1
|
Swallow MA, Edelson R, Girardi M. A Yale Dermatology perspective on cutaneous T cell lymphoma: Historic reflection to emerging therapies. Clin Dermatol 2025; 43:170-176. [PMID: 39694197 DOI: 10.1016/j.clindermatol.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cutaneous T cell lymphoma (CTCL) is a form of non-Hodgkin lymphoma that can involve the skin, along with lymph nodes and blood. The two most common subtypes of CTCL are mycosis fungoides and Sézary syndrome. Since the initial description of mycosis fungoides by Dr Jean-Louis Alibert in 1806, there have been significant advances in our understanding of the pathogenesis of CTCL, its diverse clinical and histologic variants, and the evolving treatment landscape. One major contributor to this story has been Dr Irwin M. Braverman, former vice chair of Dermatology at the Yale School of Medicine. Herein, we provide tribute to his discoveries, teaching, mentorship, and clinical care that have influenced our insights into CTCL and emerging treatments for this challenging malignancy.
Collapse
Affiliation(s)
| | - Richard Edelson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
2
|
Marinelli L, Johnson E, Witzig T, Comfere N, Otteson G, McPhail E, Collie A, King R. T-cell lymphoproliferative disorder with a STAT3 mutation causing a lymphocytic variant of hypereosinophilic-like syndrome without eosinophilia. J Hematop 2025; 18:6. [PMID: 39954180 DOI: 10.1007/s12308-025-00621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Lymphocytic variant of hypereosinophilic syndrome (LV-HES) is a rare T-cell lymphoproliferative disorder characterized by an immunophenotypically abnormal Th2 T-cell clone which produces eosinophilopoietic cytokines, resulting in eosinophilia and end-organ damage. A 38-year-old woman presented to an outside institution with a 10-year history of a pruritic, recurrent, steroid-responsive skin eruption and a 3-year history of mild lymphadenopathy. Excisional lymph node biopsy demonstrated a clonal, surface CD3-CD4+ T-cell infiltrate, prompting a diagnosis of peripheral T-cell lymphoma, not otherwise specified. Further workup revealed bone marrow and peripheral blood involvement. She received multiagent chemotherapy with temporary resolution of her skin eruption and lymphadenopathy, but persistent bone marrow disease. Presenting to our institution 3 years later, she exhibited numerous flesh-colored papules involving the extremities, without patches or plaques of mycosis fungoides. Skin biopsies demonstrated a dermal perivascular and interstitial proliferation of monotonous small T-cells without significant epidermotropism. T-cell receptor gene rearrangement studies of skin and peripheral blood specimens revealed identical clonal peaks, and peripheral blood flow cytometry showed persistence of the previously identified T-cell clone. Laboratory workup demonstrated a markedly elevated IgE level (66,580 kU/L) with a normal eosinophil count and IL-5 level. Next-generation sequencing of a peripheral blood sample revealed a pathogenic STAT3 S614R variant, previously documented in LV-HES. Although lacking eosinophilia, the patient's indolent course, characteristic skin lesions, steroid responsiveness, and pathologic features are typical of LV-HES, and the elevated IgE and STAT3 activation underscore a similar biology. We thus propose that this case expands the spectrum of indolent Th2-T cell lymphoproliferative disorders that need to be distinguished from peripheral T-cell lymphoma clinically.
Collapse
|
3
|
Kwang AC, Duran GE, Fernandez-Pol S, Najidh S, Li S, Bastidas Torres AN, Wang EB, Herrera M, Bandali TI, Kurtz DM, Kim YH, Khodadoust MS. Genetic alteration of class I HLA in cutaneous T-cell lymphoma. Blood 2025; 145:311-324. [PMID: 39388712 PMCID: PMC11775508 DOI: 10.1182/blood.2024024817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
ABSTRACT Abnormalities involving class I HLA are frequent in many lymphoma subtypes but have not yet been extensively studied in cutaneous T-cell lymphomas (CTCLs). We characterized the occurrence of class I HLA abnormalities in 65 patients with advanced mycosis fungoides or Sézary syndrome. Targeted DNA sequencing, including coverage of HLA loci, revealed at least 1 HLA abnormality in 26 of 65 patients (40%). Twelve unique somatic HLA mutations were identified across 9 patients, and loss of heterozygosity or biallelic loss of HLA was found to affect 24 patients. Although specific HLA alleles were commonly disrupted, these events did not associate with a decrease in the total class I HLA expression. Genetic events preferentially disrupted HLA alleles capable of presenting greater numbers of putative neoantigens. HLA abnormalities co-occurred with other genetic immune evasion events and were associated with worse progression-free survival. Single-cell analyses demonstrated that HLA abnormalities were frequently subclonal. Through analysis of serial samples, we observed that disrupting class I HLA events change dynamically over the disease course. The dynamics of HLA disruption are highlighted in a patient who received pembrolizumab and in whom resistance to pembrolizumab was associated with the elimination of an HLA mutation. Overall, our findings show that genomic class I HLA abnormalities are common in advanced CTCL and may be an important consideration in understanding the effects of immunotherapy in CTCL.
Collapse
Affiliation(s)
- Alexa C. Kwang
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - George E. Duran
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | | | - Safa Najidh
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Shufeng Li
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | | | - Erica B. Wang
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Melba Herrera
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Tarek I. Bandali
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - David M. Kurtz
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Youn H. Kim
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Michael S. Khodadoust
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
4
|
Srinivas N, Peiffer L, Horny K, Lei KC, Buus TB, Kubat L, Luo M, Yin M, Spassova I, Sucker A, Farahpour F, Kehrmann J, Ugurel S, Livingstone E, Gambichler T, Ødum N, Becker JC. Single-cell RNA and T-cell receptor sequencing unveil mycosis fungoides heterogeneity and a possible gene signature. Front Oncol 2024; 14:1408614. [PMID: 39169943 PMCID: PMC11337020 DOI: 10.3389/fonc.2024.1408614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Background Mycosis fungoides (MF) is the most common subtype of cutaneous T-cell lymphoma (CTCL). Comprehensive analysis of MF cells in situ and ex vivo is complicated by the fact that is challenging to distinguish malignant from reactive T cells with certainty. Methods To overcome this limitation, we performed combined single-cell RNA (scRNAseq) and T-cell receptor TCR sequencing (scTCRseq) of skin lesions of cutaneous MF lesions from 12 patients. A sufficient quantity of living T cells was obtained from 9 patients, but 2 had to be excluded due to unclear diagnoses (coexisting CLL or revision to a fixed toxic drug eruption). Results From the remaining patients we established single-cell mRNA expression profiles and the corresponding TCR repertoire of 18,630 T cells. TCR clonality unequivocally identified 13,592 malignant T cells. Reactive T cells of all patients clustered together, while malignant cells of each patient formed a unique cluster expressing genes typical of naive/memory, such as CD27, CCR7 and IL7R, or cytotoxic T cells, e.g., GZMA, NKG7 and GNLY. Genes encoding classic CTCL markers were not detected in all clusters, consistent with the fact that mRNA expression does not correlate linearly with protein expression. Nevertheless, we successfully pinpointed distinctive gene signatures differentiating reactive malignant from malignant T cells: keratins (KRT81, KRT86), galectins (LGALS1, LGALS3) and S100 genes (S100A4, S100A6) being overexpressed in malignant cells. Conclusions Combined scRNAseq and scTCRseq not only allows unambiguous identification of MF cells, but also revealed marked heterogeneity between and within patients with unexpected functional phenotypes. While the correlation between mRNA and protein abundance was limited with respect to established MF markers, we were able to identify a single-cell gene expression signature that distinguishes malignant from reactive T cells.
Collapse
Affiliation(s)
- Nalini Srinivas
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Lukas Peiffer
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kai Horny
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kuan Cheok Lei
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Linda Kubat
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Meng Luo
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Menghong Yin
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivelina Spassova
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Farnoush Farahpour
- Bioinformatics and Computational Biophysics, University Duisburg-Essen, and Group of Molecular Cell Biology, Institute for Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
- Department of Dermatology, Dortmund Hospital, University Witten/Herdecke, Dortmund, Germany
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
5
|
Shih BB, Ma C, Cortes JR, Reglero C, Miller H, Quinn SA, Albero R, Laurent AP, Mackey A, Ferrando AA, Geskin L, Palomero T. Romidepsin and Afatinib Abrogate Jak-Signal Transducer and Activator of Transcription Signaling and Elicit Synergistic Antitumor Effects in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024; 144:1579-1589.e8. [PMID: 38219917 PMCID: PMC11193653 DOI: 10.1016/j.jid.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Cutaneous T-cell lymphomas are mature lymphoid neoplasias resulting from the malignant transformation of skin-resident T-cells. A distinctive clinical feature of cutaneous T-cell lymphomas is their sensitivity to treatment with histone deacetylase inhibitors. However, responses to histone deacetylase inhibitor therapy are universally transient and noncurative, highlighting the need for effective and durable drug combinations. In this study, we demonstrate that the combination of romidepsin, a selective class I histone deacetylase inhibitor, with afatinib, an EGFR family inhibitor, induces strongly synergistic antitumor effects in cutaneous T-cell lymphoma models in vitro and in vivo through abrogation of Jak-signal transducer and activator of transcription signaling. These results support a previously unrecognized potential role for histone deacetylase inhibitor plus afatinib combination in the treatment of cutaneous T-cell lymphomas.
Collapse
Affiliation(s)
- Bobby B Shih
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Cindy Ma
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Jose R Cortes
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Clara Reglero
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Hannah Miller
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Biomedical Research Institute August Pi y Sunyer (IDIBAPS), Barcelona, Spain
| | - Anouchka P Laurent
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Adam Mackey
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Regeneron Pharmaceuticals, Tarrytown, New York, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA; Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - Larisa Geskin
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
6
|
Glass DR, Mayer-Blackwell K, Ramchurren N, Parks KR, Duran GE, Wright AK, Bastidas Torres AN, Islas L, Kim YH, Fling SP, Khodadoust MS, Newell EW. Multi-omic profiling reveals the endogenous and neoplastic responses to immunotherapies in cutaneous T cell lymphoma. Cell Rep Med 2024; 5:101527. [PMID: 38670099 PMCID: PMC11148639 DOI: 10.1016/j.xcrm.2024.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Cutaneous T cell lymphomas (CTCLs) are skin cancers with poor survival rates and limited treatments. While immunotherapies have shown some efficacy, the immunological consequences of administering immune-activating agents to CTCL patients have not been systematically characterized. We apply a suite of high-dimensional technologies to investigate the local, cellular, and systemic responses in CTCL patients receiving either mono- or combination anti-PD-1 plus interferon-gamma (IFN-γ) therapy. Neoplastic T cells display no evidence of activation after immunotherapy. IFN-γ induces muted endogenous immunological responses, while anti-PD-1 elicits broader changes, including increased abundance of CLA+CD39+ T cells. We develop an unbiased multi-omic profiling approach enabling discovery of immune modules stratifying patients. We identify an enrichment of activated regulatory CLA+CD39+ T cells in non-responders and activated cytotoxic CLA+CD39+ T cells in leukemic patients. Our results provide insights into the effects of immunotherapy in CTCL patients and a generalizable framework for multi-omic analysis of clinical trials.
Collapse
Affiliation(s)
- David R Glass
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Koshlan Mayer-Blackwell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nirasha Ramchurren
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - K Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George E Duran
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna K Wright
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Laura Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Youn H Kim
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven P Fling
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael S Khodadoust
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
Jiang TT, Cao S, Kruglov O, Virmani A, Geskin LJ, Falo LD, Akilov OE. Deciphering Tumor Cell Evolution in Cutaneous T-Cell Lymphomas: Distinct Differentiation Trajectories in Mycosis Fungoides and Sézary Syndrome. J Invest Dermatol 2024; 144:1088-1098. [PMID: 38036289 PMCID: PMC11034798 DOI: 10.1016/j.jid.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Cutaneous T-cell lymphomas are a heterogeneous group of neoplasms originating in the skin, with mycosis fungoides (MF) and Sézary syndrome (SS) representing the most common variants. The cellular origin of cutaneous lymphomas has remained controversial owing to their immense phenotypic heterogeneity that obfuscates lineage reconstruction on the basis of classical surface biomarkers. To overcome this heterogeneity and reconstruct the differentiation trajectory of malignant cells in MF and SS, TCR sequencing was performed in parallel with targeted transcriptomics at the single-cell resolution among cutaneous samples in MF and SS. Unsupervised lineage reconstruction showed that Sézary cells exist as a population of CD4+ T cells distinct from those in patch, plaque, and tumor MF. Further investigation of malignant cell heterogeneity in SS showed that Sézary cells phenotypically comprised at least 3 subsets on the basis of differential proliferation potentials and expression of exhaustion markers. A T helper 1-polarized cell type, intermediate cell type, and exhausted T helper 2-polarized cell type were identified, with T helper 1- and T helper 2-polarized cells displaying divergent proliferation potentials. Collectively, these findings provide evidence to clarify the relationship between MF and SS and reveal cell subsets in SS that suggest a possible mechanism for therapeutic resistance.
Collapse
Affiliation(s)
- Tony T Jiang
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon Cao
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aman Virmani
- School of Art and Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Larisa J Geskin
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg E Akilov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
8
|
Gao Y, Hu S, Li R, Jin S, Liu F, Liu X, Li Y, Yan Y, Liu W, Gong J, Yang S, Tu P, Shen L, Bai F, Wang Y. Hyperprogression of cutaneous T cell lymphoma after anti-PD-1 treatment. JCI Insight 2023; 8:164793. [PMID: 36649072 PMCID: PMC9977500 DOI: 10.1172/jci.insight.164793] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUNDImmune checkpoint blockade is an emerging treatment for T cell non-Hodgkin's lymphoma (T-NHL), but some patients with T-NHL have experienced hyperprogression with undetermined mechanisms upon anti-PD-1 therapy.METHODSSingle-cell RNA-Seq, whole-genome sequencing, whole-exome sequencing, and functional assays were performed on primary malignant T cells from a patient with advanced cutaneous T cell lymphoma who experienced hyperprogression upon anti-PD-1 treatment.RESULTSThe patient was enrolled in a clinical trial of anti-PD-1 therapy and experienced disease hyperprogression. Single-cell RNA-Seq revealed that PD-1 blockade elicited a remarkable activation and proliferation of the CD4+ malignant T cells, which showed functional PD-1 expression and an exhausted status. Further analyses identified somatic amplification of PRKCQ in the malignant T cells. PRKCQ encodes PKCθ; PKCθ is a key player in the T cell activation/NF-κB pathway. PRKCQ amplification led to high expressions of PKCθ and p-PKCθ (T538) on the malignant T cells, resulting in an oncogenic activation of the T cell receptor (TCR) signaling pathway. PD-1 blockade in this patient released this signaling, derepressed the proliferation of malignant T cells, and resulted in disease hyperprogression.CONCLUSIONOur study provides real-world clinical evidence that PD-1 acts as a tumor suppressor for malignant T cells with oncogenic TCR activation.TRIAL REGISTRATIONClinicalTrials.gov (NCT03809767).FUNDINGThe National Natural Science Foundation of China (81922058), the National Science Fund for Distinguished Young Scholars (T2125002), the National Science and Technology Major Project (2019YFC1315702), the National Youth Top-Notch Talent Support Program (283812), and the Peking University Clinical Medicine plus X Youth Project (PKU2019LCXQ012) supported this work.
Collapse
Affiliation(s)
- Yumei Gao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Simeng Hu
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China
| | - Ruoyan Li
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Shanzhao Jin
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,BioMap Beijing Intelligence Technology Limited, Block C Information Center Haidian District, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yingyi Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yicen Yan
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Weiping Liu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research Ministry of Education, and
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Shuxia Yang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Center for Translational Cancer Research, Peking University First Hospital, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
9
|
Khodadoust MS, Mou E, Kim YH. Integrating novel agents into the treatment of advanced mycosis fungoides and Sézary syndrome. Blood 2023; 141:695-703. [PMID: 36379025 DOI: 10.1182/blood.2020008241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Agents targeting the unique biology of mycosis fungoides and Sézary syndrome are quickly being incorporated into clinical management. With these new therapies, we are now capable of inducing more durable responses and even complete remissions in advanced disease, outcomes which were exceedingly rare with prior therapies. Yet, even this new generation of therapies typically produce objective responses in only a minority of patients. As our therapeutic options increase, we are now challenged with selecting treatments from a growing list of options. To gain the full benefit of these novel agents, we must develop strategies to match treatments for the patients most likely to benefit from them. Here, we consider both the current approaches to treatment selection based on clinical features and the future of molecular biomarker-guided therapy for patients with this heterogeneous disease.
Collapse
Affiliation(s)
- Michael S Khodadoust
- Division of Oncology, Stanford University, Stanford, CA
- Department of Dermatology, Stanford University, Stanford, CA
| | - Eric Mou
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA
| | - Youn H Kim
- Division of Oncology, Stanford University, Stanford, CA
- Department of Dermatology, Stanford University, Stanford, CA
| |
Collapse
|
10
|
Masle-Farquhar E, Jeelall Y, White J, Bier J, Deenick EK, Brink R, Horikawa K, Goodnow CC. CARD11 gain-of-function mutation drives cell-autonomous accumulation of PD-1 + ICOS high activated T cells, T-follicular, T-regulatory and T-follicular regulatory cells. Front Immunol 2023; 14:1095257. [PMID: 36960072 PMCID: PMC10028194 DOI: 10.3389/fimmu.2023.1095257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Germline CARD11 gain-of-function (GOF) mutations cause B cell Expansion with NF-κB and T cell Anergy (BENTA) disease, whilst somatic GOF CARD11 mutations recur in diffuse large B cell lymphoma (DLBCL) and in up to 30% of the peripheral T cell lymphomas (PTCL) adult T cell leukemia/lymphoma (ATL), cutaneous T cell lymphoma (CTCL) and Sezary Syndrome. Despite their frequent acquisition by PTCL, the T cell-intrinsic effects of CARD11 GOF mutations are poorly understood. Methods Here, we studied B and T lymphocytes in mice with a germline Nethyl-N-nitrosourea (ENU)-induced Card11M365K mutation identical to a mutation identified in DLBCL and modifying a conserved region of the CARD11 coiled-coil domain recurrently mutated in DLBCL and PTCL. Results and discussion Our results demonstrate that CARD11.M365K is a GOF protein that increases B and T lymphocyte activation and proliferation following antigen receptor stimulation. Germline Card11M365K mutation was insufficient alone to cause B or T-lymphoma, but increased accumulation of germinal center (GC) B cells in unimmunized and immunized mice. Card11M365K mutation caused cell-intrinsic over-accumulation of activated T cells, T regulatory (TREG), T follicular (TFH) and T follicular regulatory (TFR) cells expressing increased levels of ICOS, CTLA-4 and PD-1 checkpoint molecules. Our results reveal CARD11 as an important, cell-autonomous positive regulator of TFH, TREG and TFR cells. They highlight T cell-intrinsic effects of a GOF mutation in the CARD11 gene, which is recurrently mutated in T cell malignancies that are often aggressive and associated with variable clinical outcomes.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Yogesh Jeelall
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Jacqueline White
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Julia Bier
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Keisuke Horikawa
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
| | - Christopher Carl Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Sorger H, Dey S, Vieyra‐Garcia PA, Pölöske D, Teufelberger AR, de Araujo ED, Sedighi A, Graf R, Spiegl B, Lazzeri I, Braun T, Garces de los Fayos Alonso I, Schlederer M, Timelthaler G, Kodajova P, Pirker C, Surbek M, Machtinger M, Graier T, Perchthaler I, Pan Y, Fink‐Puches R, Cerroni L, Ober J, Otte M, Albrecht JD, Tin G, Abdeldayem A, Manaswiyoungkul P, Olaoye OO, Metzelder ML, Orlova A, Berger W, Wobser M, Nicolay JP, André F, Nguyen VA, Neubauer HA, Fleck R, Merkel O, Herling M, Heitzer E, Gunning PT, Kenner L, Moriggl R, Wolf P. Blocking STAT3/5 through direct or upstream kinase targeting in leukemic cutaneous T-cell lymphoma. EMBO Mol Med 2022; 14:e15200. [PMID: 36341492 PMCID: PMC9727928 DOI: 10.15252/emmm.202115200] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.
Collapse
Affiliation(s)
- Helena Sorger
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
- Department of Pediatric and Adolescent Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Saptaswa Dey
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
- Department of PathologyMedical University of ViennaViennaAustria
| | | | - Daniel Pölöske
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | | | - Elvin D de Araujo
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Abootaleb Sedighi
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Ricarda Graf
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Benjamin Spiegl
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Isaac Lazzeri
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Till Braun
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
| | - Ines Garces de los Fayos Alonso
- Department of PathologyMedical University of ViennaViennaAustria
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Petra Kodajova
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Christine Pirker
- Centre for Cancer ResearchMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Surbek
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Michael Machtinger
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Thomas Graier
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | | | - Yi Pan
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Regina Fink‐Puches
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Lorenzo Cerroni
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Jennifer Ober
- Core Facility Flow Cytometry, Center for Medical Research (ZMF)Medical University of GrazGrazAustria
| | - Moritz Otte
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
| | - Jana D Albrecht
- Department of DermatologyUniversity Hospital MannheimMannheimGermany
| | - Gary Tin
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Ayah Abdeldayem
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Martin L Metzelder
- Department of Pediatric and Adolescent Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Anna Orlova
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Walter Berger
- Centre for Cancer ResearchMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marion Wobser
- Department of DermatologyUniversity Hospital WuerzburgWuerzburgGermany
| | - Jan P Nicolay
- Department of DermatologyUniversity Hospital MannheimMannheimGermany
| | - Fiona André
- University Clinic for Dermatology, Venereology and Allergology InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - Van Anh Nguyen
- University Clinic for Dermatology, Venereology and Allergology InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - Heidi A Neubauer
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | | | - Olaf Merkel
- Department of PathologyMedical University of ViennaViennaAustria
| | - Marco Herling
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
- Department of Hematology, Cellular Therapy, and HemostaseologyUniversity of LeipzigLeipzigGermany
| | - Ellen Heitzer
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Patrick T Gunning
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
- Janpix, a Centessa CompanyLondonUK
| | - Lukas Kenner
- Department of PathologyMedical University of ViennaViennaAustria
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Applied Metabolomics (CDL‐AM), Division of Nuclear MedicineMedical University of ViennaViennaAustria
- CBmed GmbH Center for Biomarker Research in MedicineGrazAustria
| | - Richard Moriggl
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Peter Wolf
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
- BioTechMed GrazGrazAustria
| |
Collapse
|
12
|
Wang L, Rocas D, Dalle S, Sako N, Pelletier L, Martin N, Dupuy A, Tazi N, Balme B, Vergier B, Beylot-Barry M, Carlotti A, Bagot M, Battistella M, Chaby G, Ingen-Housz-Oro S, Gaulard P, Ortonne N. Primary cutaneous peripheral T-cell lymphomas with a T-follicular helper phenotype: an integrative clinical, pathological and molecular case series study. Br J Dermatol 2022; 187:970-980. [PMID: 35895386 PMCID: PMC10087773 DOI: 10.1111/bjd.21791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Primary cutaneous peripheral T-cell lymphomas with a T-follicular helper phenotype (pcTFH-PTCL) are poorly characterized, and often compared to, but not corresponding with, mycosis fungoides (MF), Sézary syndrome, primary cutaneous CD4+ lymphoproliferative disorder, and skin manifestations of angioimmunoblastic T-cell lymphomas (AITL). OBJECTIVES We describe the clinicopathological features of pcTFH-PTCL in this original series of 23 patients, and also characterize these cases molecularly. METHODS Clinical and histopathological data of the selected patients were reviewed. Patient biopsy samples were also analysed by targeted next-generation sequencing. RESULTS All patients (15 men, eight women; median age 66 years) presented with skin lesions, without systemic disease. Most were stage T3b, with nodular (n = 16), papular (n = 6) or plaque (atypical for MF, n = 1) lesions. Three (13%) developed systemic disease and died of lymphoma. Nine (39%) patients received more than one line of chemotherapy. Histologically, the lymphomas were CD4+ T-cell proliferations, usually dense and located in the deep dermis (n = 14, 61%), with the expression of at least two TFH markers (CD10, CXCL13, PD1, ICOS, BCL6), including three markers in 16 cases (70%). They were associated with a variable proportion of B cells. Eight patients were diagnosed with an associated B-cell lymphoproliferative disorder (LPD) on biopsy, including Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (n = 3), EBV+ LPD (n = 1) and monotypic plasma cell LPD (n = 4). Targeted sequencing showed four patients to have a mutated TET2-RHOAG17V association (as frequently seen in AITL) and another a TET2/DNMT3A/PLCG1/SETD2 mutational profile. The latter patient, one with a TET2-RHOA association, and one with no detected mutations, developed systemic disease and died. Five other patients showed isolated mutations in TET2 (n = 1), PLCG1 (n = 2), SETD2 (n = 1) or STAT5B (n = 1). CONCLUSIONS Patients with pcTFH-PTCL have pathological and genetic features that overlap with those of systemic lymphoma of TFH derivation. Clinically, most remained confined to the skin, with only three patients showing systemic spread and death. Whether pcTFH-PTCL should be integrated as a new subgroup of TFH lymphomas in future classifications is still a matter of debate. What is already known about this topic? There is a group of cutaneous lymphomas that express T-follicular helper (TFH) markers that do not appear to correspond to existing World Health Organization diagnostic entities. These include mycosis fungoides, Sézary syndrome, or primary cutaneous CD4+ small/medium-sized T-cell lymphoproliferative disorder or cutaneous extensions of systemic peripheral T-cell lymphomas (PTCL) with TFH phenotype. What does this study add? This is the first large original series of patients with a diagnosis of primary cutaneous PTCL with a TFH phenotype (pcTFH-PTCL) to be molecularly characterized. pcTFH-PTCL may be a standalone group of cutaneous lymphomas with clinicopathological and molecular characteristics that overlap with those of systemic TFH lymphomas, such as angioimmunoblastic T-cell lymphoma, and does not belong to known diagnostic groups of cutaneous lymphoma. This has an impact on the treatment and follow-up of patients; the clinical behaviour needs to be better clarified in further studies to tailor patient management.
Collapse
Affiliation(s)
- Luojun Wang
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France.,INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Delphine Rocas
- Department of Pathology, Lyon Sud, Pierre-Bénite Hospital, 69495, Lyon, France
| | - Stéphane Dalle
- Department of Dermatology, Lyon Sud, Pierre-Bénite Hospital, 69495, Lyon, France
| | - Nouhoum Sako
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Laura Pelletier
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Nadine Martin
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Aurélie Dupuy
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Nadia Tazi
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France
| | - Brigitte Balme
- Department of Pathology, Lyon Sud, Pierre-Bénite Hospital, 69495, Lyon, France
| | - Béatrice Vergier
- Department of Pathology, CHU de Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France.,INSERM, U1312, Université de Bordeaux, 33000, Bordeaux, France
| | - Marie Beylot-Barry
- INSERM, U1312, Université de Bordeaux, 33000, Bordeaux, France.,Department of Dermatology, CHU de Bordeaux, Saint-André Hospital, 33000, Bordeaux, France
| | - Agnès Carlotti
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Cochin Hospital, 75014, Paris, France
| | - Martine Bagot
- Department of Dermatology, Assistance Publique - Hôpitaux de Paris, Saint-Louis Hospital, 75010, Université Paris Cité, Paris, France
| | - Maxime Battistella
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Saint-Louis Hospital, 75010, Université Paris Cité, Paris, France
| | - Guillaume Chaby
- Department of Dermatology, CHU d'Amiens-Picardie, Hôpital Sud, 80054, Amiens, France
| | - Saskia Ingen-Housz-Oro
- Department of Dermatology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France
| | - Philippe Gaulard
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France.,INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Nicolas Ortonne
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France.,INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| |
Collapse
|
13
|
Bakr FS, Whittaker SJ. Advances in the understanding and treatment of Cutaneous T-cell Lymphoma. Front Oncol 2022; 12:1043254. [PMID: 36505788 PMCID: PMC9729763 DOI: 10.3389/fonc.2022.1043254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of non-Hodgkin's lymphomas (NHL) characterised by the clonal proliferation of malignant, skin homing T-cells. Recent advances have been made in understanding the molecular pathogenesis of CTCL. Multiple deep sequencing studies have revealed a complex genomic landscape with large numbers of novel single nucleotide variants (SNVs) and copy number variations (CNVs). Commonly perturbed genes include those involved in T-cell receptor signalling, T-cell proliferation, differentiation and survival, epigenetic regulators as well as genes involved in genome maintenance and DNA repair. In addition, studies in CTCL have identified a dominant UV mutational signature in contrast to systemic T-cell lymphomas and this likely contributes to the high tumour mutational burden. As current treatment options for advanced stages of CTCL are associated with short-lived responses, targeting these deregulated pathways could provide novel therapeutic approaches for patients. In this review article we summarise the key pathways disrupted in CTCL and discuss the potential therapeutic implications of these findings.
Collapse
|
14
|
Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Semin Cancer Biol 2022; 86:382-399. [PMID: 34906723 DOI: 10.1016/j.semcancer.2021.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023]
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphoproliferative neoplasms that exhibit a wide spectrum of immune-phenotypical, clinical, and histopathological features. The biology of CTCL is complex and remains elusive. In recent years, the application of next-generation sequencing (NGS) has evolved our understanding of the pathogenetic mechanisms, including genetic aberrations and epigenetic abnormalities that shape the mutational landscape of CTCL and represent one of the important pro-tumorigenic principles in CTCL initiation and progression. Still, identification of the major pathophysiological pathways including genetic and epigenetic components that mediate malignant clonal T cell expansion has not been achieved. This is of prime importance given the role of malignant T cell clones in fostering T helper 2 (Th2)-bias tumor microenvironment and fueling progressive immune dysregulation and tumor cell growth in CTCL patients, manifested by the secretion of Th2-associated cytokines and chemokines. Alterations in malignant cytokine and chemokine expression patterns orchestrate the inflammatory milieu and influence the migration dynamics of malignant clonal T cells. Here, we highlight recent insights about the molecular mechanisms of CTCL pathogenesis, emphasizing the role of cytokines, chemokines, and associated downstream signaling networks in driving immune defects, malignant transformation, and disease progression. In-depth characterization of the CTCL immunophenotype and tumoral microenvironment offers a facile opportunity to expand the therapeutic armamentarium of CTCL, an intractable malignant skin disease with poor prognosis and in dire need of curative treatment approaches.
Collapse
|
15
|
Genetics Abnormalities with Clinical Impact in Primary Cutaneous Lymphomas. Cancers (Basel) 2022; 14:cancers14204972. [PMID: 36291756 PMCID: PMC9599538 DOI: 10.3390/cancers14204972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The genetic landscape of cutaneous T-cell lymphomas analyzed by sequencing high throughput techniques shows a heterogeneous somatic mutational profile and genomic copy number variations in the TCR signaling effectors, the NF-κB elements, DNA damage/repair elements, JAK/STAT pathway elements and epigenetic modifiers. A mutational and genomic stratification of these patients provides new opportunities for the development or repurposing of (personalized) therapeutic strategies. The genetic heterogeneity in cutaneous B-cell lymphoma parallels with the specific subtype. Damaging mutations in primary cutaneous diffuse large B-cell lymphoma of the leg type, involving MYD88 gene, or BCL6 and MYC translocations or CDKN2A deletions are useful for diagnostic purposes. The more indolent forms, as the primary cutaneous lymphoma of follicle center cell (somatic mutations in TNFRSF14 and 1p36 deletions) and the cutaneous lymphoproliferative disorder of the marginal zone cells (FAS gene), present with a more restricted pattern of genetic alterations. Abstract Primary cutaneous lymphomas comprise a heterogeneous group of extranodal non-Hodgkin lymphomas (NHL) that arise from skin resident lymphoid cells and are manifested by specific lymphomatous cutaneous lesions with no evidence of extracutaneous disease at the time of diagnosis. They may originate from mature T-lymphocytes (70% of all cases), mature B-lymphocytes (25–30%) or, rarely, NK cells. Cutaneous T-cell lymphomas (CTCL) comprise a heterogeneous group of T-cell malignancies including Mycosis Fungoides (MF) the most frequent subtype, accounting for approximately half of CTCL, and Sézary syndrome (SS), which is an erythrodermic and leukemic subtype characterized by significant blood involvement. The mutational landscape of MF and SS by NGS include recurrent genomic alterations in the TCR signaling effectors (i.e., PLCG1), the NF-κB elements (i.e., CARD11), DNA damage/repair elements (TP53 or ATM), JAK/STAT pathway elements or epigenetic modifiers (DNMT3). Genomic copy number variations appeared to be more prevalent than somatic mutations. Other CTCL subtypes such as primary cutaneous anaplastic large cell lymphoma also harbor genetic alterations of the JAK/STAT pathway in up to 50% of cases. Recently, primary cutaneous aggressive epidermotropic T-cell lymphoma, a rare fatal subtype, was found to contain a specific profile of JAK2 rearrangements. Other aggressive cytotoxic CTCL (primary cutaneous γδ T-cell lymphomas) also show genetic alterations in the JAK/STAT pathway in a large proportion of patients. Thus, CTCL patients have a heterogeneous genetic/transcriptional and epigenetic background, and there is no uniform treatment for these patients. In this scenario, a pathway-based personalized management is required. Cutaneous B-cell lymphoma (CBCL) subtypes present a variable genetic profile. The genetic heterogeneity parallels the multiple types of specialized B-cells and their specific tissue distribution. Particularly, many recurrent hotspot and damaging mutations in primary cutaneous diffuse large B-cell lymphoma of the leg type, involving MYD88 gene, or BCL6 and MYC translocations and BLIMP1 or CDKN2A deletions are useful for diagnostic and prognostic purposes for this aggressive subtype from other indolent CBCL forms.
Collapse
|
16
|
Hain C, Stadler R, Kalinowski J. Unraveling the Structural Variations of Early-Stage Mycosis Fungoides-CD3 Based Purification and Third Generation Sequencing as Novel Tools for the Genomic Landscape in CTCL. Cancers (Basel) 2022; 14:4466. [PMID: 36139626 PMCID: PMC9497107 DOI: 10.3390/cancers14184466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL). At present, knowledge of genetic changes in early-stage MF is insufficient. Additionally, low tumor cell fraction renders calling of copy-number variations as the predominant mutations in MF challenging, thereby impeding further investigations. We show that enrichment of T cells from a biopsy of a stage I MF patient greatly increases tumor fraction. This improvement enables accurate calling of recurrent MF copy-number variants such as ARID1A and CDKN2A deletion and STAT5 amplification, undetected in the unprocessed biopsy. Furthermore, we demonstrate that application of long-read nanopore sequencing is especially useful for the structural variant rich CTCL. We detect the structural variants underlying recurrent MF copy-number variants and show phasing of multiple breakpoints into complex structural variant haplotypes. Additionally, we record multiple occurrences of templated insertion structural variants in this sample. Taken together, this study suggests a workflow to make the early stages of MF accessible for genetic analysis, and indicates long-read sequencing as a major tool for genetic analysis for MF.
Collapse
Affiliation(s)
- Carsten Hain
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Rudolf Stadler
- University Clinic for Dermatology, Johannes Wesling Medical Centre, UKRUB, University of Bochum, 32429 Minden, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
17
|
Song X, Chang S, Seminario-Vidal L, de Mingo Pulido A, Tordesillas L, Song X, Reed RA, Harkins A, Whiddon S, Nguyen JV, Segura CM, Zhang C, Yoder S, Sayegh Z, Zhao Y, Messina JL, Harro CM, Zhang X, Conejo-Garcia JR, Berglund A, Sokol L, Zhang J, Rodriguez PC, Mulé JJ, Futreal AP, Tsai KY, Chen PL. Genomic and Single-Cell Landscape Reveals Novel Drivers and Therapeutic Vulnerabilities of Transformed Cutaneous T-cell Lymphoma. Cancer Discov 2022; 12:1294-1313. [PMID: 35247891 PMCID: PMC9148441 DOI: 10.1158/2159-8290.cd-21-1207] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Cutaneous T-cell lymphoma (CTCL) is a rare cancer of skin-homing T cells. A subgroup of patients develops large cell transformation with rapid progression to an aggressive lymphoma. Here, we investigated the transformed CTCL (tCTCL) tumor ecosystem using integrative multiomics spanning whole-exome sequencing (WES), single-cell RNA sequencing, and immune profiling in a unique cohort of 56 patients. WES of 70 skin biopsies showed high tumor mutation burden, UV signatures that are prognostic for survival, exome-based driver events, and most recurrently mutated pathways in tCTCL. Single-cell profiling of 16 tCTCL skin biopsies identified a core oncogenic program with metabolic reprogramming toward oxidative phosphorylation (OXPHOS), cellular plasticity, upregulation of MYC and E2F activities, and downregulation of MHC I suggestive of immune escape. Pharmacologic perturbation using OXPHOS and MYC inhibitors demonstrated potent antitumor activities, whereas immune profiling provided in situ evidence of intercellular communications between malignant T cells expressing macrophage migration inhibitory factor and macrophages and B cells expressing CD74. SIGNIFICANCE Our study contributes a key resource to the community with the largest collection of tCTCL biopsies that are difficult to obtain. The multiomics data herein provide the first comprehensive compendium of genomic alterations in tCTCL and identify potential prognostic signatures and novel therapeutic targets for an incurable T-cell lymphoma. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Shiun Chang
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Lucia Seminario-Vidal
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alvaro de Mingo Pulido
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Leticia Tordesillas
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Rhianna A. Reed
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andrea Harkins
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Shannen Whiddon
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan V. Nguyen
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos Moran Segura
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chaomei Zhang
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Zena Sayegh
- Tissue Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yun Zhao
- Department of Biopharma Services, Admera Health, Holmdel, NJ, USA
| | - Jane L. Messina
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carly M. Harro
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - José R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Paulo C. Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - James J. Mulé
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andrew P. Futreal
- Department of Genomic Medicine, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Y. Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Pei-Ling Chen
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
18
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Sézary syndrome patient-derived models allow drug selection for personalized therapy. Blood Adv 2022; 6:3410-3421. [PMID: 35413113 PMCID: PMC9198935 DOI: 10.1182/bloodadvances.2021006860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/23/2022] [Indexed: 12/01/2022] Open
Abstract
Patient-derived SS cells show highly heterogeneous drug responses. We have developed a joint in vitro/in vivo platform to predict SS therapy response.
Current therapeutic approaches for Sézary syndrome (SS) do not achieve a significant improvement in long-term survival of patients, and they are mainly focused on reducing blood tumor burden to improve quality of life. Eradication of SS is hindered by its genetic and molecular heterogeneity. Determining effective and personalized treatments for SS is urgently needed. The present work compiles the current methods for SS patient–derived xenograft (PDX) generation and management to provide new perspectives on treatment for patients with SS. Mononuclear cells were recovered by Ficoll gradient separation from fresh peripheral blood of patients with SS (N = 11). A selected panel of 26 compounds that are inhibitors of the main signaling pathways driving SS pathogenesis, including NF-kB, MAPK, histone deacetylase, mammalian target of rapamycin, or JAK/STAT, was used for in vitro drug sensitivity testing. SS cell viability was evaluated by using the CellTiter-Glo_3D Cell Viability Assay and flow cytometry analysis. We validated one positive hit using SS patient–derived Sézary cells xenotransplanted (PDX) into NOD-SCID-γ mice. In vitro data indicated that primary malignant SS cells all display different sensitivities against specific pathway inhibitors. In vivo validation using SS PDX mostly reproduced the responses to the histone deacetylase inhibitor panobinostat that were observed in vitro. Our investigations revealed the possibility of using high-throughput in vitro testing followed by PDX in vivo validation for selective targeting of SS tumor cells in a patient-specific manner.
Collapse
|
20
|
The Role of Tumor Microenvironment in the Pathogenesis of Sézary Syndrome. Int J Mol Sci 2022; 23:ijms23020936. [PMID: 35055124 PMCID: PMC8781892 DOI: 10.3390/ijms23020936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023] Open
Abstract
Sézary syndrome is an aggressive leukemic variant of cutaneous T-cell lymphomas, characterized by erythroderma, lymphadenopathy, and peripheral blood involvement by CD4+ malignant T-cells. The pathogenesis of Sézary syndrome is not fully understood. However, the course of the disease is strongly influenced by the tumor microenvironment, which is altered by a combination of cytokines, chemokines, and growth factors. The crosstalk between malignant and reactive cells affects the immunologic response against tumor cells causing immune dysregulation. This review focuses on the interaction of malignant Sézary cells and the tumor microenvironment.
Collapse
|
21
|
Abdulla FR, Zhang W, Wu X, Honda K, Qin H, Cho H, Querfeld C, Zain J, Rosen ST, Chan WC, Parekh V, Song JY. Genomic Analysis of Cutaneous CD30-Positive Lymphoproliferative Disorders. JID INNOVATIONS 2022; 2:100068. [PMID: 34977845 PMCID: PMC8688881 DOI: 10.1016/j.xjidi.2021.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Primary cutaneous CD30+ T-cell lymphoproliferative disorders are the second most common cutaneous lymphomas. According to the World Health Organization, CD30+ T-cell lymphoproliferative disorders include primary cutaneous anaplastic large cell lymphoma (C-ALCL) and lymphomatoid papulosis (LyP) as well as borderline lesions. C-ALCL and LyP are thought to represent two ends of a spectrum of diseases that have different clinical presentations, clinical courses, and prognoses in their classic forms but share the same histology of medium to large CD30+ atypical lymphoid cell infiltrates. Because the behavior of these entities is different clinically and prognostically, we aim to search for oncogenic genomic variants using whole-exome sequencing that drive the development of LyP and C-ALCL. Clinical information, pathology, immunohistochemistry, and T-cell rearrangements on six cases of LyP and five cases of C-ALCL were reviewed to confirm the rendered diagnosis before whole-exome sequencing of all specimens. Both LyP and C-ALCL had recurrent alterations in epigenetic modifying genes affecting histone methylation and acetylation (SETD2, KMT2A, KMT2D, and CREBBP). However, they also harbor unique differences with mutations in signal transducer and activator of transcription gene STAT3 of the Jak/signal transducer and activator of transcription pathway and EOMES, a transcription factor involved in lymphocyte development, only noted in C-ALCL specimens. Genomic characterization of LyP and C-ALCL in this series confirms the role of multiple pathways involved in the biology and development of these lymphomatous processes. The identification of similar aberrations within the epigenetic modifying genes emphasizes common potential development mechanisms of lymphomagenesis within lymphoproliferative disorders being shared between LyP and C-ALCL; however, the presence of differences may account for the differences in clinical course.
Collapse
Key Words
- BI-ALCL, breast implant‒associated anaplastic large cell lymphoma
- C-ALCL, cutaneous anaplastic large cell lymphoma
- CD30+LPD, CD30+ lymphoproliferative disorder
- CN, copy number
- CTCL, cutaneous T-cell lymphoma
- FFPE, formalin-fixed, paraffin-embedded
- IHC, immunohistochemistry
- LyP, lymphomatoid papulosis
- MF, mycosis fungoides
- STAT, signal transducer and activator of transcription
- sALCL, systemic anaplastic large cell lymphoma
Collapse
Affiliation(s)
- Farah R Abdulla
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Weiwei Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, California, USA
| | - Kord Honda
- Department of Pathology, University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Hanjun Qin
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, California, USA
| | - Hyejin Cho
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, California, USA
| | - Christiane Querfeld
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Jasmine Zain
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Steven Terry Rosen
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Vishwas Parekh
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
22
|
Oncogenic Mutations and Gene Fusions in CD30-Positive Lymphoproliferations and Clonally Related Mycosis Fungoides Occurring in the Same Patients. JID INNOVATIONS 2021; 1:100034. [PMID: 34909731 PMCID: PMC8659398 DOI: 10.1016/j.xjidi.2021.100034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/27/2022] Open
Abstract
The emergence of a common progenitor cell has been postulated for the association of CD30-positive lymphoproliferative disease (LPD) and mycosis fungoides (MF) within the same patient. Up to now, no comprehensive analysis has yet addressed the genetic profiles of such concurrent lymphoma subtypes. We aimed to delineate the molecular alterations of clonally related CD30-positive LPD and MF occurring in the same two patients. We analyzed the molecular profile of 16 samples of two patients suffering both from CD30-positive LPD and MF being obtained over a time course of at least 5 years. To detect oncogenic mutations, we applied targeted sequencing technologies with a hybrid capture-based DNA library preparation approach, and for the identification of fusion transcripts, an anchored multiplex PCR enrichment kit was used. In all samples of CD30-positive LPD and MF, oncogenic fusions afflicting the Jak/signal transducer and activator of transcription signaling pathway were present, namely NPM1‒TYK2 in patient 1 and ILF3‒JAK2 in patient 2. Additional signal transducer and activator of transcription 5A gene STAT5A mutations exclusively occurred in lesions of CD30-positive LPD in one patient. CD30-positive LPD and MF may share genetic events when occurring within the same patients. Constitutive activation of the Jak/signal transducer and activator of transcription signaling pathway may play a central role in the molecular pathogenesis of both entities.
Collapse
|
23
|
Kołkowski K, Trzeciak M, Sokołowska-Wojdyło M. Safety and Danger Considerations of Novel Treatments for Atopic Dermatitis in Context of Primary Cutaneous Lymphomas. Int J Mol Sci 2021; 22:13388. [PMID: 34948183 PMCID: PMC8703592 DOI: 10.3390/ijms222413388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
The impact of new and emerging therapies on the microenvironment of primary cutaneous lymphomas (PCLs) has been recently raised in the literature. Concomitantly, novel treatments are already used or registered (dupilumab, upadacitinib) and others seem to be added to the armamentarium against atopic dermatitis. Our aim was to review the literature on interleukins 4, 13, 22, and 31, and JAK/STAT pathways in PCLs to elucidate the safety of using biologics (dupilumab, tralokinumab, fezakinumab, nemolizumab) and small molecule inhibitors (upadacitinib, baricitinib, abrocitinib, ruxolitinib, tofacitinib) in the treatment of atopic dermatitis. We summarized the current state of knowledge on this topic based on the search of the PubMed database and related references published before 21 October 2021. Our analysis suggests that some of the mentioned agents (dupilumab, ruxolitinib) and others may have a direct impact on the progression of cutaneous lymphomas. This issue requires further study and meticulous monitoring of patients receiving these drugs to ensure their safety, especially in light of the FDA warning on tofacitinib. In conclusion, in the case of the rapid progression of atopic dermatitis/eczema, especially in patients older than 40 years old, there is a necessity to perform a biopsy followed by a very careful pathological examination.
Collapse
Affiliation(s)
- Karol Kołkowski
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.T.); (M.S.-W.)
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.T.); (M.S.-W.)
| |
Collapse
|
24
|
Minokawa Y, Sawada Y, Nakamura M. The Influences of Omega-3 Polyunsaturated Fatty Acids on the Development of Skin Cancers. Diagnostics (Basel) 2021; 11:2149. [PMID: 34829495 PMCID: PMC8620049 DOI: 10.3390/diagnostics11112149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Dietary nutrition intake is essential for human beings and influences various physiological and pathological actions in the human body. Among various nutritional factors, dietary intake of omega-3 polyunsaturated fatty acids (PUFAs) has been shown to have various beneficial effects against inflammatory diseases. In addition to their therapeutic potency against inflammation, omega-3 PUFAs have also been shown to have anti-tumor effects via various mechanisms, such as cell arrest and apoptosis. To date, limited information is available on these effects in cutaneous malignancies. In this review, we focused on the effect of omega-3 PUFAs on skin cancers, especially malignant melanoma, basal cell carcinoma, lymphoma, and squamous cell carcinoma and discussed the detailed molecular mechanism of the omega-3 PUFA-mediated anti-tumor response. We also explored the molecular mechanisms mediated by epigenetic modifications, cell adhesion molecules, and anti-tumor immune responses.
Collapse
Affiliation(s)
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-Ku, Kitakyushu 807-8555, Japan; (Y.M.); (M.N.)
| | | |
Collapse
|
25
|
Khan SM, Faisal ARM, Nila TA, Binti NN, Hosen MI, Shekhar HU. A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene. PLoS One 2021; 16:e0260054. [PMID: 34793541 PMCID: PMC8601573 DOI: 10.1371/journal.pone.0260054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022] Open
Abstract
PLCG1 gene is responsible for many T-cell lymphoma subtypes, including peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), cutaneous T-cell lymphoma (CTCL), adult T-cell leukemia/lymphoma along with other diseases. Missense mutations of this gene have already been found in patients of CTCL and AITL. The non-synonymous single nucleotide polymorphisms (nsSNPs) can alter the protein structure as well as its functions. In this study, probable deleterious and disease-related nsSNPs in PLCG1 were identified using SIFT, PROVEAN, PolyPhen-2, PhD-SNP, Pmut, and SNPS&GO tools. Further, their effect on protein stability was checked along with conservation and solvent accessibility analysis by I-mutant 2.0, MUpro, Consurf, and Netsurf 2.0 server. Some SNPs were finalized for structural analysis with PyMol and BIOVIA discovery studio visualizer. Out of the 16 nsSNPs which were found to be deleterious, ten nsSNPs had an effect on protein stability, and six mutations (L411P, R355C, G493D, R1158H, A401V and L455F) were predicted to be highly conserved. Among the six highly conserved mutations, four nsSNPs (R355C, A401V, L411P and L455F) were part of the catalytic domain. L411P, L455F and G493D made significant structural change in the protein structure. Two mutations-Y210C and R1158H had post-translational modification. In the 5' and 3' untranslated region, three SNPs, rs139043247, rs543804707, and rs62621919 showed possible miRNA target sites and DNA binding sites. This in silico analysis has provided a structured dataset of PLCG1 gene for further in vivo researches. With the limitation of computational study, it can still prove to be an asset for the identification and treatment of multiple diseases associated with the target gene.
Collapse
Affiliation(s)
- Safayat Mahmud Khan
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Ar-Rafi Md. Faisal
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Tasnin Akter Nila
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Nabila Nawar Binti
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Md. Ismail Hosen
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, Clinical Biochemistry and Translational Medicine Laboratory, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
26
|
García-Díaz N, Casar B, Alonso-Alonso R, Quevedo L, Rodríguez M, Ruso-Julve F, Esteve-Codina A, Gut M, Gru AA, González-Vela MC, Gut I, Rodriguez-Peralto JL, Varela I, Ortiz-Romero PL, Piris MA, Vaqué JP. PLCγ1/PKCθ Downstream Signaling Controls Cutaneous T-Cell Lymphoma Development And Progression. J Invest Dermatol 2021; 142:1391-1400.e15. [PMID: 34687742 DOI: 10.1016/j.jid.2021.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/25/2023]
Abstract
Developing mechanistic rationales can improve the clinical management of cutaneous T-cell lymphomas (CTCL). There is considerable genetic and biological evidence of a malignant network of signaling mechanisms, highly influenced by deregulated TCR/PLCγ1 activity, controlling the biology of these lesions. In addition, activated STAT3 is associated with clinical progression, although the alterations responsible for this have not been fully elucidated. Here we studied PLCγ1-dependent mechanisms that can mediate STAT3 activation and control tumor growth and progression. Downstream of PLCγ1, the pharmacological inhibition and genetic knockdown of PKCθ inhibited STAT3 activation, impaired proliferation, and promoted apoptosis in CTCL cells. A PKCθ-dependent transcriptome in MF/SS cells revealed potential effector genes controlling cytokine signaling, TP53, and actin cytoskeleton dynamics. Consistently, an in vivo chicken embryo model xenografted with MF cells showed that PKCθ blockage abrogates tumor growth and spread to distant organs. Finally, the expression of a number of PKCθ target genes, found in MF cells, significantly correlated with that of PRKCQ (PKCθ) in 81 human MF samples. In summary, PKCθ can play a central role in the activation of malignant CTCL mechanisms via multiple routes, including, but not restricted to, STAT3. These mechanisms may, in turn, serve as targets for specific therapies.
Collapse
Affiliation(s)
- Nuria García-Díaz
- Molecular Biology Department, Universidad de Cantabria-Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | | | - Laura Quevedo
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Marta Rodríguez
- Pathology Department, Fundación Jiménez Díaz, CIBERONC, Madrid, Spain
| | - Fulgencio Ruso-Julve
- Molecular Biology Department, Universidad de Cantabria-Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alejandro A Gru
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA; Department of Dermatology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - José Luis Rodriguez-Peralto
- Department of Pathology, Hospital 12 de Octubre, institute i+12, CIBERONC, Medical School, University Complutense, Madrid, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Pablo Luis Ortiz-Romero
- Department of Dermatology, Hospital 12 de Octubre, institute i+12, CIBERONC, Medical School, University Complutense, Madrid, Spain
| | - Miguel A Piris
- Pathology Department, Fundación Jiménez Díaz, CIBERONC, Madrid, Spain
| | - José Pedro Vaqué
- Molecular Biology Department, Universidad de Cantabria-Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain.
| |
Collapse
|
27
|
The Microenvironment's Role in Mycosis Fungoides and Sézary Syndrome: From Progression to Therapeutic Implications. Cells 2021; 10:cells10102780. [PMID: 34685762 PMCID: PMC8534987 DOI: 10.3390/cells10102780] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mycosis fungoides (MF) and Sezary Syndrome (SS) are the most common cutaneous T-cell lymphomas. It has been hypothesized that the interaction between the immune system, cutaneous cells, and neoplastic elements may play a role in MF/SS pathogenesis and progression. METHODS This paper aims to revise in a narrative way our current knowledge of the microenvironment's role in MF/SS. RESULTS AND CONCLUSIONS Literature data support a possible implication of microenvironment cells in MF/SS pathogenesis and progression, opening up new therapeutic avenues.
Collapse
|
28
|
PD-1 loss and T-cell exhaustion in CTCL tumoral T cells. Blood 2021; 138:1201-1203. [PMID: 34618002 DOI: 10.1182/blood.2021012676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
|
29
|
Genetic and epigenetic insights into cutaneous T-cell lymphoma. Blood 2021; 139:15-33. [PMID: 34570882 DOI: 10.1182/blood.2019004256] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/30/2021] [Indexed: 11/20/2022] Open
Abstract
Primary cutaneous T-cell lymphomas (CTCL) constitute a heterogeneous group of non-Hodgkin T-cell lymphomas that present in the skin. In recent years significant progress has been made in the understanding of the pathogenesis of CTCL. Progress in CTCL classifications combined with technical advances, in particular next generation sequencing (NGS), enabled a more detailed analysis of the genetic and epigenetic landscape and transcriptional changes in clearly defined diagnostic entities. These studies not only demonstrated extensive heterogeneity between different CTCL subtypes but also identified recurrent alterations that are highly characteristic for diagnostic subgroups of CTCL. The identified alterations in particular involve epigenetic remodelling, cell cycle regulation, and the constitutive activation of targetable, oncogenic pathways. In this respect, aberrant JAK-STAT signaling is a recurrent theme, however not universal for all CTCL and with seemingly different underlaying causes in different entities. A number of the mutated genes identified are potentially actionable targets for the development of novel therapeutic strategies. Moreover, these studies have produced an enormous amount of information that will be critically important for the further development of improved diagnostic and prognostic biomarkers that can assist in the clinical management of CTCL patients. In the present review the main findings of these studies in relation to their functional impact on the malignant transformation process are discussed for different subtypes of CTCL.
Collapse
|
30
|
Xiao MZX, Hennessey D, Iyer A, O'Keefe S, Zhang F, Sivanand A, Gniadecki R. Transcriptomic Changes During Stage Progression of Mycosis Fungoides. Br J Dermatol 2021; 186:520-531. [PMID: 34528236 DOI: 10.1111/bjd.20760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mycosis fungoides (MF) is the most common cutaneous T cell lymphoma, which in the early patch/plaque stages runs an indolent course. However, ~25% of MF patients develop skin tumors, a hallmark of progression to the advanced stage and is associated with high mortality. The mechanisms involved in stage progression are poorly elucidated. METHODS We performed whole-transcriptome and whole-exome sequencing of malignant MF cells from skin biopsies obtained by laser-capture microdissection. We compared three types of MF lesions: early-stage plaques (ESP, n=12) as well as plaques and tumors from patients in late-stage disease (late-stage plaques [LSP], n=10, and tumors [TMR], n=15). Gene Ontology (GO) and KEGG analysis were used to determine pathway changes specific for different lesions which were linked to the recurrent somatic mutations overrepresented in MF tumors. RESULTS The key upregulated pathways during stage progression were those related to cell proliferation and survival (MEK/ERK, Akt-mTOR), Th2/Th9 signaling (IL4, STAT3, STAT5, STAT6), meiomitosis (CT45A1, CT45A3, STAG3, GTSF1, REC8) and DNA repair (PARP1, MYCN, OGG1). Principal coordinate clustering of the transcriptome revealed extensive gene expression differences between early (ESP) and advanced-stage lesions (LSP and TMR). LSP and TMR showed remarkable similarities at the level of the transcriptome, which we interpreted as evidence of cell percolation between lesions via hematogenous self-seeding. CONCLUSION Stage progression in MF is associated with Th2/Th9 polarization of malignant cells, activation of proliferation, survival, as well as increased genomic instability. Global transcriptomic changes in multiple lesions may be caused by hematogenous cell percolation between discrete skin lesions.
Collapse
Affiliation(s)
- M Z X Xiao
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - D Hennessey
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - A Iyer
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - S O'Keefe
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - F Zhang
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - A Sivanand
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - R Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Abstract
Primary cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that present in the skin with no evidence of extracutaneous disease at the time of diagnosis. CTCL subtypes demonstrate a variety of clinical, histological, and molecular features, and can follow an indolent or a very aggressive course. The underlying pathogenetic mechanisms are not yet entirely understood. The pathophysiology of CTCL is complex and a single initiating factor has not yet been identified. Diagnosis is based on clinicopathological correlation and requires an interdisciplinary team. Treatment decision is made based on short-term and long-term goals. Therapy options comprise skin-directed therapies, such as topical steroids or phototherapy, and systemic therapies, such as monoclonal antibodies or chemotherapy. So far, the only curative treatment approach is allogeneic haematopoietic stem cell transplantation. Novel therapies, such as chimeric antigen receptor T cells, monoclonal antibodies or small molecules, are being investigated in clinical trials. Patients with CTCL have reduced quality of life and a lack of effective treatment options. Further research is needed to better identify the underlying mechanisms of CTCL development and course as well as to better tailor treatment strategies to individual patients.
Collapse
|
32
|
Zhang P, Zhang M. Epigenetics in the Pathogenesis and Treatment of Cutaneous T-Cell Lymphoma. Front Oncol 2021; 11:663961. [PMID: 34249700 PMCID: PMC8263908 DOI: 10.3389/fonc.2021.663961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) comprise a group of heterogeneous diseases involving malignant T cells. The pathogenesis and etiology of CTCL are still unclear, although a large number of genetic and epidemiological studies on CTCL have been conducted. Most CTCLs have an indolent course, making early diagnosis difficult. Once large-cell transformation occurs, CTCL progresses to more aggressive types, resulting in an overall survival of less than five years. Epigenetic drugs, which have shown certain curative effects, have been selected as third-line drugs in patients with relapsing and refractory CTCL. Many studies have also identified epigenetic biomarkers from tissues and peripheral blood of patients with CTCL and suggested that epigenetic changes play a role in malignant transformation and histone deacetylase inhibitor (HDACi) resistance in CTCL. Single-cell sequencing has been applied in CTCL studies, revealing heterogeneity in CTCL malignant T cells. The mechanisms of HDACi resistance have also been described, further facilitating the discovery of novel HDACi targets. Despite the heterogeneity of CTCL disease and its obscure pathogenesis, more epigenetic abnormalities have been gradually discovered recently, which not only enables us to understand CTCL disease further but also improves our understanding of the specific role of epigenetics in the pathogenesis and treatment. In this review, we discuss the recent discoveries concerning the pathological roles of epigenetics and epigenetic therapy in CTCL.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China.,Department of Oncology, Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| |
Collapse
|
33
|
Mycosis Fungoides and Sézary Syndrome: An Integrative Review of the Pathophysiology, Molecular Drivers, and Targeted Therapy. Cancers (Basel) 2021; 13:cancers13081931. [PMID: 33923722 PMCID: PMC8074086 DOI: 10.3390/cancers13081931] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary In the last few years, the field of cutaneous T-cell lymphomas has experienced major advances. In the context of an active translational and clinical research field, next-generation sequencing data have boosted our understanding of the main molecular mechanisms that govern the biology of these entities, thus enabling the development of novel tools for diagnosis and specific therapy. Here, we focus on mycosis fungoides and Sézary syndrome; we review essential aspects of their pathophysiology, provide a rational mechanistic interpretation of the genomic data, and discuss the current and upcoming therapies, including the potential crosstalk between genomic alterations and the microenvironment, offering opportunities for targeted therapies. Abstract Primary cutaneous T-cell lymphomas (CTCLs) constitute a heterogeneous group of diseases that affect the skin. Mycosis fungoides (MF) and Sézary syndrome (SS) account for the majority of these lesions and have recently been the focus of extensive translational research. This review describes and discusses the main pathobiological manifestations of MF/SS, the molecular and clinical features currently used for diagnosis and staging, and the different therapies already approved or under development. Furthermore, we highlight and discuss the main findings illuminating key molecular mechanisms that can act as drivers for the development and progression of MF/SS. These seem to make up an orchestrated constellation of genomic and environmental alterations generated around deregulated T-cell receptor (TCR)/phospholipase C, gamma 1, (PLCG1) and Janus kinase/ signal transducer and activator of transcription (JAK/STAT) activities that do indeed provide us with novel opportunities for diagnosis and therapy.
Collapse
|
34
|
Jones CL, Degasperi A, Grandi V, Amarante TD, Mitchell TJ, Nik-Zainal S, Whittaker SJ. Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma. Sci Rep 2021; 11:3962. [PMID: 33597573 PMCID: PMC7889847 DOI: 10.1038/s41598-021-83352-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/27/2021] [Indexed: 12/02/2022] Open
Abstract
T-cell non-Hodgkin's lymphomas develop following transformation of tissue resident T-cells. We performed a meta-analysis of whole exome sequencing data from 403 patients with eight subtypes of T-cell non-Hodgkin's lymphoma to identify mutational signatures and associated recurrent gene mutations. Signature 1, indicative of age-related deamination, was prevalent across all T-cell lymphomas, reflecting the derivation of these malignancies from memory T-cells. Adult T-cell leukemia-lymphoma was specifically associated with signature 17, which was found to correlate with the IRF4 K59R mutation that is exclusive to Adult T-cell leukemia-lymphoma. Signature 7, implicating UV exposure was uniquely identified in cutaneous T-cell lymphoma (CTCL), contributing 52% of the mutational burden in mycosis fungoides and 23% in Sezary syndrome. Importantly this UV signature was observed in CD4 + T-cells isolated from the blood of Sezary syndrome patients suggesting extensive re-circulation of these T-cells through skin and blood. Analysis of non-Hodgkin's T-cell lymphoma cases submitted to the national 100,000 WGS project confirmed that signature 7 was only identified in CTCL strongly implicating UV radiation in the pathogenesis of cutaneous T-cell lymphoma.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/metabolism
- Databases, Genetic
- Humans
- Interferon Regulatory Factors
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell, Cutaneous/etiology
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Mutation/genetics
- Sezary Syndrome/blood
- Skin Neoplasms/pathology
- Ultraviolet Rays/adverse effects
Collapse
Affiliation(s)
- Christine L Jones
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Andrea Degasperi
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Box 238, Cambridge, CB2 0QQ, UK
| | - Vieri Grandi
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Tauanne D Amarante
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Box 238, Cambridge, CB2 0QQ, UK
| | - Tracey J Mitchell
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Serena Nik-Zainal
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Box 238, Cambridge, CB2 0QQ, UK
| | - Sean J Whittaker
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
35
|
King RL, Tan B, Craig FE, George TI, Horny HP, Kelemen K, Orazi A, Reichard KK, Rimsza LM, Wang SA, Zamo A, Quintanilla-Martinez L. Reactive Eosinophil Proliferations in Tissue and the Lymphocytic Variant of Hypereosinophilic Syndrome. Am J Clin Pathol 2021; 155:211-238. [PMID: 33367482 DOI: 10.1093/ajcp/aqaa227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The 2019 Society for Hematopathology and European Association for Haematopathology Workshop reviewed the spectrum of neoplastic, nonneoplastic, and borderline entities associated with reactive eosinophilia in tissue. METHODS The workshop panel reviewed 46 cases covered in 2 workshop sessions. RESULTS The 46 cases were presented with their consensus diagnoses during the workshop. Reactive eosinophilia in lymph nodes and other tissues may be accompanied by or be distinct from peripheral blood eosinophilia. Reactive etiologies included inflammatory disorders such as Kimura disease and IgG4-related disease, which may show overlapping pathologic features and reactions to infectious agents and hypersensitivity (covered in a separate review). Hodgkin, T-cell, and B-cell lymphomas and histiocytic neoplasms can result in reactive eosinophilia. The spectrum of these diseases is discussed and illustrated through representative cases. CONCLUSIONS Reactive eosinophilia in lymph nodes and tissues may be related to both nonneoplastic and neoplastic lymphoid proliferations and histiocytic and nonhematolymphoid processes. Understanding the differential diagnosis of reactive eosinophilia and the potential for overlapping clinical and pathologic findings is critical in reaching the correct diagnosis so that patients can be treated appropriately.
Collapse
Affiliation(s)
| | - Brent Tan
- Division of Hematopathology, Stanford University, Stanford, CA
| | - Fiona E Craig
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| | - Hans-Peter Horny
- Institute of Pathology, University of Munich (LMU), Munich, Germany
| | | | - Attilio Orazi
- Department of Pathology, TexasTech University Health Sciences Center, P.L. Foster School of Medicine, El Paso
| | | | - Lisa M Rimsza
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Sa A Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Alberto Zamo
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|
36
|
Phenotypical Markers, Molecular Mutations, and Immune Microenvironment as Targets for New Treatments in Patients with Mycosis Fungoides and/or Sézary Syndrome. J Invest Dermatol 2020; 141:484-495. [PMID: 33162051 DOI: 10.1016/j.jid.2020.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022]
Abstract
Primary cutaneous lymphomas encompass a wide spectrum of rare lymphoproliferative disorders originating in the skin, among which, mycosis fungoides (MF) is the most common subtype. The treatment of this disease is based on skin-directed therapies eventually in association with biologic response modifiers in the early phases, whereas in patients with the advanced stages, several therapeutic strategies can be used including mono and/or polychemotherapy and bone marrow transplantation. In recent years, the identification of specific markers (phenotypical, immunological, and molecular) has led to the development of several studies (including two randomized phase III trials). The results of these studies are modifying our therapeutic strategy toward a personalized treatment approach in which the clinical characteristics of the patients and tumor-node-metastasis-blood stage are considered together with the expression of specific markers (i.e., a CD30-positive expression for the use of brentuximab vedotin). This review will provide a comprehensive scenario of the main phenotypical, molecular, and immunological markers related to MF pathogenesis and disease evolution, which could represent the target for the development of innovative effective treatments in this disease.
Collapse
|
37
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
38
|
Stadler R, Hain C, Cieslak C, Stranzenbach R. Molecular pathogenesis of cutaneous lymphoma-Future directions. Exp Dermatol 2020; 29:1062-1068. [PMID: 33090576 DOI: 10.1111/exd.14211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
The pathogenesis of cutaneous T-cell lymphomas is not clear. In recent years, the genetic changes in CTCL were explored. The detected mutations showed a great deal of heterogeneity between individual patients. The studies documented various copy number variations (CNV) and single nucleotide variations (SNV) in multiple genes involved in multiple signalling pathways. Recurrently mutated signalling pathways include JAK-STAT, MAPK, T-cell receptor, TNF receptor and NFκB signalling. In the period between 2018 and today, additional studies towards the genetic changes in CTCL were carried out. Genetic changes in gamma delta T-cell lymphoma are also shown in genes of the JAK-STAT, MAPK, MYC and chromatin signalling pathways. These studies might indicate a shift away from targeted sequencing approaches towards whole-genome sequencing. This approach demands additional resources in terms of funding but has the advantage of finding mutations in non-coding regions. These mutations were neglected for a long time, but as shown in contemporary research these regions harbour highly recurrent mutations affecting gene expression and regulation. Nevertheless, the detection of specific molecular changes in known pathways enables considerations for targeted therapies.
Collapse
Affiliation(s)
- Rudolf Stadler
- University Clinic for Dermatology, Johannes Wesling Medical Centre, UKRUB, University of Bochum, Minden, Germany
| | - Carsten Hain
- Center of Biotechnology, University of Bielefeld, Bielefeld, Germany
| | - Cassandra Cieslak
- University Clinic for Dermatology, Johannes Wesling Medical Centre, UKRUB, University of Bochum, Minden, Germany
| | - René Stranzenbach
- University Clinic for Dermatology, Johannes Wesling Medical Centre, UKRUB, University of Bochum, Minden, Germany
| |
Collapse
|
39
|
Brouwer IJ, Out-Luiting JJ, Vermeer MH, Tensen CP. Cucurbitacin E and I target the JAK/STAT pathway and induce apoptosis in Sézary cells. Biochem Biophys Rep 2020; 24:100832. [PMID: 33102814 PMCID: PMC7569298 DOI: 10.1016/j.bbrep.2020.100832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Cutaneous T-cell lymphomas and leukemias (CTCLs) are a heterogeneous group of extranodal non-Hodgkin's lymphomas. These are characterized by an accumulation of malignant CD4+ T-lymphocytes in the skin, lymph nodes, and peripheral blood. Novel treatment options are needed for patients who progress to advanced stage disease. Cucurbitacin I has previously shown promising results in Sézary syndrome (Sz). A plethora of cucurbitacins, however, have not yet been tested in CTCL. Herein, we investigated the effect of cucurbitacin E and I in two CTCL cell lines. We show that both cucurbitacins decrease viability and cause apoptosis in these cell lines, although HuT-78 was more affected than SeAx (IC50 of 17.38 versus 22.01 μM for cucurbitacin E and 13.36 versus 24.47 μM for cucurbitacin I). Moreover, both cucurbitacins decrease viability of primary cells of a Sz patient (56.46% for cucurbitacin E and 59.07% for cucurbitacin I). Furthermore, while JAK2 inhibition leads to decreased viability in SeAx cells (IC50 of 9.98 and 29.15 μM for AZD1480 and ruxolitinib respectively), both JAK1 and JAK3 do not. This suggests that JAK2 has a preferential role in promoting survival. Western blotting in SeAx cells revealed that both cucurbitacins inhibit STAT3 activation (P < 0.0001), while only cucurbitacin I inhibits STAT5 activation (P = 0.05). This suggests that STAT3 plays a preferential role in the mechanism of action of these cucurbitacins. Nevertheless, a role of STAT5 and JAK2 cannot be excluded and should be explored further. This knowledge could contribute to the development of effective therapies for CTCL and other malignancies involving dysfunction of the JAK/STAT pathway. Cucurbitacin E and I decrease viability and cause apoptosis in Sézary cell lines Both cucurbitacins decrease viability of primary cells of a Sézary patient STAT3 appears to play a role in the mechanism of action of cucurbitacin E and I
Collapse
Affiliation(s)
- Isabella J Brouwer
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacoba J Out-Luiting
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
40
|
Neuwelt A, Al-Juhaishi T, Davila E, Haverkos B. Enhancing antitumor immunity through checkpoint blockade as a therapeutic strategy in T-cell lymphomas. Blood Adv 2020; 4:4256-4266. [PMID: 32898250 PMCID: PMC7479955 DOI: 10.1182/bloodadvances.2020001966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
The majority of historical therapies for managing T-cell lymphomas (TCLs) have consisted of T-cell-depleting strategies. Unfortunately, these forms of therapies can hamper the ability to mount effective antitumor immune responses. Recently, the use of checkpoint inhibitors has revolutionized the therapy of solid and hematologic malignancies. The development of immunotherapies for the management of TCL has lagged behind other malignancies given 2 central reasons: (1) the competing balance of depleting malignant T cells while simultaneously enhancing an antitumor T-cell response and (2) concern for tumor hyperprogression by blocking inhibitory signals on the surface of the malignant T cell, thereby leading to further proliferation of the malignant cells. These challenges were highlighted with the discovery that programmed cell death protein 1 (PD-1) functions paradoxically as a haploinsufficient tumor suppressor in preclinical TCL models. In contrast, some preclinical and clinical evidence suggests that PD-1/programmed death ligand 1 may become an important therapeutic tool in the management of patients with TCL. Improved understanding of the immune landscape of TCL is necessary in order to identify subsets of patients most likely to benefit from checkpoint-inhibitor therapy. With increased preclinical research focus on the tumor microenvironment, substantial strides are being made in understanding how to harness the power of the immune system to treat TCLs. In this review, designed to be a "call to action," we discuss the challenges and opportunities of using immune-modulating therapies, with a focus on checkpoint inhibitors, for the treatment of patients with TCL.
Collapse
Affiliation(s)
- Alexander Neuwelt
- Division of Hematology and Oncology, Richmond Veterans Affairs Medical Center, Richmond, VA
- Division of Hematology and Oncology, Virginia Commonwealth University, Richmond, VA; and
| | - Taha Al-Juhaishi
- Division of Hematology and Oncology, Richmond Veterans Affairs Medical Center, Richmond, VA
- Division of Hematology and Oncology, Virginia Commonwealth University, Richmond, VA; and
| | | | | |
Collapse
|
41
|
Stolearenco V, Namini MRJ, Hasselager SS, Gluud M, Buus TB, Willerslev-Olsen A, Ødum N, Krejsgaard T. Cellular Interactions and Inflammation in the Pathogenesis of Cutaneous T-Cell Lymphoma. Front Cell Dev Biol 2020; 8:851. [PMID: 33015047 PMCID: PMC7498821 DOI: 10.3389/fcell.2020.00851] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) comprises a group of lymphoproliferative diseases characterized by the accumulation of malignant T cells in chronically inflamed skin lesions. In early stages, the disease presents as skin patches or plaques covering a limited area of the skin and normally follows an indolent course. However, in a subset of patients the cutaneous lesions develop into tumors and the malignant T cells may spread to the lymphatic system, blood and internal organs with fatal consequences. Despite intensive research, the mechanisms driving disease progression remain incompletely understood. While most studies have focused on cancer cell-intrinsic oncogenesis, such as genetic and epigenetic events driving malignant transformation and disease progression, an increasing body of evidence shows that the interplay between malignant T cells and non-malignant cells plays a crucial role. Here, we outline some of the emerging mechanisms by which tumor, stromal and epidermal interactions may contribute to the progression of CTCL with particular emphasis on the crosstalk between fibroblasts, keratinocytes and malignant T cells.
Collapse
Affiliation(s)
- Veronica Stolearenco
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin R J Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Siri S Hasselager
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Gene Expression Comparison between Sézary Syndrome and Lymphocytic-Variant Hypereosinophilic Syndrome Refines Biomarkers for Sézary Syndrome. Cells 2020; 9:cells9091992. [PMID: 32872487 PMCID: PMC7563155 DOI: 10.3390/cells9091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Sézary syndrome (SS), an aggressive cutaneous T-cell lymphoma (CTCL) with poor prognosis, is characterized by the clinical hallmarks of circulating malignant T cells, erythroderma and lymphadenopathy. However, highly variable clinical skin manifestations and similarities with benign mimickers can lead to significant diagnostic delay and inappropriate therapy that can lead to disease progression and mortality. SS has been the focus of numerous transcriptomic-profiling studies to identify sensitive and specific diagnostic and prognostic biomarkers. Benign inflammatory disease controls (e.g., psoriasis, atopic dermatitis) have served to identify chronic inflammatory phenotypes in gene expression profiles, but provide limited insight into the lymphoproliferative and oncogenic roles of abnormal gene expression in SS. This perspective was recently clarified by a transcriptome meta-analysis comparing SS and lymphocytic-variant hypereosinophilic syndrome, a benign yet often clonal T-cell lymphoproliferation, with clinical features similar to SS. Here we review the rationale for selecting lymphocytic-variant hypereosinophilic syndrome (L-HES) as a disease control for SS, and discuss differentially expressed genes that may distinguish benign from malignant lymphoproliferative phenotypes, including additional context from prior gene expression studies to improve understanding of genes important in SS.
Collapse
|
43
|
Bobrowicz M, Fassnacht C, Ignatova D, Chang YT, Dimitriou F, Guenova E. Pathogenesis and Therapy of Primary Cutaneous T-Cell Lymphoma: Collegium Internationale Allergologicum (CIA) Update 2020. Int Arch Allergy Immunol 2020; 181:733-745. [PMID: 32690848 DOI: 10.1159/000509281] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous disease group of unknown etiology with a complex immunological background. As CTCL arises from T cells that have a vital role in the antitumor response, their therapy is largely aimed at reversing the immunological mechanisms leading to or manifesting during this malignancy. Early disease stages can be controlled with skin-directed therapy in most CTCL cases. Still, advanced CTCL has a dismal prognosis and warrants systemic therapy. Despite considerable progress in understanding the pathophysiology of the disease and the numerous systemic treatment options available, long-term remission rates with conventional treatments alone are still low. Allogeneic hematopoietic stem cell transplantation is currently the only curative option for advanced CTCL, including mycosis fungoides and Sézary syndrome. The aims of this review is to summarize the recent findings on the immunology of this heterogeneous disease and to present the advances in its clinical management.
Collapse
Affiliation(s)
| | - Christina Fassnacht
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Desislava Ignatova
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Yun-Tsan Chang
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Department of Dermatology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Florentia Dimitriou
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland, .,Faculty of Medicine, University of Zurich, Zurich, Switzerland, .,Department of Dermatology, Lausanne University Hospital (CHUV), Lausanne, Switzerland, .,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,
| |
Collapse
|
44
|
Gross AM, Turner J, Kirkorian AY, Okoye GA, Luca DC, Bornhorst M, Jacobs SS, Williams KM, Schore RJ. A Pediatric Case of Transformed Mycosis Fungoides in a BRCA2 Positive Patient. J Pediatr Hematol Oncol 2020; 42:e361-e364. [PMID: 30969264 DOI: 10.1097/mph.0000000000001481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cutaneous T-cell lymphomas are very rare in children. Although mycosis fungoides is the most common of these rare cutaneous T-cell lymphomas in children, transformation to an aggressive malignancy remains extremely uncommon, and there are no clear guidelines for clinical management in the pediatric population. In addition, the increased usage of next-generation sequencing for pediatric patients with unusual malignancies may result in the discovery of pathogenic germline mutations, though the association between these mutations and the patient's cancer is not always clear. We present here a unique pediatric case of transformed mycosis fungoides in a patient with BRCA2 mutation.
Collapse
Affiliation(s)
- Andrea M Gross
- Children's National Medical Center, Washington, DC.,National Institutes of Health, National Cancer Institute, Bethesda
| | - Joyce Turner
- Children's National Medical Center, Washington, DC
| | | | - Ginette A Okoye
- Department of Dermatology, Howard University College of Medicine, Washington, DC
| | | | | | | | | | | |
Collapse
|
45
|
Iżykowska K. Methylation patterns of cutaneous T-cell lymphomas. Exp Dermatol 2020; 30:1135-1140. [PMID: 32350933 DOI: 10.1111/exd.14108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022]
Abstract
In cutaneous T-cell lymphoma (CTCL), global hypomethylation of the genome and hypermethylation of tumor suppressor genes were detected. Studies show that methylation dysregulation is often a starting point for processes that might lead to malignant transformation. In this review, all data regarding copy-number variations (CNVs) and mutations in main methylation players DNA methyltransferases/TET in CTCL were summarized. An overview of studies on gene-specific hypomethylation and hypermethylation in CTCL, including methylation of microRNA genes, was presented. The possibility of using the methylation pattern in diagnosis and methylation inhibitors in treatment of CTCL was discussed.
Collapse
|
46
|
Phyo ZH, Shanbhag S, Rozati S. Update on Biology of Cutaneous T-Cell Lymphoma. Front Oncol 2020; 10:765. [PMID: 32477957 PMCID: PMC7235328 DOI: 10.3389/fonc.2020.00765] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T cell lymphomas (CTCL) comprise of a heterogeneous group of non-Hodgkin lymphomas derived from skin-homing T cells. Variation in clinical presentation and lack of definitive molecular markers make diagnosis especially challenging. The biology of CTCL remains elusive and clear links between genetic aberrations and epigenetic modifications that would result in clonal T cell expansion have not yet been identified. Nevertheless, in recent years, next generation sequencing (NGS) has enabled a much deeper understanding of the genomic landscape of CTCL by uncovering aberrant genetic pathways and epigenetic dysregulations. Additionally, single cell profiling is rapidly advancing our understanding of patients-specific tumor landscape and its interaction with the surrounding microenvironment. These studies have paved the road for future investigations that will explore the functional relevance of genetic alterations in the progression of disease. The ultimate goal of elucidating the pathogenesis of CTCL is to establish effective therapeutic targets with more durable clinical response and treat relapsing and refractory CTCL.
Collapse
Affiliation(s)
- Zaw H Phyo
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Satish Shanbhag
- Departments of Oncology and Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sima Rozati
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
47
|
The polymorphisms of IL-6/STAT3 signaling pathway may contribute to cutaneous T-cell lymphomas susceptibility. Arch Dermatol Res 2020; 313:25-31. [PMID: 32270320 PMCID: PMC7806529 DOI: 10.1007/s00403-020-02062-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/26/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
IL-6/STAT3 signaling pathway has been suggested to play a role in CTCL pathogenesis. Polymorphisms in STAT3 signaling pathway-related genes might be a risk factor for CTCL. However, the exact role of inherited gene polymorphisms of IL-6 and STAT3 in the pathogenesis of CTCL is still not fully understood. The aim was to examine whether IL-6 cytokine and polymorphisms of IL-6 and STAT3 gene are associated with CTCL susceptibility, stage of disease and pruritus intensity. We compared the IL-6 serum level and the frequency of selected single nucleotide polymorphisms of IL-6 and STAT3 in 106 CTCL and 198 control group using polymerase chain reaction with sequence-specific primers method and ELISA. We have found that serum IL-6 level in CTCL patients was significantly higher than in healthy controls (p < 0.05). We also demonstrated that two genotypes, CC of IL-6 and GG of STAT3, were overexpressed in CTCL patients compared to healthy controls, and that they increase the risk of malignancy development (OR = 1.8, p = 0.04 for IL-6 and OR 2.53, p = 0.0064 for STAT3). Moreover, the GG genotype of STAT3 polymorphism seems to be associated with lack of pruritus or mild pruritus in CTCL patients. Our results indicate that IL-6 is involved in pathogenesis of CTCL but not pruritus. Moreover, CC of IL-6 and GG genotype of STAT3 genes might be considered as the risk factor for development of CTCL.
Collapse
|
48
|
Patel VM, Flanagan CE, Martins M, Jones CL, Butler RM, Woollard WJ, Bakr FS, Yoxall A, Begum N, Katan M, Whittaker SJ, Mitchell TJ. Frequent and Persistent PLCG1 Mutations in Sézary Cells Directly Enhance PLCγ1 Activity and Stimulate NFκB, AP-1, and NFAT Signaling. J Invest Dermatol 2020; 140:380-389.e4. [PMID: 31376383 DOI: 10.1016/j.jid.2019.07.693] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/17/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Phospholipase C Gamma 1 (PLCG1) is frequently mutated in primary cutaneous T-cell lymphoma (CTCL). This study functionally interrogated nine PLCG1 mutations (p.R48W, p.S312L, p.D342N, p.S345F, p.S520F, p.R1158H, p.E1163K, p.D1165H, and the in-frame indel p.VYEEDM1161V) identified in Sézary Syndrome, the leukemic variant of CTCL. The mutations were demonstrated in diagnostic samples and persisted in multiple tumor compartments over time, except in patients who achieved a complete clinical remission. In basal conditions, the majority of the mutations confer PLCγ1 gain-of-function activity through increased inositol phosphate production and the downstream activation of NFκB, AP-1, and NFAT transcriptional activity. Phosphorylation of the p.Y783 residue is essential for the proximal activity of wild-type PLCγ1, but we provide evidence that activating mutations do not require p.Y783 phosphorylation to stimulate downstream NFκB, NFAT, and AP-1 transcriptional activity. Finally, the gain-of-function effects associated with the p.VYEEDM1161V indel suggest that the C2 domain may have a role in regulating PLCγ1 activity. These data provide compelling evidence to support the development of therapeutic strategies targeting mutant PLCγ1.
Collapse
Affiliation(s)
- Varsha M Patel
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Charlotte E Flanagan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Marta Martins
- Insituto de Medicina Molecular- João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Christine L Jones
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Rosie M Butler
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Wesley J Woollard
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Farrah S Bakr
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Antoinette Yoxall
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Nelema Begum
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Matilda Katan
- Structural and Molecular Biology, Division of Biosciences, University College London, United Kingdom
| | - Sean J Whittaker
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Tracey J Mitchell
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.
| |
Collapse
|
49
|
Melchers RC, Willemze R, Bekkenk MW, de Haas ERM, Horvath B, van Rossum MM, Sanders CJG, Veraart JCJM, Putter H, Jansen PM, Vermeer MH, Quint KD. Frequency and prognosis of associated malignancies in 504 patients with lymphomatoid papulosis. J Eur Acad Dermatol Venereol 2019; 34:260-266. [PMID: 31715046 PMCID: PMC7028293 DOI: 10.1111/jdv.16065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Background Lymphomatoid papulosis (LyP) can be associated with other haematological malignancies (HM), but reported percentages vary from 20% to over 50%. Objective To evaluate the frequency and prognostic significance of associated HM and non‐HM in LyP patients. Methods In this multicentre cohort study, the complete Dutch LyP population was included from the Dutch Cutaneous Lymphoma Registry between 1985 and 2018. Clinical and histopathological information was retrieved from every individual patient. Results After a median follow‐up of 120 months (range, 6–585), an associated HM was observed in 78/504 (15.5%) patients. Most common associated HM were mycosis fungoides (MF; n = 31) and anaplastic large‐cell lymphoma (ALCL; n = 29), while 19 patients had another HM of B‐cell (n = 14) or myeloid origin (n = 5). Even after a 25‐year follow‐up period, percentages of associated HM did not exceed 20%. Thirty‐nine of 465 patients (8.4%) without a prior or concurrent associated HM developed an associated HM during follow‐up, after a median of 68 months (range of 3–286 months). Nine of 78 patients died of associated HM, including 6/22 patients developing extracutaneous ALCL, while all patients with associated MF or skin‐limited ALCL had an excellent prognosis. Compared with the general population, LyP patients showed an increased risk (relative risk, 2.8; 95% confidence intervals, 2.4–3.3) for non‐HM, in particular cutaneous squamous cell carcinoma, melanoma and intestinal/lung/bladder cancer. Conclusions An associated HM was reported in 15.5% of the LyP patients, particularly MF and ALCL. Although the frequency of associated HM is lower than suggested and the prognosis of most patients with associated HM is excellent, a small subgroup will develop aggressive disease, in particular extracutaneous ALCL. Furthermore, LyP patients have a higher risk of developing other malignancies. Clinicians should be aware of these risks, and LyP patients require close monitoring. Linked article: F. Rongioletti. J Eur Acad Dermatol Venereol 2020; 34: 216–217. https://doi.org/10.1111/jdv.16157.
Collapse
Affiliation(s)
- R C Melchers
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - M W Bekkenk
- Department of Dermatology, Academic Medical Center, Vrije University Medical Center, Amsterdam, The Netherlands
| | - E R M de Haas
- Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - B Horvath
- Department of Dermatology, University Medical Center of Groningen, Groningen, The Netherlands
| | - M M van Rossum
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C J G Sanders
- Department of Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J C J M Veraart
- Department of Dermatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - P M Jansen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - M H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - K D Quint
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
50
|
Satou A, Bennani NN, Feldman AL. Update on the classification of T-cell lymphomas, Hodgkin lymphomas, and histiocytic/dendritic cell neoplasms. Expert Rev Hematol 2019; 12:833-843. [PMID: 31365276 DOI: 10.1080/17474086.2019.1647777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: The classification of lymphomas is based on the postulated normal counterparts of lymphoid neoplasms and currently constitutes over 100 definite or provisional entities. As this number of entities implies, lymphomas show marked pathological, genetic, and clinical heterogeneity. Recent molecular findings have significantly advanced our understanding of lymphomas. Areas covered: The World Health Organization (WHO) classification of lymphoid neoplasms was updated in 2017. The present review summarizes the new findings that have been gained in the areas of mature T-cell neoplasms, Hodgkin lymphomas, and histiocytic/dendritic cell neoplasms since the publication of the 2017 WHO classification. Expert opinion: Although formal revisions to the WHO classification are published only periodically, our understanding of the pathologic, genetic, and clinical features of lymphoid neoplasms is constantly evolving, particularly in the age of -omics technologies and targeted therapeutics. Even in the relatively short time since the publication of the 2017 WHO classification, many significant findings have been identified in the entities covered in this review.
Collapse
Affiliation(s)
- Akira Satou
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester , MN , USA.,Department of Surgical Pathology, Aichi Medical University Hospital , Nagakute , Aichi , Japan
| | - N Nora Bennani
- Division of Hematology, Mayo Clinic , Rochester , MN , USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester , MN , USA
| |
Collapse
|