1
|
Kridel R. Follicular lymphoma: contemporary clinical management with a focus on recent therapeutic advances. Korean J Intern Med 2025; 40:371-393. [PMID: 39987895 DOI: 10.3904/kjim.2024.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/03/2024] [Indexed: 02/25/2025] Open
Abstract
Follicular lymphoma (FL) is the most common type of indolent lymphoma, and the prognosis is favorable for most patients. However, FL remains generally incurable, and relapse is common. Patients are at risk of developing treatment-resistant lymphoma, particularly when early disease progression occurs or transformation to aggressive lymphoma takes place. Furthermore, lymphoma is the leading cause of death among patients with FL, emphasizing the need for more effective treatment strategies. This review summarizes therapeutic approaches for FL, with a focus on therapies currently in development. Recent biological insights have driven the emergence of highly effective treatments, including novel immune and targeted therapies. Clinical trials are assessing the efficacy of these novel approaches, which are increasingly used in earlier line settings. In the future, FL therapy is expected to rely less on chemotherapeutic methods, extend remission, and potentially enable cures for a growing number of patients.
Collapse
Affiliation(s)
- Robert Kridel
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Bryant D, Sale B, Chiodin G, Tatterton D, Stevens B, Adlaon A, Snook E, Batchelor J, Orfao A, Forconi F. Identification, assembly and characterization of tumor immunoglobulin transcripts from RNA sequencing data using IgSeqR. Nat Protoc 2025:10.1038/s41596-025-01172-6. [PMID: 40275113 DOI: 10.1038/s41596-025-01172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/06/2025] [Indexed: 04/26/2025]
Abstract
Immunoglobulin gene analysis provides fundamental insight into B cell receptor structure and function. In B cell tumors, it can provide information on the cell of origin and predict clinical outcomes. Its clinical value has been established in the two main types of chronic lymphocytic leukemia, which are distinguished by the expression of unmutated or mutated immunoglobulin heavy chain variable region (IGHV) genes, and is emerging in other B cell tumors. The traditional PCR and Sanger sequencing-based techniques for immunoglobulin gene analysis are labor-intensive and rely on attaining either a dominant sequence or a small number of subclonal sequences. Extraction of the expressed tumor immunoglobulin transcripts by using high-throughput RNA-sequencing (RNA-seq) can be faster, allow the collection of the tumor immunoglobulin sequence and match this with the rest of the RNA-seq data. Analytical tools are regularly sought to increase the accuracy, depth and speed of acquisition of the immunoglobulin transcript sequences and combine the immunoglobulin characteristics with other tumor features. We provide here a user-friendly protocol for the rapid (~1 h) de novo assembly, identification and accurate characterization of the full (leader to constant region) tumor immunoglobulin templated and non-templated transcript sequence from RNA-seq data ( https://github.com/ForconiLab/IgSeqR ). The derived amino acid sequences can be interrogated for their physicochemical characteristics and, in certain lymphomas, be used to predict tumor glycan types occupying acquired N-glycosylation sites. These features will then be available for association studies with the tumor transcriptome. The resulting information can also help refine diagnosis, prognosis and potential therapeutic targeting in the most common lymphomas.
Collapse
Affiliation(s)
- Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Sale
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Clinical Informatics Research Unit, University of Southampton, Southampton, UK
| | - Giorgia Chiodin
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Dylan Tatterton
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Stevens
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alyssa Adlaon
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Erin Snook
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Batchelor
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Clinical Informatics Research Unit, University of Southampton, Southampton, UK
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Francesco Forconi
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Haematology Department, Cancer Care Directorate, University Hospital Southampton NHS Trust, Southampton, UK.
| |
Collapse
|
3
|
Manu GP, Odabashian M, Krysov S. Perspective on Immunoglobulin N-Glycosylation Status in Follicular Lymphoma: Uncovering BCR-Dependent and Independent Mechanisms Driving Subclonal Evolution. Cancers (Basel) 2025; 17:1219. [PMID: 40227774 PMCID: PMC11987975 DOI: 10.3390/cancers17071219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
Follicular lymphoma (FL) is a heterogeneous and incurable disease. One of the hallmark features of FL cells is the introduction of N-glycosylation (N-gly) amino acid sequence motifs into the immunoglobulin variable (IgV) region through ongoing somatic hypermutation (SHM) in the early stages of lymphoma development. These N-gly motifs, containing oligomannoses, are rarely found in healthy B cells but evidently play a crucial role in the clonal evolution and survival of FL cells in the hostile environment of germinal centers. The random nature of the ongoing SHM in FL occasionally results in the loss of productive immunoglobulin (Ig) genes or the elimination of N-gly motifs in productive genes. Such events typically lead to clonal deletion, as demonstrated by the longitudinal analysis of FL samples. However, rare N-gly-negative subclones demonstrate prolonged survival with evidence of ongoing SHM, giving rise to new N-gly-negative subclones before eventual deletion. This observation suggests the presence of specific mechanisms supporting their survival and proliferation. This perspective examines the current literature and explores whether a detailed transcriptomic and functional comparison of FL subclones characterized by different N-gly statuses, with a particular focus on N-gly-negative subclones, will lead to a comprehensive understanding of both N-gly-dependent and independent pro-survival and proliferative transcriptional signatures. Specifically, it aims to deepen our understanding of FL pathobiology and identify novel therapeutic targets for better disease management.
Collapse
Affiliation(s)
- Gloria Pokuaa Manu
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (G.P.M.); (M.O.)
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry Cell and Molecular Biology, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Mariette Odabashian
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (G.P.M.); (M.O.)
| | - Sergey Krysov
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (G.P.M.); (M.O.)
| |
Collapse
|
4
|
Strati P, Agajanian R, Lossos IS, Coleman M, Kridel R, Wood A, Lesley R, Wun C, Stephens DM. Acalabrutinib in combination with rituximab and lenalidomide in patients with relapsed or refractory follicular lymphoma: Results of the phase 1b open-label study (ACE-LY-003). Br J Haematol 2025; 206:887-898. [PMID: 39667721 PMCID: PMC11886943 DOI: 10.1111/bjh.19951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Patients with relapsed/refractory (R/R) follicular lymphoma (FL) have limited effective treatment options. Bruton tyrosine kinase inhibitors (BTKis) increase the anti-tumoural phenotype of tumour-associated macrophages, providing rationale to combine them with rituximab and lenalidomide (R2). Acalabrutinib, a second-generation BTKi, has potential to improve R2 efficacy without increasing T-cell-mediated toxicity due to its lack of interleukin-2-inducible T-cell kinase inhibition. Here, we report safety and efficacy from a phase 1b dose-finding study (NCT02180711) evaluating acalabrutinib plus R2 in patients with R/R FL. Overall, 29 patients received acalabrutinib plus R2 (lenalidomide 15 mg, n = 8; lenalidomide 20 mg, n = 21). At a median acalabrutinib exposure of 21 months, the most common grade ≥3 treatment-emergent adverse event (TEAE) was neutropenia (37.9%). The incidence of grade ≥3 serious TEAEs was 37.5% and 52.4% in the lenalidomide 15-mg and 20-mg cohorts, respectively; overall, the most common were COVID-19 pneumonia, COVID-19 infection and pneumonia. Earlier treatment withholdings/reductions were observed in the 20-mg cohort. With a median follow-up of 34.1 months, the overall response rate was 75.9%. The complete response rate was 25.0% and 42.9% in the lenalidomide 15- and 20-mg cohorts, respectively. Due to acceptable toxicity and preliminary efficacy, the lenalidomide 20-mg dose was selected for further investigation.
Collapse
Affiliation(s)
- Paolo Strati
- The University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Richy Agajanian
- The Oncology Institute of Hope and InnovationDowneyCaliforniaUSA
| | - Izidore S. Lossos
- Sylvester Comprehensive Cancer CenterUniversity of Miami–Miller School of MedicineMiamiFloridaUSA
| | - Morton Coleman
- Clinical Research Alliance/Weill Cornell MedicineNew YorkNew YorkUSA
| | | | | | | | | | - Deborah M. Stephens
- University of North Carolina Lineberger Cancer CenterChapel HillNorth CarolinaUSA
| |
Collapse
|
5
|
Nishikori M. Recent advances in understanding the biology of follicular lymphoma. Int J Hematol 2025; 121:326-330. [PMID: 38536645 DOI: 10.1007/s12185-024-03764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 02/26/2025]
Abstract
Follicular lymphoma (FL), the most common indolent B-cell lymphoma, develops over decades before manifesting as overt disease. BCL2 overexpression by t(14;18) confers a survival advantage to B cells during the germinal center reaction, and abnormalities in epigenetic modifier genes lead to desynchronization of gene expression changes in germinal center B cells. Studies in mouse models have shown that BCL2 overexpression and epigenetic deregulation in B cells cooperatively promote lymphomagenesis. The immune microenvironment also plays an essential role in the biology of FL, and many molecular prognostic indicators based on the immune microenvironment have been proposed. However, high-risk gene signatures do not appear to be consistent between patients receiving different chemotherapies. FL cells frequently carry N-linked glycosylation motifs within the immunoglobulin gene, leading to chronic activation of the B-cell receptor (BCR). Recent evidence suggests that this chronic BCR signaling drives FL polarization toward a dark-zone phenotype and promotes clonal evolution. Since both epigenetic and post-transcriptional modifications of B cells have been implicated in the early stage of FL development, it may be possible to use novel non-chemotherapeutic approaches that interfere with the immunobiology in treatment or early prevention of FL.
Collapse
MESH Headings
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/therapy
- Lymphoma, Follicular/metabolism
- Humans
- Animals
- Epigenesis, Genetic
- Tumor Microenvironment/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- B-Lymphocytes/pathology
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Signal Transduction
- Gene Expression Regulation, Neoplastic
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Germinal Center/pathology
- Mice
Collapse
Affiliation(s)
- Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Collin M, Gagey G, Shanmugam V, Louissaint A, Okosun J, Sarkozy C, Nadel B. Follicular lymphoma research: an open dialogue for a collaborative roadmap. Histopathology 2025; 86:79-93. [PMID: 39468961 PMCID: PMC11648361 DOI: 10.1111/his.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Follicular lymphoma (FL) is the second most common type of lymphoma (20% of all non-Hodgkin lymphomas), derived from germinal centre (GC) B cells, and is characterised by its significant clinical, prognostic and biological heterogeneity, leading to complexity in management. Despite significant biological investigation and indisputable clinical progress since the advent of the immunotherapy era more than 20 years ago, much remains to be done to understand and cure this lymphoma. Today, FL is metaphorically a giant puzzle on the table with patches of sky, landscape and foliage clearly appearing. However, many of the remaining pieces are held by various stakeholders (e.g. clinicians, pathologists, researchers, drug developers) without global agreement on what the gaps are, or any clear blueprint on how to solve the puzzle of understanding the heterogeneity of this disease and create curative and tailored therapies. With the advent of new investigation and drug technologies, together with recent advances in our capacity to manage big data, the time seems ripe for a change of scale. More than ever, this will require collaboration between and within all stakeholders to overcome the current bottlenecks in the field. As for every investigator, we acknowledge that this first draft is necessarily biased, incomplete and some FL expert readers might recognise some remaining gaps not addressed. We hope they will reply to make this effort a collaborative one to assemble all the pieces in the most ideal fashion. As such, this review intends to be a first step and an interactive platform to a collaborative roadmap towards better understanding and care of FL.
Collapse
Affiliation(s)
- Mélanie Collin
- Aix‐Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Guillemette Gagey
- Aix‐Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Vignesh Shanmugam
- Department of PathologyBrigham and Women's HospitalBostonMAUSA
- Cancer ProgramBroad Institute of MIT and HarvardCambridgeMAUSA
| | - Abner Louissaint
- Department of PathologyMassachusetts General HospitalBostonMAUSA
- Krantz Family Center for Cancer ResearchMassachusetts General HospitalBostonMAUSA
| | - Jessica Okosun
- Barts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Clementine Sarkozy
- Hematology DepartmentInstitut Curie, Saint Cloud, France and LITO, U1288, Université Versailles Saint Quentin en YvelineSaint Quentin en YvelineFrance
| | - Bertrand Nadel
- Aix‐Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille‐LuminyMarseilleFrance
| |
Collapse
|
7
|
Fend F, Quintanilla-Martinez L. Clonal evolution and relapse in early-stage follicular lymphoma - a tree with many branches †. J Pathol 2024; 263:271-274. [PMID: 38775014 DOI: 10.1002/path.6294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024]
Abstract
Follicular lymphoma (FL) is an indolent B-cell neoplasm characterised by multistep evolution from premalignant precursor cells carrying the hallmark t(14;18) translocation in the majority of cases. In a new article in The Journal of Pathology, samples of relapsed early-stage FL - primary manifestation and relapse with or without transformation - initially treated with radiotherapy only, were studied for clonal relationships and evolution. Using somatic mutations and the rearranged immunoglobulin sequences as markers, the majority of paired lymphoma samples showed so-called branched evolution from a common, possibly premalignant progenitor cell, with both shared and private mutations. In addition, clonally unrelated cases were identified. This and previous studies with similar findings clearly document that relapse or transformation of FL in many instances not necessarily represents a linear progression of disease due to acquisition of additional mutations and therapy resistance, but rather new outgrowths derived from a pool of clonally related, long-lived, and low proliferating precursor cells, or even unrelated second neoplasms. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Falko Fend
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Laurent C, Dietrich S, Tarte K. Cell cross talk within the lymphoma tumor microenvironment: follicular lymphoma as a paradigm. Blood 2024; 143:1080-1090. [PMID: 38096368 DOI: 10.1182/blood.2023021000] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 03/22/2024] Open
Abstract
ABSTRACT Follicular lymphoma (FL) is an indolent yet incurable germinal center B-cell lymphoma retaining a characteristic follicular architecture. FL tumor B cells are highly dependent on direct and indirect interactions with a specific and complex tumor microenvironment (TME). Recently, great progress has been made in describing the heterogeneity and dynamics of the FL TME and in depicting how tumor clonal and functional heterogeneity rely on the integration of TME-related signals. Specifically, the FL TME is enriched for exhausted cytotoxic T cells, immunosuppressive regulatory T cells of various origins, and follicular helper T cells overexpressing B-cell and TME reprogramming factors. FL stromal cells have also emerged as crucial determinants of tumor growth and remodeling, with a key role in the deregulation of chemokines and extracellular matrix composition. Finally, tumor-associated macrophages play a dual function, contributing to FL cell phagocytosis and FL cell survival through long-lasting B-cell receptor activation. The resulting tumor-permissive niches show additional layers of site-to-site and kinetic heterogeneity, which raise questions about the niche of FL-committed precursor cells supporting early lymphomagenesis, clonal evolution, relapse, and transformation. In turn, FL B-cell genetic and nongenetic determinants drive the reprogramming of FL immune and stromal TME. Therefore, offering a functional picture of the dynamic cross talk between FL cells and TME holds the promise of identifying the mechanisms of therapy resistance, stratifying patients, and developing new therapeutic approaches capable of eradicating FL disease in its different ecosystems.
Collapse
Affiliation(s)
- Camille Laurent
- Department of Pathology, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalo-Universitaire Toulouse, Centre de Recherches en Cancérologie de Toulouse, Laboratoire d'Excellence TOUCAN, INSERM Unité Mixte de Recherche 1037, Toulouse, France
| | - Sascha Dietrich
- Department of Haematology and Oncology, University Hospital Düsseldorf and Center for Integrated Oncology Aachen Bonn Cologne, Düsseldorf, Germany
| | - Karin Tarte
- Unité Mixte de Recherche S1236, INSERM, Université de Rennes, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
- Department of Biology, Centre Hospitalo-Universitaire de Rennes, Rennes, France
| |
Collapse
|
9
|
Stevenson FK, Forconi F. The essential microenvironmental role of oligomannoses specifically inserted into the antigen-binding sites of lymphoma cells. Blood 2024; 143:1091-1100. [PMID: 37992212 DOI: 10.1182/blood.2023022703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT There are 2 mandatory features added sequentially en route to classical follicular lymphoma (FL): first, the t(14;18) translocation, which upregulates BCL2, and second, the introduction of sequence motifs into the antigen-binding sites of the B-cell receptor (BCR), to which oligomannose-type glycan is added. Further processing of the glycan is blocked by complementarity-determining region-specific steric hindrance, leading to exposure of mannosylated immunoglobulin (Ig) to the microenvironment. This allows for interaction with the local lectin, dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), expressed by tissue macrophages and follicular dendritic cells. The major function of DC-SIGN is to engage pathogens, but this is subverted by FL cells. DC-SIGN induces tumor-specific low-level BCR signaling in FL cells and promotes membrane changes with increased adhesion to VCAM-1 via proximal kinases and actin regulators but, in contrast to engagement by anti-Ig, avoids endocytosis and apoptosis. These interactions appear mandatory for the early development of FL, before the acquisition of other accelerating mutations. BCR-associated mannosylation can be found in a subset of germinal center B-cell-like diffuse large B-cell lymphoma with t(14;18), tracking these cases back to FL. This category was associated with more aggressive behavior: both FL and transformed cases and, potentially, a significant number of cases of Burkitt lymphoma, which also has sites for N-glycan addition, could benefit from antibody-mediated blockade of the interaction with DC-SIGN.
Collapse
Affiliation(s)
- Freda K Stevenson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
10
|
Krull JE, Wenzl K, Hopper MA, Manske MK, Sarangi V, Maurer MJ, Larson MC, Mondello P, Yang Z, Novak JP, Serres M, Whitaker KR, Villasboas Bisneto JC, Habermann TM, Witzig TE, Link BK, Rimsza LM, King RL, Ansell SM, Cerhan JR, Novak AJ. Follicular lymphoma B cells exhibit heterogeneous transcriptional states with associated somatic alterations and tumor microenvironments. Cell Rep Med 2024; 5:101443. [PMID: 38428430 PMCID: PMC10983045 DOI: 10.1016/j.xcrm.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/14/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma of germinal center origin, which presents with significant biologic and clinical heterogeneity. Using RNA-seq on B cells sorted from 87 FL biopsies, combined with machine-learning approaches, we identify 3 transcriptional states that divide the biological ontology of FL B cells into inflamed, proliferative, and chromatin-modifying states, with relationship to prior GC B cell phenotypes. When integrated with whole-exome sequencing and immune profiling, we find that each state was associated with a combination of mutations in chromatin modifiers, copy-number alterations to TNFAIP3, and T follicular helper cells (Tfh) cell interactions, or primarily by a microenvironment rich in activated T cells. Altogether, these data define FL B cell transcriptional states across a large cohort of patients, contribute to our understanding of FL heterogeneity at the tumor cell level, and provide a foundation for guiding therapeutic intervention.
Collapse
Affiliation(s)
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - ZhiZhang Yang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Brian K Link
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Rebecca L King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Coupland SE, Du MQ, Ferry JA, de Jong D, Khoury JD, Leoncini L, Naresh KN, Ott G, Siebert R, Xerri L. The fifth edition of the WHO classification of mature B-cell neoplasms: open questions for research. J Pathol 2024; 262:255-270. [PMID: 38180354 DOI: 10.1002/path.6246] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
The fifth edition of the World Health Organization Classification of Haematolymphoid Tumours (WHO-HAEM5) is the product of an evidence-based evolution of the revised fourth edition with wide multidisciplinary consultation. Nonetheless, while every classification incorporates scientific advances and aims to improve upon the prior version, medical knowledge remains incomplete and individual neoplasms may not be easily subclassified in a given scheme. Thus, optimal classification requires ongoing study, and there are certain aspects of some entities and subtypes that require further refinements. In this review, we highlight a selection of these challenging areas to prompt more research investigations. These include (1) a 'placeholder term' of splenic B-cell lymphoma/leukaemia with prominent nucleoli (SBLPN) to accommodate many of the splenic lymphomas previously classified as hairy cell leukaemia variant and B-prolymphocytic leukaemia, a clear new start to define their pathobiology; (2) how best to classify BCL2 rearrangement negative follicular lymphoma including those with BCL6 rearrangement, integrating the emerging new knowledge on various germinal centre B-cell subsets; (3) what is the spectrum of non-IG gene partners of MYC translocation in diffuse large B-cell lymphoma/high-grade B-cell lymphoma and how they impact MYC expression and clinical outcome; how best to investigate this in a routine clinical setting; and (4) how best to define high-grade B-cell lymphoma not otherwise specified and high-grade B-cell lymphoma with 11q aberrations to distinguish them from their mimics and characterise their molecular pathogenetic mechanism. Addressing these questions would provide more robust evidence to better define these entities/subtypes, improve their diagnosis and/or prognostic stratification, leading to better patient care. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah E Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Judith A Ferry
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daphne de Jong
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joseph D Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Luc Xerri
- Institut Paoli-Calmettes, CRCM and Aix-Marseille University, Marseille, France
| |
Collapse
|
12
|
Haebe S, Day G, Czerwinski DK, Sathe A, Grimes SM, Chen T, Long SR, Martin B, Ozawa MG, Ji HP, Shree T, Levy R. Follicular lymphoma evolves with a surmountable dependency on acquired glycosylation motifs in the B-cell receptor. Blood 2023; 142:2296-2304. [PMID: 37683139 PMCID: PMC10797552 DOI: 10.1182/blood.2023020360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
ABSTRACT An early event in the genesis of follicular lymphoma (FL) is the acquisition of new glycosylation motifs in the B-cell receptor (BCR) due to gene rearrangement and/or somatic hypermutation. These N-linked glycosylation motifs (N-motifs) contain mannose-terminated glycans and can interact with lectins in the tumor microenvironment, activating the tumor BCR pathway. N-motifs are stable during FL evolution, suggesting that FL tumor cells are dependent on them for their survival. Here, we investigated the dynamics and potential impact of N-motif prevalence in FL at the single-cell level across distinct tumor sites and over time in 17 patients. Although most patients had acquired at least 1 N-motif as an early event, we also found (1) cases without N-motifs in the heavy or light chains at any tumor site or time point and (2) cases with discordant N-motif patterns across different tumor sites. Inferring phylogenetic trees of the patients with discordant patterns, we observed that both N-motif-positive and N-motif-negative tumor subclones could be selected and expanded during tumor evolution. Comparing N-motif-positive with N-motif-negative tumor cells within a patient revealed higher expression of genes involved in the BCR pathway and inflammatory response, whereas tumor cells without N-motifs had higher activity of pathways involved in energy metabolism. In conclusion, although acquired N-motifs likely support FL pathogenesis through antigen-independent BCR signaling in most patients with FL, N-motif-negative tumor cells can also be selected and expanded and may depend more heavily on altered metabolism for competitive survival.
Collapse
Affiliation(s)
- Sarah Haebe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Grady Day
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Debra K. Czerwinski
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Susan M. Grimes
- Stanford Genome Technology Center, Stanford University, Stanford, CA
| | - Tianqi Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Steven R. Long
- Department of Pathology, University of California, San Francisco, CA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Brock Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Michael G. Ozawa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Tanaya Shree
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
13
|
Brauge B, Dessauge E, Creusat F, Tarte K. Modeling the crosstalk between malignant B cells and their microenvironment in B-cell lymphomas: challenges and opportunities. Front Immunol 2023; 14:1288110. [PMID: 38022603 PMCID: PMC10652758 DOI: 10.3389/fimmu.2023.1288110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
B-cell lymphomas are a group of heterogeneous neoplasms resulting from the clonal expansion of mature B cells arrested at various stages of differentiation. Specifically, two lymphoma subtypes arise from germinal centers (GCs), namely follicular lymphoma (FL) and GC B-cell diffuse large B-cell lymphoma (GCB-DLBCL). In addition to recent advances in describing the genetic landscape of FL and GCB-DLBCL, tumor microenvironment (TME) has progressively emerged as a central determinant of early lymphomagenesis, subclonal evolution, and late progression/transformation. The lymphoma-supportive niche integrates a dynamic and coordinated network of immune and stromal cells defining microarchitecture and mechanical constraints and regulating tumor cell migration, survival, proliferation, and immune escape. Several questions are still unsolved regarding the interplay between lymphoma B cells and their TME, including the mechanisms supporting these bidirectional interactions, the impact of the kinetic and spatial heterogeneity of the tumor niche on B-cell heterogeneity, and how individual genetic alterations can trigger both B-cell intrinsic and B-cell extrinsic signals driving the reprogramming of non-malignant cells. Finally, it is not clear whether these interactions might promote resistance to treatment or, conversely, offer valuable therapeutic opportunities. A major challenge in addressing these questions is the lack of relevant models integrating tumor cells with specific genetic hits, non-malignant cells with adequate functional properties and organization, extracellular matrix, and biomechanical forces. We propose here an overview of the 3D in vitro models, xenograft approaches, and genetically-engineered mouse models recently developed to study GC B-cell lymphomas with a specific focus on the pros and cons of each strategy in understanding B-cell lymphomagenesis and evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Baptiste Brauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Elise Dessauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Florent Creusat
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Karin Tarte
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
- SITI Laboratory, Centre Hospitalier Universitaire (CHU) Rennes, Etablissement Français du sang, Univ Rennes, Rennes, France
| |
Collapse
|
14
|
van Bergen CAM, Kloet SL, Quinten E, Sepúlveda Yáñez JH, Menafra R, Griffioen M, Jansen PM, Koning MT, Knijnenburg J, Navarrete MA, Kiełbasa SM, Veelken H. Acquisition of a glycosylated B-cell receptor drives follicular lymphoma toward a dark zone phenotype. Blood Adv 2023; 7:5812-5816. [PMID: 37493974 PMCID: PMC10561043 DOI: 10.1182/bloodadvances.2023010725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
| | - Susan L. Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin Quinten
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Julieta H. Sepúlveda Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
- Facultad de Ciencias de la Salud, Universidad de Magallanes, Punta Arenas, Chile
| | - Roberta Menafra
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patty M. Jansen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marvyn T. Koning
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Knijnenburg
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Szymon M. Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Salaverria I, Weigert O, Quintanilla-Martinez L. The clinical and molecular taxonomy of t(14;18)-negative follicular lymphomas. Blood Adv 2023; 7:5258-5271. [PMID: 37561599 PMCID: PMC10500559 DOI: 10.1182/bloodadvances.2022009456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
Follicular lymphoma (FL) is a neoplasm derived from germinal center B cells, composed of centrocytes and centroblasts, with at least a focal follicular growth pattern. The t(14;18) translocation together with epigenetic deregulation through recurrent genetic alterations are now recognized as the hallmark of FL. Nevertheless, FL is a heterogeneous disease, clinically, morphologically, and biologically. The existence of FL lacking the t(14;18) chromosomal alteration highlights the complex pathogenesis of FL, and indicates that there are alternative pathogenetic mechanisms that can induce a neoplasm with follicular center B-cell phenotype. Based on their clinical presentation, t(14;18)-negative FLs can be divided into 3 broad groups: nodal presentation, extranodal presentation, and those affecting predominantly children and young adults. Recent studies have shed some light into the genetic alterations of t(14;18)-negative FL. Within the group of t(14;18)-negative FL with nodal presentation, cases with STAT6 mutations are increasingly recognized as a distinctive molecular subgroup, often cooccurring with CREBBP and/or TNFRSF14 mutations. FL with BCL6 rearrangement shows clinicopathological similarities to its t(14;18)-positive counterpart. In contrast, t(14;18)-negative FL in extranodal sites is characterized mainly by TNFRSF14 mutations in the absence of chromatin modifying gene mutations. FL in children have a unique molecular landscape when compared with those in adults. Pediatric-type FL (PTFL) is characterized by MAP2K1, TNFRSF14, and/or IRF8 mutations, whereas large B-cell lymphoma with IRF4 rearrangement is now recognized as a distinct entity, different from PTFL. Ultimately, a better understanding of FL biology and heterogeneity should help to understand the clinical differences and help guide patient management and treatment decisions.
Collapse
Affiliation(s)
- Itziar Salaverria
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Oliver Weigert
- Laboratory for Experimental Leukemia and Lymphoma Research, Ludwig-Maximilians-University Hospital, Munich, Germany
- Department of Medicine III, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT “Image-guided and functionally Instructed Tumor therapies,” Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Abstract
Glycosylation has a profound influence on protein activity and cell biology through a variety of mechanisms, such as protein stability, receptor interactions and signal transduction. In many rheumatic diseases, a shift in protein glycosylation occurs, and is associated with inflammatory processes and disease progression. For example, the Fc-glycan composition on (auto)antibodies is associated with disease activity, and the presence of additional glycans in the antigen-binding domains of some autoreactive B cell receptors can affect B cell activation. In addition, changes in synovial fibroblast cell-surface glycosylation can alter the synovial microenvironment and are associated with an altered inflammatory state and disease activity in rheumatoid arthritis. The development of our understanding of the role of glycosylation of plasma proteins (particularly (auto)antibodies), cells and tissues in rheumatic pathological conditions suggests that glycosylation-based interventions could be used in the treatment of these diseases.
Collapse
Affiliation(s)
- Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
17
|
Arnold JN, Mitchell DA. Tinker, tailor, soldier, cell: the role of C-type lectins in the defense and promotion of disease. Protein Cell 2022; 14:4-16. [PMID: 36726757 PMCID: PMC9871964 DOI: 10.1093/procel/pwac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.
Collapse
|
18
|
An N-glycosylation hotspot in immunoglobulin κ light chains is associated with AL amyloidosis. Leukemia 2022; 36:2076-2085. [PMID: 35610346 DOI: 10.1038/s41375-022-01599-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Immunoglobulin light chain (AL) amyloidosis is caused by a small, minimally proliferating B-cell/plasma-cell clone secreting a patient-unique, aggregation-prone, toxic light chain (LC). The pathogenicity of LCs is encrypted in their sequence, yet molecular determinants of amyloidogenesis are poorly understood. Higher rates of N-glycosylation among clonal κ LCs from patients with AL amyloidosis compared to other monoclonal gammopathies indicate that this post-translational modification is associated with a higher risk of developing AL amyloidosis. Here, we exploited LC sequence information from previously published amyloidogenic and control clonal LCs and from a series of 220 patients with AL amyloidosis or multiple myeloma followed at our Institutions to define sequence and spatial features of N-glycosylation, combining bioinformatics, biochemical, proteomics, structural and genetic analyses. We found peculiar sequence and spatial pattern of N-glycosylation in amyloidogenic κ LCs, with most of the N-glycosylation sites laying in the framework region 3, particularly within the E strand, and consisting mainly of the NFT sequon, setting them apart with respect to non-amyloidogenic clonal LCs. Our data further support a potential role of N-glycosylation in determining the pathogenic behavior of a subset of amyloidogenic LCs and may help refine current N-glycosylation-based prognostic assessments for patients with monoclonal gammopathies.
Collapse
|
19
|
Leich E, Maier C, Bomben R, Vit F, Bosi A, Horn H, Gattei V, Ott G, Rosenwald A, Zamò A. Follicular lymphoma subgroups with and without t(14;18) differ in their N-glycosylation pattern and IGHV usage. Blood Adv 2021; 5:4890-4900. [PMID: 34614504 PMCID: PMC9153045 DOI: 10.1182/bloodadvances.2021005081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
We previously reported that t(14;18)-negative follicular lymphomas (FL) show a clear reduction of newly acquired N-glycosylation sites (NANGS) in immunoglobulin genes. We therefore aimed to investigate in-depth the occurrence of NANGS in a larger cohort of t(14;18)-positive and t(14;18)-negative FL, including early (I/II) and advanced (III/IV) stage treatment-naive and relapsed tumors. The clonotype was determined by using a next-generation sequencing approach in a series of 68 FL with fresh frozen material [36 t(14;18) positive and 32 t(14;18) negative]. The frequency of NANGS differed considerably between t(14;18)-positive and t(14;18)-negative FL stage III/IV, but no difference was observed among t(14;18)-positive and t(14;18)-negative FL stage I/II. The introduction of NANGS in all t(14;18)-negative clinical subgroups occurred significantly more often in the FR3 region. Moreover, t(14;18)-negative treatment-naive FL, specifically those with NANGS, showed a strong bias for IGHV4-34 usage compared with t(14;18)-positive treatment-naive cases with NANGS; IGHV4-34 usage was never recorded in relapsed FL. In conclusion, subgroups of t(14;18)-negative FL might use different mechanisms of B-cell receptor stimulation compared with the lectin-mediated binding described in t(14;18)-positive FL, including responsiveness to autoantigens as indicated by biased IGHV4-34 usage and strong NANGS enrichment in FR3.
Collapse
Affiliation(s)
- Ellen Leich
- Institute of Pathology, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Main Franken, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Maier
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Filippo Vit
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Alessandro Bosi
- Institute of Pathology, University of Würzburg, Würzburg, Germany
- School of Medicine, University of Milan, Milan, Italy
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany; and
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Tübingen, Germany
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany; and
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Main Franken, University Hospital Würzburg, Würzburg, Germany
| | - Alberto Zamò
- Institute of Pathology, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Main Franken, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Chiodin G, Allen JD, Bryant DJ, Rock P, Martino EA, Valle-Argos B, Duriez PJ, Watanabe Y, Henderson I, Blachly JS, McCann KJ, Strefford JC, Packham G, Geijtenbeek TBH, Figdor CG, Wright GW, Staudt LM, Burack R, Bowden TA, Crispin M, Stevenson FK, Forconi F. Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood 2021; 138:1570-1582. [PMID: 34424958 PMCID: PMC8554650 DOI: 10.1182/blood.2021012052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of the surface immunoglobulin (Ig) variable region is a remarkable follicular lymphoma-associated feature rarely seen in normal B cells. Here, we define a subset of diffuse large B-cell lymphomas (DLBCLs) that acquire N-glycosylation sites selectively in the Ig complementarity-determining regions (CDRs) of the antigen-binding sites. Mass spectrometry and X-ray crystallography demonstrate how the inserted glycans are stalled at oligomannose-type structures because they are buried in the CDR loops. Acquisition of sites occurs in ∼50% of germinal-center B-cell-like DLBCL (GCB-DLBCL), mainly of the genetic EZB subtype, irrespective of IGHV-D-J use. This markedly contrasts with the activated B-cell-like DLBCL Ig, which rarely has sites in the CDR and does not seem to acquire oligomannose-type structures. Acquisition of CDR-located acceptor sites associates with mutations of epigenetic regulators and BCL2 translocations, indicating an origin shared with follicular lymphoma. Within the EZB subtype, these sites are associated with more rapid disease progression and with significant gene set enrichment of the B-cell receptor, PI3K/AKT/MTORC1 pathway, glucose metabolism, and MYC signaling pathways, particularly in the fraction devoid of MYC translocations. The oligomannose-type glycans on the lymphoma cells interact with the candidate lectin dendritic cell-specific intercellular adhesion molecule 3 grabbing non-integrin (DC-SIGN), mediating low-level signals, and lectin-expressing cells form clusters with lymphoma cells. Both clustering and signaling are inhibited by antibodies specifically targeting the DC-SIGN carbohydrate recognition domain. Oligomannosylation of the tumor Ig is a posttranslational modification that readily identifies a distinct GCB-DLBCL category with more aggressive clinical behavior, and it could be a potential precise therapeutic target via antibody-mediated inhibition of the tumor Ig interaction with DC-SIGN-expressing M2-polarized macrophages.
Collapse
Affiliation(s)
- Giorgia Chiodin
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Dean J Bryant
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Philip Rock
- Department of Pathology and Laboratory Medicine/Hematopathology, University of Rochester Medical Center, Rochester, NY
| | - Enrica A Martino
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
- Division of Hematology, Azienda Policlinico-Ospedale Vittorio Emanuele, University of Catania, Catania, Italy
| | - Beatriz Valle-Argos
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Patrick J Duriez
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Yasunori Watanabe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Isla Henderson
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - James S Blachly
- Division of Hematology, The Ohio State University, Columbus, OH
| | - Katy J McCann
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Jonathan C Strefford
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Graham Packham
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; and
| | - Richard Burack
- Department of Pathology and Laboratory Medicine/Hematopathology, University of Rochester Medical Center, Rochester, NY
| | - Thomas A Bowden
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Freda K Stevenson
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Francesco Forconi
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
- Haematology Department, Cancer Care Directorate, University Hospital Southampton National Health Service Trust, Southampton, United Kingdom
| |
Collapse
|
21
|
Follicular lymphoma and macrophages: impact of approved and novel therapies. Blood Adv 2021; 5:4303-4312. [PMID: 34570196 PMCID: PMC8945644 DOI: 10.1182/bloodadvances.2021005722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022] Open
Abstract
The survival and proliferation of follicular lymphoma (FL) cells are strongly dependent on macrophages, because their presence is necessary for the propagation of FL cells in vitro. To this regard, as also shown for the majority of solid tumors, a high tissue content of tumor-associated macrophages (TAMs), particularly if showing a protumoral phenotype (also called M2), is strongly associated with a poor outcome among patients with FL treated with chemotherapy. The introduction of rituximab, an anti-CD20 antibody that can be used by TAMs to facilitate antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis, has challenged this paradigm. In the rituximab era, clinical studies have yielded conflicting results in FL, showing variable outcomes based on the type of regimen used. This highlighted, for the first time, that the impact of TAMs on the prognosis of patients with FL may depend on the administered treatment, emphasizing the need to better understand how currently available therapies affect macrophage function in FL. We summarize the impact of approved and novel therapies for FL, including radiation therapy, chemotherapy, anti-CD20 monoclonal antibodies, lenalidomide, and targeted agents, on the biology of TAMs and describe their effects on macrophage phagocytosis, polarization, and function. Although novel agents targeting the CD47/SIRPα axis are being developed and show promising activity in FL, a deeper understanding of macrophage biology and their complex pathways will help to develop novel and safer therapeutic strategies for patients with this type of lymphoma.
Collapse
|
22
|
Kumar E, Pickard L, Okosun J. Pathogenesis of follicular lymphoma: genetics to the microenvironment to clinical translation. Br J Haematol 2021; 194:810-821. [PMID: 33694181 DOI: 10.1111/bjh.17383] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023]
Abstract
Follicular lymphoma (FL) represents a heterogeneous disease both clinically and biologically. The pathognomonic t(14;18) translocation can no longer be thought of as the primary genetic driver, with increasing recognition of the biological relevance of recurrent genetic alterations in epigenetic regulators that now feature as a pivotal hallmark of this lymphoma subtype. Furthermore, sequencing studies have provided a near complete catalogue of additional genetic aberrations. Longitudinal and spatial genetic studies add an additional layer to the biological heterogeneity, providing preliminary molecular insights into high-risk phenotypes such as early progressors and transformation, and also supporting evidence for the existence of persisting re-populating cells that act as lymphoma reservoirs and harbingers for FL recurrence. Simultaneously, understanding of the tumour microenvironmental cues promoting lymphomagenesis and disease progression continue to broaden. More recently, studies are beginning to unravel the convergence and co-operation between the genetics, epigenetics and microenvironment. There is a pressing need to marry biology with therapeutics, especially with the burgeoning treatment landscape in FL, to aid in optimising patient selection and guiding the 'right drug to the right patient'.
Collapse
Affiliation(s)
- Emil Kumar
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lucy Pickard
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Milpied P, Gandhi AK, Cartron G, Pasqualucci L, Tarte K, Nadel B, Roulland S. Follicular lymphoma dynamics. Adv Immunol 2021; 150:43-103. [PMID: 34176559 DOI: 10.1016/bs.ai.2021.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Follicular lymphoma (FL) is an indolent yet challenging disease. Despite a generally favorable response to immunochemotherapy regimens, a fraction of patients does not respond or relapses early with unfavorable prognosis. For the vast majority of those who initially respond, relapses will repeatedly occur with increasing refractoriness to available treatments. Addressing the clinical challenges in FL warrants deep understanding of the nature of treatment-resistant FL cells seeding relapses, and of the biological basis of early disease progression. Great progress has been made in the last decade in the description and interrogation of the (epi)genomic landscape of FL cells, of their major dependency to the tumor microenvironment (TME), and of the stepwise lymphomagenesis process, from healthy to subclinical disease and to overt FL. A new picture is emerging, in which an ever-evolving tumor-TME duo sparks a complex and multilayered clonal and functional heterogeneity, blurring the discovery of prognostic biomarkers, patient stratification and reliable designs of risk-adapted treatments. Novel technological approaches allowing to decipher both tumor and TME heterogeneity at the single-cell level are beginning to unravel unsuspected cell dynamics and plasticity of FL cells. The upcoming drawing of a comprehensive functional picture of FL within its ecosystem holds great promise to address the unmet medical needs of this complex lymphoma.
Collapse
Affiliation(s)
- Pierre Milpied
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Anita K Gandhi
- Translational Medicine, Bristol Myers Squibb, Summit, NJ, United States
| | - Guillaume Cartron
- Department of Hematology, Centre Hospitalier Universitaire Montpellier, UMR-CNRS 5535, Montpellier, France
| | - Laura Pasqualucci
- Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York City, NY, United States
| | - Karin Tarte
- INSERM U1236, Univ Rennes, EFS Bretagne, CHU Rennes, Rennes, France
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.
| | | |
Collapse
|
24
|
Valle-Argos B, Chiodin G, Bryant DJ, Taylor J, Lemm E, Duriez PJ, Rock PJ, Strefford JC, Forconi F, Burack RW, Packham G, Stevenson FK. DC-SIGN binding to mannosylated B-cell receptors in follicular lymphoma down-modulates receptor signaling capacity. Sci Rep 2021; 11:11676. [PMID: 34083646 PMCID: PMC8175722 DOI: 10.1038/s41598-021-91112-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
In follicular lymphoma (FL), surface immunoglobulin (sIg) carries mandatory N-glycosylation sites in the variable regions, inserted during somatic hypermutation. These glycosylation sites are tumor-specific, indicating a critical function in FL. Added glycan unexpectedly terminates at high mannose (Mann) and confers capability for sIg-mediated interaction with local macrophage-expressed DC-SIGN lectin resulting in low-level activation of upstream B-cell receptor signaling responses. Here we show that despite being of low-level, DC-SIGN induces a similar downstream transcriptional response to anti-IgM in primary FL cells, characterized by activation of pathways associated with B-cell survival, proliferation and cell-cell communication. Lectin binding was also able to engage post-transcriptional receptor cross-talk pathways since, like anti-IgM, DC-SIGN down-modulated cell surface expression of CXCR4. Importantly, pre-exposure of a FL-derived cell line expressing sIgM-Mann or primary FL cells to DC-SIGN, which does not block anti-IgM binding, reversibly paralyzed the subsequent Ca2+ response to anti-IgM. These novel findings indicate that modulation of sIg function occurs in FL via lectin binding to acquired mannoses. The B-cell receptor alternative engagement described here provides two advantages to lymphoma cells: (i) activation of signaling, which, albeit of low-level, is sufficient to trigger canonical lymphoma-promoting responses, and (ii) protection from exogenous antigen by paralyzing anti-IgM-induced signaling. Blockade of this alternative engagement could offer a new therapeutic strategy.
Collapse
MESH Headings
- Calcium/metabolism
- Calcium Signaling
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Glycosylation
- Humans
- Immunoglobulin M/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/metabolism
- Protein Binding
- Receptors, Antigen, B-Cell/metabolism
- Receptors, CXCR4/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Beatriz Valle-Argos
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Giorgia Chiodin
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Dean J Bryant
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Joe Taylor
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Elizabeth Lemm
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Patrick J Duriez
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Philip J Rock
- Pathology Department, University of Rochester Medical Center, NY, USA
| | - Jonathan C Strefford
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Francesco Forconi
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Richard W Burack
- Pathology Department, University of Rochester Medical Center, NY, USA
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.
| | - Freda K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.
| |
Collapse
|
25
|
Lamaison C, Tarte K. B cell/stromal cell crosstalk in health, disease, and treatment: Follicular lymphoma as a paradigm. Immunol Rev 2021; 302:273-285. [PMID: 34060097 DOI: 10.1111/imr.12983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Stromal cells organize specific anatomic compartments within bone marrow (BM) and secondary lymphoid organs where they finely regulate the behavior of mature normal B cells. In particular, lymphoid stromal cells (LSCs) form a phenotypically heterogeneous compartment including various cell subsets variably supporting B-cell survival, activation, proliferation, and differentiation. In turn, activated B cells trigger in-depth remodeling of LSC networks within lymph nodes (LN) and BM. Follicular lymphoma (FL) is one of the best paradigms of a B-cell neoplasia depending on a specific tumor microenvironment (TME), including cancer-associated fibroblasts (CAFs) emerging from the reprogramming of LN LSCs or poorly characterized local BM precursors. FL-CAFs support directly malignant B-cell growth and orchestrate FL permissive cell niche by contributing, through a bidirectional crosstalk, to the recruitment and polarization of immune TME subsets. Recent studies have highlighted a previously unexpected level of heterogeneity of both FL B cells and FL TME, underlined by FL-CAF plasticity. A better understanding of the signaling pathways, molecular mechanisms, and kinetic of stromal cell remodeling in FL would be useful to delineate new predictive markers and new therapeutic approaches in this still fatal malignancy.
Collapse
Affiliation(s)
- Claire Lamaison
- UMR_S 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, Rennes, France
| | - Karin Tarte
- UMR_S 1236, Université Rennes 1, INSERM, Etablissement Français du Sang, Rennes, France.,SITI, Pôle de Biologie, CHU Pontchaillou, Rennes, France
| |
Collapse
|
26
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
27
|
Follicular Lymphoma Microenvironment: An Intricate Network Ready for Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13040641. [PMID: 33562694 PMCID: PMC7915642 DOI: 10.3390/cancers13040641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Follicular Lymphoma (FL), the most common indolent non-Hodgkin's B cell lymphoma, is a paradigm of the immune microenvironment's contribution to disease onset, progression, and heterogeneity. Over the last few years, state-of-the-art technologies, including whole-exome sequencing, single-cell RNA sequencing, and mass cytometry, have precisely dissected the specific cellular phenotypes present in the FL microenvironment network and their role in the disease. In this already complex picture, the presence of recurring mutations, including KMT2D, CREBBP, EZH2, and TNFRSF14, have a prominent contributory role, with some of them finely tuning this exquisite dependence of FL on its microenvironment. This precise characterization of the enemy (FL) and its allies (microenvironment) has paved the way for the development of novel therapies aimed at dismantling this contact network, weakening tumor cell support, and reactivating the host's immune response against the tumor. In this review, we will describe the main microenvironment actors, together with the current and future therapeutic approaches targeting them.
Collapse
|
28
|
Chauhan AF, Cheson BD. Copanlisib in the Treatment of Relapsed Follicular Lymphoma: Utility and Experience from the Clinic. Cancer Manag Res 2021; 13:677-692. [PMID: 33531838 PMCID: PMC7846853 DOI: 10.2147/cmar.s201024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K) pathway is ubiquitous to multiple cellular processes and is intricately implicated in lymphomagenesis. The development of PI3K inhibitors has broadened treatment options for relapsed and/or refractory follicular lymphoma (FL) and currently three PI3K inhibitors have been approved in the third-line setting for FL, including idelalisib (oral), duvelisib (oral), and copanlisib (intravenous), with other agents under investigation. In this review, we discuss the clinical advance of copanlisib through preclinical to Phase III trials, its unique cellular targets and side effect profile that have poised it as a safer and equally efficacious option when compared to the older-generation oral PI3Kis, and its utility to the clinician as part of the therapeutic armamentarium for relapsed and/or refractory FL.
Collapse
Affiliation(s)
- Ayushi F Chauhan
- Department of Hematology and Oncology, Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington DC, USA
| | - Bruce D Cheson
- Scientific Advisory Board, Lymphoma Research Foundation, Washington, DC, USA
| |
Collapse
|
29
|
Lim B, Kydd L, Jaworski J. Engineering a reporter cell line to mimic the high oligomannose presenting surface immunoglobulin of follicular lymphoma B cells. Sci Rep 2021; 11:87. [PMID: 33420165 PMCID: PMC7794505 DOI: 10.1038/s41598-020-79862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/10/2020] [Indexed: 11/28/2022] Open
Abstract
Subtypes of B cell non-Hodgkin’s lymphomas, including follicular lymphomas, have shown a unique high oligomannose presentation on their immunoglobulins that will interact with natural receptors of the innate immunity, reportedly causing stimulation and proliferation. From deep sequencing of the variable heavy and light chain sequences of follicular lymphoma involved tissue sections, we identified the consensus variable sequences possessing glycosylation sites at the complementarity determining region. Using this information, we developed a cell line, referred to here as BZ, which displays the consensus variable segments as part of a surface antibody (IgM) and confirmed its presentation of high oligomannose on the heavy chain both in vitro and in vivo. An mCherry expressing variant provided a reporter cell line displaying the high oligomannose surface biomarker while affording clear fluorescent signals for FACS screening as well as for fluorescent in vivo imaging of ectopic xenograft tumors. In developing this reporter cell line that displays the biomarker glycan of follicular lymphoma, we provide a tool that may be used for future screening and validation of receptive moieties for selectively binding high oligomannose for development of targeted diagnostics or therapeutics to such B cell malignancies that display this unique glycan.
Collapse
Affiliation(s)
- Butaek Lim
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX, 76019, USA
| | - LeNaiya Kydd
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX, 76019, USA
| | - Justyn Jaworski
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX, 76019, USA.
| |
Collapse
|
30
|
Berditchevski F, Fennell E, Murray PG. Calcium-dependent signalling in B-cell lymphomas. Oncogene 2021; 40:6321-6328. [PMID: 34625709 PMCID: PMC8585665 DOI: 10.1038/s41388-021-02025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Induced waves of calcium fluxes initiate multiple signalling pathways that play an important role in the differentiation and maturation of B-cells. Finely tuned transient Ca+2 fluxes from the endoplasmic reticulum in response to B-cell receptor (BCR) or chemokine receptor activation are followed by more sustained calcium influxes from the extracellular environment and contribute to the mechanisms responsible for the proliferation of B-cells, their migration within lymphoid organs and their differentiation. Dysregulation of these well-balanced mechanisms in B-cell lymphomas results in uncontrolled cell proliferation and resistance to apoptosis. Consequently, several cytotoxic drugs (and anti-proliferative compounds) used in standard chemotherapy regimens for the treatment of people with lymphoma target calcium-dependent pathways. Furthermore, ~10% of lymphoma associated mutations are found in genes with functions in calcium-dependent signalling, including those affecting B-cell receptor signalling pathways. In this review, we provide an overview of the Ca2+-dependent signalling network and outline the contribution of its key components to B cell lymphomagenesis. We also consider how the oncogenic Epstein-Barr virus, which is causally linked to the pathogenesis of a number of B-cell lymphomas, can modify Ca2+-dependent signalling.
Collapse
Affiliation(s)
- Fedor Berditchevski
- grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT UK
| | - Eanna Fennell
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland
| | - Paul G. Murray
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland ,grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
31
|
Su H, Wang M, Pang X, Guan F, Li X, Cheng Y. When Glycosylation Meets Blood Cells: A Glance of the Aberrant Glycosylation in Hematological Malignancies. Rev Physiol Biochem Pharmacol 2021; 180:85-117. [PMID: 34031738 DOI: 10.1007/112_2021_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of hematological malignancy progression. Alterations in glycosylation appear to not only directly impact cell growth and survival, but also alter the adhesion of tumor cells and their interactions with the microenvironment, facilitating cancer-induced immunomodulation and eventual metastasis. Changes in glycosylation arise from altered expression of glycosyltransferases, enzymes that catalyze the transfer of saccharide moieties to a wide range of acceptor substrates, such as proteins, lipids, and other saccharides in the endoplasmic reticulum (ER) and Golgi apparatus. Novel glycan structures in hematological malignancies represent new targets for the diagnosis and treatment of blood diseases. This review summarizes studies of the aberrant expression of glycans commonly found in hematological malignancies and their potential mechanisms and defines the specific roles of glycans as drivers or passengers in the development of hematological malignancies.
Collapse
Affiliation(s)
- Huining Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mimi Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xingchen Pang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China.
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
32
|
|
33
|
Soncini D, Orecchioni S, Ruberti S, Minetto P, Martinuzzi C, Agnelli L, Todoerti K, Cagnetta A, Miglino M, Clavio M, Contini P, Varaldo R, Bergamaschi M, Guolo F, Passalacqua M, Nencioni A, Monacelli F, Gobbi M, Neri A, Abbadessa G, Eathiraj S, Schwartz B, Bertolini F, Lemoli RM, Cea M. The new small tyrosine kinase inhibitor ARQ531 targets acute myeloid leukemia cells by disrupting multiple tumor-addicted programs. Haematologica 2020; 105:2420-2431. [PMID: 33054082 PMCID: PMC7556675 DOI: 10.3324/haematol.2019.224956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022] Open
Abstract
Tyrosine kinases have been implicated in promoting tumorigenesis of several human cancers. Exploiting these vulnerabilities has been shown to be an effective anti-tumor strategy as demonstrated for example by the Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, for treatment of various blood cancers. Here, we characterize a new multiple kinase inhibitor, ARQ531, and evaluate its mechanism of action in preclinical models of acute myeloid leukemia. Treatment with ARQ531, by producing global signaling pathway deregulation, resulted in impaired cell cycle progression and survival in a large panel of leukemia cell lines and patient-derived tumor cells, regardless of the specific genetic background and/or the presence of bone marrow stromal cells. RNA-seq analysis revealed that ARQ531 constrained tumor cell proliferation and survival through Bruton's tyrosine kinase and transcriptional program dysregulation, with proteasome-mediated MYB degradation and depletion of short-lived proteins that are crucial for tumor growth and survival, including ERK, MYC and MCL1. Finally, ARQ531 treatment was effective in a patient-derived leukemia mouse model with significant impairment of tumor progression and survival, at tolerated doses. These data justify the clinical development of ARQ531 as a promising targeted agent for the treatment of patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Debora Soncini
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Samantha Ruberti
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Paola Minetto
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Martinuzzi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Katia Todoerti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonia Cagnetta
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Miglino
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marino Clavio
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Contini
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Riccardo Varaldo
- Division of Hematology and Hematopoietic Stem Cell Transplantation Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Micaela Bergamaschi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Fabio Guolo
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Marco Gobbi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | | | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto M. Lemoli
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cea
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
34
|
Akt+ IKKα/β+ Rab5+ Signalosome Mediate the Endosomal Recruitment of Sec61 and Contribute to Cross-Presentation in Bone Marrow Precursor Cells. Vaccines (Basel) 2020; 8:vaccines8030539. [PMID: 32957586 PMCID: PMC7563657 DOI: 10.3390/vaccines8030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Cross-presentation in dendritic cells (DC) requires the endosomal relocations of internalized antigens and the endoplasmic reticulum protein Sec61. Despite the fact that endotoxin-containing pathogen and endotoxin-free antigen have different effects on protein kinase B (Akt) and I-kappa B Kinase α/β (IKKα/β) activation, the exact roles of Akt phosphorylation, IKKα or IKKβ activation in endotoxin-containing pathogen-derived cross-presentation are poorly understood. In this study, endotoxin-free ovalbumin supplemented with endotoxin was used as a model pathogen. We investigated the effects of endotoxin-containing pathogen and endotoxin-free antigen on Akt phosphorylation, IKKα/β activation, and explored the mechanisms that the endotoxin-containing pathogen orchestrating the endosomal recruitment of Sec61 of the cross-presentation in bone marrow precursor cells (BMPC). We demonstrated that endotoxin-containing pathogen and endotoxin-free antigen efficiently induced the phosphorylation of Akt-IKKα/β and Akt-IKKα, respectively. Endotoxin-containing pathogen derived Akt+ IKKα/β+ Rab5+ signalosome, together with augmented the recruitment of Sec61 toward endosome, lead to the increased cross-presentation in BMPC. Importantly, the endosomal recruitment of Sec61 was partly mediated by the formation of Akt+ IKKα/β+ signalosome. Thus, these data suggest that Akt+ IKKα/β+ Rab5+ signalosome contribute to endotoxin-containing pathogen-induced the endosomal recruitment of Sec61 and the superior efficacy of cross-presentation in BMPC.
Collapse
|
35
|
Serrat N, Guerrero-Hernández M, Matas-Céspedes A, Yahiaoui A, Valero JG, Nadeu F, Clot G, Di Re M, Corbera-Bellalta M, Magnano L, Rivas-Delgado A, Enjuanes A, Beà S, Cid MC, Campo E, Montero J, Hodson DJ, López-Guillermo A, Colomer D, Tannheimer S, Pérez-Galán P. PI3Kδ inhibition reshapes follicular lymphoma-immune microenvironment cross talk and unleashes the activity of venetoclax. Blood Adv 2020; 4:4217-4231. [PMID: 32898249 PMCID: PMC7479943 DOI: 10.1182/bloodadvances.2020001584] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Despite idelalisib approval in relapsed follicular lymphoma (FL), a complete characterization of the immunomodulatory consequences of phosphatidylinositol 3-kinase δ (PI3Kδ) inhibition, biomarkers of response, and potential combinatorial therapies in FL remain to be established. Using ex vivo cocultures of FL patient biopsies and follicular dendritic cells (FDCs) to mimic the germinal center (n = 42), we uncovered that PI3Kδ inhibition interferes with FDC-induced genes related to angiogenesis, extracellular matrix formation, and transendothelial migration in a subset of FL samples, defining an 18-gene signature fingerprint of idelalisib sensitivity. A common hallmark of idelalisib found in all FL cases was its interference with the CD40/CD40L pathway and induced proliferation, together with the downregulation of proteins crucial for B-T-cell synapses, leading to an inefficient cross talk between FL cells and the supportive T-follicular helper cells (TFH). Moreover, idelalisib downmodulates the chemokine CCL22, hampering the recruitment of TFH and immunosupressive T-regulatory cells to the FL niche, leading to a less supportive and tolerogenic immune microenvironment. Finally, using BH3 profiling, we uncovered that FL-FDC and FL-macrophage cocultures augment tumor addiction to BCL-XL and MCL-1 or BFL-1, respectively, limiting the cytotoxic activity of the BCL-2 inhibitor venetoclax. Idelalisib restored FL dependence on BCL-2 and venetoclax activity. In summary, idelalisib exhibits a patient-dependent activity toward angiogenesis and lymphoma dissemination. In all FL cases, idelalisib exerts a general reshaping of the FL immune microenvironment and restores dependence on BCL-2, predisposing FL to cell death, providing a mechanistic rationale for investigating the combination of PI3Kδ inhibitors and venetoclax in clinical trials.
Collapse
Affiliation(s)
- Neus Serrat
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Martina Guerrero-Hernández
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Matas-Céspedes
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Anella Yahiaoui
- Department of Biomarker Sciences, Gilead Sciences, Inc., Seattle, WA
| | - Juan G Valero
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Ferran Nadeu
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Guillem Clot
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Miriam Di Re
- Department of Haematology, Wellcome Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Marc Corbera-Bellalta
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Laura Magnano
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology and
| | - Alfredo Rivas-Delgado
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology and
| | - Anna Enjuanes
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Silvia Beà
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Maria C Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Elías Campo
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic-IDIBAPS, Barcelona, Spain; and
| | - Joan Montero
- Department of Nanobioengineering, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel J Hodson
- Department of Haematology, Wellcome Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Armando López-Guillermo
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology and
| | - Dolors Colomer
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic-IDIBAPS, Barcelona, Spain; and
| | - Stacey Tannheimer
- Department of Biomarker Sciences, Gilead Sciences, Inc., Seattle, WA
| | - Patricia Pérez-Galán
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| |
Collapse
|
36
|
Mechanisms of B Cell Receptor Activation and Responses to B Cell Receptor Inhibitors in B Cell Malignancies. Cancers (Basel) 2020; 12:cancers12061396. [PMID: 32481736 PMCID: PMC7352865 DOI: 10.3390/cancers12061396] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies, including chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone B cell lymphoma, and Waldenstrom's macroglobulinemia. This finding has resulted in the development of numerous drugs that target this pathway, including various inhibitors of the kinases BTK, PI3K, and SYK. Several of these drugs have been approved in recent years for clinical use, resulting in a profound change in the way these diseases are currently being treated. However, the response rates and durability of responses vary largely across the different disease entities, suggesting a different proportion of patients with an activated BCR pathway and different mechanisms of BCR pathway activation. Indeed, several antigen-dependent and antigen-independent mechanisms have recently been described and shown to result in the activation of distinct downstream signaling pathways. The purpose of this review is to provide an overview of the mechanisms responsible for the activation of the BCR pathway in different B cell malignancies and to correlate these mechanisms with clinical responses to treatment with BCR inhibitors.
Collapse
|
37
|
Lemm EA, Valle-Argos B, Smith LD, Richter J, Gebreselassie Y, Carter MJ, Karolova J, Svaton M, Helman K, Weston-Bell NJ, Karydis L, Williamson CT, Lenz G, Pettigrew J, Harwig C, Stevenson FK, Cragg M, Forconi F, Steele AJ, Cross J, Mackenzie L, Klener P, Packham G. Preclinical Evaluation of a Novel SHIP1 Phosphatase Activator for Inhibition of PI3K Signaling in Malignant B Cells. Clin Cancer Res 2020; 26:1700-1711. [PMID: 31831562 PMCID: PMC7124891 DOI: 10.1158/1078-0432.ccr-19-2202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/23/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE PI3K signaling is a common feature of B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL), and PI3K inhibitors have been introduced into the clinic. However, there remains a clear need to develop new strategies to target PI3K signaling. PI3K activity is countered by Src homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) and, here, we have characterized the activity of a novel SHIP1 activator, AQX-435, in preclinical models of B-cell malignancies. EXPERIMENTAL DESIGN In vitro activity of AQX-435 was evaluated using primary CLL cells and DLBCL-derived cell lines. In vivo activity of AQX-435, alone or in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, was assessed using DLBCL cell line and patient-derived xenograft models. RESULTS Pharmacologic activation of SHIP1 using AQX-435 was sufficient to inhibit anti-IgM-induced PI3K-mediated signaling, including induction of AKT phosphorylation and MYC expression, without effects on upstream SYK phosphorylation. AQX-435 also cooperated with the BTK inhibitor ibrutinib to enhance inhibition of anti-IgM-induced AKT phosphorylation. AQX-435 induced caspase-dependent apoptosis of CLL cells preferentially as compared with normal B cells, and overcame in vitro survival-promoting effects of microenvironmental stimuli. Finally, AQX-435 reduced AKT phosphorylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth inhibition. CONCLUSIONS Our results using AQX-435 demonstrate that SHIP1 activation may be an effective novel therapeutic strategy for treatment of B-cell neoplasms, alone or in combination with ibrutinib.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Enzyme Activators/pharmacology
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred NOD
- Phosphatidylinositol 3-Kinases/chemistry
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Sesquiterpenes/pharmacology
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Elizabeth A Lemm
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Beatriz Valle-Argos
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Lindsay D Smith
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Johanna Richter
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yohannes Gebreselassie
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Matthew J Carter
- Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jana Karolova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP - Childhood Leukaemia Investigation Prague, Second Faculty of Medicine and Charles University Hospital in Motol, Prague, Czech Republic
| | - Michael Svaton
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP - Childhood Leukaemia Investigation Prague, Second Faculty of Medicine and Charles University Hospital in Motol, Prague, Czech Republic
| | - Karel Helman
- Faculty of Informatics and Statistics, University of Economics, Prague, Czech Republic
| | - Nicola J Weston-Bell
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Laura Karydis
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chris T Williamson
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Jeremy Pettigrew
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Curtis Harwig
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Freda K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark Cragg
- Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew J Steele
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jennifer Cross
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Lloyd Mackenzie
- Aquinox Pharmaceuticals (Canada) Inc., Vancouver, British Columbia, Canada
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP - Childhood Leukaemia Investigation Prague, Second Faculty of Medicine and Charles University Hospital in Motol, Prague, Czech Republic
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
38
|
Odabashian M, Carlotti E, Araf S, Okosun J, Spada F, Gribben JG, Forconi F, Stevenson FK, Calaminici M, Krysov S. IGHV sequencing reveals acquired N-glycosylation sites as a clonal and stable event during follicular lymphoma evolution. Blood 2020; 135:834-844. [PMID: 31932843 PMCID: PMC7195541 DOI: 10.1182/blood.2019002279] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022] Open
Abstract
Follicular lymphoma B cells undergo continuous somatic hypermutation (SHM) of their immunoglobulin variable region genes, generating a heterogeneous tumor population. SHM introduces DNA sequences encoding N-glycosylation sites asparagine-X-serine/threonine (N-gly sites) within the V-region that are rarely found in normal B-cell counterparts. Unique attached oligomannoses activate B-cell receptor signaling pathways after engagement with calcium-dependent lectins expressed by tissue macrophages. This novel interaction appears critical for tumor growth and survival. To elucidate the significance of N-gly site presence and loss during ongoing SHM, we tracked site behavior during tumor evolution and progression in a diverse group of patients through next-generation sequencing. A hierarchy of subclones was visualized through lineage trees based on SHM semblance between subclones and their discordance from the germline sequence. We observed conservation of N-gly sites in more than 96% of subclone populations within and across diagnostic, progression, and transformation events. Rare N-gly-negative subclones were lost or negligible from successive events, in contrast to N-gly-positive subclones, which could additionally migrate between anatomical sites. Ongoing SHM of the N-gly sites resulted in subclones with different amino acid compositions across disease events, yet the vast majority of resulting DNA sequences still encoded for an N-gly site. The selection and expansion of only N-gly-positive subclones is evidence of the tumor cells' dependence on sites, despite the changing genomic complexity as the disease progresses. N-gly sites were gained in the earliest identified lymphoma cells, indicating they are an early and stable event of pathogenesis. Targeting the inferred mannose-lectin interaction holds therapeutic promise.
Collapse
Affiliation(s)
- Mariette Odabashian
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| | - Emanuela Carlotti
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| | - Shamzah Araf
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| | - Filomena Spada
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| | - Francesco Forconi
- Cancer Sciences Division, Somers Cancer Sciences Building, University of Southampton, Southampton, United Kingdom
| | - Freda K Stevenson
- Cancer Sciences Division, Somers Cancer Sciences Building, University of Southampton, Southampton, United Kingdom
| | - Mariarita Calaminici
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| | - Sergey Krysov
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; and
| |
Collapse
|
39
|
Vletter EM, Koning MT, Scherer HU, Veelken H, Toes REM. A Comparison of Immunoglobulin Variable Region N-Linked Glycosylation in Healthy Donors, Autoimmune Disease and Lymphoma. Front Immunol 2020; 11:241. [PMID: 32133009 PMCID: PMC7040075 DOI: 10.3389/fimmu.2020.00241] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
N-linked glycans play an important role in immunity. Although the role of N-linked glycans in the Fragment crystallizable (Fc) region of immunoglobulins has been thoroughly described, the function of N-linked glycans present in Ig-variable domains is only just being appreciated. Most of the N-linked glycans harbored by immunoglobulin variable domain are of the complex biantennary type and are found as a result of the presence of N-linked glycosylation that most often have been introduced by somatic hypermutation. Furthermore, these glycans are ubiquitously present on autoantibodies observed in some autoimmune diseases as well as certain B-cell lymphomas. For example, variable domain glycans are abundantly found by anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) as well as by the B-cell receptors of follicular lymphoma (FL). In FL, variable domain glycans are postulated to convey a selective advantage through interaction with lectins and/or microbiota, whereas the contribution of variable domain glycans on autoantibodies is not known. To aid the understanding how these seemingly comparable phenomena contribute to a variety of deranged B-responses in such different diseases this study summarizes the characteristics of ACPA and other auto-antibodies with FL and healthy donor immunoglobulins, to identify the commonalities and differences between variable domain glycans in autoimmune and malignant settings. Our finding indicate intriguing differences in variable domain glycan distribution, frequency and glycan composition in different conditions. These findings underline that variable domain glycosylation is a heterogeneous process that may lead to a number of pathogenic outcomes. Based on the current body of knowledge, we postulate three disease groups with distinct variable domain glycosylation patterns, which might correspond with distinct underlying pathogenic processes.
Collapse
Affiliation(s)
- Esther M Vletter
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
40
|
Gemenetzi K, Agathangelidis A, Zaragoza-Infante L, Sofou E, Papaioannou M, Chatzidimitriou A, Stamatopoulos K. B Cell Receptor Immunogenetics in B Cell Lymphomas: Immunoglobulin Genes as Key to Ontogeny and Clinical Decision Making. Front Oncol 2020; 10:67. [PMID: 32083012 PMCID: PMC7006488 DOI: 10.3389/fonc.2020.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
The clonotypic B cell receptor immunoglobulin (BcR IG) plays a seminal role in B cell lymphoma development and evolution. From a clinical perspective, this view is supported by the remarkable therapeutic efficacy of BcR signaling inhibitors, even among heavily pre-treated, relapsed/refractory patients. This clinical development complements immunogenetic evidence for antigen drive in the natural history of these tumors. Indeed, BcR IG gene repertoire biases have been documented in different B cell lymphoma subtypes, alluding to selection of B cell progenitors that express particular BcR IG. Moreover, distinct entities display imprints of somatic hypermutation within the clonotypic BcR IG gene following patterns that strengthen the argument for antigen selection. Of note, at least in certain B cell lymphomas, the BcR IG genes are intraclonally diversified, likely in a context of ongoing interactions with antigen(s). Moreover, BcR IG gene repertoire profiling suggests that unique immune pathways lead to distinct B cell lymphomas through targeting cells at different stages in the B cell differentiation trajectory (e.g., germinal center B cells in follicular lymphoma, FL). Regarding the implicated antigens, although their precise nature remains to be fully elucidated, immunogenetic analysis has offered important hints by revealing similarities between the BcR IG of particular lymphomas and B cell clones with known antigenic specificity: this has paved the way to functional studies that identified relevant antigenic determinants of classes of structurally similar epitopes. Finally, in certain tumors, most notably chronic lymphocytic leukemia (CLL), immunogenetic analysis has also proven instrumental in accurate patient risk stratification since cases with differing BcR IG gene sequence features follow distinct disease courses and respond differently to particular treatment modalities. Overall, delving into the BcR IG gene sequences emerges as key to understanding B cell lymphoma pathophysiology, refining prognostication and assisting in making educated treatment choices.
Collapse
Affiliation(s)
- Katerina Gemenetzi
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Andreas Agathangelidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Laura Zaragoza-Infante
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Electra Sofou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Maria Papaioannou
- Hematology Department, University General Hospital of Thessaloniki AHEPA, Thessaloniki, Greece
| | | | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
41
|
van Delft MAM, Huizinga TWJ. An overview of autoantibodies in rheumatoid arthritis. J Autoimmun 2020; 110:102392. [PMID: 31911013 DOI: 10.1016/j.jaut.2019.102392] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic auto-immune disease principally effecting synovial joints. RA is characterized by immune cell infiltration in the joint. The presence of autoantibodies is a hallmark for the disease, among these are rheumatoid factor and antibodies against post-translational modified proteins like citrullination (ACPA) and carbamylation (anti-CarP antibodies). These autoantibodies may form immune complexes in the joint, leading to the attraction of immune cells. Based on the presence of these autoantibodies, RA patients can be subdivided in autoantibody positive and negative disease. Both subsets can be associated with genetic and environmental risk factors for RA, like the human leukocyte antigen (HLA) allele and smoking. Autoantibodies can already be detected years before disease onset in a subgroup of patients and at symptom onset a broad isotype spectrum is observed. This suggests that various events occur prior to the development of RA in which the first autoantibodies develop in predisposed individuals. Therefore, the presence of these autoantibodies can be useful in predicting future RA patients. Research on the characteristics and effector function of these autoantibodies is ongoing and will give more knowledge in the inflammatory responses underlying RA. This will give insight in the pathogenic role of autoantibodies in RA. Recent data are suggestive of a role for mucosal surfaces in the development of auto-immune responses associated with (the development of) RA. In conclusion, investigating the potential pathogenic effector functions of autoantibody isotypes and their molecular- and physicochemical-compositions might improve understanding of the disease origin and its underlying immunological processes. This may lead to the development of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Myrthe A M van Delft
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands.
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
42
|
Carbone A, Roulland S, Gloghini A, Younes A, von Keudell G, López-Guillermo A, Fitzgibbon J. Follicular lymphoma. Nat Rev Dis Primers 2019; 5:83. [PMID: 31831752 DOI: 10.1038/s41572-019-0132-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Follicular lymphoma (FL) is a systemic neoplasm of the lymphoid tissue displaying germinal centre (GC) B cell differentiation. FL represents ~5% of all haematological neoplasms and ~20-25% of all new non-Hodgkin lymphoma diagnoses in western countries. Tumorigenesis starts in precursor B cells and becomes full-blown tumour when the cells reach the GC maturation step. FL is preceded by an asymptomatic preclinical phase in which premalignant B cells carrying a t(14;18) chromosomal translocation accumulate additional genetic alterations, although not all of these cells progress to the tumour phase. FL is an indolent lymphoma with largely favourable outcomes, although a fraction of patients is at risk of disease progression and adverse outcomes. Outcomes for FL in the rituximab era are encouraging, with ~80% of patients having an overall survival of >10 years. Patients with relapsed FL have a wide range of treatment options, including several chemoimmunotherapy regimens, phosphoinositide 3-kinase inhibitors, and lenalidomide plus rituximab. Promising new treatment approaches include epigenetic therapeutics and immune approaches such as chimeric antigen receptor T cell therapy. The identification of patients at high risk who require alternative therapies to the current standard of care is a growing need that will help direct clinical trial research. This Primer discusses the epidemiology of FL, its molecular and cellular pathogenesis and its diagnosis, classification and treatment.
Collapse
Affiliation(s)
- Antonino Carbone
- Centro di Riferimento Oncologico di Aviano IRCCS, Aviano, Italy.
| | - Sandrine Roulland
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Anas Younes
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
43
|
DC-SIGN-LEF1/TCF1-miR-185 feedback loop promotes colorectal cancer invasion and metastasis. Cell Death Differ 2019; 27:379-395. [PMID: 31217502 PMCID: PMC7205996 DOI: 10.1038/s41418-019-0361-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/31/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
DC-SIGN is previously focused on its physiologic and pathophysiologic roles in immune cells. Little is known about whether DC-SIGN is expressed in malignant epithelial cells and how DC-SIGN participates in tumor progression. Here we showed that DC-SIGN expression was increased in metastatic colorectal cancer (CRC) cell lines and patient tissues. The overall survival in CRC patients with positive DC-SIGN was remarkably reduced. Gain of DC-SIGN function facilitated the CRC metastases both in vitro and in vivo, and this effect was reversed by miR-185. DC-SIGN and Lyn interacted physically, and Lyn maintained the stability of DC-SIGN in cells. DC-SIGN activation recruited Lyn and p85 to form the DC-SIGN-Lyn-p85 complex, which promoted CRC metastasis by increasing PI3K/Akt/β-catenin signaling in tyrosine kinase Lyn-dependent manner. Furthermore, activation of DC-SIGN promoted the transcription of MMP-9 and VEGF by increasing PI3K/Akt/β-catenin signaling, and induced TCF1/LEF1-mediated suppression of miR-185. Our findings reveal the presence of the DC-SIGN–TCF1/LEF1–miR-185 loop in cancer cells with metastatic traits, implying that it may represent a new pathogenic mechanism of CRC metastasis. This character of the loop promises to provide new targets for blocking CRC invasive and metastatic activity.
Collapse
|
44
|
Boughan KM, Caimi PF. Follicular Lymphoma: Diagnostic and Prognostic Considerations in Initial Treatment Approach. Curr Oncol Rep 2019; 21:63. [DOI: 10.1007/s11912-019-0808-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Koning MT, Quinten E, Zoutman WH, Kiełbasa SM, Mei H, van Bergen CAM, Jansen P, Vergroesen RD, Willemze R, Vermeer MH, Tensen CP, Veelken H. Acquired N-Linked Glycosylation Motifs in B-Cell Receptors of Primary Cutaneous B-Cell Lymphoma and the Normal B-Cell Repertoire. J Invest Dermatol 2019; 139:2195-2203. [PMID: 31042459 DOI: 10.1016/j.jid.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 01/21/2023]
Abstract
Primary cutaneous follicle center lymphoma (PCFCL) is a rare mature B-cell lymphoma with an unknown etiology. PCFCL resembles follicular lymphoma (FL) by cytomorphologic and microarchitectural criteria. FL B cells are selected for N-linked glycosylation motifs in their B-cell receptors (BCRs) that are acquired during continuous somatic hypermutation. The stimulation of mannosylated BCR by lectins on the tumor microenvironment is therefore a candidate driver in FL pathogenesis. We investigated whether the same mechanism could play a role in PCFCL pathogenesis. Full-length functional variable, diversity, and joining gene sequences of 18 PCFCL and 8 primary cutaneous diffuse large B-cell lymphoma, leg-type were identified by unbiased Anchoring Reverse Transcription of Immunoglobulin Sequences and Amplification by Nested PCR and BCR reconstruction from RNA sequencing data. Low BCR variation demonstrated negligible ongoing somatic hypermutation in PCFCL and primary cutaneous diffuse large B-cell lymphoma, leg-type, and indicated that the PCFCL microarchitecture does not act as a functional germinal center. Similar to FL but in contrast to primary cutaneous diffuse large B-cell lymphoma, leg-type, BCR genes of 15 PCFCLs (83%) had acquired N-linked glycosylation motifs. These motifs were located at the BCR positions converted to N-linked glycosylation motifs in normal B-cell repertoires with low prevalence but mostly at different positions than those found in FL. The cutaneous localization of PCFCL might suggest a role for lectins from commensal skin bacteria in PCFCL lymphomagenesis.
Collapse
Affiliation(s)
- Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin Quinten
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Patty Jansen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rochelle D Vergroesen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
46
|
Magnoli F, Tibiletti MG, Uccella S. Unraveling Tumor Heterogeneity in an Apparently Monolithic Disease: BCL2 and Other Players in the Genetic Landscape of Nodal Follicular Lymphoma. Front Med (Lausanne) 2019; 6:44. [PMID: 30931307 PMCID: PMC6428742 DOI: 10.3389/fmed.2019.00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/20/2019] [Indexed: 02/05/2023] Open
Abstract
Follicular lymphoma (FL) is the most common form of non-Hodgkin lymphoma in Western countries. Although traditionally considered a well-defined, easy to diagnose lymphoproliferative disorder, in the last few years it has become clear that it is in fact composed of many different clinicopathological entities, encompassing a variegated and complex genetic background. This has led to the inclusion of specific FL variants and separate entities in the latest update of the WHO classification. However, even in the context of classical FL, many aspects of intra- and inter-tumoral heterogeneity have been recognized, with a major influence on diagnosis and clinical practice at different time points during the course of the disease. This review focuses on the molecular cytogenetic heterogeneity in classical FL from precursors and early development to progression and transformation, in terms of both clonal heterogeneity and unusual genetic features. Several factors have been investigated and suggested to contribute to the broad spectrum of clinicopathological, phenotypic, and genetic features observed in otherwise morphologically classical cases. Among them, deregulation of the epigenetic machinery and interactions with tumor microenvironment seem to play a pivotal role, together with genetic aberrations involving well-known molecular pathways and mechanisms physiologically operating in the germinal center. In the era of personalized medicine, precision diagnostics based both on understanding of the complex interplay among all these factors and on novel developments will become crucial to predict the outcome and guide the treatment of FL patients.
Collapse
Affiliation(s)
- Francesca Magnoli
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy.,Department of Pathology, ASST Sette Laghi, Varese, Italy
| | | | - Silvia Uccella
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
47
|
Casola S, Perucho L, Tripodo C, Sindaco P, Ponzoni M, Facchetti F. The B‐cell receptor in control of tumor B‐cell fitness: Biology and clinical relevance. Immunol Rev 2019; 288:198-213. [DOI: 10.1111/imr.12738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Stefano Casola
- The FIRC Institute of Molecular Oncology (IFOM) Milan Italy
| | - Laura Perucho
- The FIRC Institute of Molecular Oncology (IFOM) Milan Italy
| | - Claudio Tripodo
- Tumor Immunology UnitDepartment of Health SciencesUniversity of Palermo Palermo Italy
- Tumor and Microenvironment Histopathology UnitThe FIRC Institute of Molecular Oncology (IFOM) Milan Italy
| | - Paola Sindaco
- Department of Emergency and Organ Transplantation (D.E.T.O.)Hematology SectionUniversity of Bari Bari Italy
| | - Maurilio Ponzoni
- Pathology and Lymphoid Malignancies UnitsAteneo Vita‐Salute San Raffaele Scientific Institute Milan Italy
| | - Fabio Facchetti
- Department of Molecular and Translational MedicineSection of PathologyUniversity of Brescia Brescia Italy
| |
Collapse
|
48
|
Couronné L, Bachy E, Roulland S, Nadel B, Davi F, Armand M, Canioni D, Michot JM, Visco C, Arcaini L, Besson C, Hermine O. From hepatitis C virus infection to B-cell lymphoma. Ann Oncol 2019; 29:92-100. [PMID: 29045541 DOI: 10.1093/annonc/mdx635] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In addition to liver disorders, hepatitis C virus (HCV) is also associated with extrahepatic immune manifestations and B-cell non-Hodgkin lymphoma (NHL), especially marginal zone lymphoma, de novo or transformed diffuse large B-cell lymphoma and to a lesser extent, follicular lymphoma. Epidemiological data and clinical observations argue for an association between HCV and lymphoproliferative disorders. The causative role of HCV in NHL has been further supported by the response to antiviral therapy. Pathophysiological processes at stake leading from HCV infection to overt lymphoma still need to be further elucidated. Based on reported biological studies, several mechanisms of transformation seem however to emerge. A strong body of evidence supports the hypothesis of an indirect transformation mechanism by which sustained antigenic stimulation leads from oligoclonal to monoclonal expansion and sometimes to frank lymphoma, mostly of marginal zone subtype. By infecting lymphocytes, HCV could play a direct role in cellular transformation, particularly in de novo large B-cell lymphoma. Finally, HCV is associated with follicular lymphoma in a subset of patients. In this setting, it may be hypothesized that inflammatory cytokines stimulate proliferation and transformation of IgH-BCL2 clones that are increased during chronic HCV infection. Unraveling the pathogenesis of HCV-related B-cell lymphoproliferation is of prime importance to optimize therapeutic strategies, especially with the recent development of new direct-acting antiviral drugs.
Collapse
Affiliation(s)
- L Couronné
- Department of Hematology, Assistance Publique-Hôpitaux de Paris (APHP), Necker Hospital, Paris, France.,INSERM UMR 1163, CNRS ERL 8254, Imagine Institute, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - E Bachy
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France.,Department of Hematology, Lyon Sud Hospital, Lyon, France
| | - S Roulland
- Center of Immunology of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - B Nadel
- Center of Immunology of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - F Davi
- INSERM U1104, Marseille, France.,CNRS UMR 7280, Marseille, France.,Department of Hematology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University, Paris, France
| | - M Armand
- INSERM U1104, Marseille, France.,CNRS UMR 7280, Marseille, France.,Department of Hematology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University, Paris, France
| | - D Canioni
- Department of Pathology, Necker Hospital, AP-HP, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - J M Michot
- Department of Hematology and Drug Development, Gustave Roussy Institute, Villejuif; France
| | - C Visco
- Department of Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - L Arcaini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Departement of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - C Besson
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France.,University of Versailles Saint Quentin en Yvelines, Paris-Saclay University, Communauté Paris-Saclay, Paris, France.,INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - O Hermine
- Department of Hematology, Assistance Publique-Hôpitaux de Paris (APHP), Necker Hospital, Paris, France.,INSERM UMR 1163, CNRS ERL 8254, Imagine Institute, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW In addition to the recent progresses in the description of the genetic landscape of B-cell non-Hodgkin's lymphomas, tumor microenvironment has progressively emerged as a central determinant of early lymphomagenesis, subclonal evolution, drug resistance, and late progression/transformation. The purpose of this review is to outline the most recent findings regarding malignant B-cell niche composition and organization supporting direct and indirect tumor-promoting functions of lymphoma microenvironment. RECENT FINDINGS Lymphoma supportive niche integrates a dynamic and orchestrated network of immune and stromal cell subsets producing, with a high level of spatial and kinetic heterogeneity, extracellular and membrane factors regulating tumor migration, survival, proliferation, immune escape, as well as tumor microarchitecture, and mechanical constraints. Some recent insights have improved our understanding of these various components of lymphoma microenvironment, taking into account the mechanisms underlying the coevolution of malignant and nonmalignant cells within the tumor niche. SUMMARY Deciphering tumor niche characteristics, functions, and origin could offer new therapeutic opportunities through the targeting of pivotal cellular and molecular components of the supportive microenvironment, favoring immune cell reactivation and infiltration, and/or limiting tumor retention within this protective niche.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The treatment of the germinal center lymphomas, diffuse large B cell (DLBCL) and follicular lymphoma, has changed little beyond the introduction of immunochemotherapies. However, there exists a substantial group of patients within both diseases for which improvements in care will involve appropriate tailoring of treatment. RECENT FINDINGS DLBCL consists of two major subtypes with striking differences in their clinical outcomes paralleling their underlying genetic heterogeneity. Recent studies have seen advances in the stratification of germinal center lymphomas, through comprehensive profiling of 1001 DLBCLs alongside refinements in the identification of high-risk follicular lymphoma patients using m7-FLIPI and 23G models. A new wave of novel therapeutic agents is now undergoing clinical trials for germinal center lymphomas, with BCR and EZH2 inhibitors demonstrating preferential benefit in subgroups of patients. The emergence of cell-free DNA has raised the possibility of dynamic disease monitoring to potentially mitigate the complexity of spatial and temporal heterogeneity, whilst predicting tumor evolution in real time. SUMMARY Altogether knowledge of the genomic landscape of germinal center lymphomas is offering welcome opportunities in patient risk stratification and therapeutics. The challenge ahead is to establish how best to combine upfront or dynamic prognostication with precision therapies, while retaining practicality in clinical trials and the real-world setting.
Collapse
|