEH, Sanz I. Distinct transcriptomes and autocrine cytokines underpin maturation and survival of antibody-secreting cells in systemic lupus erythematosus. Nat Commun 2024; 15:1899. [PMID: 38429276 PMCID: PMC10907730 DOI: 10.1038/s41467-024-46053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/09/2024] [Indexed: 03/03/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibody types, some of which are produced by long-lived plasma cells (LLPC). Active SLE generates increased circulating antibody-secreting cells (ASC). Here, we examine the phenotypic, molecular, structural, and functional features of ASC in SLE. Relative to post-vaccination ASC in healthy controls, circulating blood ASC from patients with active SLE are enriched with newly generated mature CD19-CD138+ ASC, similar to bone marrow LLPC. ASC from patients with SLE displayed morphological features of premature maturation and a transcriptome epigenetically initiated in SLE B cells. ASC from patients with SLE exhibited elevated protein levels of CXCR4, CXCR3 and CD138, along with molecular programs that promote survival. Furthermore, they demonstrate autocrine production of APRIL and IL-10, which contributed to their prolonged in vitro survival. Our work provides insight into the mechanisms of generation, expansion, maturation and survival of SLE ASC.
Collapse
Affiliation(s)
- Weirong Chen
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - So-Hee Hong
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Microbiology, Ewha Womans University, Seoul, Republic of Korea
| | - Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Fabliha A Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jennifer R Hom
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kevin S Cashman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Caterina Elisa Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xiaoqian Wang
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shuya Kyu
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chungwen Wei
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Tian Mi
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sakeenah Hicks
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Louise Hartson
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Doan C Nguyen
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Arezou Khosroshahi
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Saeyun Lee
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Youliang Wang
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Regina Bugrovsky
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yusho Ishii
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Podestà MA, Trillini M, Portalupi V, Gennarini A, Tomatis F, Villa A, Perna A, Rubis N, Remuzzi G, Ruggenenti P. Ofatumumab in Rituximab-Resistant and Rituximab-Intolerant Patients With Primary Membranous Nephropathy: A Case Series. Am J Kidney Dis 2024; 83:340-349.e1. [PMID: 37777061 DOI: 10.1053/j.ajkd.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 10/02/2023]
Abstract
RATIONALE & OBJECTIVE Rituximab is the first-choice therapy for patients with primary membranous nephropathy (MN) and nephrotic syndrome. However, approximately 30% of patients are treatment-resistant or become treatment-intolerant with hypersensitivity reactions upon repeated drug exposures. We aimed to assess whether ofatumumab, a fully human second-generation anti-CD20 antibody, could be a valuable alternative to rituximab in this population. STUDY DESIGN Case series. SETTING & PARTICIPANTS 7 rituximab-intolerant and 10 rituximab-resistant patients with MN who consented to receive ofatumumab (50-300mg, single intravenous infusion) and were followed at the nephrology unit of Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII (Bergamo, Italy) between September 2015 and January 2019. FINDINGS Over a median (IQR) follow-up of 5.0 (3.0-9.8) months, all 7 rituximab-intolerant and 3 of the 10 rituximab-resistant patients exhibited complete (proteinuria<0.3g/d) or partial (proteinuria<3.5g/d with≥50% reduction vs baseline) remission of nephrotic syndrome. Circulating B cells were similarly depleted in all patients by 1 week, and serum anti-phospholipase A2 receptor antibody concentrations decreased to<2.7 relative units/mL in 3 of 4 rituximab-intolerant and 4 of 8 rituximab-resistant patients with phospholipase A2 receptor-related disease. Ofatumumab significantly reduced 24-hour urinary protein and immunoglobulin G excretion and increased serum albumin and immunoglobulin G levels. These effects were greater in rituximab-intolerant than in rituximab-resistant patients. Measured glomerular filtration rate significantly increased by an average of 13.4% at 24 months compared with baseline (P=0.036) among all patients in the series. There were 14 nonserious infusion-related adverse events in 9 patients that recovered with temporary infusion interruption. LIMITATIONS Retrospective design, limited number of patients. CONCLUSIONS Ofatumumab may represent an effective and safe treatment for rituximab-intolerant cases of MN. Larger prospective studies will be needed to validate these preliminary findings and explore the effectiveness of other second-generation anti-CD20 antibodies in this clinical setting. PLAIN-LANGUAGE SUMMARY Primary membranous nephropathy (MN) is one of the most frequent causes of nephrotic syndrome (NS) in adults. In this case series, we explored the efficacy of ofatumumab, a fully human second-generation anti-CD20 antibody, in 17 patients with MN and NS who were intolerant or unresponsive to rituximab. All 7 rituximab-intolerant patients exhibited complete or partial clinical remission, compared with only 3 of the 10 rituximab-resistant patients. Autoantibody levels decreased in all patients with phospholipase A2 receptor-related disease. Ofatumumab achieved a significant reduction in urinary protein and immunoglobulin G excretion while increasing serum albumin and immunoglobulin G levels. Ofatumumab may be a promising option for patients with MN who are rituximab-intolerant. Further investigations are warranted to validate these preliminary findings.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (MAP)
| | - Matias Trillini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Valentina Portalupi
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Alessia Gennarini
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Federica Tomatis
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Villa
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Annalisa Perna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Nadia Rubis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| | - Piero Ruggenenti
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
23
|
Perico L, Casiraghi F, Sônego F, Todeschini M, Corna D, Cerullo D, Pezzotta A, Isnard-Petit P, Faravelli S, Forneris F, Thiam K, Benigni A, Remuzzi G. Bi-specific autoantigen-T cell engagers as targeted immunotherapy for autoreactive B cell depletion in autoimmune diseases. Front Immunol 2024; 15:1335998. [PMID: 38469301 PMCID: PMC10926275 DOI: 10.3389/fimmu.2024.1335998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction In autoimmune diseases, autoreactive B cells comprise only the 0.1-0.5% of total circulating B cells. However, current first-line treatments rely on non-specific and general suppression of the immune system, exposing patients to severe side effects. For this reason, identification of targeted therapies for autoimmune diseases is an unmet clinical need. Methods Here, we designed a novel class of immunotherapeutic molecules, Bi-specific AutoAntigen-T cell Engagers (BiAATEs), as a potential approach for targeting the small subset of autoreactive B cells. To test this approach, we focused on a prototype autoimmune disease of the kidney, membranous nephropathy (MN), in which phospholipase A2 receptor (PLA2R) serves as primary nephritogenic antigen. Specifically, we developed a BiAATE consisting of the immunodominant Cysteine-Rich (CysR) domain of PLA2R and the single-chain variable fragment (scFv) of an antibody against the T cell antigen CD3, connected by a small flexible linker. Results BiAATE creates an immunological synapse between autoreactive B cells bearing an CysR-specific surface Ig+ and T cells. Ex vivo, the BiAATE successfully induced T cell-dependent depletion of PLA2R-specific B cells isolated form MN patients, sparing normal B cells. Systemic administration of BiAATE to mice transgenic for human CD3 reduced anti-PLA2R antibody levels following active immunization with PLA2R. Discussion Should this approach be confirmed for other autoimmune diseases, BiAATEs could represent a promising off-the-shelf therapy for precision medicine in virtually all antibody-mediated autoimmune diseases for which the pathogenic autoantigen is known, leading to a paradigm shift in the treatment of these diseases.
Collapse
Affiliation(s)
- Luca Perico
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Marta Todeschini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Daniela Corna
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Domenico Cerullo
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Anna Pezzotta
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Kader Thiam
- Preclinical Models & Services, genOway, Lyon, France
| | - Ariela Benigni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
24
|
Barrett JR, Silk SE, Mkindi CG, Kwiatkowska KM, Hou MM, Lias AM, Kalinga WF, Mtaka IM, McHugh K, Bardelli M, Davies H, King LDW, Edwards NJ, Chauhan VS, Mukherjee P, Rwezaula S, Chitnis CE, Olotu AI, Minassian AM, Draper SJ, Nielsen CM. Analyses of human vaccine-specific circulating and bone marrow-resident B cell populations reveal benefit of delayed vaccine booster dosing with blood-stage malaria antigens. Front Immunol 2024; 14:1193079. [PMID: 38299155 PMCID: PMC10827869 DOI: 10.3389/fimmu.2023.1193079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024] Open
Abstract
We have previously reported primary endpoints of a clinical trial testing two vaccine platforms for the delivery of Plasmodium vivax malaria DBPRII: viral vectors (ChAd63, MVA), and protein/adjuvant (PvDBPII with 50µg Matrix-M™ adjuvant). Delayed boosting was necessitated due to trial halts during the pandemic and provides an opportunity to investigate the impact of dosing regimens. Here, using flow cytometry - including agnostic definition of B cell populations with the clustering tool CITRUS - we report enhanced induction of DBPRII-specific plasma cell and memory B cell responses in protein/adjuvant versus viral vector vaccinees. Within protein/adjuvant groups, delayed boosting further improved B cell immunogenicity compared to a monthly boosting regimen. Consistent with this, delayed boosting also drove more durable anti-DBPRII serum IgG. In an independent vaccine clinical trial with the P. falciparum malaria RH5.1 protein/adjuvant (50µg Matrix-M™) vaccine candidate, we similarly observed enhanced circulating B cell responses in vaccinees receiving a delayed final booster. Notably, a higher frequency of vaccine-specific (putatively long-lived) plasma cells was detected in the bone marrow of these delayed boosting vaccinees by ELISPOT and correlated strongly with serum IgG. Finally, following controlled human malaria infection with P. vivax parasites in the DBPRII trial, in vivo growth inhibition was observed to correlate with DBPRII-specific B cell and serum IgG responses. In contrast, the CD4+ and CD8+ T cell responses were impacted by vaccine platform but not dosing regimen and did not correlate with in vivo growth inhibition in a challenge model. Taken together, our DBPRII and RH5 data suggest an opportunity for protein/adjuvant dosing regimen optimisation in the context of rational vaccine development against pathogens where protection is antibody-mediated.
Collapse
Affiliation(s)
- Jordan R. Barrett
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E. Silk
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Mimi M. Hou
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Amelia M. Lias
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Martino Bardelli
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Lloyd D. W. King
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nick J. Edwards
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Virander S. Chauhan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | | | - Chetan E. Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Angela M. Minassian
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carolyn M. Nielsen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Schett G, Mackensen A, Mougiakakos D. CAR T-cell therapy in autoimmune diseases. Lancet 2023; 402:2034-2044. [PMID: 37748491 DOI: 10.1016/s0140-6736(23)01126-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 09/27/2023]
Abstract
Despite the tremendous progress in the clinical management of autoimmune diseases, many patients do not respond to the currently used treatments. Autoreactive B cells play a key role in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. B-cell-depleting monoclonal antibodies, such as rituximab, have poor therapeutic efficacy in autoimmune diseases, mainly due to the persistence of autoreactive B cells in lymphatic organs and inflamed tissues. The adoptive transfer of T cells engineered to target tumour cells via chimeric antigen receptors (CARs) has emerged as an effective treatment modality in B-cell malignancies. In the last 2 years treatment with autologous CAR T cells directed against the CD19 antigen has been introduced in therapy of autoimmune disease. CD19 CAR T cells induced a rapid and sustained depletion of circulating B cells, as well as in a complete clinical and serological remission of refractory systemic lupus erythematosus and dermatomyositis. In this paper, we discuss the evolving strategies for targeting autoreactive B cells via CAR T cells, which might be used for targeted therapy in autoimmune diseases.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Andreas Mackensen
- Deutsches Zentrum Immuntherapie, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Internal Medicine 5-Hematology and Clinical Oncology, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Otto-von-Guericke University, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation (GCI(3)), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
27
|
Roeser A, Lazarus AH, Mahévas M. B cells and antibodies in refractory immune thrombocytopenia. Br J Haematol 2023; 203:43-53. [PMID: 37002711 DOI: 10.1111/bjh.18773] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disorder mediated by pathogenic autoantibodies secreted by plasma cells (PCs) in many patients. In refractory ITP patients, the persistence of splenic and bone marrow autoreactive long-lived PCs (LLPCs) may explain primary failure of rituximab and splenectomy respectively. The reactivation of autoreactive memory B cells generating new autoreactive PCs contributes to relapses after initial response to rituximab. Emerging strategies targeting B cells and PCs aim to prevent the settlement of splenic LLPCs with the combination of anti-BAFF and rituximab, to deplete autoreactive PCs with anti-CD38 antibodies, and to induce deeper B-cell depletion in tissues with novel anti-CD20 monoclonal antibodies and anti-CD19 therapies. Alternative strategies, focused on controlling autoantibody mediated effects, have also been developed, including SYK and BTK inhibitors, complement inhibitors, FcRn blockers and inhibitors of platelet desialylation.
Collapse
Affiliation(s)
- Anaïs Roeser
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, ATIP-Avenir TeamAI2B, Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Matthieu Mahévas
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, ATIP-Avenir TeamAI2B, Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| |
Collapse
|
28
|
Walker K, Mistry A, Watson CM, Nadat F, O'Callaghan E, Care M, Crinnion LA, Arumugakani G, Bonthron DT, Carter C, Doody GM, Savic S. Inherited CD19 Deficiency Does Not Impair Plasma Cell Formation or Response to CXCL12. J Clin Immunol 2023; 43:1543-1556. [PMID: 37246174 PMCID: PMC10499936 DOI: 10.1007/s10875-023-01511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The human CD19 antigen is expressed throughout B cell ontogeny with the exception of neoplastic plasma cells and a subset of normal plasma cells. CD19 plays a role in propagating signals from the B cell receptor and other receptors such as CXCR4 in mature B cells. Studies of CD19-deficient patients have confirmed its function during the initial stages of B cell activation and the production of memory B cells; however, its role in the later stages of B cell differentiation is unclear. OBJECTIVE Using B cells from a newly identified CD19-deficient individual, we investigated the role of CD19 in the generation and function of plasma cells using an in vitro differentiation model. METHODS Flow cytometry and long-read nanopore sequencing using locus-specific long-range amplification products were used to screen a patient with suspected primary immunodeficiency. Purified B cells from the patient and healthy controls were activated with CD40L, IL-21, IL-2, and anti-Ig, then transferred to different cytokine conditions to induce plasma cell differentiation. Subsequently, the cells were stimulated with CXCL12 to induce signalling through CXCR4. Phosphorylation of key downstream proteins including ERK and AKT was assessed by Western blotting. RNA-seq was also performed on in vitro differentiating cells. RESULTS Long-read nanopore sequencing identified the homozygous pathogenic mutation c.622del (p.Ser208Profs*19) which was corroborated by the lack of CD19 cell surface staining. CD19-deficient B cells that are predominantly naïve generate phenotypically normal plasma cells with expected patterns of differentiation-associated genes and normal levels of CXCR4. Differentiated CD19-deficient cells were capable of responding to CXCL12; however, plasma cells derived from naïve B cells, both CD19-deficient and sufficient, had relatively diminished signaling compared to those generated from total B cells. Additionally, CD19 ligation on normal plasma cells results in AKT phosphorylation. CONCLUSION CD19 is not required for generation of antibody-secreting cells or the responses of these populations to CXCL12, but may alter the response other ligands that require CD19 potentially affecting localization, proliferation, or survival. The observed hypogammaglobulinemia in CD19-deficient individuals is therefore likely attributable to the lack of memory B cells.
Collapse
Affiliation(s)
- Kieran Walker
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Anoop Mistry
- Department of Clinical Immunology and Allergy, St James's University Hospital, 5.18 Clinical Sciences Building, Beckett Street, Leeds, LS9 7TF, UK
| | - Christopher M Watson
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Fatima Nadat
- Department of Clinical Immunology and Allergy, St James's University Hospital, 5.18 Clinical Sciences Building, Beckett Street, Leeds, LS9 7TF, UK
| | - Eleanor O'Callaghan
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Matthew Care
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Laura A Crinnion
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
- Yorkshire and North East Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Gururaj Arumugakani
- Department of Clinical Immunology and Allergy, St James's University Hospital, 5.18 Clinical Sciences Building, Beckett Street, Leeds, LS9 7TF, UK
| | - David T Bonthron
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds, LS7 4SA, UK
| | - Clive Carter
- Department of Clinical Immunology and Allergy, St James's University Hospital, 5.18 Clinical Sciences Building, Beckett Street, Leeds, LS9 7TF, UK
| | - Gina M Doody
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, 5.18 Clinical Sciences Building, Beckett Street, Leeds, LS9 7TF, UK.
- National Institute for Health Research, Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), St James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
29
|
Schulz AR, Fiebig L, Hirseland H, Diekmann LM, Reinke S, Hardt S, Niedobitek A, Mei HE. SARS-CoV-2 specific plasma cells acquire long-lived phenotypes in human bone marrow. EBioMedicine 2023; 95:104735. [PMID: 37556944 PMCID: PMC10432952 DOI: 10.1016/j.ebiom.2023.104735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND SARS-CoV-2 specific antibody-secreting plasma cells (PC) mediating specific humoral immunity have been identified in the human bone marrow (BM) after COVID-19 or vaccination against SARS-CoV-2. However, it remained unclear whether or not they acquire phenotypes of human memory plasma cells. METHODS SARS-CoV-2-specific human bone marrow plasma cells (BMPC) were characterised by tetramer-based, antigen-specific flow cytometry and FluoroSpot assay. FINDINGS SARS-CoV-2 spike-S1-specific PC were detectable in all tested BM samples of previously vaccinated individuals, representing 0.22% of total BMPC. The majority of SARS-CoV-2-specific BMPC expressed IgG and their specificity for the spike S1 protein indicated emergence from a systemic vaccination response. Of note, one-fifth of SARS-CoV-2-specific BMPC showed the phenotype of memory plasma cells, i.e., downregulated CD19 and present or absent CD45 expression. INTERPRETATION Our data indicate the establishment of phenotypically diverse SARS-CoV-2-specific PC in the human BM after basic mRNA immunization, including the formation of memory phenotypes. These results suggest the induction of durable humoral immunity after basic mRNA vaccination against SARS-CoV-2. FUNDING The study was supported by funding by the DFG grants TRR130 TP24, ME 3644/8-1, and the Berlin Senate. SR received funding from DFGSFB-1444 C01 Central Service Project.
Collapse
Affiliation(s)
- Axel R Schulz
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | - Leonard Fiebig
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | - Heike Hirseland
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | - Lisa-Marie Diekmann
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | - Simon Reinke
- Cell Harvesting Core, Berlin Institute of Health, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany.
| |
Collapse
|
30
|
Bonaud A, Larraufie P, Khamyath M, Szachnowski U, Flint SM, Brunel-Meunier N, Delhommeau F, Munier A, Lönnberg T, Toffano-Nioche C, Gautheret D, Balabanian K, Espéli M. Transinteractome analysis reveals distinct niche requirements for isotype-based plasma cell subsets in the bone marrow. Eur J Immunol 2023; 53:e2250334. [PMID: 37377335 DOI: 10.1002/eji.202250334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Bone marrow (BM) long-lived plasma cells (PCs) are essential for long-term protection against infection, and their persistence within this organ relies on interactions with Cxcl12-expressing stromal cells that are still not clearly identified. Here, using single cell RNAseq and in silico transinteractome analyses, we identified Leptin receptor positive (LepR+ ) mesenchymal cells as the stromal cell subset most likely to interact with PCs within the BM. Moreover, we demonstrated that depending on the isotype they express, PCs may use different sets of integrins and adhesion molecules to interact with these stromal cells. Altogether, our results constitute an unprecedented characterization of PC subset stromal niches and open new avenues for the specific targeting of BM PCs based on their isotype.
Collapse
Affiliation(s)
- Amélie Bonaud
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Hôpital St-Louis, Paris, France
| | - Pierre Larraufie
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mélanie Khamyath
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Hôpital St-Louis, Paris, France
| | - Ugo Szachnowski
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Shaun M Flint
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Nadège Brunel-Meunier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), AP-HP, Saint-Antoine Hospital, Paris, France
| | - François Delhommeau
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), AP-HP, Saint-Antoine Hospital, Paris, France
| | - Annie Munier
- Sorbonne Université-INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Plateforme de Cytométrie CISA, Paris, France
| | - Tapio Lönnberg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Claire Toffano-Nioche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Daniel Gautheret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Hôpital St-Louis, Paris, France
| | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Hôpital St-Louis, Paris, France
| |
Collapse
|
31
|
Hill TF, Narvekar P, Asher G, Camp N, Thomas KR, Tasian SK, Rawlings DJ, James RG. Human plasma cells engineered to secrete bispecifics drive effective in vivo leukemia killing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554523. [PMID: 37662410 PMCID: PMC10473709 DOI: 10.1101/2023.08.24.554523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Bispecific antibodies are an important tool for the management and treatment of acute leukemias. Advances in genome-engineering have enabled the generation of human plasma cells that secrete therapeutic proteins and are capable of long-term in vivo engraftment in humanized mouse models. As a next step towards clinical translation of engineered plasma cells (ePCs) towards cancer therapy, here we describe approaches for the expression and secretion of bispecific antibodies by human plasma cells. We show that human ePCs expressing either fragment crystallizable domain deficient anti-CD19 × anti-CD3 (blinatumomab) or anti-CD33 × anti-CD3 bispecific antibodies mediate T cell activation and direct T cell killing of specific primary human cell subsets and B-acute lymphoblastic leukemia or acute myeloid leukemia cell lines in vitro. We demonstrate that knockout of the self-expressed antigen, CD19, boosts anti-CD19 bispecific secretion by ePCs and prevents self-targeting. Further, anti-CD19 bispecific-ePCs elicited tumor eradication in vivo following local delivery in flank-implanted Raji lymphoma cells. Finally, immunodeficient mice engrafted with anti-CD19 bispecific-ePCs and autologous T cells potently prevented in vivo growth of CD19+ acute lymphoblastic leukemia in patient-derived xenografts. Collectively, these findings support further development of ePCs for use as a durable, local delivery system for the treatment of acute leukemias, and potentially other cancers.
Collapse
Affiliation(s)
- Tyler F. Hill
- University of Washington, Medical Scientist Training Program, Seattle WA
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapy, Seattle WA
| | - Parnal Narvekar
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapy, Seattle WA
| | - Gregory Asher
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapy, Seattle WA
| | - Nathan Camp
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapy, Seattle WA
| | - Kerri R. Thomas
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapy, Seattle WA
| | - Sarah K. Tasian
- Children’s Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research, Philadelphia PA
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - David J. Rawlings
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapy, Seattle WA
- University of Washington, Departments of Pediatrics and Immunology, Seattle WA
| | - Richard G. James
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapy, Seattle WA
- University of Washington, Departments of Pediatrics and Pharmacology, Seattle WA
| |
Collapse
|
32
|
Steinmetz TD, Verstappen GM, Suurmond J, Kroese FGM. Targeting plasma cells in systemic autoimmune rheumatic diseases - Promises and pitfalls. Immunol Lett 2023; 260:44-57. [PMID: 37315847 DOI: 10.1016/j.imlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Plasma cells are the antibody secretors of the immune system. Continuous antibody secretion over years can provide long-term immune protection but could also be held responsible for long-lasting autoimmunity in case of self-reactive plasma cells. Systemic autoimmune rheumatic diseases (ARD) affect multiple organ systems and are associated with a plethora of different autoantibodies. Two prototypic systemic ARDs are systemic lupus erythematosus (SLE) and Sjögren's disease (SjD). Both diseases are characterized by B-cell hyperactivity and the production of autoantibodies against nuclear antigens. Analogues to other immune cells, different subsets of plasma cells have been described. Plasma cell subsets are often defined dependent on their current state of maturation, that also depend on the precursor B-cell subset from which they derived. But, a universal definition of plasma cell subsets is not available so far. Furthermore, the ability for long-term survival and effector functions may differ, potentially in a disease-specific manner. Characterization of plasma cell subsets and their specificity in individual patients can help to choose a suitable targeting approach for either a broad or more selective plasma cell depletion. Targeting plasma cells in systemic ARDs is currently challenging because of side effects or varying depletion efficacies in the tissue. Recent developments, however, like antigen-specific targeting and CAR-T-cell therapy might open up major benefits for patients beyond current treatment options.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Gwenny M Verstappen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Kroese
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 2023; 82:999-1014. [PMID: 36792346 DOI: 10.1136/ard-2022-223741] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Research elucidating the pathogenesis of systemic lupus erythematosus (SLE) has defined two critical families of mediators, type I interferon (IFN-I) and autoantibodies targeting nucleic acids and nucleic acid-binding proteins, as fundamental contributors to the disease. On the fertile background of significant genetic risk, a triggering stimulus, perhaps microbial, induces IFN-I, autoantibody production or most likely both. When innate and adaptive immune system cells are engaged and collaborate in the autoimmune response, clinical SLE can develop. This review describes recent data from genetic analyses of patients with SLE, along with current studies of innate and adaptive immune function that contribute to sustained IFN-I pathway activation, immune activation and autoantibody production, generation of inflammatory mediators and tissue damage. The goal of these studies is to understand disease mechanisms, identify therapeutic targets and stimulate development of therapeutics that can achieve improved outcomes for patients.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
34
|
Asrat S, Devlin JC, Vecchione A, Klotz B, Setliff I, Srivastava D, Limnander A, Rafique A, Adler C, Porter S, Murphy AJ, Atwal GS, Sleeman MA, Lim WK, Orengo JM. TRAPnSeq allows high-throughput profiling of antigen-specific antibody-secreting cells. CELL REPORTS METHODS 2023; 3:100522. [PMID: 37533642 PMCID: PMC10391570 DOI: 10.1016/j.crmeth.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
Following activation by cognate antigen, B cells undergo fine-tuning of their antigen receptors and may ultimately differentiate into antibody-secreting cells (ASCs). While antigen-specific B cells that express surface receptors (B cell receptors [BCRs]) can be readily cloned and sequenced following flow sorting, antigen-specific ASCs that lack surface BCRs cannot be easily profiled. Here, we report an approach, TRAPnSeq (antigen specificity mapping through immunoglobulin [Ig] secretion TRAP and Sequencing), that allows capture of secreted antibodies on the surface of ASCs, which in turn enables high-throughput screening of single ASCs against large antigen panels. This approach incorporates flow cytometry, standard microfluidic platforms, and DNA-barcoding technologies to characterize antigen-specific ASCs through single-cell V(D)J, RNA, and antigen barcode sequencing. We show the utility of TRAPnSeq by profiling antigen-specific IgG and IgE ASCs from both mice and humans and highlight its capacity to accelerate therapeutic antibody discovery from ASCs.
Collapse
Affiliation(s)
| | | | | | - Brian Klotz
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Ian Setliff
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | | | | - Wei Keat Lim
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | |
Collapse
|
35
|
Robinson MJ, Ding Z, Dowling MR, Hill DL, Webster RH, McKenzie C, Pitt C, O'Donnell K, Mulder J, Brodie E, Hodgkin PD, Wong NC, Quast I, Tarlinton DM. Intrinsically determined turnover underlies broad heterogeneity in plasma-cell lifespan. Immunity 2023:S1074-7613(23)00183-8. [PMID: 37164016 DOI: 10.1016/j.immuni.2023.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
Antibodies produced by antibody-secreting plasma cells (ASCs) underlie multiple forms of long-lasting immunity. Here we examined the mechanisms regulating ASC turnover and persistence using a genetic reporter to time-stamp ASCs. This approach revealed ASC lifespans as heterogeneous and falling on a continuum, with only a small fraction surviving for >60 days. ASC longevity past 60 days was independent of isotype but correlated with a phenotype that developed progressively and ultimately associated with an underlying "long-lived" ASC (LL ASC)-enriched transcriptional program. While some of the differences between LL ASCs and other ASCs appeared to be acquired with age, other features were shared with some younger ASCs, such as high CD138 and CD93. Turnover was unaffected by altered ASC production, arguing against competition for niches as a major driver of turnover. Thus, ASC turnover is set by intrinsic lifespan limits, with steady-state population dynamics governed by niche vacancy rather than displacement.
Collapse
Affiliation(s)
- Marcus James Robinson
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia.
| | - Zhoujie Ding
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Mark R Dowling
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, 305 Grattan St, Parkville, VIC 3000, Australia; Immunology Division, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Danika L Hill
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Rosela H Webster
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Craig McKenzie
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Kristy O'Donnell
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Jesse Mulder
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Erica Brodie
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia; Monash Bioinformatics Platform, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Philip D Hodgkin
- Immunology Division, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3050, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nick C Wong
- Monash Bioinformatics Platform, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| | - David M Tarlinton
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
36
|
Derksen LY, Tesselaar K, Borghans JAM. Memories that last: Dynamics of memory T cells throughout the body. Immunol Rev 2023. [PMID: 37114435 DOI: 10.1111/imr.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Memory T cells form an essential part of immunological memory, which can last for years or even a lifetime. Much experimental work has shown that the individual cells that make up the memory T-cell pool are in fact relatively short-lived. Memory T cells isolated from the blood of humans, or the lymph nodes and spleen of mice, live about 5-10 fold shorter than naive T cells, and much shorter than the immunological memory they convey. The commonly accepted view is, therefore, that long-term T-cell memory is maintained dynamically rather than by long-lived cells. This view is largely based on memory T cells in the circulation, identified using rather broad phenotypic markers, and on research in mice living in overly clean conditions. We wondered to what extent there may be heterogeneity in the dynamics and lifespans of memory T cells. We here review what is currently known about the dynamics of memory T cells in different memory subsets, locations in the body and conditions of microbial exposure, and discuss how this may be related to immunometabolism and how this knowledge can be used in various clinical settings.
Collapse
Affiliation(s)
- Lyanne Y Derksen
- Leukocyte Dynamics Group, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kiki Tesselaar
- Leukocyte Dynamics Group, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - José A M Borghans
- Leukocyte Dynamics Group, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
37
|
Deng L, Xu G. Update on the Application of Monoclonal Antibody Therapy in Primary Membranous Nephropathy. Drugs 2023; 83:507-530. [PMID: 37017915 DOI: 10.1007/s40265-023-01855-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
When first introduced, rituximab (RTX), a chimeric anti-CD20 monoclonal antibody, brought about an alternative therapeutic paradigm for primary membranous nephropathy (PMN). Rituximab was shown to be effective and safe in PMN patients with kidney dysfunction, with. patients receiving second-line rituximab therapy achieving remission as effectively as those patients who had not previously received immunotherapy. No safety issues were reported. The B cell-driven protocol seems to be as efficient as the 375 mg/m2 × 4 regimen or 1 g × 2 regimen in achieving B cell depletion and remission, but patients with high M-type phospholipase A2 receptor (PLA2R) antibody levels may benefit from a higher dose of rituximab. While rituximab added another therapeutic option to the treatment regimen, it does have limitations as 20 to 40% of patients do not respond. Not all patients respond to RTX therapy for lymphoproliferative disorders either, therefore further novel anti-CD20 monoclonal antibodies have been developed and these may provide alternative therapeutic options for PMN. Ofatumumab, a fully human monoclonal antibody, specifically recognizes an epitope encompassing both the small and large extracellular loops of the CD20 molecule, resulting in increased complement-dependent cytotoxic activity. Ocrelizumab binds an alternative but overlapping epitope region to rituximab and displays enhanced antibody-dependent cellular cytotoxic (ADCC) activities. Obinutuzumab is designed to have a modified elbow-hinge amino acid sequence, leading to increased direct cell death induction and ADCC activities. In PMN clinical studies, ocrelizumab and obinutuzumab showed promising results, while ofatumumab displayed mixed results. However, there is a lack of randomized controlled trials with large samples, especially direct head-to-head comparisons. Alternative molecular mechanisms have been suggested in this context to explore novel therapeutic strategies. B cell activator-targeted, plasma cell-targeted and complement-directed treatments may lead to novel therapy paradigms for PMN. Exploratory strategies for the use of drugs with different mechanisms, such as a combination of rituximab and cyclophosphamide and a steroid, a combination of rituximab and a calcineurin inhibitor, may provide more rapid and efficient remission, but the combination of standard immunosuppression with rituximab could increase infection risk.
Collapse
Affiliation(s)
- Le Deng
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
38
|
Lee D, Jordan AI, Menges MA, Lazaryan A, Nishihori T, Gaballa SR, Shah BD, Pinilla-Ibarz J, Baluch A, Klinkova OV, Chavez JC, Jain MD, Locke FL. Pneumococcal Conjugate Vaccine Does Not Induce Humoral Response When Administrated Within the Six Months After CD19 CAR T-Cell Therapy. Transplant Cell Ther 2023; 29:277.e1-277.e9. [PMID: 35970303 DOI: 10.1016/j.jtct.2022.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
CD19 targeted chimeric antigen receptor-modified T cell therapy (CAR-T) leads to B cell aplasia and low serum immunoglobulin levels. Long-lived CD19-negative plasma cells may persist through the therapy and generate antibodies. There is a paucity of data describing how CAR-T impacts the persistence of antibodies against vaccine-related antigens and the degree to which CAR-T recipients may respond to vaccines. We characterized the effect of CAR-T on pneumococcal immunoglobulin G (IgG) titers and determine whether pneumococcal conjugate vaccine (PCV13) administered after CAR-T develops long-term humoral protection against pneumococcus. A retrospective chart review was performed to identify CAR-T recipients who had serum pneumococcal IgG titers drawn before (baseline) or at days +90, +180, +270, +360, or +540 after CAR-T. We then determined whether they received PCV13 vaccination at these timepoints. IgG concentration ≥1.3 μg/mL was considered protective for that serotype, and patients with ≥6/11 tested vaccine-specific serotypes meeting this threshold were deemed to have humoral protection against pneumococcus. Absolute pneumococcal IgG titers and the proportion of patients with humoral protection, stratified by serotype, and vaccination status were compared by paired nonparametric t-tests. Absolute counts for lymphocyte, CD4 T-cell, and CD19 cell and total IgG level, along with the rate of invasive pneumococcal infections, were measured at these timepoints. A total of 148 CAR-T recipients with pneumococcal IgG titers measured for at least one of the defined time points were identified. At baseline, 25% (19/76) patients with evaluable pneumococcal IgG titers met the definition of humoral protection. Among 44 patients with paired pneumococcal IgG titers at baseline and day+90, absolute IgG titers of all serotypes decreased (geometric mean = 0.41 and 0.32 µg/mL, respectively; P < .001). Thirteen patients were vaccinated following the titer blood draw at day+90 and had paired pneumococcal IgG titers at day+90 and day180. Absolute IgG titers of all vaccine specific serotypes in these vaccinated patients decreased from day+90 to day+180 (geometric mean = 0.36 and 0.29 µg/mL, respectively; P = .03). The proportion of patients meeting the criteria of humoral protection remained the same at day+180 despite vaccination at day+90. The results were similar among 8 patients vaccinated at day+180, as well as 7 patients consecutively vaccinated at day+90 and day+180 with corresponding pneumococcal IgG titers. When all vaccine-specific pneumococcal IgG titers were pooled together by timepoint regardless of vaccination status, the proportion of patients with humoral protection decreased until day+540. Some patients developed humoral protection after vaccination at day+360, maintained seroprotective IgG titers from baseline, or developed protection after receiving intravenous immunoglobulin treatment secondary to recurrent infections. Our study demonstrated that few large B cell lymphoma patients had humoral protection against pneumococcus at baseline, and existing IgG titers decreased after CAR-T. PCV13 vaccination at day+90 or day+180 after CAR-T did not increase humoral protection against pneumococcus. Only at day+540 was there evidence of humoral protection against pneumococcus in a modest proportion of patients. Clinical trials are needed to determine the optimal timing of vaccination, before or after CAR-T, to develop protective immunity against Streptococcus pneumoniae infections.
Collapse
Affiliation(s)
- Dasom Lee
- Department of Internal Medicine, University of South Florida, Tampa, Florida
| | - Aryanna I Jordan
- Department of Internal Medicine, University of South Florida, Tampa, Florida
| | - Meghan A Menges
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Alexandr Lazaryan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Taiga Nishihori
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Sameh R Gaballa
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | - Bijal D Shah
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | | | - Aliyah Baluch
- Infectious Disease Division, Moffitt Cancer Center, Tampa, Florida
| | - Olga V Klinkova
- Infectious Disease Division, Moffitt Cancer Center, Tampa, Florida
| | - Julio C Chavez
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | - Michael D Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
39
|
Tarlinton DM, Ding Z, Tellier J, Nutt SL. Making sense of plasma cell heterogeneity. Curr Opin Immunol 2023; 81:102297. [PMID: 36889029 DOI: 10.1016/j.coi.2023.102297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 03/08/2023]
Abstract
Plasma cells (PCs) are essential for the quality and longevity of protective immunity. The canonical humoral response to vaccination involves induction of germinal centers in lymph nodes followed by maintenance by bone marrow-resident PCs, although there are many variations of this theme. Recent studies have highlighted the importance of PCs in nonlymphoid organs, including the gut, central nervous system, and skin. These sites harbor PCs with distinct isotypes and possible immunoglobulin-independent functions. Indeed, bone marrow now appears unique in housing PCs derived from multiple other organs. The mechanisms through which the bone marrow maintains PC survival long-term and the impact of their diverse origins on this process remain very active areas of research.
Collapse
Affiliation(s)
- David M Tarlinton
- Department of Immunology, Monash University, Melbourne, Victoria, Australia.
| | - Zhoujie Ding
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Julie Tellier
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
40
|
Azar JH, Evans JP, Sikorski MH, Chakravarthy KB, McKenney S, Carmody I, Zeng C, Teodorescu R, Song NJ, Hamon JL, Bucci D, Velegraki M, Bolyard C, Weller KP, Reisinger SA, Bhat SA, Maddocks KJ, Denlinger N, Epperla N, Gumina RJ, Vlasova AN, Oltz EM, Saif LJ, Chung D, Woyach JA, Shields PG, Liu SL, Li Z, Rubinstein MP. Selective suppression of de novo SARS-CoV-2 vaccine antibody responses in patients with cancer on B cell-targeted therapy. JCI Insight 2023; 8:e163434. [PMID: 36749632 PMCID: PMC10070099 DOI: 10.1172/jci.insight.163434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
We assessed vaccine-induced antibody responses to the SARS-CoV-2 ancestral virus and Omicron variant before and after booster immunization in 57 patients with B cell malignancies. Over one-third of vaccinated patients at the pre-booster time point were seronegative, and these patients were predominantly on active cancer therapies such as anti-CD20 monoclonal antibody. While booster immunization was able to induce detectable antibodies in a small fraction of seronegative patients, the overall booster benefit was disproportionately evident in patients already seropositive and not receiving active therapy. While ancestral virus- and Omicron variant-reactive antibody levels among individual patients were largely concordant, neutralizing antibodies against Omicron tended to be reduced. Interestingly, in all patients, including those unable to generate detectable antibodies against SARS-CoV-2 spike, we observed comparable levels of EBV- and influenza-reactive antibodies, demonstrating that B cell-targeting therapies primarily impair de novo but not preexisting antibody levels. These findings support rationale for vaccination before cancer treatment.
Collapse
Affiliation(s)
- Joseph H. Azar
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - John P. Evans
- Center for Retrovirus Research
- Department of Veterinary Biosciences
- Molecular, Cellular and Developmental Biology Program
| | - Madison H. Sikorski
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Karthik B. Chakravarthy
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Selah McKenney
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Ian Carmody
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Cong Zeng
- Center for Retrovirus Research
- Department of Veterinary Biosciences
| | - Rachael Teodorescu
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - No-Joon Song
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Jamie L. Hamon
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Donna Bucci
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Maria Velegraki
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Chelsea Bolyard
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Kevin P. Weller
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Sarah A. Reisinger
- The Ohio State University Comprehensive Cancer Center – James, The James Cancer Hospital
| | - Seema A. Bhat
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center – James
| | - Kami J. Maddocks
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center – James
| | - Nathan Denlinger
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center – James
| | - Narendranath Epperla
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center – James
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine; and
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Animal Sciences Department, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute
| | - Eugene M. Oltz
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
- Department of Microbial Infection and Immunity; and
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute
| | - Dongjun Chung
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer A. Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center – James
| | - Peter G. Shields
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Shan-Lu Liu
- Center for Retrovirus Research
- Department of Veterinary Biosciences
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute
- Department of Microbial Infection and Immunity; and
| | - Zihai Li
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| | - Mark P. Rubinstein
- Division of Medical Oncology, Department of Internal Medicine
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James
| |
Collapse
|
41
|
Shah M, DeLaat A, Cavanaugh C. Treatment of membranous nephropathy: Perspectives on current and future therapies. FRONTIERS IN NEPHROLOGY 2023; 3:1110355. [PMID: 37675368 PMCID: PMC10479573 DOI: 10.3389/fneph.2023.1110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 09/08/2023]
Abstract
Primary membranous nephropathy remains one of the most frequent causes of nephrotic syndrome in adults. It is an autoimmune disorder in which auto-antibodies target antigens at the podocytes cell membrane-basement membrane interface. Our understanding of membranous nephropathy has expanded dramatically as of late. After the initial discovery of the phospholipase A2 receptor auto-antibody in 2009, eight more antigens have been discovered. These discoveries have led to refinement in our understanding of the pathogenesis, diagnosis, and natural history of primary membranous nephropathy. Now, many experts advocate for redefining primary membranous nephropathy based on antigen, potentially shedding the primary and secondary nomenclature. Recently, therapies for primary membranous have also expanded. Immunosuppressive therapies like cyclophosphamide and rituximab, which primarily target B-cells, remain the cornerstone of therapy. However, there is still significant room for improvement, as many as 30-40% do not respond to this therapy according to recent trials. Additionally, drugs targeting complement, and other novel therapies are also under investigation. In this review we will discuss the available therapies for primary membranous nephropathy in light of recent clinic trials like GEMRITUX, MENTOR, RI-CYCLO, and STARMEN, as well as management strategies. While the last 10 years have seen a boom in our mechanistic understanding of this ever-diversifying disease, we are likely to see a similar boom in the therapeutic options in the years to come.
Collapse
Affiliation(s)
- Monarch Shah
- Division of Nephrology, University of Virginia, Charlottesville, VA, United States
| | - Andrew DeLaat
- Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
| | - Corey Cavanaugh
- Division of Nephrology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
42
|
Merino-Vico A, Frazzei G, van Hamburg JP, Tas SW. Targeting B cells and plasma cells in autoimmune diseases: From established treatments to novel therapeutic approaches. Eur J Immunol 2023; 53:e2149675. [PMID: 36314264 PMCID: PMC10099814 DOI: 10.1002/eji.202149675] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 02/02/2023]
Abstract
Autoimmune diseases are characterized by the recognition of self-antigens by the immune system, which leads to inflammation and tissue damage. B cells are directly and indirectly involved in the pathophysiology of autoimmunity, both via antigen-presentation to T cells and production of proinflammatory cytokines and/or autoantibodies. Consequently, B lineage cells have been identified as therapeutic targets in autoimmune diseases. B cell depleting strategies have proven beneficial in the treatment of rheumatoid arthritis (RA), systemic lupus erythematous (SLE), ANCA-associated vasculitis (AAV), multiple sclerosis (MS), and a wide range of other immune-mediated inflammatory diseases (IMIDs). However, not all patients respond to treatment or may not reach (drug-free) remission. Moreover, B cell depleting therapies do not always target all B cell subsets, such as short-lived and long-lived plasma cells. These cells play an active role in autoimmunity and in certain diseases their depletion would be beneficial to achieve disease remission. In the current review article, we provide an overview of novel strategies to target B lineage cells in autoimmune diseases, with the focus on rheumatic diseases. Both advanced therapies that have recently become available and more experimental treatments that may reach the clinic in the near future are discussed.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Giulia Frazzei
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Jan Piet van Hamburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| |
Collapse
|
43
|
Ulbricht C, Cao Y, Niesner RA, Hauser AE. In good times and in bad: How plasma cells resolve stress for a life-long union with the bone marrow. Front Immunol 2023; 14:1112922. [PMID: 37033993 PMCID: PMC10080396 DOI: 10.3389/fimmu.2023.1112922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Yu Cao
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Raluca A. Niesner
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- *Correspondence: Anja E. Hauser,
| |
Collapse
|
44
|
Munera M, Buendía E, Sanchez A, Viasus D, Sanchez J. AQP4 as a vintage autoantigen: what do we know till now? Heliyon 2022; 8:e12132. [PMID: 36506380 PMCID: PMC9730132 DOI: 10.1016/j.heliyon.2022.e12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- M. Munera
- Medical Research Group (GINUMED), Universitary Corporation Rafael Nuñez, Colombia,Corresponding author.
| | - E. Buendía
- Faculty of Medicine, University of Cartagena, Cartagena, Colombia,Department of Internal Medicine, Centro Hospitalario Serena del Mar, Cartagena, Colombia,Clinical and Biomedical Research Group, Faculty of Medicine, University of Cartagena, Colombia
| | - A. Sanchez
- Faculty of Medicine, University of Cartagena, Cartagena, Colombia,Clinical and Biomedical Research Group, Faculty of Medicine, University of Cartagena, Colombia
| | - D. Viasus
- Division of Health Sciences, Universidad del Norte, Barranquilla, Colombia
| | - J. Sanchez
- Group of Clinical and Experimental Allergy (GACE), IPS Universitaria, University of Antioquia, Medellín, Colombia
| |
Collapse
|
45
|
Kwiatkowska KM, Mkindi CG, Nielsen CM. Human lymphoid tissue sampling for vaccinology. Front Immunol 2022; 13:1045529. [PMID: 36466924 PMCID: PMC9714609 DOI: 10.3389/fimmu.2022.1045529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 02/15/2024] Open
Abstract
Long-lived plasma cells (LLPCs) - largely resident in the bone marrow - secrete antibody over months and years, thus maintaining serum antibody concentrations relevant for vaccine-mediated immunity. Little is known regarding factors that can modulate the induction of human LLPC responses in draining lymph node germinal centres, or those that maintain LLPCs in bone marrow niches following vaccination. Here, we review human and non-human primate vaccination studies which incorporate draining lymph node and/or bone marrow aspirate sampling. We emphasise the key contributions these samples can make to improve our understanding of LLPC immunology and guide rational vaccine development. Specifically, we highlight findings related to the impact of vaccine dosing regimens, adjuvant/vaccine platform selection, duration of germinal centre reactions in draining lymph nodes and relevance for timing of tissue sampling, and heterogeneity in bone marrow plasma cell populations. Much of this work has come from recent studies with SARS-CoV-2 vaccine candidates or, with respect to the non-human primate work, HIV vaccine development.
Collapse
Affiliation(s)
| | - Catherine G. Mkindi
- Department of Intervention and Clinical Trials, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Carolyn M. Nielsen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
Wellford SA, Moseman AP, Dao K, Wright KE, Chen A, Plevin JE, Liao TC, Mehta N, Moseman EA. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity 2022; 55:2118-2134.e6. [PMID: 36137543 PMCID: PMC9649878 DOI: 10.1016/j.immuni.2022.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.
Collapse
Affiliation(s)
| | - Annie Park Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kianna Dao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Katherine E Wright
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Allison Chen
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Jona E Plevin
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Naren Mehta
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
47
|
Mackensen A, Müller F, Mougiakakos D, Böltz S, Wilhelm A, Aigner M, Völkl S, Simon D, Kleyer A, Munoz L, Kretschmann S, Kharboutli S, Gary R, Reimann H, Rösler W, Uderhardt S, Bang H, Herrmann M, Ekici AB, Buettner C, Habenicht KM, Winkler TH, Krönke G, Schett G. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med 2022; 28:2124-2132. [PMID: 36109639 DOI: 10.1038/s41591-022-02017-5] [Citation(s) in RCA: 444] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is a life-threatening autoimmune disease characterized by adaptive immune system activation, formation of double-stranded DNA autoantibodies and organ inflammation. Five patients with SLE (four women and one man) with a median (range) age of 22 (6) years, median (range) disease duration of 4 (8) years and active disease (median (range) SLE disease activity index Systemic Lupus Erythematosus Disease Activity Index: 16 (8)) refractory to several immunosuppressive drug treatments were enrolled in a compassionate-use chimeric antigen receptor (CAR) T cell program. Autologous T cells from patients with SLE were transduced with a lentiviral anti-CD19 CAR vector, expanded and reinfused at a dose of 1 × 106 CAR T cells per kg body weight into the patients after lymphodepletion with fludarabine and cyclophosphamide. CAR T cells expanded in vivo, led to deep depletion of B cells, improvement of clinical symptoms and normalization of laboratory parameters including seroconversion of anti-double-stranded DNA antibodies. Remission of SLE according to DORIS criteria was achieved in all five patients after 3 months and the median (range) Systemic Lupus Erythematosus Disease Activity Index score after 3 months was 0 (2). Drug-free remission was maintained during longer follow-up (median (range) of 8 (12) months after CAR T cell administration) and even after the reappearance of B cells, which was observed after a mean (±s.d.) of 110 ± 32 d after CAR T cell treatment. Reappearing B cells were naïve and showed non-class-switched B cell receptors. CAR T cell treatment was well tolerated with only mild cytokine-release syndrome. These data suggest that CD19 CAR T cell transfer is feasible, tolerable and highly effective in SLE.
Collapse
Affiliation(s)
- Andreas Mackensen
- Department of Internal Medicine 5-Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fabian Müller
- Department of Internal Medicine 5-Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5-Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Hematology and Oncology, Otto-von-Guericke University Magdeburg (OVGU), Magdeburg, Germany
| | - Sebastian Böltz
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Artur Wilhelm
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5-Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5-Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Simon
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis Munoz
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sascha Kretschmann
- Department of Internal Medicine 5-Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Soraya Kharboutli
- Department of Internal Medicine 5-Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Regina Gary
- Department of Internal Medicine 5-Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Reimann
- Department of Internal Medicine 5-Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolf Rösler
- Department of Internal Medicine 5-Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Uderhardt
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Martin Herrmann
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arif Bülent Ekici
- Institute of Human Genetics, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Buettner
- Institute of Human Genetics, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Thomas H Winkler
- Division of Genetics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Gerhard Krönke
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany. .,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
48
|
Mujtahedi SS, Yigitbilek F, Benavides X, Merzkani MA, Ozdogan E, Abozied O, Moore NA, Park WD, Stegall MD. Bone marrow derived long-lived plasma cell phenotypes are heterogeneous and can change in culture. Transpl Immunol 2022; 75:101726. [PMID: 36183942 DOI: 10.1016/j.trim.2022.101726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/28/2022]
Abstract
Bone marrow derived long-lived plasma cells (LLPCs) are thought to be a major source of alloantibody in sensitized transplant patients. However, studies of LLPCs have been hampered not only by the fact that they are rare and difficult to isolate and culture but also due to the lack of consensus regarding a definitive cell-surface phenotype. The goal of the current study was to determine if LLPCs have a specific, stable cell-surface phenotype. PCs were isolated from high-volume (120 cc) bone marrow aspirates that were enriched first by negative selection then positive selection using anti-CD38 antibody-coated beads and purified by cell sorting. A typical isolation resulted in >100,000 PCs that were sorted into 4 populations with variable numbers of PCs: CD19+/CD138+/CD38Hi (64.1% of the PCs), CD19-/CD138+/CD38Hi (20.9%), CD19+/CD138-/CD38Hi (10.7%), and CD19-/CD138-/CD38Hi (4.3%). The purity of each subset was 96-99%. Each subset contained PCs secreting IgG and IgA. Measles- and tetanus-specific PCs (i.e. putative IgG secreting, antigen-specific LLPCs). LLPCs were identified in both the CD19+/CD138+/CD38Hi and CD19-/CD138+/CD38Hi subsets and in the smaller CD138- subsets (when pooled). Thus, all CD38Hi subsets contained LLPCs. Cultured PCs maintained viability (>50%) and function and could be retrieved for analyses. During 7 days of culture, cell surface expression changed from baseline in many PCs. For example, approximately 20% of CD19 + CD138+/CD38Hi cells (the largest PC subset) became CD19-. CFSE assays showed no division and only a small percentage of LLPCs were Ki-67 positive suggesting that the cells did not divide in culture and that the antibody detected was not from plasmablasts. We conclude that human bone marrow LLPCs have a heterogeneous expression of CD19 and CD138, which can change during cell culture. The fact that LLPCs were found in all four subsets raises the possibility that a large percentage of PCs in the bone marrow may be LLPCs.
Collapse
Affiliation(s)
- Syed S Mujtahedi
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Furkan Yigitbilek
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Xiomara Benavides
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA; Departments of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Massini A Merzkani
- John T. Milliken Department of Medicine, Division of Nephrology, Washington University, St. Louis, MO, USA
| | - Elif Ozdogan
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Omar Abozied
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | | | - Walter D Park
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Mark D Stegall
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA; Division of Transplant Surgery, Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
49
|
Arming T cells against B cells in systemic lupus erythematosus. Nat Med 2022; 28:2009-2010. [PMID: 36163299 DOI: 10.1038/s41591-022-02024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Zhang L, Chen M, Le W, Zhang M, Tu Y, Zuo K, Chen D, Wu Y, Li S, Zeng C, Cheng Z, Xie H. Efficacy of long-term repeated rituximab treatment in refractory phospholipase A2 receptor-antibody-related membranous nephropathy. Immunotherapy 2022; 14:1237-1244. [PMID: 36097696 DOI: 10.2217/imt-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To evaluate the efficacy of long-term repeated rituximab treatment in refractory PLA2R-Ab-related membranous nephropathy (MN). Materials & methods: Rituximab was administered at a single dose of 375 mg/m2 and repeated if peripheral B-cell levels were >5/ul in 46 patients with refractory PLA2R-Ab-related MN. Results: The median frequency of rituximab treatment was 3 (IQR 2.0-4.0). A total of 32 (32/46) patients achieved remission (completed remission [CR] or partial remission [PR]) over a median time of 17.0 months, and 10 patients eventually progressed to CR. The proportion of serum PLA2R-Ab depletion was 73.91% (34/46) over a median time of 9 months. Antibody depletion preceded proteinuria remission. Conclusions: Long-term repeated rituximab treatment achieved high kidney and immunological response rates in refractory PLA2R-Ab related MN, and antibody depletion was a prerequisite for proteinuria remission.
Collapse
Affiliation(s)
- Lihua Zhang
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Mengxing Chen
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China.,Department of Blood Purification Center Nanjing First Hospital, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, 210006, China
| | - Weibo Le
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Yuanmao Tu
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Ke Zuo
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Dacheng Chen
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Yan Wu
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Shijun Li
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Zhen Cheng
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Honglang Xie
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| |
Collapse
|