1
|
Hlavac K, Pavelkova P, Ondrisova L, Mraz M. FoxO1 signaling in B cell malignancies and its therapeutic targeting. FEBS Lett 2024. [PMID: 39533662 DOI: 10.1002/1873-3468.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
FoxO transcription factors (FoxO1, FoxO3a, FoxO4, FoxO6) are a highly evolutionary conserved subfamily of the 'forkhead' box proteins. They have traditionally been considered tumor suppressors, but FoxO1 also exhibits oncogenic properties. The complex nature of FoxO1 is illustrated by its various roles in B cell development and differentiation, immunoglobulin gene rearrangement and cell-surface B cell receptor (BCR) structure, DNA damage control, cell cycle regulation, and germinal center reaction. FoxO1 is tightly regulated at a transcriptional (STAT3, HEB, EBF, FoxOs) and post-transcriptional level (Akt, AMPK, CDK2, GSK3, IKKs, JNK, MAPK/Erk, SGK1, miRNA). In B cell malignancies, recurrent FoxO1 activating mutations (S22/T24) and aberrant nuclear export and activity have been described, underscoring the potential of its therapeutic inhibition. Here, we review FoxO1's roles across B cell and myeloid malignancies, namely acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and multiple myeloma (MM). We also discuss preclinical evidence for FoxO1 targeting by currently available inhibitors (AS1708727, AS1842856, cpd10).
Collapse
Affiliation(s)
- Krystof Hlavac
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Petra Pavelkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Laura Ondrisova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
2
|
Ochodnicka-Mackovicova K, van Keimpema M, Spaargaren M, van Noesel CJM, Guikema JEJ. DNA damage-induced p53 downregulates expression of RAG1 through a negative feedback loop involving miR-34a and FOXP1. J Biol Chem 2024; 300:107922. [PMID: 39454960 PMCID: PMC11625342 DOI: 10.1016/j.jbc.2024.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
During the maturation of pre-B cells, the recombination activating gene 1 and 2 (RAG1/2) endonuclease complex plays a crucial role in coordinating V(D)J recombination by introducing DNA breaks in immunoglobulin (Ig) loci. Dysregulation of RAG1/2 has been linked to the onset of B cell malignancies, yet the mechanisms controlling RAG1/2 in pre-B cells exposed to excessive DNA damage are not fully understood. In this study, we show that DNA damage-induced activation of p53 initiates a negative-feedback loop which rapidly downregulates RAG1 levels. This feedback loop involves ataxia telangiectasia mutated activation, subsequent stabilization of p53, and modulation of microRNA-34a (miR-34a) levels, which is one of the p53 targets. Notably, this loop incorporates transcription factor forkhead box P1 as a downstream effector. The absence of p53 resulted in an increased proportion of IgM+ cells prompted to upregulate RAG1/2 and to undergo Ig light chain recombination. Similar results were obtained in primary pre-B cells with depleted levels of miR-34a. We propose that in pre-B cells undergoing Ig gene recombination, the DNA breaks activate a p53/miR-34a/forkhead box P1-mediated negative-feedback loop that contributes to the rapid downregulation of RAG. This regulation limits the RAG-dependent DNA damage, thereby protecting the stability of the genome during V(D)J rearrangement in developing B cells.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Martine van Keimpema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Zhang CC, Li Y, Jiang CY, Le QM, Liu X, Ma L, Wang FF. O-GlcNAcylation mediates H 2O 2-induced apoptosis through regulation of STAT3 and FOXO1. Acta Pharmacol Sin 2024; 45:714-727. [PMID: 38191912 PMCID: PMC10943090 DOI: 10.1038/s41401-023-01218-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
The O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is a critical post-translational modification that couples the external stimuli to intracellular signal transduction networks. However, the critical protein targets of O-GlcNAcylation in oxidative stress-induced apoptosis remain to be elucidated. Here, we show that treatment with H2O2 inhibited O-GlcNAcylation, impaired cell viability, increased the cleaved caspase 3 and accelerated apoptosis of neuroblastoma N2a cells. The O-GlcNAc transferase (OGT) inhibitor OSMI-1 or the O-GlcNAcase (OGA) inhibitor Thiamet-G enhanced or inhibited H2O2-induced apoptosis, respectively. The total and phosphorylated protein levels, as well as the promoter activities of signal transducer and activator of transcription factor 3 (STAT3) and Forkhead box protein O 1 (FOXO1) were suppressed by OSMI-1. In contrast, overexpressing OGT or treating with Thiamet-G increased the total protein levels of STAT3 and FOXO1. Overexpression of STAT3 or FOXO1 abolished OSMI-1-induced apoptosis. Whereas the anti-apoptotic effect of OGT and Thiamet-G in H2O2-treated cells was abolished by either downregulating the expression or activity of endogenous STAT3 or FOXO1. These results suggest that STAT3 or FOXO1 are the potential targets of O-GlcNAcylation involved in the H2O2-induced apoptosis of N2a cells.
Collapse
Affiliation(s)
- Chen-Chun Zhang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Yuan Li
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Chang-You Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Qiu-Min Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Fei-Fei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| |
Collapse
|
4
|
Arribas AJ, Napoli S, Cascione L, Barnabei L, Sartori G, Cannas E, Gaudio E, Tarantelli C, Mensah AA, Spriano F, Zucchetto A, Rossi FM, Rinaldi A, Castro de Moura M, Jovic S, Bordone Pittau R, Stathis A, Stussi G, Gattei V, Brown JR, Esteller M, Zucca E, Rossi D, Bertoni F. ERBB4-Mediated Signaling Is a Mediator of Resistance to PI3K and BTK Inhibitors in B-cell Lymphoid Neoplasms. Mol Cancer Ther 2024; 23:368-380. [PMID: 38052765 DOI: 10.1158/1535-7163.mct-23-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/28/2023] [Accepted: 10/11/2023] [Indexed: 12/07/2023]
Abstract
BTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead to long-lasting complete remission is rather limited, especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. We started from a marginal zone lymphoma cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole-exome sequencing, and pharmacologic screening, which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the antitumor activity of various BTK/PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK/PI3K inhibitors in parental cells and in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. An epigenetic reprogramming sustained the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were also shown to be expressed in clinical specimens. In conclusion, we showed that the overexpression of ERBB4 and its ligands represents a novel mechanism of resistance for lymphoma cells to bypass the antitumor activity of BTK and PI3K inhibitors and that targeted pharmacologic interventions can restore sensitivity to the small molecules.
Collapse
Affiliation(s)
- Alberto J Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laura Barnabei
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Eleonora Cannas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Afua A Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | | | | | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Manuel Castro de Moura
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Georg Stussi
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Valter Gattei
- Centro di Riferimento Oncologico di Aviano - CRO, Aviano, Italy
| | - Jennifer R Brown
- Chronic Lymphocytic Leukemia Center, Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
5
|
Feng M, Yang K, Wang J, Li G, Zhang H. First Report of FARSA in the Regulation of Cell Cycle and Survival in Mantle Cell Lymphoma Cells via PI3K-AKT and FOXO1-RAG1 Axes. Int J Mol Sci 2023; 24:ijms24021608. [PMID: 36675119 PMCID: PMC9865697 DOI: 10.3390/ijms24021608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Cancer-associated factors have been largely identified in the understanding of tumorigenesis and progression. However, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) have so far been neglected in cancer research due to their canonical activities in protein translation and synthesis. FARSA, the alpha subunit of the phenylalanyl-tRNA synthetase is elevated across many cancer types, but its function in mantle cell lymphoma (MCL) remains undetermined. Herein, we found the lowest levels of FARSA in patients with MCL compared with other subtypes of lymphomas, and the same lower levels of FARSA were observed in chemoresistant MCL cell lines. Unexpectedly, despite the essential catalytic roles of FARSA, knockdown of FARSA in MCL cells did not lead to cell death but resulted in accelerated cell proliferation and cell cycle, whereas overexpression of FARSA induced remarkable cell-cycle arrest and overwhelming apoptosis. Further RNA sequencing (RNA-seq) analysis and validation experiments confirmed a strong connection between FARSA and cell cycle in MCL cells. Importantly, FARSA leads to the alteration of cell cycle and survival via both PI3K-AKT and FOXO1-RAG1 axes, highlighting a FARSA-mediated regulatory network in MCL cells. Our findings, for the first time, reveal the noncanonical roles of FARSA in MCL cells, and provide novel insights into understanding the pathogenesis and progression of B-cell malignancies.
Collapse
Affiliation(s)
- Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jia Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Guilan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: ; Tel.: +86-158-7796-3252
| |
Collapse
|
6
|
Arribas AJ, Napoli S, Cascione L, Barnabei L, Sartori G, Cannas E, Gaudio E, Tarantelli C, Mensah AA, Spriano F, Zucchetto A, Rossi FM, Rinaldi A, de Moura MC, Jovic S, Pittau RB, Stathis A, Stussi G, Gattei V, Brown JR, Esteller M, Zucca E, Rossi D, Bertoni F. ERBB4-mediated signaling is a mediator of resistance to BTK and PI3K inhibitors in B cell lymphoid neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.01.522017. [PMID: 36711490 PMCID: PMC9881865 DOI: 10.1101/2023.01.01.522017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead as single agents to long-lasting complete remission is rather limited especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. Here, we show that the overexpression of ERBB4 and its ligands represents a modality for B cell neoplastic cells to bypass the anti-tumor activity of BTK and PI3K inhibitors and that targeted pharmacological interventions can restore sensitivity to the small molecules. We started from a marginal zone lymphoma (MZL) cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole exome sequencing, and pharmacological screening which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the anti-tumor activity of various BTK and PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK and PI3K inhibitors in parental cells but also in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. Multi-omics analysis underlined that an epigenetic reprogramming affected the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were shown to be expressed in clinical samples, further extending the findings of the study. In conclusions, we identified a novel ERBB4-driven mechanism of resistance to BTK and PI3K inhibitors and treatments that appear to overcome it. Key points A mechanism of secondary resistance to the PI3Kδ and BTK inhibitors in B cell neoplasms driven by secreted factors.Resistance can be reverted by targeting ERBB signaling.
Collapse
|
7
|
Zhu Y, Lin B, Ding F, Ma F, Zhou X, Zong H, Feng G, Chen Q, Chen G, Lv X. Leonurine negatively modulates T cells activity by suppressing recombination activation gene protein 2 in pulmonary fibrosis. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211035907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction The key transformed T cell transcription factor recombination activation gene protein 2 (RAG2) is regulated during inflammation to allow for the acquisition of effector T cells functions. The present study was designed to investigate whether stress signals elicited by leonurine (LEO) could lead to the degradation of RAG2 through v-akt murine thymoma viral oncogene homolog (AKT) signaling in lung fibrosis. Methods A total of 120 female mice were randomly divided into five groups (Group I–V): Normal group, bleomycin (BLM), BLM+LEO 50 mg/kg/d, BLM+LEO 100 mg/kg/d, and BLM+LEO 50 mg/kg/d+LY294002. Hematoxylin-eosin, Masson’s, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were performed to observe the pathomorphological changes. The expression of CD3+, TGF-β, RAG2, and Bcl proteins was examined by immunodetection, while that of E-cadherin (ECAD), AKT, TGF-β1, alpha-actin-2, Bax, and RAG2 was detected by Western blot analysis. Results The level of T lymphocytes was reduced sharply in LEO-treated mice as compared to the other groups. The AKT signal was greatly inhibited in the BLM group and activated with LEO treatment on day 14. In addition, RAG2 was attenuated by LEO on day 14 and day 28. LY294002 could reverse the expression of AKT and RAG2 on day 28. Remarkably, the low dose of LEO has a greater protective efficacy as compared to the high-dose LEO group in terms of pulmonary fibrosis, T cell inactivation, and apoptosis in alveolar cells. Conclusion The results of the present study suggested that LEO has a protective effect on lung fibrosis with possible mechanisms of attenuating apoptosis and inflammation via the upregulation of the AKT signal in transformed T cells by suppressing the expression and activity of RAG2.
Collapse
Affiliation(s)
- Yongping Zhu
- Department of Cardiovascular Surgery, Fujian Medical University Attached Union Hospital, Fuzhou, Fujian, China
| | - Bixia Lin
- Department of Pharmacy, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Fadian Ding
- Department of Hepatopancreatobiliary Surgery and Institute of Abdominal Surgery, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Xiaohui Zhou
- Department of Clinical Skill Training Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Haiyang Zong
- Department of Orthopedic Surgery, The 920 Hospital of the Joint Logistic Support Force, Kunming, Yunnan, China
| | - Gao Feng
- Department of Pathology, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qingquan Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Gongping Chen
- Department of Respiratory and Critical Care Medicine, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoting Lv
- Department of Respiratory and Critical Care Medicine, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Ioniţă E, Marcu A, Temelie M, Savu D, Şerbănescu M, Ciubotaru M. Radiofrequency EMF irradiation effects on pre-B lymphocytes undergoing somatic recombination. Sci Rep 2021; 11:12651. [PMID: 34135382 PMCID: PMC8208969 DOI: 10.1038/s41598-021-91790-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/31/2021] [Indexed: 01/14/2023] Open
Abstract
Intense electromagnetic fields (EMFs) induce DNA double stranded breaks (DSBs) in exposed lymphocytes.We study developing pre-B lymphocytes following V(D)J recombination at their Immunoglobulin light chain loci (IgL). Recombination physiologically induces DNA DSBs, and we tested if low doses of EMF irradiation affect this developmental stage. Recombining pre-B cells, were exposed for 48 h to low intensity EMFs (maximal radiative power density flux S of 9.5 µW/cm2 and electric field intensity 3 V/m) from waves of frequencies ranging from 720 to 1224 MHz. Irradiated pre-B cells show decreased levels of recombination, reduction which is dependent upon the power dose and most remarkably upon the frequency of the applied EMF. Although 50% recombination reduction cannot be obtained even for an S of 9.5 µW/cm2 in cells irradiated at 720 MHz, such an effect is reached in cells exposed to only 0.45 µW/cm2 power with 950 and 1000 MHz waves. A maximal four-fold recombination reduction was measured in cells exposed to 1000 MHz waves with S from 0.2 to 4.5 µW/cm2 displaying normal levels of γH2AX phosphorylated histone. Our findings show that developing B cells exposure to low intensity EMFs can affect the levels of production and diversity of their antibodies repertoire.
Collapse
Affiliation(s)
- Elena Ioniţă
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania.,Department of Immunology, Internal Medicine, Colentina Clinical Hospital, 72202, Bucharest, Romania
| | - Aurelian Marcu
- Center for Advanced Laser Technologies, National Institute for Laser Plasma and Radiation Physics, 077125, Măgurele, Ilfov, Romania
| | - Mihaela Temelie
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania
| | - Diana Savu
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania
| | - Mihai Şerbănescu
- Center for Advanced Laser Technologies, National Institute for Laser Plasma and Radiation Physics, 077125, Măgurele, Ilfov, Romania
| | - Mihai Ciubotaru
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania. .,Department of Immunology, Internal Medicine, Colentina Clinical Hospital, 72202, Bucharest, Romania.
| |
Collapse
|
9
|
AKT signaling restrains tumor suppressive functions of FOXO transcription factors and GSK3 kinase in multiple myeloma. Blood Adv 2021; 4:4151-4164. [PMID: 32898245 DOI: 10.1182/bloodadvances.2019001393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The phosphatidylinositide-3 kinases and the downstream mediator AKT drive survival and proliferation of multiple myeloma (MM) cells. AKT signaling is active in MM and has pleiotropic effects; however, the key molecular aspects of AKT dependency in MM are not fully clear. Among the various downstream AKT targets are the Forkhead box O (FOXO) transcription factors (TFs) and glycogen synthase kinase 3 (GSK3), which are negatively regulated by AKT signaling. Here we show that abrogation of AKT signaling in MM cells provokes cell death and cell cycle arrest, which crucially depends on both FOXO TFs and GSK3. Based on gene expression profiling, we defined a FOXO-repressed gene set that has prognostic significance in a large cohort of patients with MM, indicating that AKT-mediated gene activation is associated with inferior overall survival. We further show that AKT signaling stabilizes the antiapoptotic myeloid cell leukemia 1 (MCL1) protein by inhibiting FOXO- and GSK3-mediated MCL1 turnover. In concordance, abrogation of AKT signaling greatly sensitized MM cells for an MCL1-targeting BH3-mimetic, which is currently in clinical development. Taken together, our results indicate that AKT activity is required to restrain the tumor-suppressive functions of FOXO and GSK3, thereby stabilizing the antiapoptotic protein MCL1 in MM. These novel insights into the role of AKT in MM pathogenesis and MCL1 regulation provide opportunities to improve targeted therapy for patients with MM.
Collapse
|
10
|
Zhang X, Jiang L, Liu H. Forkhead Box Protein O1: Functional Diversity and Post-Translational Modification, a New Therapeutic Target? DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1851-1860. [PMID: 33976536 PMCID: PMC8106445 DOI: 10.2147/dddt.s305016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
Forkhead box protein O1 (FoXO1) is a transcription factor involved in the regulation of a wide variety of physiological process including glucose metabolism, lipogenesis, bone mass, apoptosis, and autophagy. FoXO1 dysfunction is involved in the pathophysiology of various diseases including metabolic diseases, atherosclerosis, and tumors. FoXO1 activity is regulated in response to different physiological or pathogenic conditions by changes in protein expression and post-translational modifications. Various modifications cooperate to regulate FoXO1 activity and FoXO1 target gene transcription. In this review, we summarize how different post-translational modifications regulate FoXO1 physiological function, which may provide new insights for drug design and development.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Cardiology, Shandong Rongjun General Hospital, Jinan, 250013, People's Republic of China
| | - Lusheng Jiang
- Department of Emergency, Shandong Rongjun General Hospital, Jinan, 250013, People's Republic of China
| | - Huimin Liu
- Blood Purification Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| |
Collapse
|
11
|
Wu J, Wang X, Yuan X, Shan Q, Wang Z, Wu Y, Xie J. Kinesin Family Member C1 Increases Temozolomide Resistance of Glioblastoma Through Promoting DNA Damage Repair. Cell Transplant 2021; 30:963689721991466. [PMID: 33588605 PMCID: PMC7894588 DOI: 10.1177/0963689721991466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/01/2019] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most frequent primary malignant brain tumors with a poor prognosis. Unfortunately, due to the intrinsic or acquired chemoresistance of GBM cells, it easily becomes refractory disease and tumors are easy to recur. Therefore, it is critical to elucidate the molecular mechanisms underlying the chemoresistance of GBM cells to discover more efficient therapeutic treatments. Kinesin family member C1 (KIFC1) is a normal nonessential kinesin motor that affects the progression of multiple types of cancers. However, whether KIFC1 have a function in GBM is still unexplored. Here we found that KIFC1 was upregulated in human temozolomide (TMZ)-resistant GBM tissues. KIFC1 silencing is sufficient to inhibit GBM cell proliferation and amplify TMZ-induced repression of cell proliferation. Mechanistically, KIFC1 silencing contributed to DNA damage, cell cycle arrest, and apoptosis through regulating Rad51, Akt, and DNA-PKcs phosphorylation. We also noticed that KIFC1 silencing also inhibited tumor formation and increased TMZ sensitivity through regulating Ki67, Rad51, γ-H2AX, and phosphorylation of AKT in vivo. Our findings therefore confirm the involvement of KIFC1 in GBM progression and provide a novel understanding of KIFC1-Akt axis in the sensitivity of GBM to chemotherapy.
Collapse
Affiliation(s)
- Jianheng Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Xiaowei Yuan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Qiao Shan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Zhen Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jingwei Xie
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
12
|
Enciso J, Mendoza L, Álvarez-Buylla ER, Pelayo R. Dynamical modeling predicts an inflammation-inducible CXCR7+ B cell precursor with potential implications in lymphoid blockage pathologies. PeerJ 2020; 8:e9902. [PMID: 33062419 PMCID: PMC7531334 DOI: 10.7717/peerj.9902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background The blockage at the early B lymphoid cell development pathway within the bone marrow is tightly associated with hematopoietic and immune diseases, where the disruption of basal regulatory networks prevents the continuous replenishment of functional B cells. Dynamic computational models may be instrumental for the comprehensive understanding of mechanisms underlying complex differentiation processes and provide novel prediction/intervention platforms to reinvigorate the system. Methods By reconstructing a three-module regulatory network including genetic transcription, intracellular transduction, and microenvironment communication, we have investigated the early B lineage cell fate decisions in normal and pathological settings. The early B cell differentiation network was simulated as a Boolean model and then transformed, using fuzzy logic, to a continuous model. We tested null and overexpression mutants to analyze the emergent behavior of the network. Due to its importance in inflammation, we investigated the effect of NFkB induction at different early B cell differentiation stages. Results While the exhaustive synchronous and asynchronous simulation of the early B cell regulatory network (eBCRN) reproduced the configurations of the hematopoietic progenitors and early B lymphoid precursors of the pathway, its simulation as a continuous model with fuzzy logics suggested a transient IL-7R+ ProB-to-Pre-B subset expressing pre-BCR and a series of dominant B-cell transcriptional factors. This conspicuous differentiating cell population up-regulated CXCR7 and reduced CXCR4 and FoxO1 expression levels. Strikingly, constant but intermediate NFkB signaling at specific B cell differentiation stages allowed stabilization of an aberrant CXCR7+ pre-B like phenotype with apparent affinity to proliferative signals, while under constitutive overactivation of NFkB, such cell phenotype was aberrantly exacerbated from the earliest stage of common lymphoid progenitors. Our mutant models revealed an abnormal delay in the BCR assembly upon NFkB activation, concomitant to sustained Flt3 signaling, down-regulation of Ebf1, Irf4 and Pax5 genes transcription, and reduced Ig recombination, pointing to a potential lineage commitment blockage. Discussion For the first time, an inducible CXCR7hi B cell precursor endowed with the potential capability of shifting central lymphoid niches, is inferred by computational modeling. Its phenotype is compatible with that of leukemia-initiating cells and might be the foundation that bridges inflammation with blockage-related malignancies and a wide range of immunological diseases. Besides the predicted differentiation impairment, inflammation-inducible phenotypes open the possibility of newly formed niches colonized by the reported precursor. Thus, emergent bone marrow ecosystems are predicted following a pro-inflammatory induction, that may lead to hematopoietic instability associated to blockage pathologies.
Collapse
Affiliation(s)
- Jennifer Enciso
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | | | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| |
Collapse
|
13
|
He J, Wink S, de Bont H, Le Dévédec S, Zhang Y, van de Water B. FRET biosensor-based kinase inhibitor screen for ERK and AKT activity reveals differential kinase dependencies for proliferation in TNBC cells. Biochem Pharmacol 2019; 169:113640. [DOI: 10.1016/j.bcp.2019.113640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022]
|
14
|
Bahjat M, de Wilde G, van Dam T, Maas C, Bloedjes T, Bende RJ, van Noesel CJM, Luijks DM, Eldering E, Kersten MJ, Guikema JEJ. The NEDD8-activating enzyme inhibitor MLN4924 induces DNA damage in Ph+ leukemia and sensitizes for ABL kinase inhibitors. Cell Cycle 2019; 18:2307-2322. [PMID: 31349760 PMCID: PMC6738521 DOI: 10.1080/15384101.2019.1646068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The BCR-ABL1 fusion gene is the driver oncogene in chronic myeloid leukemia (CML) and Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). The introduction of tyrosine kinase inhibitors (TKIs) targeting the ABL kinase (such as imatinib) has dramatically improved survival of CML and Ph+ ALL patients. However, primary and acquired resistance to TKIs remains a clinical challenge. Ph+ leukemia patients who achieve a complete cytogenetic (CCR) or deep molecular response (MR) (≥4.5log reduction in BCR-ABL1 transcripts) represent long-term survivors. Thus, the fast and early eradication of leukemic cells predicts MR and is the prime clinical goal for these patients. We show here that the first-in-class inhibitor of the Nedd8-activating enzyme (NAE1) MLN4924 effectively induced caspase-dependent apoptosis in Ph+ leukemia cells, and sensitized leukemic cells for ABL tyrosine kinase inhibitors (TKI) and hydroxyurea (HU). We demonstrate that MLN4924 induced DNA damage in Ph+ leukemia cells by provoking the activation of an intra S-phase checkpoint, which was enhanced by imatinib co-treatment. The combination of MLN4924 and imatinib furthermore triggered a dramatic shift in the expression of MCL1 and NOXA. Our data offers a clear rationale to explore the clinical activity of MLN4924 (alone and in combination with ABL TKI) in Ph+ leukemia patients
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Guus de Wilde
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Tijmen van Dam
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Chiel Maas
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Timon Bloedjes
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Richard J Bende
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Dieuwertje M Luijks
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Eric Eldering
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands.,Department of Hematology, Amsterdam University Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| |
Collapse
|
15
|
Tight regulation of FOXO1 is essential for maintenance of B-cell precursor acute lymphoblastic leukemia. Blood 2018; 131:2929-2942. [PMID: 29622548 DOI: 10.1182/blood-2017-10-813576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
The FOXO1 transcription factor plays an essential role in the regulation of proliferation and survival programs at early stages of B-cell differentiation. Here, we show that tightly regulated FOXO1 activity is essential for maintenance of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Genetic and pharmacological inactivation of FOXO1 in BCP-ALL cell lines produced a strong antileukemic effect associated with CCND3 downregulation. Moreover, we demonstrated that CCND3 expression is critical for BCP-ALL survival and that overexpression of CCND3 protected BCP-ALL cell lines from growth arrest and apoptosis induced by FOXO1 inactivation. Most importantly, pharmacological inhibition of FOXO1 showed antileukemia activity on several primary, patient-derived, pediatric ALL xenografts with effective leukemia reduction in the hematopoietic, lymphoid, and central nervous system organ compartments, ultimately leading to prolonged survival without leukemia reoccurrence in a preclinical in vivo model of BCP-ALL. These results suggest that repression of FOXO1 might be a feasible approach for the treatment of BCP-ALL.
Collapse
|
16
|
Fine-tuning of FOXO3A in cHL as a survival mechanism and a hallmark of abortive plasma cell differentiation. Blood 2018; 131:1556-1567. [PMID: 29439954 DOI: 10.1182/blood-2017-07-795278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
We recently found that FOXO1 repression contributes to the oncogenic program of classical Hodgkin lymphoma (cHL). Interestingly, FOXO3A, another member of the FOXO family, was reported to be expressed in the malignant Hodgkin and Reed-Sternberg cells of cHL at higher levels than in non-Hodgkin lymphoma subtypes. We thus aimed to investigate mechanisms responsible for the maintenance of FOXO3A as well as the potential role of FOXO3A in cHL. Here, we show that high FOXO3A levels in cHL reflect a B-cell-differentiation-specific pattern. In B cells, FOXO3A expression increases during the process of centroblast to plasma cell (PC) differentiation. FOXO3A levels in cHL were found higher than in germinal center B cells, but lower than in terminally differentiated PCs. This intermediate FOXO3A expression in cHL might manifest the "abortive PC differentiation" phenotype. This assumption was further corroborated by the finding that overexpression of FOXO3A in cHL cell lines induced activation of the master PC transcription factor PRDM1α. As factors attenuating FOXO3A expression in cHL, we identified MIR155 and constitutive activation of extracellular signal-regulated kinase. Finally, we demonstrate the importance of FOXO3A expression in cHL using an RNA interference approach. We conclude that tightly regulated expression of FOXO3A contributes to the oncogenic program and to the specific phenotype of cHL.
Collapse
|
17
|
Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cell Mol Life Sci 2018; 75:417-446. [PMID: 28819864 PMCID: PMC5765206 DOI: 10.1007/s00018-017-2620-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
B cell leukaemia is one of the most frequent malignancies in the paediatric population, but also affects a significant proportion of adults in developed countries. The majority of infant and paediatric cases initiate the process of leukaemogenesis during foetal development (in utero) through the formation of a chromosomal translocation or the acquisition/deletion of genetic material (hyperdiploidy or hypodiploidy, respectively). This first genetic insult is the major determinant for the prognosis and therapeutic outcome of patients. B cell leukaemia in adults displays similar molecular features as its paediatric counterpart. However, since this disease is highly represented in the infant and paediatric population, this review will focus on this demographic group and summarise the biological, clinical and epidemiological knowledge on B cell acute lymphoblastic leukaemia of four well characterised subtypes: t(4;11) MLL-AF4, t(12;21) ETV6-RUNX1, t(1;19) E2A-PBX1 and t(9;22) BCR-ABL1.
Collapse
Affiliation(s)
- Camille Malouf
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
18
|
Bahjat M, Guikema JEJ. The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. Int J Mol Sci 2017; 18:ijms18091876. [PMID: 28867784 PMCID: PMC5618525 DOI: 10.3390/ijms18091876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
19
|
Ushmorov A, Wirth T. FOXO in B-cell lymphopoiesis and B cell neoplasia. Semin Cancer Biol 2017; 50:132-141. [PMID: 28774833 DOI: 10.1016/j.semcancer.2017.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 12/31/2022]
Abstract
FOX O family transcription factors are important for differentiation and function of multiple cell types. In B lymphocytes they play a critical role. The activity of FOXOs is directly regulated both by signaling from B cell receptor (BCR) and cytokine receptors. FOXO1 action controls the transition between differentiation stages of B cell development. In comparison to other FOXO family members, FOXO1 plays a superior role in the regulation of early stages of B-cell differentiation. Although being known as a negative regulator of cell proliferation and therefore potential tumor suppressor, FOXO1 is downregulated only in Hodgkin lymphoma (HL) subtypes. In non-Hodgkin lymphoma (NHL) entities its expression is maintained at significant levels, raising the question on the role of FOXO-transcription factors in the proliferation and survival programs in the process of B cell differentiation as well as their contribution to the oncogenic programs of B-cell lymphomas. In particular, we discuss molecular mechanisms that might determine the switch between pro-apoptotic and pro-survival effects of FOXO1 and their interplay with specific differentiation programs.
Collapse
Affiliation(s)
- Alexey Ushmorov
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany.
| |
Collapse
|
20
|
Xu Z, Yan Y, Xiao L, Dai S, Zeng S, Qian L, Wang L, Yang X, Xiao Y, Gong Z. Radiosensitizing effect of diosmetin on radioresistant lung cancer cells via Akt signaling pathway. PLoS One 2017; 12:e0175977. [PMID: 28414793 PMCID: PMC5393875 DOI: 10.1371/journal.pone.0175977] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/03/2017] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy is a powerful tool in the treatment of cancer that has the advantage of preserving normal tissues. However, tumor radioresistance currently remains a major impediment to effective RT. Thus, exploring effective radiation sensitizers is urgently needed. In this study, we have shown that diosmetin, the aglycone of the lavonoid glycoside from olive leaves, citrus fruits and some medicinal herbs, has a promising effect on radiotherapy sensitization. In our results, DIO could induce G1 phase arrest and thus enhance the radiosensitivity of radioresistant A549/IR lung cancer cells. Furthermore, DIO also restrains the IR-induced DNA damage repair by inhibiting the activated Akt signaling pathway. The combination of Akt inhibition (DIO, LY294002 or MK-2206) and radiation potently blocked A549/IR cancer cell proliferation. In summary, these observations suggest that the natural compound DIO could act as a potential drug for the treatment of radioresistant lung cancer cells.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Lingfang Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Shuang Dai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Lin Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Yi Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Pharmacy, Central South University, Changsha, China
| |
Collapse
|
21
|
Fisher MR, Rivera-Reyes A, Bloch NB, Schatz DG, Bassing CH. Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2943-2956. [PMID: 28213501 PMCID: PMC5360515 DOI: 10.4049/jimmunol.1601639] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/16/2017] [Indexed: 12/26/2022]
Abstract
Mammalian cells have evolved a common DNA damage response (DDR) that sustains cellular function, maintains genomic integrity, and suppresses malignant transformation. In pre-B cells, DNA double-strand breaks (DSBs) induced at Igκ loci by the Rag1/Rag2 (RAG) endonuclease engage this DDR to modulate transcription of genes that regulate lymphocyte-specific processes. We previously reported that RAG DSBs induced at one Igκ allele signal through the ataxia telangiectasia mutated (ATM) kinase to feedback-inhibit RAG expression and RAG cleavage of the other Igκ allele. In this article, we show that DSBs induced by ionizing radiation, etoposide, or bleomycin suppress Rag1 and Rag2 mRNA levels in primary pre-B cells, pro-B cells, and pro-T cells, indicating that inhibition of Rag1 and Rag2 expression is a prevalent DSB response among immature lymphocytes. DSBs induced in pre-B cells signal rapid transcriptional repression of Rag1 and Rag2, causing downregulation of both Rag1 and Rag2 mRNA, but only Rag1 protein. This transcriptional inhibition requires the ATM kinase and the NF-κB essential modulator protein, implicating a role for ATM-mediated activation of canonical NF-κB transcription factors. Finally, we demonstrate that DSBs induced in pre-B cells by etoposide or bleomycin inhibit recombination of Igκ loci and a chromosomally integrated substrate. Our data indicate that immature lymphocytes exploit a common DDR signaling pathway to limit DSBs at multiple genomic locations within developmental stages wherein monoallelic Ag receptor locus recombination is enforced. We discuss the implications of our findings for mechanisms that orchestrate the differentiation of monospecific lymphocytes while suppressing oncogenic Ag receptor locus translocations.
Collapse
Affiliation(s)
- Megan R Fisher
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Adrian Rivera-Reyes
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| | - Noah B Bloch
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT 06520
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
22
|
Ochodnicka-Mackovicova K, Bahjat M, Maas C, van der Veen A, Bloedjes TA, de Bruin AM, van Andel H, Schrader CE, Hendriks RW, Verhoeyen E, Bende RJ, van Noesel CJM, Guikema JEJ. The DNA Damage Response Regulates RAG1/2 Expression in Pre-B Cells through ATM-FOXO1 Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:2918-29. [PMID: 27559048 DOI: 10.4049/jimmunol.1501989] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
Abstract
The recombination activating gene (RAG) 1 and RAG2 protein complex introduces DNA breaks at Tcr and Ig gene segments that are required for V(D)J recombination in developing lymphocytes. Proper regulation of RAG1/2 expression safeguards the ordered assembly of Ag receptors and the development of lymphocytes, while minimizing the risk for collateral damage. The ataxia telangiectasia mutated (ATM) kinase is involved in the repair of RAG1/2-mediated DNA breaks and prevents their propagation. The simultaneous occurrence of RAG1/2-dependent and -independent DNA breaks in developing lymphocytes exposed to genotoxic stress increases the risk for aberrant recombinations. In this study, we assessed the effect of genotoxic stress on RAG1/2 expression in pre-B cells and show that activation of the DNA damage response resulted in the rapid ATM-dependent downregulation of RAG1/2 mRNA and protein expression. We show that DNA damage led to the loss of FOXO1 binding to the enhancer region of the RAG1/2 locus (Erag) and provoked FOXO1 cleavage. We also show that DNA damage caused by RAG1/2 activity in pre-B cells was able to downmodulate RAG1/2 expression and activity, confirming the existence of a negative feedback regulatory mechanism. Our data suggest that pre-B cells are endowed with a protective mechanism that reduces the risk for aberrant recombinations and chromosomal translocations when exposed to DNA damage, involving the ATM-dependent regulation of FOXO1 binding to the Erag enhancer region.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Chiel Maas
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Amélie van der Veen
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Timon A Bloedjes
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Alexander M de Bruin
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Harmen van Andel
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Els Verhoeyen
- Centre International de Recherche en Infectiologie, Virus Enveloppés, Vecteurs et Réponses Innées Équipe, INSERM U1111, CNRS, UMR5308, Université de Lyon-1, École Normale Supérieure de Lyon, 69007 Lyon, France; and INSERM, U1065, Centre de Médecine Moléculaire, Équipe 3, 06204 Nice, France
| | - Richard J Bende
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| |
Collapse
|