1
|
Pethe A, Hartmann TN. The cytoskeletal control of B cell receptor and integrin signaling in normal B cells and chronic lymphocytic leukemia. FEBS Lett 2025. [PMID: 40243025 DOI: 10.1002/1873-3468.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
B cells migrate within lymphoid organs during maturation and activation, processes orchestrated by the interplay between B cell receptor (BCR) signaling and microenvironmental cues. Integrins act as mechanoreceptors, linking BCR activation to cytoskeletal remodeling, facilitating immune synapse formation, antigen recognition, and extraction. BCR activation models describe receptor clustering and mechanical changes within the antigen-BCR complex. Upon activation, immune synapses form, enabling antigen extraction and downstream signaling. Integrins stabilize these synapses, amplify BCR signaling, and modulate BCR positioning via actin reorganization. In chronic lymphocytic leukemia (CLL), aberrant BCR signaling and integrins are major players in leukemic cell homing, prognosis, and therapy resistance. In this review, we summarize the current understanding of the interplay of BCR mechanics and B cell localization, with a particular focus on communication between BCR signaling and integrin-mediated processes via actin dynamics. We give insights into normal B cell biology and then outline aspects typical to CLL.
Collapse
Affiliation(s)
- Abhishek Pethe
- Department of Medicine I, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
2
|
Ngo U, Shi Y, Woodruff P, Shokat K, DeGrado W, Jo H, Sheppard D, Sundaram AB. IL-13 and IL-17A activate β1 integrin through an NF-kB/Rho kinase/PIP5K1γ pathway to enhance force transmission in airway smooth muscle. Proc Natl Acad Sci U S A 2024; 121:e2401251121. [PMID: 39136993 PMCID: PMC11348015 DOI: 10.1073/pnas.2401251121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although integrin activation has been extensively studied in circulating cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent cells such as smooth muscle. Here, we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families, respectively, to enhance adhesion of airway smooth muscle. These cytokines also induce activation of β1 integrins detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is increased in the smooth muscle of patients with asthma compared to nonsmokers without lung disease, suggesting a disease-relevant role for integrin activation in smooth muscle. Indeed, integrin activation induced by the β1-activating antibody TS2/16, the divalent cation manganese, or the synthetic peptide β1-CHAMP that forces an extended-open integrin conformation dramatically enhances force transmission in smooth muscle cells and airway rings even in the absence of cytokines. We demonstrate that cytokine-induced activation of β1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 at focal adhesions, resulting in β1 integrin activation. Taken together, these data identify a pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant β1 integrin activation in adherent smooth muscle and help to explain the exaggerated force transmission that characterizes chronic airway diseases such as asthma.
Collapse
Affiliation(s)
- Uyen Ngo
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA94143
| | - Ying Shi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94143
| | - Prescott Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA94143
| | - Kevan Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94143
- Howard Hughes Medical Institute, University of California, San Francisco, CA94143
| | - William DeGrado
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Hyunil Jo
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
| | - Aparna B. Sundaram
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA94143
| |
Collapse
|
3
|
Ngo U, Shi Y, Woodruff P, Shokat K, DeGrado W, Jo H, Sheppard D, Sundaram AB. IL-13 and IL-17A Activate β1 Integrin through an NF-kB/Rho kinase/PIP5K1γ pathway to Enhance Force Transmission in Airway Smooth Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592042. [PMID: 38746410 PMCID: PMC11092608 DOI: 10.1101/2024.05.01.592042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although G-protein coupled receptor-mediated integrin activation has been extensively studied in non-adherent migratory cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent stationary cells such as airway smooth muscle. Here we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families respectively, to enhance adhesion of muscle to the matrix. These cytokines also induce activation of β1 integrins as detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is significantly increased in the smooth muscle of patients with asthma compared to healthy controls, suggesting a disease-relevant role for aberrant integrin activation. Indeed, we find integrin activation induced by a β1 activating antibody, the divalent cation manganese, or the synthetic peptide β1-CHAMP, dramatically enhances force transmission in collagen gels, mouse tracheal rings, and human bronchial rings even in the absence of cytokines. We further demonstrate that cytokine-induced activation of β1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 resulting in β1 integrin activation. Taken together, these data identify a previously unknown pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant β1 integrin activation in adherent smooth muscle and help explain the exaggerated force transmission that characterizes chronic airways diseases such as asthma.
Collapse
Affiliation(s)
- Uyen Ngo
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, California, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
| | - Ying Shi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Prescott Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, California, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
| | - Kevan Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| | - William DeGrado
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Hyunil Jo
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Aparna B. Sundaram
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, California, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
Sun H, Lee HS, Kim SHJ, Fernandes de Lima M, Gingras AR, Du Q, McLaughlin W, Ablack J, Lopez-Ramirez MA, Lagarrigue F, Fan Z, Chang JT, VanDyke D, Spangler JB, Ginsberg MH. IL-2 can signal via chemokine receptors to promote regulatory T cells' suppressive function. Cell Rep 2023; 42:112996. [PMID: 37598341 PMCID: PMC10564087 DOI: 10.1016/j.celrep.2023.112996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Canonical interleukin-2 (IL-2) signaling via the high-affinity CD25-containing IL-2 receptor-Janus kinase (JAK)1,3-signal transducer and activator of transcription 5 (STAT5) pathway is essential for development and maintenance of CD4+CD25HiFoxp3+ regulatory T cells (Tregs) that support immune homeostasis. Here, we report that IL-2 signaling via an alternative CD25-chemokine receptor pathway promotes the suppressive function of Tregs. Using an antibody against CD25 that biases IL-2 signaling toward this alternative pathway, we establish that this pathway increases the suppressive activity of Tregs and ameliorates murine experimental autoimmune encephalomyelitis (EAE). Furthermore, heparan sulfate, an IL-2-binding element of cell surfaces and extracellular matrix, or an engineered IL-2 immunocytokine can also direct IL-2 signaling toward this alternative pathway. Overall, these data reveal a non-canonical mechanism for IL-2 signaling that promotes suppressive functions of Tregs, further elucidates how IL-2 supports immune homeostasis, and suggests approaches to promote or suppress Treg functions.
Collapse
Affiliation(s)
- Hao Sun
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Ho-Sup Lee
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sarah Hyun-Ji Kim
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | | | | | - Qinyi Du
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Wilma McLaughlin
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jailail Ablack
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Miguel A Lopez-Ramirez
- University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, La Jolla, CA, USA
| | | | - Zhichao Fan
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - John T Chang
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark H Ginsberg
- University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
5
|
Ueda Y, Higasa K, Kamioka Y, Kondo N, Horitani S, Ikeda Y, Bergmeier W, Fukui Y, Kinashi T. Rap1 organizes lymphocyte front-back polarity via RhoA signaling and talin1. iScience 2023; 26:107292. [PMID: 37520697 PMCID: PMC10374465 DOI: 10.1016/j.isci.2023.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Lymphocyte trafficking requires fine-tuning of chemokine-mediated cell migration. This process depends on cytoskeletal dynamics and polarity, but its regulation remains elusive. We quantitatively measured cell polarity and revealed critical roles performed by integrin activator Rap1 in this process, independent of substrate adhesion. Rap1-deficient naive T cells exhibited impaired abilities to reorganize the actin cytoskeleton into pseudopods and actomyosin-rich uropods. Rap1-GTPase activating proteins (GAPs), Rasa3 and Sipa1, maintained an unpolarized shape; deletion of these GAPs spontaneously induced cell polarization, indicative of the polarizing effect of Rap1. Rap1 activation required F-actin scaffolds, and stimulated RhoA activation and actomyosin contractility at the rear. Furthermore, talin1 acted on Rap1 downstream effectors to promote actomyosin contractility in the uropod, which occurred independently of substrate adhesion and talin1 binding to integrins. These findings indicate that Rap1 signaling to RhoA and talin1 regulates chemokine-stimulated lymphocyte polarization and chemotaxis in a manner independent of adhesion.
Collapse
Affiliation(s)
- Yoshihiro Ueda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Koichiro Higasa
- The Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yuji Kamioka
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Shunsuke Horitani
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tatsuo Kinashi
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
6
|
Horitani S, Ueda Y, Kamioka Y, Kondo N, Ikeda Y, Naganuma M, Kinashi T. The critical role of Rap1-GAPs Rasa3 and Sipa1 in T cells for pulmonary transit and egress from the lymph nodes. Front Immunol 2023; 14:1234747. [PMID: 37545505 PMCID: PMC10399222 DOI: 10.3389/fimmu.2023.1234747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Rap1-GTPase activates integrins and plays an indispensable role in lymphocyte trafficking, but the importance of Rap1 inactivation in this process remains unknown. Here we identified the Rap1-inactivating proteins Rasa3 and Sipa1 as critical regulators of lymphocyte trafficking. The loss of Rasa3 and Sipa1 in T cells induced spontaneous Rap1 activation and adhesion. As a consequence, T cells deficient in Rasa3 and Sipa1 were trapped in the lung due to firm attachment to capillary beds, while administration of LFA1 antibodies or loss of talin1 or Rap1 rescued lung sequestration. Unexpectedly, mutant T cells exhibited normal extravasation into lymph nodes, fast interstitial migration, even greater chemotactic responses to chemokines and sphingosine-1-phosphate, and entrance into lymphatic sinuses but severely delayed exit: mutant T cells retained high motility in lymphatic sinuses and frequently returned to the lymph node parenchyma, resulting in defective egress. These results reveal the critical trafficking processes that require Rap1 inactivation.
Collapse
Affiliation(s)
- Shunsuke Horitani
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yoshihiro Ueda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yuji Kamioka
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Tatsuo Kinashi
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
7
|
Bachmann M, Su B, Rahikainen R, Hytönen VP, Wu J, Wehrle-Haller B. ConFERMing the role of talin in integrin activation and mechanosignaling. J Cell Sci 2023; 136:jcs260576. [PMID: 37078342 PMCID: PMC10198623 DOI: 10.1242/jcs.260576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Talin (herein referring to the talin-1 form), is a cytoskeletal adapter protein that binds integrin receptors and F-actin, and is a key factor in the formation and regulation of integrin-dependent cell-matrix adhesions. Talin forms the mechanical link between the cytoplasmic domain of integrins and the actin cytoskeleton. Through this linkage, talin is at the origin of mechanosignaling occurring at the plasma membrane-cytoskeleton interface. Despite its central position, talin is not able to fulfill its tasks alone, but requires help from kindlin and paxillin to detect and transform the mechanical tension along the integrin-talin-F-actin axis into intracellular signaling. The talin head forms a classical FERM domain, which is required to bind and regulate the conformation of the integrin receptor, as well as to induce intracellular force sensing. The FERM domain allows the strategic positioning of protein-protein and protein-lipid interfaces, including the membrane-binding and integrin affinity-regulating F1 loop, as well as the interaction with lipid-anchored Rap1 (Rap1a and Rap1b in mammals) GTPase. Here, we summarize the structural and regulatory features of talin and explain how it regulates cell adhesion and force transmission, as well as intracellular signaling at integrin-containing cell-matrix attachment sites.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | - Baihao Su
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Rolle Rahikainen
- Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere University, FI-33520 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere University, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| |
Collapse
|
8
|
Ji Y, Fang Y, Wu J. Tension Enhances the Binding Affinity of β1 Integrin by Clamping Talin Tightly: An Insight from Steered Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:5688-5698. [PMID: 36269690 DOI: 10.1021/acs.jcim.2c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Integrin activation is a predominant step for cell-cell and cell-ECM interactions. Talin and Kindlin are mechanosensitive adaptor proteins that bind to the integrin cytoplasmic tail and mediate integrin activation, cytoskeleton rearrangement, and focal adhesion assembly. However, knowledge about how Talin and Kindlin synergistically assist integrin activation remains unclear. Here, we performed so-called "ramp-clamp" SMD simulations, which modeled the mechanosignaling from Kindlin, to investigate the effect of tension on the interaction of the β1 integrin cytoplasmic tail with the Talin-F3 domain. The present results showed that mild but not excessive stretching enhanced the binding of integrin with Talin. This mechanical regulation on integrin affinity to Talin referred to an event cascade, in which under stretching, the integrin cytoplasmic tail adopted allostery in response to the mechanical stimulus, remodeling of integrin in favor of Talin-association ensued, and finally, a stable, close-knit complex was formed. In the cascade, the torsion angle transition of integrin was the cue for the stable interaction of the complex under tensile force. The present work suggested a model for Talin and Kindlin to synergistically activate integrin. It should help understand integrin activation and its mechanochemical regulation mechanism, integrin-related innate cellular immune responses, cell adhesion, cell-cell interaction, and integrin-related drug development.
Collapse
Affiliation(s)
- Yanru Ji
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Wu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
9
|
Torres-Gomez A, Fiyouzi T, Guerra-Espinosa C, Cardeñes B, Clares I, Toribio V, Reche PA, Cabañas C, Lafuente EM. Expression of the phagocytic receptors αMβ2 and αXβ2 is controlled by RIAM, VASP and Vinculin in neutrophil-differentiated HL-60 cells. Front Immunol 2022; 13:951280. [PMID: 36238292 PMCID: PMC9552961 DOI: 10.3389/fimmu.2022.951280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Activation of the integrin phagocytic receptors CR3 (αMβ2, CD11b/CD18) and CR4 (αXβ2, CD11c/CD18) requires Rap1 activation and RIAM function. RIAM controls integrin activation by recruiting Talin to β2 subunits, enabling the Talin-Vinculin interaction, which in term bridges integrins to the actin-cytoskeleton. RIAM also recruits VASP to phagocytic cups and facilitates VASP phosphorylation and function promoting particle internalization. Using a CRISPR-Cas9 knockout approach, we have analyzed the requirement for RIAM, VASP and Vinculin expression in neutrophilic-HL-60 cells. All knockout cells displayed abolished phagocytosis that was accompanied by a significant and specific reduction in ITGAM (αM), ITGAX (αX) and ITGB2 (β2) mRNA, as revealed by RT-qPCR. RIAM, VASP and Vinculin KOs presented reduced cellular F-actin content that correlated with αM expression, as treatment with the actin filament polymerizing and stabilizing drug jasplakinolide, partially restored αM expression. In general, the expression of αX was less responsive to jasplakinolide treatment than αM, indicating that regulatory mechanisms independent of F-actin content may be involved. The Serum Response Factor (SRF) was investigated as the potential transcription factor controlling αMβ2 expression, since its coactivator MRTF-A requires actin polymerization to induce transcription. Immunofluorescent MRTF-A localization in parental cells was primarily nuclear, while in knockouts it exhibited a diffuse cytoplasmic pattern. Localization of FHL-2 (SRF corepressor) was mainly sub-membranous in parental HL-60 cells, but in knockouts the localization was disperse in the cytoplasm and the nucleus, suggesting RIAM, VASP and Vinculin are required to maintain FHL-2 close to cytoplasmic membranes, reducing its nuclear localization and inhibiting its corepressor activity. Finally, reexpression of VASP in the VASP knockout resulted in a complete reversion of the phenotype, as knock-ins restored αM expression. Taken together, our results suggest that RIAM, VASP and Vinculin, are necessary for the correct expression of αMβ2 and αXβ2 during neutrophilic differentiation in the human promyelocytic HL-60 cell line, and strongly point to an involvement of these proteins in the acquisition of a phagocytic phenotype.
Collapse
Affiliation(s)
- Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- *Correspondence: Esther M. Lafuente, ; Alvaro Torres-Gomez,
| | - Tara Fiyouzi
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Claudia Guerra-Espinosa
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Cardeñes
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Irene Clares
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Víctor Toribio
- Tissue and Organ Homeostasis Program (Cell-Cell Communication and Inflammation Unit), Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pedro A. Reche
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- Tissue and Organ Homeostasis Program (Cell-Cell Communication and Inflammation Unit), Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Esther M. Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- *Correspondence: Esther M. Lafuente, ; Alvaro Torres-Gomez,
| |
Collapse
|
10
|
Lee HS, Sun H, Lagarrigue F, Kim SHJ, Fox JW, Sherman NE, Gingras AR, Ginsberg MH. Phostensin enables lymphocyte integrin activation and population of peripheral lymphoid organs. J Exp Med 2022; 219:e20211637. [PMID: 35766979 PMCID: PMC9247717 DOI: 10.1084/jem.20211637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/17/2022] [Accepted: 03/28/2022] [Indexed: 02/03/2023] Open
Abstract
Rap1 GTPase drives assembly of the Mig-10/RIAM/Lamellipodin (MRL protein)-integrin-talin (MIT) complex that enables integrin-dependent lymphocyte functions. Here we used tandem affinity tag-based proteomics to isolate and analyze the MIT complex and reveal that Phostensin (Ptsn), a regulatory subunit of protein phosphatase 1, is a component of the complex. Ptsn mediates dephosphorylation of Rap1, thereby preserving the activity and membrane localization of Rap1 to stabilize the MIT complex. CRISPR/Cas9-induced deletion of PPP1R18, which encodes Ptsn, markedly suppresses integrin activation in Jurkat human T cells. We generated apparently healthy Ppp1r18-/- mice that manifest lymphocytosis and reduced population of peripheral lymphoid tissues ascribable, in part, to defective activation of integrins αLβ2 and α4β7. Ppp1r18-/- T cells exhibit reduced capacity to induce colitis in a murine adoptive transfer model. Thus, Ptsn enables lymphocyte integrin-mediated functions by dephosphorylating Rap1 to stabilize the MIT complex. As a consequence, loss of Ptsn ameliorates T cell-mediated colitis.
Collapse
Affiliation(s)
- Ho-Sup Lee
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Frédéric Lagarrigue
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Sarah Hyun Ji Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jay W. Fox
- School of Medicine, University of Virginia, Charlottesville, VA
| | | | | | - Mark H. Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
11
|
Wen L, Moser M, Ley K. Molecular mechanisms of leukocyte β2 integrin activation. Blood 2022; 139:3480-3492. [PMID: 35167661 PMCID: PMC10082358 DOI: 10.1182/blood.2021013500] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/06/2022] [Indexed: 11/20/2022] Open
Abstract
Integrins are transmembrane receptors that mediate cell-cell and cell-extracellular matrix adhesion. Although all integrins can undergo activation (affinity change for ligands), the degree of activation is most spectacular for integrins on blood cells. The β2 integrins are exclusively expressed on the surface of all leukocytes including neutrophils, lymphocytes, and monocytes. They are essential for many leukocyte functions and are strictly required for neutrophil arrest from rolling. The inside-out integrin activation process receives input from chemokine receptors and adhesion molecules. The integrin activation pathway involves many cytoplasmic signaling molecules such as spleen tyrosine kinase, other kinases like Bruton's tyrosine kinase, phosphoinositide 3-kinases, phospholipases, Rap1 GTPases, and the Rap1-GTP-interacting adapter molecule. These signaling events ultimately converge on talin-1 and kindlin-3, which bind to the integrin β cytoplasmic domain and induce integrin conformational changes: extension and high affinity for ligand. Here, we review recent structural and functional insights into how talin-1 and kindlin-3 enable integrin activation, with a focus on the distal signaling components that trigger β2 integrin conformational changes and leukocyte adhesion under flow.
Collapse
Affiliation(s)
- Lai Wen
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| |
Collapse
|
12
|
Sun H, Lagarrigue F, Ginsberg MH. The Connection Between Rap1 and Talin1 in the Activation of Integrins in Blood Cells. Front Cell Dev Biol 2022; 10:908622. [PMID: 35721481 PMCID: PMC9198492 DOI: 10.3389/fcell.2022.908622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023] Open
Abstract
Integrins regulate the adhesion and migration of blood cells to ensure the proper positioning of these cells in the environment. Integrins detect physical and chemical stimuli in the extracellular matrix and regulate signaling pathways in blood cells that mediate their functions. Integrins are usually in a resting state in blood cells until agonist stimulation results in a high-affinity conformation ("integrin activation"), which is central to integrins' contribution to blood cells' trafficking and functions. In this review, we summarize the mechanisms of integrin activation in blood cells with a focus on recent advances understanding of mechanisms whereby Rap1 regulates talin1-integrin interaction to trigger integrin activation in lymphocytes, platelets, and neutrophils.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Frederic Lagarrigue
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Mark H. Ginsberg
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
13
|
LFA1 Activation: Insights from a Single-Molecule Approach. Cells 2022; 11:cells11111751. [PMID: 35681446 PMCID: PMC9179313 DOI: 10.3390/cells11111751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Integrin LFA1 is a cell adhesion receptor expressed exclusively in leukocytes, and plays crucial roles in lymphocyte trafficking, antigen recognition, and effector functions. Since the discovery that the adhesiveness of LFA1 can be dynamically changed upon stimulation, one challenge has been understanding how integrins are regulated by inside-out signaling coupled with macromolecular conformational changes, as well as ligand bindings that transduce signals from the extracellular domain to the cytoplasm in outside-in signaling. The small GTPase Rap1 and integrin adaptor proteins talin1 and kindlin-3 have been recognized as critical molecules for integrin activation. However, their cooperative regulation of integrin adhesiveness in lymphocytes requires further research. Recent advances in single-molecule imaging techniques have revealed dynamic molecular processes in real-time and provided insight into integrin activation in cellular environments. This review summarizes integrin regulation and discusses new findings regarding the bidirectionality of LFA1 activation and signaling processes in lymphocytes.
Collapse
|
14
|
Humanized β2 Integrin-Expressing Hoxb8 Cells Serve as Model to Study Integrin Activation. Cells 2022; 11:cells11091532. [PMID: 35563841 PMCID: PMC9102476 DOI: 10.3390/cells11091532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
The use of cell-based reporter systems has provided valuable insights into the molecular mechanisms of integrin activation. However, current models have significant drawbacks because their artificially expressed integrins cannot be regulated by either physiological stimuli or endogenous signaling pathways. Here, we report the generation of a Hoxb8 cell line expressing human β2 integrin that functionally replaced the deleted mouse ortholog. Hoxb8 cells are murine hematopoietic progenitor cells that can be efficiently differentiated into neutrophils and macrophages resembling their primary counterparts. Importantly, these cells can be stimulated by physiological stimuli triggering classical integrin inside-out signaling pathways, ultimately leading to β2 integrin conformational changes that can be recorded by the conformation-specific antibodies KIM127 and mAb24. Moreover, these cells can be efficiently manipulated via the CRISPR/Cas9 technique or retroviral vector systems. Deletion of the key integrin regulators talin1 and kindlin3 or expression of β2 integrins with mutations in their binding sites abolished both integrin extension and full activation regardless of whether only one or both activators no longer bind to the integrin. Moreover, humanized β2 integrin Hoxb8 cells represent a valuable new model for rapidly testing the role of putative integrin regulators in controlling β2 integrin activity in a physiological context.
Collapse
|
15
|
Zhao Y, Lykov N, Tzeng C. Talin‑1 interaction network in cellular mechanotransduction (Review). Int J Mol Med 2022; 49:60. [PMID: 35266014 PMCID: PMC8930095 DOI: 10.3892/ijmm.2022.5116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanical signals within the extracellular matrix (ECM) regulate cell growth, proliferation and differentiation, and integrins function as the hub between the ECM and cellular actin. Focal adhesions (FAs) are multi‑protein, integrin‑containing complexes, acting as tension‑sensing anchoring points that bond cells to the extracellular microenvironment. Talin‑1 serves as the central protein of FAs that participates in the activation of integrins and connects them with the actin cytoskeleton. As a cytoplasmic protein, Talin‑1 consists of a globular head domain and a long rod comprised of a series of α‑helical bundles. The unique structure of the Talin‑1 rod domain permits folding and unfolding in response to the mechanical stress, revealing various binding sites. Thus, conformation changes of the Talin‑1 rod domain enable the cell to convert mechanical signals into chemical through multiple signaling pathways. The present review discusses the binding partners of Talin‑1, their interactions, effects on the cellular processes, and their possible roles in diseases.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, P.R. China
| | - Nikita Lykov
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, P.R. China
| | - Chimeng Tzeng
- Translational Medicine Research Center-Key Laboratory for Cancer T-Cell Theragnostic and Clinical Translation, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
- Xiamen Chang Gung Hospital Medical Research Center, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
16
|
Margraf A, Lowell CA, Zarbock A. Neutrophils in acute inflammation: current concepts and translational implications. Blood 2022; 139:2130-2144. [PMID: 34624098 PMCID: PMC9728535 DOI: 10.1182/blood.2021012295] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Modulation of neutrophil recruitment and function is crucial for targeting inflammatory cells to sites of infection to combat invading pathogens while, at the same time, limiting host tissue injury or autoimmunity. The underlying mechanisms regulating recruitment of neutrophils, 1 of the most abundant inflammatory cells, have gained increasing interest over the years. The previously described classical recruitment cascade of leukocytes has been extended to include capturing, rolling, adhesion, crawling, and transmigration, as well as a reverse-transmigration step that is crucial for balancing immune defense and control of remote organ endothelial leakage. Current developments in the field emphasize the importance of cellular interplay, tissue environmental cues, circadian rhythmicity, detection of neutrophil phenotypes, differential chemokine sensing, and contribution of distinct signaling components to receptor activation and integrin conformations. The use of therapeutics modulating neutrophil activation responses, as well as mutations causing dysfunctional neutrophil receptors and impaired signaling cascades, have been defined in translational animal models. Human correlates of such mutations result in increased susceptibility to infections or organ damage. This review focuses on current advances in the understanding of the regulation of neutrophil recruitment and functionality and translational implications of current discoveries in the field with a focus on acute inflammation and sepsis.
Collapse
Affiliation(s)
- Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
- William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
17
|
Lagarrigue F, Tan B, Du Q, Fan Z, Lopez-Ramirez MA, Gingras AR, Wang H, Qi W, Sun H. Direct Binding of Rap1 to Talin1 and to MRL Proteins Promotes Integrin Activation in CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1378-1388. [PMID: 35197328 PMCID: PMC9644409 DOI: 10.4049/jimmunol.2100843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022]
Abstract
Agonist-induced Rap1 GTP loading results in integrin activation involved in T cell trafficking and functions. MRL proteins Rap1-interacting adapter molecule (RIAM) and lamellipodin (LPD) are Rap1 effectors that can recruit talin1 to integrins, resulting in integrin activation. Recent work also implicates direct Rap1-talin1 interaction in integrin activation. Here, we analyze in mice the connections between Rap1 and talin1 that support integrin activation in conventional CD4+ T (Tconv) and CD25HiFoxp3+CD4+ regulatory T (Treg) cells. Talin1(R35E, R118E) mutation that disrupts both Rap1 binding sites results in a partial defect in αLβ2, α4β1, and α4β7 integrin activation in both Tconv and Treg cells with resulting defects in T cell homing. Talin1(R35E,R118E) Tconv manifested reduced capacity to induce colitis in an adoptive transfer mouse model. Loss of RIAM exacerbates the defects in Treg cell function caused by the talin1(R35E,R118E) mutation, and deleting both MRL proteins in combination with talin1(R35E,R118E) phenocopy the complete lack of integrin activation observed in Rap1a/b-null Treg cells. In sum, these data reveal the functionally significant connections between Rap1 and talin1 that enable αLβ2, α4β1, and α4β7 integrin activation in CD4+ T cells.
Collapse
Affiliation(s)
- Frederic Lagarrigue
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Boyang Tan
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Qinyi Du
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Zhichao Fan
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, Farmington, CT
| | | | - Alexandre R Gingras
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Hsin Wang
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Weiwei Qi
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA; and
| |
Collapse
|
18
|
Sari-Ak D, Torres-Gomez A, Yazicioglu YF, Christofides A, Patsoukis N, Lafuente EM, Boussiotis VA. Structural, biochemical, and functional properties of the Rap1-Interacting Adaptor Molecule (RIAM). Biomed J 2021; 45:289-298. [PMID: 34601137 PMCID: PMC9250098 DOI: 10.1016/j.bj.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Leukocytes, the leading players of immune system, are involved in innate and adaptive immune responses. Leukocyte adhesion to endothelial cells during transmigration or to antigen presenting cells during T cell activation, requires integrin activation through a process termed inside-out integrin signaling. In hematopoietic cells, Rap1 and its downstream effector RIAM (Rap1-interacting adaptor molecule) form a cornerstone for inside-out integrin activation. The Rap1/RIAM pathway is involved in signal integration for activation, actin remodeling and cytoskeletal reorganization in T cells, as well as in myeloid cell differentiation and function. RIAM is instrumental for phagocytosis, a process requiring particle recognition, cytoskeletal remodeling and membrane protrusion for engulfment and digestion. In the present review, we discuss the structural and molecular properties of RIAM and the recent discoveries regarding the functional role of the Rap1/RIAM module in hematopoietic cells.
Collapse
Affiliation(s)
- Duygu Sari-Ak
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Alvaro Torres-Gomez
- School of Medicine, Unit of Immunology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Yavuz-Furkan Yazicioglu
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Anthos Christofides
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Esther M Lafuente
- School of Medicine, Unit of Immunology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215.
| |
Collapse
|
19
|
Liu W, Hsu AY, Wang Y, Lin T, Sun H, Pachter JS, Groisman A, Imperioli M, Yungher FW, Hu L, Wang P, Deng Q, Fan Z. Mitofusin-2 regulates leukocyte adhesion and β2 integrin activation. J Leukoc Biol 2021; 111:771-791. [PMID: 34494308 DOI: 10.1002/jlb.1a0720-471r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neutrophils are critical for inflammation and innate immunity, and their adhesion to vascular endothelium is a crucial step in neutrophil recruitment. Mitofusin-2 (MFN2) is required for neutrophil adhesion, but molecular details are unclear. Here, we demonstrated that β2 -integrin-mediated slow-rolling and arrest, but not PSGL-1-mediated cell rolling, are defective in MFN2-deficient neutrophil-like HL60 cells. This adhesion defect is associated with reduced expression of fMLP (N-formylmethionyl-leucyl-phenylalanine) receptor FPR1 as well as the inhibited β2 integrin activation, as assessed by conformation-specific monoclonal antibodies. MFN2 deficiency also leads to decreased actin polymerization, which is important for β2 integrin activation. Mn2+ -induced cell spreading is also inhibited after MFN2 knockdown. MFN2 deficiency limited the maturation of β2 integrin activation during the neutrophil-directed differentiation of HL60 cells, which is indicated by CD35 and CD87 markers. MFN2 knockdown in β2-integrin activation-matured cells (CD87high population) also inhibits integrin activation, indicating that MFN2 directly affects β2 integrin activation. Our study illustrates the function of MFN2 in leukocyte adhesion and may provide new insights into the development and treatment of MFN2 deficiency-related diseases.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yueyang Wang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Joel S Pachter
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, California, USA
| | | | | | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
20
|
Bromberger T, Klapproth S, Rohwedder I, Weber J, Pick R, Mittmann L, Min-Weißenhorn SJ, Reichel CA, Scheiermann C, Sperandio M, Moser M. Binding of Rap1 and Riam to Talin1 Fine-Tune β2 Integrin Activity During Leukocyte Trafficking. Front Immunol 2021; 12:702345. [PMID: 34489950 PMCID: PMC8417109 DOI: 10.3389/fimmu.2021.702345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023] Open
Abstract
β2 integrins mediate key processes during leukocyte trafficking. Upon leukocyte activation, the structurally bent β2 integrins change their conformation towards an extended, intermediate and eventually high affinity conformation, which mediate slow leukocyte rolling and firm arrest, respectively. Translocation of talin1 to integrin adhesion sites by interactions with the small GTPase Rap1 and the Rap1 effector Riam precede these processes. Using Rap1 binding mutant talin1 and Riam deficient mice we show a strong Riam-dependent T cell homing process to lymph nodes in adoptive transfer experiments and by intravital microscopy. Moreover, neutrophils from compound mutant mice exhibit strongly increased rolling velocities to inflamed cremaster muscle venules compared to single mutants. Using Hoxb8 cell derived neutrophils generated from the mutant mouse strains, we show that both pathways regulate leukocyte rolling and adhesion synergistically by inducing conformational changes of the β2 integrin ectodomain. Importantly, a simultaneous loss of both pathways results in a rolling phenotype similar to talin1 deficient neutrophils suggesting that β2 integrin regulation primarily occurs via these two pathways.
Collapse
Affiliation(s)
- Thomas Bromberger
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sarah Klapproth
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Ina Rohwedder
- Walter Brendel Center of Experimental Medicine (WBex), Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jasmin Weber
- Walter Brendel Center of Experimental Medicine (WBex), Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Robert Pick
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Laura Mittmann
- Walter Brendel Centre of Experimental Medicine (WBex), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Christoph A. Reichel
- Walter Brendel Centre of Experimental Medicine (WBex), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Scheiermann
- Walter Brendel Center of Experimental Medicine (WBex), Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Markus Sperandio
- Walter Brendel Center of Experimental Medicine (WBex), Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Markus Moser
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
21
|
Sun H, Hu L, Fan Z. β2 integrin activation and signal transduction in leukocyte recruitment. Am J Physiol Cell Physiol 2021; 321:C308-C316. [PMID: 34133240 DOI: 10.1152/ajpcell.00560.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leukocyte recruitment is a critical step in the pathogenesis of inflammatory and immunological responses. Cell adhesion molecules (CAMs) are involved in controlling cell movements and the recruitment process, and the integrin family of CAMs plays a key role. During cell movement, integrin function is dynamically and precisely regulated. However, this balance might be broken under pathological conditions. Thus, the functional regulation and molecular mechanisms of integrins related to diseases are often a focus of research. Integrin β2 is one of the most commonly expressed integrins in leukocytes that mediate leukocyte adhesion and migration, and it plays an important role in immune responses and inflammation. In this review, we focus on specific functions of integrin β2 in leukocyte recruitment, the conformational changes and signal transduction of integrin β2 activation, the similarities between murine and human factors, and how new insights into these processes can inform future therapies for inflammation and immune diseases.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut
| |
Collapse
|
22
|
Lagarrigue F, Gingras AR. Src-mediated phosphorylation of RIAM promotes integrin activation. Structure 2021; 29:305-307. [PMID: 33798425 DOI: 10.1016/j.str.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this issue of Structure, Cho et al. (2020) identified an intermolecular interaction between two RIAM pleckstrin homology (PH) domains that masks the phosphoinositide-binding site, and that phosphorylation by Src unmasks the PH domain. This provides an explanation of how RIAM plasma membrane translocation is regulated to promote integrin activation.
Collapse
Affiliation(s)
- Frédéric Lagarrigue
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alexandre R Gingras
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Sun H, Zhi K, Hu L, Fan Z. The Activation and Regulation of β2 Integrins in Phagocytes and Phagocytosis. Front Immunol 2021; 12:633639. [PMID: 33868253 PMCID: PMC8044391 DOI: 10.3389/fimmu.2021.633639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Phagocytes, which include neutrophils, monocytes, macrophages, and dendritic cells, protect the body by removing foreign particles, bacteria, and dead or dying cells. Phagocytic integrins are greatly involved in the recognition of and adhesion to specific antigens on cells and pathogens during phagocytosis as well as the recruitment of immune cells. β2 integrins, including αLβ2, αMβ2, αXβ2, and αDβ2, are the major integrins presented on the phagocyte surface. The activation of β2 integrins is essential to the recruitment and phagocytic function of these phagocytes and is critical for the regulation of inflammation and immune defense. However, aberrant activation of β2 integrins aggravates auto-immune diseases, such as psoriasis, arthritis, and multiple sclerosis, and facilitates tumor metastasis, making them double-edged swords as candidates for therapeutic intervention. Therefore, precise regulation of phagocyte activities by targeting β2 integrins should promote their host defense functions with minimal side effects on other cells. Here, we reviewed advances in the regulatory mechanisms underlying β2 integrin inside-out signaling, as well as the roles of β2 integrin activation in phagocyte functions.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, Shanghai, China
| | - Liang Hu
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| |
Collapse
|
24
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
25
|
Dunislawska A, Herosimczyk A, Lepczynski A, Slama P, Slawinska A, Bednarczyk M, Siwek M. Molecular Response in Intestinal and Immune Tissues to in Ovo Administration of Inulin and the Combination of Inulin and Lactobacillus lactis Subsp. cremoris. Front Vet Sci 2021; 7:632476. [PMID: 33614758 PMCID: PMC7886801 DOI: 10.3389/fvets.2020.632476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023] Open
Abstract
Intestinal microbiota are a key factor in maintaining good health and production results in chickens. They play an important role in the stimulation of immune responses, as well as in metabolic processes and nutrient digestion. Bioactive substances such as prebiotics, probiotics, or a combination of the two (synbiotic) can effectively stimulate intestinal microbiota and therefore replace antibiotic growth promoters. Intestinal microbiota might be stimulated at the early stage of embryo development in ovo. The aim of the study was to analyze the expression of genes related to energy metabolism and immune response after the administration of inulin and a synbiotic, in which lactic acid bacteria were combined with inulin in the intestines and immune tissues of chicken broilers. The experiment was performed on male broiler chickens. Eggs were incubated for 21 days in a commercial hatchery. On day 12 of egg incubation, inulin as a prebiotic and inulin with Lactobacillus lactis subsp. cremoris as a synbiotic were delivered to the egg chamber. The control group was injected with physiological saline. On day 35 post-hatching, birds from each group were randomly selected and sacrificed. Tissues (spleen, cecal tonsils, and large intestine) were collected and intended for RNA isolation. The gene panel (ABCG8, HNF4A, ACOX2, APBB1IP, BRSK2, APOA1, and IRS2) was selected based on the microarray dataset and biological functions of genes related to the energy metabolism and immune responses. Isolated RNA was analyzed using the RT-qPCR method, and the relative gene expression was calculated. In our experiment, distinct effects of prebiotics and synbiotics following in ovo delivery were manifested in all analyzed tissues, with the lowest number of genes with altered expression shown in the large intestines of broilers. The results demonstrated that prebiotics or synbiotics provide a potent stimulation of gene expression in the spleen and cecal tonsils of broiler chickens. The overall number of gene expression levels and the magnitude of their changes in the spleen and cecal tonsils were higher in the group of synbiotic chickens compared to the prebiotic group.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Adam Lepczynski
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Anna Slawinska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
26
|
Sun H, Lagarrigue F, Wang H, Fan Z, Lopez-Ramirez MA, Chang JT, Ginsberg MH. Distinct integrin activation pathways for effector and regulatory T cell trafficking and function. J Exp Med 2021; 218:e20201524. [PMID: 33104169 PMCID: PMC7590511 DOI: 10.1084/jem.20201524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Integrin activation mediates lymphocyte trafficking and immune functions. Conventional T cell (Tconv cell) integrin activation requires Rap1-interacting adaptor molecule (RIAM). Here, we report that Apbb1ip-/- (RIAM-null) mice are protected from spontaneous colitis due to IL-10 deficiency, a model of inflammatory bowel disease (IBD). Protection is ascribable to reduced accumulation and homing of Tconv cells in gut-associated lymphoid tissue (GALT). Surprisingly, there are abundant RIAM-null regulatory T cells (T reg cells) in the GALT. RIAM-null T reg cells exhibit normal homing to GALT and lymph nodes due to preserved activation of integrins αLβ2, α4β1, and α4β7. Similar to Tconv cells, T reg cell integrin activation and immune function require Rap1; however, lamellipodin (Raph1), a RIAM paralogue, compensates for RIAM deficiency. Thus, in contrast to Tconv cells, RIAM is dispensable for T reg cell integrin activation and suppressive function. In consequence, inhibition of RIAM can inhibit spontaneous Tconv cell-mediated autoimmune colitis while preserving T reg cell trafficking and function.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Frederic Lagarrigue
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Hsin Wang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | | | - John T. Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Mark H. Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
27
|
Manipulation of Focal Adhesion Signaling by Pathogenic Microbes. Int J Mol Sci 2021; 22:ijms22031358. [PMID: 33572997 PMCID: PMC7866387 DOI: 10.3390/ijms22031358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) serve as dynamic signaling hubs within the cell. They connect intracellular actin to the extracellular matrix (ECM) and respond to environmental cues. In doing so, these structures facilitate important processes such as cell-ECM adhesion and migration. Pathogenic microbes often modify the host cell actin cytoskeleton in their pursuit of an ideal replicative niche or during invasion to facilitate uptake. As actin-interfacing structures, FA dynamics are also intimately tied to actin cytoskeletal organization. Indeed, exploitation of FAs is another avenue by which pathogenic microbes ensure their uptake, survival and dissemination. This is often achieved through the secretion of effector proteins which target specific protein components within the FA. Molecular mimicry of the leucine-aspartic acid (LD) motif or vinculin-binding domains (VBDs) commonly found within FA proteins is a common microbial strategy. Other effectors may induce post-translational modifications to FA proteins through the regulation of phosphorylation sites or proteolytic cleavage. In this review, we present an overview of the regulatory mechanisms governing host cell FAs, and provide examples of how pathogenic microbes have evolved to co-opt them to their own advantage. Recent technological advances pose exciting opportunities for delving deeper into the mechanistic details by which pathogenic microbes modify FAs.
Collapse
|
28
|
Ge Q, Li G, Chen J, Song J, Cai G, he Y, Zhang X, Liang H, Ding Z, Zhang B. Immunological Role and Prognostic Value of APBB1IP in Pan-Cancer Analysis. J Cancer 2021; 12:595-610. [PMID: 33391455 PMCID: PMC7738982 DOI: 10.7150/jca.50785] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/02/2020] [Indexed: 01/21/2023] Open
Abstract
Objective: APBB1IP is a Rap1-binding protein that mainly acts as a regulator of leukocyte recruitment and pathogen clearance through complement-mediated phagocytosis. However, the role of APBB1IP in tumor immunity remains unclear. This study was carried out to evaluate the prognostic landscape of APBB1IP in pan-cancer analysis and investigate the relationship between APBB1IP expression and immune infiltration. Methods: We explored the expression pattern and prognostic value of APBB1IP in pan-cancer analysis through Kaplan-Meier Plotter and multiple databases, including TCGA, Oncomine. We then assessed the correlation between APBB1IP expression and immune cell infiltration using the TIMER database. Furthermore, we identified the proteins that interact with APBB1IP and performed epigenetic and transcriptional analyses. Multivariate Cox regression analyses were applied to construct a prognostic model, which consisted of APBB1IP and its interacting proteins, based on the lung cancer cohorts from the Gene Expression Omnibus (GEO) database. Results: The expression of APBB1IP was correlated with the prognosis of several types of cancer. APBB1IP upregulation was found to be associated with increased immune cell infiltration, especially for CD8+ T cells, natural killer (NK) cells, and immune regulators. A link was found between APBB1IP and immune-related proteins including RAP1A/B, TLN1/2 and VCL in the interaction network. Conclusion: APBB1IP can serve as a prognostic biomarker in pan-cancer analysis. APBB1IP upregulation was correlated with increased immune-cell infiltration, and the expression APBB1IP in different tumors might be related to the tumor immune microenvironment.
Collapse
Affiliation(s)
- Qianyun Ge
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ganxun Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangzhen Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi he
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Zhu L, Plow EF, Qin J. Initiation of focal adhesion assembly by talin and kindlin: A dynamic view. Protein Sci 2020; 30:531-542. [PMID: 33336515 DOI: 10.1002/pro.4014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Focal adhesions (FAs) are integrin-containing protein complexes regulated by a network of hundreds of protein-protein interactions. They are formed in a spatiotemporal manner upon the activation of integrin transmembrane receptors, which is crucial to trigger cell adhesion and many other cellular processes including cell migration, spreading and proliferation. Despite decades of studies, a detailed molecular level understanding on how FAs are organized and function is lacking due to their highly complex and dynamic nature. However, advances have been made on studying key integrin activators, talin and kindlin, and their associated proteins, which are major components of nascent FAs critical for initiating the assembly of mature FAs. This review will discuss the structural and functional findings of talin and kindlin and their immediate interaction network, which will shed light upon the architecture of nascent FAs and how they act as seeds for FA assembly to dynamically regulate diverse adhesion-dependent physiological and pathological responses.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Edward F Plow
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
30
|
Cho EA, Zhang P, Kumar V, Kavalchuk M, Zhang H, Huang Q, Duncan JS, Wu J. Phosphorylation of RIAM by src promotes integrin activation by unmasking the PH domain of RIAM. Structure 2020; 29:320-329.e4. [PMID: 33275877 DOI: 10.1016/j.str.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Integrin activation controls cell adhesion, migration, invasion, and extracellular matrix remodeling. RIAM (RAP1-GTP-interacting adaptor molecule) is recruited by activated RAP1 to the plasma membrane (PM) to mediate integrin activation via an inside-out signaling pathway. This process requires the association of the pleckstrin homology (PH) domain of RIAM with the membrane PIP2. We identify a conserved intermolecular interface that masks the PIP2-binding site in the PH domains of RIAM. Our data indicate that phosphorylation of RIAM by Src family kinases disrupts this PH-mediated interface, unmasks the membrane PIP2-binding site, and promotes integrin activation. We further demonstrate that this process requires phosphorylation of Tyr267 and Tyr427 in the RIAM PH domain by Src. Our data reveal an unorthodox regulatory mechanism of small GTPase effector proteins by phosphorylation-dependent PM association of the PH domain and provide new insights into the link between Src kinases and integrin signaling.
Collapse
Affiliation(s)
- Eun-Ah Cho
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pingfeng Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vikas Kumar
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Mikhail Kavalchuk
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Hao Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - James S Duncan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
31
|
Kumar R, Donakonda S, Müller SA, Bötzel K, Höglinger GU, Koeglsperger T. FGF2 Affects Parkinson's Disease-Associated Molecular Networks Through Exosomal Rab8b/Rab31. Front Genet 2020; 11:572058. [PMID: 33101391 PMCID: PMC7545478 DOI: 10.3389/fgene.2020.572058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023] Open
Abstract
Ras-associated binding (Rab) proteins are small GTPases that regulate the trafficking of membrane components during endocytosis and exocytosis including the release of extracellular vesicles (EVs). Parkinson’s disease (PD) is one of the most prevalent neurodegenerative disorder in the elderly population, where pathological proteins such as alpha-synuclein (α-Syn) are transmitted in EVs from one neuron to another neuron and ultimately across brain regions, thereby facilitating the spreading of pathology. We recently demonstrated fibroblast growth factor-2 (FGF2) to enhance the release of EVs and delineated the proteomic signature of FGF2-triggered EVs in cultured primary hippocampal neurons. Out of 235 significantly upregulated proteins, we found that FGF2 specifically enriched EVs for the two Rab family members Rab8b and Rab31. Consequently, we investigated the interactions of Rab8b and Rab31 using a network analysis approach in order to estimate the global influence of their enrichment in EVs. To achieve this, we have demarcated a protein–protein interaction network (PPiN) for these Rabs and identified the proteins associated with PD in various cellular components of the central nervous system (CNS), in different brain regions, and in the enteric nervous system (ENS). A total of 126 direct or indirect interactions were reported for two Rab candidates, out of which 114 are Rab8b interactions and 54 are Rab31 interactions, ultimately resulting in an individual interaction score (IS) of 90.48 and 42.86%, respectively. Conclusively, these results for the first time demonstrate the relevance of FGF2-induced Rab-enrichment in EVs and its potential to regulate PD pathophysiology.
Collapse
Affiliation(s)
- Rohit Kumar
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Faculty of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Ludwig Maximilian University, Munich, Germany
| | - Sainitin Donakonda
- Institute of Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilian University, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Faculty of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Thomas Koeglsperger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
32
|
RIAM-VASP Module Relays Integrin Complement Receptors in Outside-In Signaling Driving Particle Engulfment. Cells 2020; 9:cells9051166. [PMID: 32397169 PMCID: PMC7291270 DOI: 10.3390/cells9051166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
The phagocytic integrins and complement receptors αMβ2/CR3 and αXβ2/CR4 are classically associated with the phagocytosis of iC3b-opsonized particles. The activation of this receptor is dependent on signals derived from other receptors (inside-out signaling) with the crucial involvement of the Rap1-RIAM-Talin-1 pathway. Here, we analyze the implication of RIAM and its binding partner VASP in the signaling events occurring downstream of β2 integrins (outside-in) during complement-mediated phagocytosis. To this end, we used HL-60 promyelocytic cell lines deficient in RIAM or VASP or overexpressing EGFP-tagged VASP to determine VASP dynamics at phagocytic cups. Our results indicate that RIAM-deficient HL-60 cells presented impaired particle internalization and altered integrin downstream signaling during complement-dependent phagocytosis. Similarly, VASP deficiency completely blocked phagocytosis, while VASP overexpression increased the random movement of phagocytic particles at the cell surface, with reduced internalization. Moreover, the recruitment of VASP to particle contact sites, amount of pSer157-VASP and formation of actin-rich phagocytic cups were dependent on RIAM expression. Our results suggested that RIAM worked as a relay for integrin complement receptors in outside-in signaling, coordinating integrin activation and cytoskeletal rearrangements via its interaction with VASP.
Collapse
|
33
|
Ueda Y, Kondo N, Kinashi T. MST1/2 Balance Immune Activation and Tolerance by Orchestrating Adhesion, Transcription, and Organelle Dynamics in Lymphocytes. Front Immunol 2020; 11:733. [PMID: 32435241 PMCID: PMC7218056 DOI: 10.3389/fimmu.2020.00733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/31/2020] [Indexed: 01/15/2023] Open
Abstract
The STE20-like serine/threonine kinases MST1 and MST2 (MST1/2) are mammalian homologs of Hippo in flies. MST1/2 regulate organ size by suppressing the transcription factor YAP, which promotes proliferation. MST1 is predominantly expressed in immune cells, where it plays distinct roles. Here, we review the functions of MST1/2 in immune cells, uncovered by a series of recent studies, and discuss the connection between MST1/2 function and immune responses. MST1/2 regulate lymphocyte development, trafficking, survival, and antigen recognition by naive T cells. MST1/2 also regulate the function of regulatory T cells and effector T cell differentiation, thus acting to balance immune activation and tolerance. Interestingly, MST1/2 elicit these functions not by the “canonical” Hippo pathway, but by the non-canonical Hippo pathway or alternative pathways. In these pathways, MST1/2 regulates cellular processes relating to immune response, such as chemotaxis, cell adhesion, immunological synapse, gene transcriptions. Recent advances in our understanding of the molecular mechanisms of these processes have revealed important roles of MST1/2 in regulating cytoskeleton remodeling, integrin activation, and vesicular transport in lymphocytes. We discuss the significance of the MST1/2 signaling in lymphocytes in the regulation of organelle dynamics.
Collapse
Affiliation(s)
- Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
34
|
Torres-Gomez A, Cabañas C, Lafuente EM. Phagocytic Integrins: Activation and Signaling. Front Immunol 2020; 11:738. [PMID: 32425937 PMCID: PMC7203660 DOI: 10.3389/fimmu.2020.00738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Phagocytic integrins are endowed with the ability to engulf and dispose of particles of different natures. Evolutionarily conserved from worms to humans, they are involved in pathogen elimination and apoptotic and tumoral cell clearance. Research in the field of integrin-mediated phagocytosis has shed light on the molecular events controlling integrin activation and their effector functions. However, there are still some aspects of the regulation of the phagocytic process that need to be clarified. Here, we have revised the molecular events controlling phagocytic integrin activation and the downstream signaling driving particle engulfment, and we have focused particularly on αMβ2/CR3, αXβ2/CR4, and a brief mention of αVβ5/αVβ3integrins.
Collapse
Affiliation(s)
- Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Severo Ochoa Center for Molecular Biology (CSIC-UAM), Madrid, Spain
| | - Esther M Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
35
|
Activation and suppression of hematopoietic integrins in hemostasis and immunity. Blood 2020; 135:7-16. [DOI: 10.1182/blood.2019003336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Nolte and Margadant review the current understanding of the activation and inactivation of integrin receptors expressed by hematopoietic cells and the role of these conformational changes in modulating platelet and leukocyte function.
Collapse
|
36
|
Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Q Rev Biophys 2019; 52:e10. [PMID: 31709962 DOI: 10.1017/s0033583519000088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are large heterodimeric type 1 membrane proteins expressed in all nucleated mammalian cells. Eighteen α-chains and eight β-chains can combine to form 24 different integrins. They are cell adhesion proteins, which bind to a large variety of cellular and extracellular ligands. Integrins are required for cell migration, hemostasis, translocation of cells out from the blood stream and further movement into tissues, but also for the immune response and tissue morphogenesis. Importantly, integrins are not usually active as such, but need activation to become adhesive. Integrins are activated by outside-in activation through integrin ligand binding, or by inside-out activation through intracellular signaling. An important question is how integrin activity is regulated, and this topic has recently drawn much attention. Changes in integrin affinity for ligand binding are due to allosteric structural alterations, but equally important are avidity changes due to integrin clustering in the plane of the plasma membrane. Recent studies have partially solved how integrin cell surface structures change during activation. The integrin cytoplasmic domains are relatively short, but by interacting with a variety of cytoplasmic proteins in a regulated manner, the integrins acquire a number of properties important not only for cell adhesion and movement, but also for cellular signaling. Recent work has shown that specific integrin phosphorylations play pivotal roles in the regulation of integrin activity. Our purpose in this review is to integrate the present knowledge to enable an understanding of how cell adhesion is dynamically regulated.
Collapse
|
37
|
Bromberger T, Zhu L, Klapproth S, Qin J, Moser M. Rap1 and membrane lipids cooperatively recruit talin to trigger integrin activation. J Cell Sci 2019; 132:jcs235531. [PMID: 31578239 PMCID: PMC6857594 DOI: 10.1242/jcs.235531] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Recruitment and tethering of talin to the plasma membrane initiate the process of integrin activation. Multiple factors including the Rap1 proteins, RIAM (also known as APBB1IP) and PIP2 bind talin proteins and have been proposed to regulate these processes, but not systematically analyzed. By expressing specific talin mutants into talin-null fibroblasts, we show that binding of the talin F0 domain to Rap1 synergizes with membrane lipid binding of the talin F2 domain during talin membrane targeting and integrin activation, whereas the interaction of the talin rod with RIAM was dispensable. We also characterized a second Rap1-binding site within the talin F1 domain by detailed NMR analysis. Interestingly, while talin F1 exhibited significantly weaker Rap1-binding affinity than talin F0, expression of a talin F1 Rap1-binding mutant inhibited cell adhesion, spreading, talin recruitment and integrin activation similarly to the talin F0 Rap1-binding mutant. Moreover, the defects became significantly stronger when both Rap1-binding sites were mutated. In conclusion, our data suggest a model in which cooperative binding of Rap1 to the talin F0 and F1 domains synergizes with membrane PIP2 binding to spatiotemporally position and activate talins to regulate integrin activity.
Collapse
Affiliation(s)
- Thomas Bromberger
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | - Liang Zhu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Sarah Klapproth
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Markus Moser
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
38
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
39
|
Alieva NO, Efremov AK, Hu S, Oh D, Chen Z, Natarajan M, Ong HT, Jégou A, Romet-Lemonne G, Groves JT, Sheetz MP, Yan J, Bershadsky AD. Myosin IIA and formin dependent mechanosensitivity of filopodia adhesion. Nat Commun 2019; 10:3593. [PMID: 31399564 PMCID: PMC6689027 DOI: 10.1038/s41467-019-10964-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 06/07/2019] [Indexed: 12/21/2022] Open
Abstract
Filopodia, dynamic membrane protrusions driven by polymerization of an actin filament core, can adhere to the extracellular matrix and experience both external and cell-generated pulling forces. The role of such forces in filopodia adhesion is however insufficiently understood. Here, we study filopodia induced by overexpression of myosin X, typical for cancer cells. The lifetime of such filopodia positively correlates with the presence of myosin IIA filaments at the filopodia bases. Application of pulling forces to the filopodia tips through attached fibronectin-coated laser-trapped beads results in sustained growth of the filopodia. Pharmacological inhibition or knockdown of myosin IIA abolishes the filopodia adhesion to the beads. Formin inhibitor SMIFH2, which causes detachment of actin filaments from formin molecules, produces similar effect. Thus, centripetal force generated by myosin IIA filaments at the base of filopodium and transmitted to the tip through actin core in a formin-dependent fashion is required for filopodia adhesion.
Collapse
Affiliation(s)
- N O Alieva
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - A K Efremov
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Center for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore
| | - S Hu
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - D Oh
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Z Chen
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - M Natarajan
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - H T Ong
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - A Jégou
- Institut Jacques Monod, CNRS, Université de Paris, 15 rue Helene Brion, F-75013, Paris, France
| | - G Romet-Lemonne
- Institut Jacques Monod, CNRS, Université de Paris, 15 rue Helene Brion, F-75013, Paris, France
| | - J T Groves
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - M P Sheetz
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - J Yan
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Center for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore.,Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - A D Bershadsky
- Mechanobiology Institute, National University of Singapore, T-lab, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,Weizmann Institute of Science, Herzl St 234, Rehovot, 7610001, Israel.
| |
Collapse
|
40
|
Gingras AR, Lagarrigue F, Cuevas MN, Valadez AJ, Zorovich M, McLaughlin W, Lopez-Ramirez MA, Seban N, Ley K, Kiosses WB, Ginsberg MH. Rap1 binding and a lipid-dependent helix in talin F1 domain promote integrin activation in tandem. J Cell Biol 2019; 218:1799-1809. [PMID: 30988001 PMCID: PMC6548133 DOI: 10.1083/jcb.201810061] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Rap1 GTPases bind effectors, such as RIAM, to enable talin1 to induce integrin activation. In addition, Rap1 binds directly to the talin1 F0 domain (F0); however, this interaction makes a limited contribution to integrin activation in CHO cells or platelets. Here, we show that talin1 F1 domain (F1) contains a previously undetected Rap1-binding site of similar affinity to that in F0. A structure-guided point mutant (R118E) in F1, which blocks Rap1 binding, abolishes the capacity of Rap1 to potentiate talin1-induced integrin activation. The capacity of F1 to mediate Rap1-dependent integrin activation depends on a unique loop in F1 that has a propensity to form a helix upon binding to membrane lipids. Basic membrane-facing residues of this helix are critical, as charge-reversal mutations led to dramatic suppression of talin1-dependent activation. Thus, a novel Rap1-binding site and a transient lipid-dependent helix in F1 work in tandem to enable a direct Rap1-talin1 interaction to cause integrin activation.
Collapse
Affiliation(s)
| | | | - Monica N Cuevas
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Andrew J Valadez
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Marcus Zorovich
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Wilma McLaughlin
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Nicolas Seban
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - William B Kiosses
- Microscopy Core Facility, La Jolla Institute for Immunology, La Jolla, CA
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
41
|
Anderson NR, Lee D, Hammer DA. Adhesive dynamics simulations quantitatively predict effects of kindlin-3 deficiency on T-cell homing. Integr Biol (Camb) 2019; 11:293-300. [PMID: 31329860 PMCID: PMC7309535 DOI: 10.1093/intbio/zyz024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/13/2023]
Abstract
Leukocyte adhesion is important for the proper functioning of the immune system. While leukocyte homing is mediated by adhesion receptors, the activation of these receptors is modulated by intracellular signaling molecules. In Leukocyte Adhesion Deficiency Type 3, the loss of the kindlin-3 prevents the activation of Leukocyte Function-associated Antigen-1 (LFA-1), which leads to a defect in adhesion, causing recurrent infections and bleeding disorders. Here, we use Integrated Signaling Adhesive Dynamics, a computer model of leukocyte rolling and adhesion combined with a simulated intracellular signaling cascade, to predict the response of T cells to depletion of kindlin-3. Our model predicts that cell adhesion is hypersensitive to the amount of kindlin-3 in the cell, while the rolling velocity is independent of kindlin-3 concentration. In addition, our simulation predicted that the time to stop, an important metric of adhesion, would increase with decreasing kindlin-3 expression. These predictions were confirmed experimentally in experiments using Jurkat cells with reduced expression of kindlin-3. These results suggest that Adhesive Dynamics is a versatile tool for quantifying adhesion in the immune response and predicting the effects of engineering cellular components.
Collapse
Affiliation(s)
- Nicholas R. Anderson
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Dooyoung Lee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel A. Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
42
|
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol 2019; 10:1078. [PMID: 31231358 PMCID: PMC6558418 DOI: 10.3389/fimmu.2019.01078] [Citation(s) in RCA: 474] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The immune system and cancer have a complex relationship with the immune system playing a dual role in tumor development. The effector cells of the immune system can recognize and kill malignant cells while immune system-mediated inflammation can also promote tumor growth and regulatory cells suppress the anti-tumor responses. In the center of all anti-tumor responses is the ability of the immune cells to migrate to the tumor site and to interact with each other and with the malignant cells. Cell adhesion molecules including receptors of the immunoglobulin superfamily and integrins are of crucial importance in mediating these processes. Particularly integrins play a vital role in regulating all aspects of immune cell function including immune cell trafficking into tissues, effector cell activation and proliferation and the formation of the immunological synapse between immune cells or between immune cell and the target cell both during homeostasis and during inflammation and cancer. In this review we discuss the molecular mechanisms regulating integrin function and the role of integrins and other cell adhesion molecules in immune responses and in the tumor microenvironment. We also describe how malignant cells can utilize cell adhesion molecules to promote tumor growth and metastases and how these molecules could be targeted in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Molecular basis for autoinhibition of RIAM regulated by FAK in integrin activation. Proc Natl Acad Sci U S A 2019; 116:3524-3529. [PMID: 30733287 DOI: 10.1073/pnas.1818880116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RAP1-interacting adapter molecule (RIAM) mediates RAP1-induced integrin activation. The RAS-association (RA) segment of the RA-PH module of RIAM interacts with GTP-bound RAP1 and phosphoinositol 4,5 bisphosphate but this interaction is inhibited by the N-terminal segment of RIAM. Here we report the structural basis for the autoinhibition of RIAM by an intramolecular interaction between the IN region (aa 27-93) and the RA-PH module. We solved the crystal structure of IN-RA-PH to a resolution of 2.4-Å. The structure reveals that the IN segment associates with the RA segment and thereby suppresses RIAM:RAP1 association. This autoinhibitory configuration of RIAM can be released by phosphorylation at Tyr45 in the IN segment. Specific inhibitors of focal adhesion kinase (FAK) blocked phosphorylation of Tyr45, inhibited stimulated translocation of RIAM to the plasma membrane, and inhibited integrin-mediated cell adhesion in a Tyr45-dependent fashion. Our results reveal an unusual regulatory mechanism in small GTPase signaling by which the effector molecule is autoinhibited for GTPase interaction, and a modality of integrin activation at the level of RIAM through a FAK-mediated feedforward mechanism that involves reversal of autoinhibition by a tyrosine kinase associated with integrin signaling.
Collapse
|
44
|
|
45
|
Bromberger T, Klapproth S, Rohwedder I, Zhu L, Mittmann L, Reichel CA, Sperandio M, Qin J, Moser M. Direct Rap1/Talin1 interaction regulates platelet and neutrophil integrin activity in mice. Blood 2018; 132:2754-2762. [PMID: 30442677 PMCID: PMC6307989 DOI: 10.1182/blood-2018-04-846766] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
Targeting Talin1 to the plasma membrane is a crucial step in integrin activation, which in leukocytes is mediated by a Rap1/RIAM/Talin1 pathway, whereas in platelets, it is RIAM independent. Recent structural, biochemical, and cell biological studies have suggested direct Rap1/Talin1 interaction as an alternative mechanism to recruit Talin1 to the membrane and induce integrin activation. To test whether this pathway is of relevance in vivo, we generated Rap1 binding-deficient Talin1 knockin (Tln13mut) mice. Although Tln13mut mice showed no obvious abnormalities, their platelets exhibited reduced integrin activation, aggregation, adhesion, and spreading, resulting in prolonged tail-bleeding times and delayed thrombus formation and vessel occlusion in vivo. Surprisingly, neutrophil adhesion to different integrin ligands and β2 integrin-dependent phagocytosis were also significantly impaired, which caused profound leukocyte adhesion and extravasation defects in Tln13mut mice. In contrast, macrophages exhibited no defect in adhesion or spreading despite reduced integrin activation. Taken together, our findings suggest that direct Rap1/Talin1 interaction is of particular importance in regulating the activity of different integrin classes expressed on platelets and neutrophils, which both depend on fast and dynamic integrin-mediated responses.
Collapse
Affiliation(s)
- Thomas Bromberger
- Department Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sarah Klapproth
- Department Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität Munich, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Liang Zhu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Laura Mittmann
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität Munich, Ludwig Maximilians University Munich, Martinsried, Germany
- Department of Otorhinolarynology, Ludwig Maximilians University Munich, Munich, Germany; and
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität Munich, Ludwig Maximilians University Munich, Martinsried, Germany
- Department of Otorhinolarynology, Ludwig Maximilians University Munich, Munich, Germany; and
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität Munich, Ludwig Maximilians University Munich, Martinsried, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Markus Moser
- Department Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
46
|
Lagarrigue F, Gingras AR, Paul DS, Valadez AJ, Cuevas MN, Sun H, Lopez-Ramirez MA, Goult BT, Shattil SJ, Bergmeier W, Ginsberg MH. Rap1 binding to the talin 1 F0 domain makes a minimal contribution to murine platelet GPIIb-IIIa activation. Blood Adv 2018; 2:2358-2368. [PMID: 30242097 PMCID: PMC6156890 DOI: 10.1182/bloodadvances.2018020487] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/11/2018] [Indexed: 01/08/2023] Open
Abstract
Activation of platelet glycoprotein IIb-IIIa (GPIIb-IIIa; integrin αIIbβ3) leads to high-affinity fibrinogen binding and platelet aggregation during hemostasis. Whereas GTP-bound Rap1 GTPase promotes talin 1 binding to the β3 cytoplasmic domain to activate platelet GPIIb-IIIa, the Rap1 effector that regulates talin association with β3 in platelets is unknown. Rap1 binding to the talin 1 F0 subdomain was proposed to forge the talin 1-Rap1 link in platelets. Here, we report a talin 1 point mutant (R35E) that significantly reduces Rap1 affinity without a significant effect on its structure or expression. Talin 1 head domain (THD) (R35E) was of similar potency to wild-type THD in activating αIIbβ3 in Chinese hamster ovary cells. Coexpression with activated Rap1b increased activation, and coexpression with Rap1GAP1 reduced activation caused by transfection of wild-type THD or THD(R35E). Furthermore, platelets from Tln1R35E/R35E mice showed similar GPIIb-IIIa activation to those from wild-type littermates in response to multiple agonists. Tln1R35E/R35E platelets exhibited slightly reduced platelet aggregation in response to low doses of agonists; however, there was not a significant hemostatic defect, as judged by tail bleeding times. Thus, the Rap1-talin 1 F0 interaction has little effect on platelet GPIIb-IIIa activation and hemostasis and cannot account for the dramatic effects of loss of Rap1 activity on these platelet functions.
Collapse
Affiliation(s)
| | | | - David S Paul
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew J Valadez
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Monica N Cuevas
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Benjamin T Goult
- School of Biosciences, University of Kent, Kent, United Kingdom; and
| | - Sanford J Shattil
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Wolfgang Bergmeier
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
47
|
Small GTPase-dependent regulation of leukocyte-endothelial interactions in inflammation. Biochem Soc Trans 2018; 46:649-658. [PMID: 29743277 DOI: 10.1042/bst20170530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Inflammation is a complex biological response that serves to protect the body's tissues following harmful stimuli such as infection, irritation or injury and initiates tissue repair. At the start of an inflammatory response, pro-inflammatory mediators induce changes in the endothelial lining of the blood vessels and in leukocytes. This results in increased vascular permeability and increased expression of adhesion proteins, and promotes adhesion of leukocytes, especially neutrophils to the endothelium. Adhesion is a prerequisite for neutrophil extravasation and chemoattractant-stimulated recruitment to inflammatory sites, where neutrophils phagocytose and kill microbes, release inflammatory mediators and cross-talk with other immune cells to co-ordinate the immune response in preparation for tissue repair. Many signalling proteins are critically involved in the complex signalling processes that underpin the inflammatory response and cross-talk between endothelium and leukocytes. As key regulators of cell-cell and cell-substratum adhesion, small GTPases (guanosine triphosphatases) act as important controls of neutrophil-endothelial cell interactions as well as neutrophil recruitment to sites of inflammation. Here, we summarise key processes that are dependent upon small GTPases in leukocytes during these early inflammatory events. We place a particular focus on the regulation of integrin-dependent events and their control by Rho and Rap family GTPases as well as their regulators during neutrophil adhesion, chemotaxis and recruitment.
Collapse
|
48
|
Yago T, Zhang N, Zhao L, Abrams CS, McEver RP. Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils. Blood Adv 2018; 2:731-744. [PMID: 29592875 PMCID: PMC5894262 DOI: 10.1182/bloodadvances.2017015602] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/06/2018] [Indexed: 01/13/2023] Open
Abstract
Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)-dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins.
Collapse
Affiliation(s)
- Tadayuki Yago
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK; and
| | - Liang Zhao
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Charles S Abrams
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rodger P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK; and
| |
Collapse
|
49
|
Seetharaman S, Etienne-Manneville S. Integrin diversity brings specificity in mechanotransduction. Biol Cell 2018; 110:49-64. [DOI: 10.1111/boc.201700060] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Shailaja Seetharaman
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
- Université Paris Descartes, Sorbonne Paris Cité; Paris 75006 France
| | - Sandrine Etienne-Manneville
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
| |
Collapse
|
50
|
Non-identical twins: Different faces of CR3 and CR4 in myeloid and lymphoid cells of mice and men. Semin Cell Dev Biol 2017; 85:110-121. [PMID: 29174917 DOI: 10.1016/j.semcdb.2017.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023]
Abstract
Integrins are cell membrane receptors that are involved in essential physiological and serious pathological processes. Their main role is to ensure a closely regulated link between the extracellular matrix and the intracellular cytoskeletal network enabling cells to react to environmental stimuli. Complement receptor type 3 (CR3, αMβ2, CD11b/CD18) and type 4 (CR4, αXβ2, CD11c/CD18) are members of the β2-integrin family expressed on most white blood cells. Both receptors bind multiple ligands like iC3b, ICAM, fibrinogen or LPS. β2-integrins are accepted to play important roles in cellular adhesion, migration, phagocytosis, ECM rearrangement and inflammation. Several pathological conditions are linked to the impaired functions of these receptors. CR3 and CR4 are generally thought to mediate overlapping functions in monocytes, macrophages and dendritic cells, therefore the potential distinctive role of these receptors has not been investigated so far in satisfactory details. Lately it has become clear that a functional segregation has evolved between the two receptors regarding phagocytosis, cellular adhesion and podosome formation. In addition to their tasks on myeloid cells, the expression and function of CR3 and CR4 on lymphocytes have also gained interest recently. The picture is further complicated by the fact that while these β2-integrins are expressed by immune cells both in mice and humans, there are significant differences in their expression level, functions and the pathological consequences of genetic defects. Here we aim to summarize our current knowledge on CR3 and CR4 and highlight the functional differences between these receptors, involving their expression in myeloid and lymphoid cells of both men and mice.
Collapse
|