1
|
Hui Z, Deng H, Zhang X, Garrido C, Lirussi F, Ye XY, Xie T, Liu ZQ. Development and therapeutic potential of DNA-dependent protein kinase inhibitors. Bioorg Chem 2024; 150:107608. [PMID: 38981210 DOI: 10.1016/j.bioorg.2024.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The deployment of DNA damage response (DDR) combats various forms of DNA damage, ensuring genomic stability. Cancer cells' propensity for genomic instability offers therapeutic opportunities to selectively kill cancer cells by suppressing the DDR pathway. DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is crucial for the non-homologous end joining (NHEJ) pathway in the repair of DNA double-strand breaks (DSBs). Therefore, targeting DNA-PK is a promising cancer treatment strategy. This review elaborates on the structures of DNA-PK and its related large protein, as well as the development process of DNA-PK inhibitors, and recent advancements in their clinical application. We emphasize our analysis of the development process and structure-activity relationships (SARs) of DNA-PK inhibitors based on different scaffolds. We hope this review will provide practical information for researchers seeking to develop novel DNA-PK inhibitors in the future.
Collapse
Affiliation(s)
- Zi Hui
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410013, P. R. China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xuelei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Carmen Garrido
- INSERM U1231, Label LipSTIC and Ligue Nationale contre le Cancer, Dijon, France; Faculté de médecine, Université de Bourgogne, Dijon, Centre de lutte contre le cancer Georges François Leclerc, 21000, Dijon, France
| | - Frédéric Lirussi
- INSERM U1231, Label LipSTIC and Ligue Nationale contre le Cancer, Dijon, France; Université de Franche Comté, France, University Hospital of Besançon (CHU), France
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China.
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410013, P. R. China.
| |
Collapse
|
2
|
Komorowski L, Dabkowska A, Madzio J, Pastorczak A, Szczygiel K, Janowska M, Fidyt K, Bielecki M, Hunia J, Bajor M, Stoklosa T, Winiarska M, Patkowska E, Firczuk M. Concomitant inhibition of the thioredoxin system and nonhomologous DNA repair potently sensitizes Philadelphia-positive lymphoid leukemia to tyrosine kinase inhibitors. Hemasphere 2024; 8:e56. [PMID: 38486859 PMCID: PMC10938465 DOI: 10.1002/hem3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Breakpoint cluster region-Abelson (BCR::ABL1) gene fusion is an essential oncogene in both chronic myeloid leukemia (CML) and Philadelphia-positive (Ph+) B-cell acute lymphoblastic leukemia (B-ALL). While tyrosine kinase inhibitors (TKIs) are effective in up to 95% of CML patients, 50% of Ph+ B-ALL cases do not respond to treatment or relapse. This calls for new therapeutic approaches for Ph+ B-ALL. Previous studies have shown that inhibitors of the thioredoxin (TXN) system exert antileukemic activity against B-ALL cells, particularly in combination with other drugs. Here, we present that peroxiredoxin-1 (PRDX1), one of the enzymes of the TXN system, is upregulated in Ph+ lymphoid as compared to Ph+ myeloid cells. PRDX1 knockout negatively affects the viability of Ph+ B-ALL cells and sensitizes them to TKIs. Analysis of global gene expression changes in imatinib-treated, PRDX1-deficient cells revealed that the nonhomologous end-joining (NHEJ) DNA repair is a novel vulnerability of Ph+ B-ALL cells. Accordingly, PRDX1-deficient Ph+ B-ALL cells were susceptible to NHEJ inhibitors. Finally, we demonstrated the potent efficacy of a novel combination of TKIs, TXN inhibitors, and NHEJ inhibitors against Ph+ B-ALL cell lines and primary cells, which can be further investigated as a potential therapeutic approach for the treatment of Ph+ B-ALL.
Collapse
Affiliation(s)
- Lukasz Komorowski
- Department of ImmunologyMedical University of WarsawWarsawPoland
- Postgraduate School of Molecular MedicineMedical University of WarsawWarsawPoland
| | - Agnieszka Dabkowska
- Department of ImmunologyMedical University of WarsawWarsawPoland
- Laboratory of Immunology, Mossakowski Medical Research InstitutePolish Academy of SciencesWarsawPoland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and HematologyMedical University of LodzLodzPoland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and HematologyMedical University of LodzLodzPoland
| | - Kacper Szczygiel
- Department of ImmunologyMedical University of WarsawWarsawPoland
- Polpharma Biologics SAGdańskPoland
| | - Martyna Janowska
- Laboratory of Immunology, Mossakowski Medical Research InstitutePolish Academy of SciencesWarsawPoland
| | - Klaudyna Fidyt
- Department of ImmunologyMedical University of WarsawWarsawPoland
| | - Maksymilian Bielecki
- Department of PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland
| | - Jaromir Hunia
- Department of ImmunologyMedical University of WarsawWarsawPoland
| | - Malgorzata Bajor
- Laboratory of Immunology, Mossakowski Medical Research InstitutePolish Academy of SciencesWarsawPoland
| | - Tomasz Stoklosa
- Department of Tumor Biology and GeneticsMedical University of WarsawWarsawPoland
| | - Magdalena Winiarska
- Department of ImmunologyMedical University of WarsawWarsawPoland
- Laboratory of Immunology, Mossakowski Medical Research InstitutePolish Academy of SciencesWarsawPoland
| | | | - Malgorzata Firczuk
- Department of ImmunologyMedical University of WarsawWarsawPoland
- Laboratory of Immunology, Mossakowski Medical Research InstitutePolish Academy of SciencesWarsawPoland
| |
Collapse
|
3
|
Perez B, Aljumaily R, Marron TU, Shafique MR, Burris H, Iams WT, Chmura SJ, Luke JJ, Edenfield W, Sohal D, Liao X, Boesler C, Machl A, Seebeck J, Becker A, Guenther B, Rodriguez-Gutierrez A, Antonia SJ. Phase I study of peposertib and avelumab with or without palliative radiotherapy in patients with advanced solid tumors. ESMO Open 2024; 9:102217. [PMID: 38320431 PMCID: PMC10937199 DOI: 10.1016/j.esmoop.2023.102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 02/08/2024] Open
Abstract
INTRODUCTION We report results from a phase I, three-part, dose-escalation study of peposertib, a DNA-dependent protein kinase inhibitor, in combination with avelumab, an immune checkpoint inhibitor, with or without radiotherapy in patients with advanced solid tumors. MATERIALS AND METHODS Peposertib 100-400 mg twice daily (b.i.d.) or 100-250 mg once daily (q.d.) was administered in combination with avelumab 800 mg every 2 weeks in Part A or avelumab plus radiotherapy (3 Gy/fraction × 10 days) in Part B. Part FE assessed the effect of food on the pharmacokinetics of peposertib plus avelumab. The primary endpoint in Parts A and B was dose-limiting toxicity (DLT). Secondary endpoints were safety, best overall response per RECIST version 1.1, and pharmacokinetics. The recommended phase II dose (RP2D) and maximum tolerated dose (MTD) were determined in Parts A and B. RESULTS In Part A, peposertib doses administered were 100 mg (n = 4), 200 mg (n = 11), 250 mg (n = 4), 300 mg (n = 6), and 400 mg (n = 4) b.i.d. Of DLT-evaluable patients, one each had DLT at the 250-mg and 300-mg dose levels and three had DLT at the 400-mg b.i.d. dose level. In Part B, peposertib doses administered were 100 mg (n = 3), 150 mg (n = 3), 200 mg (n = 4), and 250 mg (n = 9) q.d.; no DLT was reported in evaluable patients. Peposertib 200 mg b.i.d. plus avelumab and peposertib 250 mg q.d. plus avelumab and radiotherapy were declared as the RP2D/MTD. No objective responses were observed in Part A or B; one patient had a partial response in Part FE. Peposertib exposure was generally dose proportional. CONCLUSIONS Peposertib doses up to 200 mg b.i.d. in combination with avelumab and up to 250 mg q.d. in combination with avelumab and radiotherapy were tolerable in patients with advanced solid tumors; however, antitumor activity was limited. CLINICALTRIALS GOV IDENTIFIER NCT03724890.
Collapse
Affiliation(s)
- B Perez
- Moffitt Cancer Center, Tampa
| | | | - T U Marron
- Icahn School of Medicine at Mount Sinai, New York
| | | | - H Burris
- Sarah Cannon Research Institute, Nashville
| | - W T Iams
- Vanderbilt University Medical Center, Nashville
| | | | - J J Luke
- UPMC Hillman Cancer Center, Pittsburgh
| | - W Edenfield
- Greenville Health System, Institute for Translational Oncology Research, Greenville
| | - D Sohal
- University of Cincinnati Medical Center, Cincinnati, USA
| | - X Liao
- Merck Serono Co., Ltd. (An Affiliate of Merck KGaA), Beijing, China
| | - C Boesler
- Merck Healthcare KGaA, Darmstadt, Germany
| | - A Machl
- EMD Serono Research & Development Institute, Inc. (An Affiliate of Merck KGaA), Billerica, USA
| | - J Seebeck
- Merck Healthcare KGaA, Darmstadt, Germany
| | - A Becker
- Merck Healthcare KGaA, Darmstadt, Germany
| | - B Guenther
- Merck Healthcare KGaA, Darmstadt, Germany
| | | | | |
Collapse
|
4
|
De Mel S, Lee AR, Tan JHI, Tan RZY, Poon LM, Chan E, Lee J, Chee YL, Lakshminarasappa SR, Jaynes PW, Jeyasekharan AD. Targeting the DNA damage response in hematological malignancies. Front Oncol 2024; 14:1307839. [PMID: 38347838 PMCID: PMC10859481 DOI: 10.3389/fonc.2024.1307839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Deregulation of the DNA damage response (DDR) plays a critical role in the pathogenesis and progression of many cancers. The dependency of certain cancers on DDR pathways has enabled exploitation of such through synthetically lethal relationships e.g., Poly ADP-Ribose Polymerase (PARP) inhibitors for BRCA deficient ovarian cancers. Though lagging behind that of solid cancers, DDR inhibitors (DDRi) are being clinically developed for haematological cancers. Furthermore, a high proliferative index characterize many such cancers, suggesting a rationale for combinatorial strategies targeting DDR and replicative stress. In this review, we summarize pre-clinical and clinical data on DDR inhibition in haematological malignancies and highlight distinct haematological cancer subtypes with activity of DDR agents as single agents or in combination with chemotherapeutics and targeted agents. We aim to provide a framework to guide the design of future clinical trials involving haematological cancers for this important class of drugs.
Collapse
Affiliation(s)
- Sanjay De Mel
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Ainsley Ryan Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joelle Hwee Inn Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Zi Yi Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li Mei Poon
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Esther Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Satish R. Lakshminarasappa
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Flemington EK, Flemington SA, O’Grady TM, Baddoo M, Nguyen T, Dong Y, Ungerleider N. SpliceTools, a suite of downstream RNA splicing analysis tools to investigate mechanisms and impact of alternative splicing. Nucleic Acids Res 2023; 51:e42. [PMID: 36864749 PMCID: PMC10123099 DOI: 10.1093/nar/gkad111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
As a fundamental aspect of normal cell signaling and disease states, there is great interest in determining alternative splicing (AS) changes in physiologic, pathologic, and pharmacologic settings. High throughput RNA sequencing and specialized software to detect AS has greatly enhanced our ability to determine transcriptome-wide splicing changes. Despite the richness of this data, deriving meaning from sometimes thousands of AS events is a substantial bottleneck for most investigators. We present SpliceTools, a suite of data processing modules that arms investigators with the ability to quickly produce summary statistics, mechanistic insights, and functional significance of AS changes through command line or through an online user interface. Utilizing RNA-seq datasets for 186 RNA binding protein knockdowns, nonsense mediated RNA decay inhibition, and pharmacologic splicing inhibition, we illustrate the utility of SpliceTools to distinguish splicing disruption from regulated transcript isoform changes, we show the broad transcriptome footprint of the pharmacologic splicing inhibitor, indisulam, we illustrate the utility in uncovering mechanistic underpinnings of splicing inhibition, we identify predicted neo-epitopes in pharmacologic splicing inhibition, and we show the impact of splicing alterations induced by indisulam on cell cycle progression. Together, SpliceTools puts rapid and easy downstream analysis at the fingertips of any investigator studying AS.
Collapse
Affiliation(s)
| | | | - Tina M O’Grady
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Trang Nguyen
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA
| | | |
Collapse
|
7
|
Murray HC, Miller K, Brzozowski JS, Kahl RGS, Smith ND, Humphrey SJ, Dun MD, Verrills NM. Synergistic Targeting of DNA-PK and KIT Signaling Pathways in KIT Mutant Acute Myeloid Leukemia. Mol Cell Proteomics 2023; 22:100503. [PMID: 36682716 PMCID: PMC9986649 DOI: 10.1016/j.mcpro.2023.100503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Kasey Miller
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Joshua S Brzozowski
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Richard G S Kahl
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, and The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia.
| |
Collapse
|
8
|
An mTOR and DNA-PK dual inhibitor CC-115 hinders non-small cell lung cancer cell growth. Cell Death Dis 2022; 8:293. [PMID: 35717530 PMCID: PMC9206683 DOI: 10.1038/s41420-022-01082-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Molecularly-targeted agents are still urgently needed for better non-small cell lung cancer (NSCLC) therapy. CC-115 is a potent DNA-dependent protein kinase (DNA-PK) and mammalian target of rapamycin (mTOR) dual blocker. We evaluated its activity in different human NSCLC cells. In various primary human NSCLC cells and A549 cells, CC-115 potently inhibited viability, cell proliferation, cell cycle progression, and hindered cell migration/invasion. Apoptosis was provoked in CC-115-stimulated NSCLC cells. The dual inhibitor, however, was unable to induce significant cytotoxic and pro-apoptotic activity in the lung epithelial cells. In primary NSCLC cells, CC-115 blocked activation of mTORC1/2 and DNA-PK. Yet, CC-115-induced primary NSCLC cell death was more potent than combined inhibition of DNA-PK plus mTOR. Further studies found that CC-115 provoked robust oxidative injury in primary NSCLC cells, which appeared independent of mTOR-DNA-PK dual blockage. In vivo studies showed that CC-115 oral administration in nude mice remarkably suppressed primary NSCLC cell xenograft growth. In CC-115-treated NSCLC xenograft tissues, mTOR-DNA-PK dual inhibition and oxidative injury were detected. Together, CC-115 potently inhibits NSCLC cell growth.
Collapse
|
9
|
Matsumoto Y. Development and Evolution of DNA-Dependent Protein Kinase Inhibitors toward Cancer Therapy. Int J Mol Sci 2022; 23:ijms23084264. [PMID: 35457081 PMCID: PMC9032228 DOI: 10.3390/ijms23084264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand break (DSB) is considered the most deleterious type of DNA damage, which is generated by ionizing radiation (IR) and a subset of anticancer drugs. DNA-dependent protein kinase (DNA-PK), which is composed of a DNA-PK catalytic subunit (DNA-PKcs) and Ku80-Ku70 heterodimer, acts as the molecular sensor for DSB and plays a pivotal role in DSB repair through non-homologous end joining (NHEJ). Cells deficient for DNA-PKcs show hypersensitivity to IR and several DNA-damaging agents. Cellular sensitivity to IR and DNA-damaging agents can be augmented by the inhibition of DNA-PK. A number of small molecules that inhibit DNA-PK have been developed. Here, the development and evolution of inhibitors targeting DNA-PK for cancer therapy is reviewed. Significant parts of the inhibitors were developed based on the structural similarity of DNA-PK to phosphatidylinositol 3-kinases (PI3Ks) and PI3K-related kinases (PIKKs), including Ataxia-telangiectasia mutated (ATM). Some of DNA-PK inhibitors, e.g., NU7026 and NU7441, have been used extensively in the studies for cellular function of DNA-PK. Recently developed inhibitors, e.g., M3814 and AZD7648, are in clinical trials and on the way to be utilized in cancer therapy in combination with radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
10
|
Choi W, Lee ES. Therapeutic Targeting of DNA Damage Response in Cancer. Int J Mol Sci 2022; 23:ijms23031701. [PMID: 35163621 PMCID: PMC8836062 DOI: 10.3390/ijms23031701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) is critical to ensure genome stability, and defects in this signaling pathway are highly associated with carcinogenesis and tumor progression. Nevertheless, this also provides therapeutic opportunities, as cells with defective DDR signaling are directed to rely on compensatory survival pathways, and these vulnerabilities have been exploited for anticancer treatments. Following the impressive success of PARP inhibitors in the treatment of BRCA-mutated breast and ovarian cancers, extensive research has been conducted toward the development of pharmacologic inhibitors of the key components of the DDR signaling pathway. In this review, we discuss the key elements of the DDR pathway and how these molecular components may serve as anticancer treatment targets. We also summarize the recent promising developments in the field of DDR pathway inhibitors, focusing on novel agents beyond PARP inhibitors. Furthermore, we discuss biomarker studies to identify target patients expected to derive maximal clinical benefits as well as combination strategies with other classes of anticancer agents to synergize and optimize the clinical benefits.
Collapse
Affiliation(s)
- Wonyoung Choi
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Clinical Trials, National Cancer Center, Goyang 10408, Korea
| | - Eun Sook Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Breast Cancer, National Cancer Center, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-1633
| |
Collapse
|
11
|
Fuentes-Fayos AC, Pérez-Gómez JM, G-García ME, Jiménez-Vacas JM, Blanco-Acevedo C, Sánchez-Sánchez R, Solivera J, Breunig JJ, Gahete MD, Castaño JP, Luque RM. SF3B1 inhibition disrupts malignancy and prolongs survival in glioblastoma patients through BCL2L1 splicing and mTOR/ß-catenin pathways imbalances. J Exp Clin Cancer Res 2022; 41:39. [PMID: 35086552 PMCID: PMC8793262 DOI: 10.1186/s13046-022-02241-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioblastoma is one of the most devastating cancer worldwide based on its locally aggressive behavior and because it cannot be cured by current therapies. Defects in alternative splicing process are frequent in cancer. Recently, we demonstrated that dysregulation of the spliceosome is directly associated with glioma development, progression, and aggressiveness. METHODS Different human cohorts and a dataset from different glioma mouse models were analyzed to determine the mutation frequency as well as the gene and protein expression levels between tumor and control samples of the splicing-factor-3B-subunit-1 (SF3B1), an essential and druggable spliceosome component. SF3B1 expression was also explored at the single-cell level across all cell subpopulations and transcriptomic programs. The association of SF3B1 expression with relevant clinical data (e.g., overall survival) in different human cohorts was also analyzed. Different functional (proliferation/migration/tumorspheres and colonies formation/VEGF secretion/apoptosis) and mechanistic (gene expression/signaling pathways) assays were performed in three different glioblastomas cell models (human primary cultures and cell lines) in response to SF3B1 blockade (using pladienolide B treatment). Moreover, tumor progression and formation were monitored in response to SF3B1 blockade in two preclinical xenograft glioblastoma mouse models. RESULTS Our data provide novel evidence demonstrating that the splicing-factor-3B-subunit-1 (SF3B1, an essential and druggable spliceosome component) is low-frequency mutated in human gliomas (~ 1 %) but widely overexpressed in glioblastoma compared with control samples from the different human cohorts and mouse models included in the present study, wherein SF3B1 levels are associated with key molecular and clinical features (e.g., overall survival, poor prognosis and/or drug resistance). Remarkably, in vitro and in vivo blockade of SF3B1 activity with pladienolide B drastically altered multiple glioblastoma pathophysiological processes (i.e., reduction in proliferation, migration, tumorspheres formation, VEGF secretion, tumor initiation and increased apoptosis) likely by suppressing AKT/mTOR/ß-catenin pathways, and an imbalance of BCL2L1 splicing. CONCLUSIONS Together, we highlight SF3B1 as a potential diagnostic and prognostic biomarker and an efficient pharmacological target in glioblastoma, offering a clinically relevant opportunity worth to be explored in humans.
Collapse
Affiliation(s)
- Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Miguel E G-García
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Juan Solivera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| |
Collapse
|
12
|
Valikhani M, Rahimian E, Ahmadi SE, Chegeni R, Safa M. Involvement of classic and alternative non-homologous end joining pathways in hematologic malignancies: targeting strategies for treatment. Exp Hematol Oncol 2021; 10:51. [PMID: 34732266 PMCID: PMC8564991 DOI: 10.1186/s40164-021-00242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal translocations are the main etiological factor of hematologic malignancies. These translocations are generally the consequence of aberrant DNA double-strand break (DSB) repair. DSBs arise either exogenously or endogenously in cells and are repaired by major pathways, including non-homologous end-joining (NHEJ), homologous recombination (HR), and other minor pathways such as alternative end-joining (A-EJ). Therefore, defective NHEJ, HR, or A-EJ pathways force hematopoietic cells toward tumorigenesis. As some components of these repair pathways are overactivated in various tumor entities, targeting these pathways in cancer cells can sensitize them, especially resistant clones, to radiation or chemotherapy agents. However, targeted therapy-based studies are currently underway in this area, and furtherly there are some biological pitfalls, clinical issues, and limitations related to these targeted therapies, which need to be considered. This review aimed to investigate the alteration of DNA repair elements of C-NHEJ and A-EJ in hematologic malignancies and evaluate the potential targeted therapies against these pathways.
Collapse
Affiliation(s)
- Mohsen Valikhani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences, Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Tsakaneli A, Williams O. Drug Repurposing for Targeting Acute Leukemia With KMT2A ( MLL)-Gene Rearrangements. Front Pharmacol 2021; 12:741413. [PMID: 34594227 PMCID: PMC8478155 DOI: 10.3389/fphar.2021.741413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment failure rates of acute leukemia with rearrangements of the Mixed Lineage Leukemia (MLL) gene highlight the need for novel therapeutic approaches. Taking into consideration the limitations of the current therapies and the advantages of novel strategies for drug discovery, drug repurposing offers valuable opportunities to identify treatments and develop therapeutic approaches quickly and effectively for acute leukemia with MLL-rearrangements. These approaches are complimentary to de novo drug discovery and have taken advantage of increased knowledge of the mechanistic basis of MLL-fusion protein complex function as well as refined drug repurposing screens. Despite the vast number of different leukemia associated MLL-rearrangements, the existence of common core oncogenic pathways holds the promise that many such therapies will be broadly applicable to MLL-rearranged leukemia as a whole.
Collapse
Affiliation(s)
- Alexia Tsakaneli
- Cancer Section, Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Owen Williams
- Cancer Section, Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
14
|
Kwok M, Agathanggelou A, Davies N, Stankovic T. Targeting the p53 Pathway in CLL: State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:4681. [PMID: 34572908 PMCID: PMC8468925 DOI: 10.3390/cancers13184681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The p53 pathway is a desirable therapeutic target, owing to its critical role in the maintenance of genome integrity. This is exemplified in chronic lymphocytic leukemia (CLL), one of the most common adult hematologic malignancies, in which functional loss of p53 arising from genomic aberrations are frequently associated with clonal evolution, disease progression, and therapeutic resistance, even in the contemporary era of CLL targeted therapy and immunotherapy. Targeting the 'undruggable' p53 pathway therefore arguably represents the holy grail of cancer research. In recent years, several strategies have been proposed to exploit p53 pathway defects for cancer treatment. Such strategies include upregulating wild-type p53, restoring tumor suppressive function in mutant p53, inducing synthetic lethality by targeting collateral genome maintenance pathways, and harnessing the immunogenicity of p53 pathway aberrations. In this review, we will examine the biological and clinical implications of p53 pathway defects, as well as our progress towards development of therapeutic approaches targeting the p53 pathway, specifically within the context of CLL. We will appraise the opportunities and pitfalls associated with these therapeutic strategies, and evaluate their place amongst the array of new biological therapies for CLL.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2SY, UK
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Nicholas Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| |
Collapse
|
15
|
Avsec D, Jakoš Djordjevič AT, Kandušer M, Podgornik H, Škerget M, Mlinarič-Raščan I. Targeting Autophagy Triggers Apoptosis and Complements the Action of Venetoclax in Chronic Lymphocytic Leukemia Cells. Cancers (Basel) 2021; 13:cancers13184557. [PMID: 34572784 PMCID: PMC8466897 DOI: 10.3390/cancers13184557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Venetoclax is an antagonist of the antiapoptotic protein Bcl-2, and is currently approved for treatment of chronic lymphocytic leukemia (CLL). Recently, clinical use has shown that patients develop resistance to venetoclax. Therefore, the demand for novel targets for treatment of CLL remains high. One such target is autophagy, an evolutionarily old system for degradation of long-lived proteins and organelles that recovers the energy for normal cellular functions. Here, the antileukemic potential of different autophagy inhibitors was evaluated in patient-derived CLL cells. Among these, inhibitors of the AMPK/ULK1 pathway and late-stage autophagy were the most potent, with selective cytotoxic activities seen. They also show activity against CLL cells with unfavorable genetic characteristics. These inhibitors complement the cytotoxic action of venetoclax. In conclusion, targeting autophagy shows potential as a novel approach for treatment of patients with CLL. Abstract Continuous treatment of patients with chronic lymphocytic leukemia (CLL) with venetoclax, an antagonist of the anti-apoptotic protein Bcl-2, can result in resistance, which highlights the need for novel targets to trigger cell death in CLL. Venetoclax also induces autophagy by perturbing the Bcl-2/Beclin-1 complex, so autophagy might represent a target in CLL. Diverse autophagy inhibitors were assessed for cytotoxic activities against patient-derived CLL cells. The AMPK inhibitor dorsomorphin, the ULK1/2 inhibitor MRT68921, and the autophagosome–lysosome fusion inhibitor chloroquine demonstrated concentration-dependent and time-dependent cytotoxicity against CLL cells, even in those from hard-to-treat patients who carried del(11q) and del(17p). Dorsomorphin and MRT68921 but not chloroquine triggered caspase-dependent cell death. According to the metabolic activities of CLL cells and PBMCs following treatments with 10 µM dorsomorphin (13% vs. 84%), 10 µM MRT68921 (7% vs. 78%), and 25 µM chloroquine (41% vs. 107%), these autophagy inhibitors are selective toward CLL cells. In these CLL cells, venetoclax induced autophagy, and addition of dorsomorphin, MRT68921, or chloroquine showed potent synergistic cytotoxicities. Additionally, MRT68921 alone induced G2 arrest, but when combined with venetoclax, it triggered caspase-dependent cytotoxicity. These data provide the rationale to target autophagy and for autophagy inhibitors as potential treatments for patients with CLL.
Collapse
Affiliation(s)
- Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
| | - Alma Tana Jakoš Djordjevič
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
| | - Maša Kandušer
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
| | - Helena Podgornik
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
- University Medical Centre Ljubljana, Department of Haematology, SI-1000 Ljubljana, Slovenia;
| | - Matevž Škerget
- University Medical Centre Ljubljana, Department of Haematology, SI-1000 Ljubljana, Slovenia;
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
- Correspondence:
| |
Collapse
|
16
|
Fang X, Huang Z, Zhai K, Huang Q, Tao W, Kim L, Wu Q, Almasan A, Yu JS, Li X, Stark GR, Rich JN, Bao S. Inhibiting DNA-PK induces glioma stem cell differentiation and sensitizes glioblastoma to radiation in mice. Sci Transl Med 2021; 13:13/600/eabc7275. [PMID: 34193614 DOI: 10.1126/scitranslmed.abc7275] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/23/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM), a lethal primary brain tumor, contains glioma stem cells (GSCs) that promote malignant progression and therapeutic resistance. SOX2 is a core transcription factor that maintains the properties of stem cells, including GSCs, but mechanisms associated with posttranslational SOX2 regulation in GSCs remain elusive. Here, we report that DNA-dependent protein kinase (DNA-PK) governs SOX2 stability through phosphorylation, resulting in GSC maintenance. Mass spectrometric analyses of SOX2-binding proteins showed that DNA-PK interacted with SOX2 in GSCs. The DNA-PK catalytic subunit (DNA-PKcs) was preferentially expressed in GSCs compared to matched non-stem cell tumor cells (NSTCs) isolated from patient-derived GBM xenografts. DNA-PKcs phosphorylated human SOX2 at S251, which stabilized SOX2 by preventing WWP2-mediated ubiquitination, thus promoting GSC maintenance. We then demonstrated that when the nuclear DNA of GSCs either in vitro or in GBM xenografts in mice was damaged by irradiation or treatment with etoposide, the DNA-PK complex dissociated from SOX2, which then interacted with WWP2, leading to SOX2 degradation and GSC differentiation. These results suggest that DNA-PKcs-mediated phosphorylation of S251 was critical for SOX2 stabilization and GSC maintenance. Pharmacological inhibition of DNA-PKcs with the DNA-PKcs inhibitor NU7441 reduced GSC tumorsphere formation in vitro and impaired growth of intracranial human GBM xenografts in mice as well as sensitized the GBM xenografts to radiotherapy. Our findings suggest that DNA-PK maintains GSCs in a stem cell state and that DNA damage triggers GSC differentiation through precise regulation of SOX2 stability, highlighting that DNA-PKcs has potential as a therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Xiaoguang Fang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhi Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kui Zhai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qian Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Weiwei Tao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Leo Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Division of Hematology Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Radiation Oncology, Cleveland Clinic, OH 44195, USA
| | - Jennifer S Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Radiation Oncology, Cleveland Clinic, OH 44195, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Division of Hematology Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
17
|
Raimundo L, Calheiros J, Saraiva L. Exploiting DNA Damage Repair in Precision Cancer Therapy: BRCA1 as a Prime Therapeutic Target. Cancers (Basel) 2021; 13:cancers13143438. [PMID: 34298653 PMCID: PMC8303227 DOI: 10.3390/cancers13143438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Chemical inhibition of central DNA damage repair (DDR) proteins has become a promising approach in precision cancer therapy. In particular, BRCA1 and its DDR-associated proteins constitute important targets for developing DNA repair inhibiting drugs. This review provides relevant insights on DDR biology and pharmacology, aiming to boost the development of more effective DDR targeted therapies. Abstract Precision medicine aims to identify specific molecular alterations, such as driver mutations, allowing tailored and effective anticancer therapies. Poly(ADP)-ribose polymerase inhibitors (PARPi) are the prototypical example of targeted therapy, exploiting the inability of cancer cells to repair DNA damage. Following the concept of synthetic lethality, PARPi have gained great relevance, particularly in BRCA1 dysfunctional cancer cells. In fact, BRCA1 mutations culminate in DNA repair defects that can render cancer cells more vulnerable to therapy. However, the efficacy of these drugs has been greatly affected by the occurrence of resistance due to multi-connected DNA repair pathways that may compensate for each other. Hence, the search for additional effective agents targeting DNA damage repair (DDR) is of crucial importance. In this context, BRCA1 has assumed a central role in developing drugs aimed at inhibiting DNA repair activity. Collectively, this review provides an in-depth understanding of the biology and regulatory mechanisms of DDR pathways, highlighting the potential of DDR-associated molecules, particularly BRCA1 and its interconnected partners, in precision cancer medicine. It also affords an overview about what we have achieved and a reflection on how much remains to be done in this field, further addressing encouraging clues for the advance of DDR targeted therapy.
Collapse
|
18
|
Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer. Nat Genet 2021; 53:1088-1096. [PMID: 34045764 PMCID: PMC8483261 DOI: 10.1038/s41588-021-00874-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
Ionizing radiation causes DNA damage and is a mainstay for cancer treatment, but understanding of its genomic impact is limited. We analyzed mutational spectra following radiotherapy in 190 paired primary and recurrent gliomas from the Glioma Longitudinal Analysis Consortium and 3,693 post-treatment metastatic tumors from the Hartwig Medical Foundation. We identified radiotherapy-associated significant increases in the burden of small deletions (5-15 bp) and large deletions (20+ bp to chromosome-arm length). Small deletions were characterized by a larger span size, lacking breakpoint microhomology and were genomically more dispersed when compared to pre-existing deletions and deletions in non-irradiated tumors. Mutational signature analysis implicated classical non-homologous end-joining-mediated DNA damage repair and APOBEC mutagenesis following radiotherapy. A high radiation-associated deletion burden was associated with worse clinical outcomes, suggesting that effective repair of radiation-induced DNA damage is detrimental to patient survival. These results may be leveraged to predict sensitivity to radiation therapy in recurrent cancer.
Collapse
|
19
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
20
|
Katoueezadeh M, Pilehvari N, Fatemi A, Hassanshahi G, Torabizadeh SA. Inhibition of DNA damage response pathway using combination of DDR pathway inhibitors and radiation in treatment of acute lymphoblastic leukemia cells. Future Oncol 2021; 17:2803-2816. [PMID: 33960207 DOI: 10.2217/fon-2020-1072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An alarming increase in acute lymphoblastic leukemia cases among children and adults has attracted the attention of researchers to discover new therapeutic strategies with a better prognosis. In cancer cells, the DNA damage response (DDR) pathway elements have been recognized to protect tumor cells from various stresses and cause tumor progression; targeting these DDR members is an attractive strategy for treatment of cancers. The inhibition of the DDR pathway in cancer cells for the treatment of cancers has recently been introduced. Hence, effective treatment strategies are needed for this purpose. Chemotherapy in combination with radiotherapy is considered a potential therapeutic strategy for acute leukemia. This review aims to assess the synergistic effects of these inhibitors with irradiation for the treatment of leukemia.
Collapse
Affiliation(s)
- Maryam Katoueezadeh
- Department of Hematology & Medical Laboratory Science, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, 7616911333, Iran
| | - Niloofar Pilehvari
- Department of Hematology & Medical Laboratory Science, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, 7616911333, Iran
| | - Ahmad Fatemi
- Department of Hematology & Medical Laboratory Science, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, 7616911333, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718796755, Iran
| | - Seyedeh Atekeh Torabizadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, 7616911319, Iran
| |
Collapse
|
21
|
Liang XM, Qin Q, Liu BN, Li XQ, Zeng LL, Wang J, Kong LP, Zhong DS, Sun LL. Targeting DNA-PK overcomes acquired resistance to third-generation EGFR-TKI osimertinib in non-small-cell lung cancer. Acta Pharmacol Sin 2021; 42:648-654. [PMID: 33414509 DOI: 10.1038/s41401-020-00577-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022]
Abstract
The third-generation of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), represented by osimertinib, has achieved remarkable clinical outcomes in the treatment of non-small-cell lung cancer (NSCLC) with EGFR mutation. However, resistance eventually emerges in most patients and the underlying molecular mechanisms remain to be fully understood. In this study, we generated an osimertinib-acquired resistant lung cancer model from a NSCLC cell line H1975 harboring EGFR L858R and T790M mutations. We found that the capacity of DNA damage repair was compromised in the osimertinib resistant cells, evidenced by increased levels of γH2AX and higher intensity of the comet tail after withdrawal from cisplatin. Pharmacological inhibiting the activity or genetic knockdown the expression of DNA-PK, a key kinase in DNA damage response (DDR), sensitized the resistant cells to osimertinib. Combination of osimertinib with the DNA-PK inhibitor, PI-103, or NU7441, synergistically suppressed the proliferation of the resistant cells. Mechanistically, we revealed that DNA-PK inhibitor in combination with osimertinib resulted in prolonged DNA damage and cell cycle arrest. These findings shed new light on the mechanisms of osimertinib resistance in the aspect of DNA repair, and provide a rationale for targeting DNA-PK as a therapeutic strategy to overcome osimertinib-acquired resistance in NSCLC.
Collapse
|
22
|
Mologni L, Marzaro G, Redaelli S, Zambon A. Dual Kinase Targeting in Leukemia. Cancers (Basel) 2021; 13:E119. [PMID: 33401428 PMCID: PMC7796318 DOI: 10.3390/cancers13010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials. A brief overview of dual-targeting inhibitors (kinase/histone deacetylase (HDAC) and kinase/tubulin polymerization inhibitors) applied to leukemia is also given. Finally, the very recently developed Proteolysis Targeting Chimeras (PROTAC)-based kinase inhibitors are presented.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy;
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
23
|
Yue X, Bai C, Xie D, Ma T, Zhou PK. DNA-PKcs: A Multi-Faceted Player in DNA Damage Response. Front Genet 2020; 11:607428. [PMID: 33424929 PMCID: PMC7786053 DOI: 10.3389/fgene.2020.607428] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a member of the phosphatidylinositol 3-kinase related kinase family, which can phosphorylate more than 700 substrates. As the core enzyme, DNA-PKcs forms the active DNA-PK holoenzyme with the Ku80/Ku70 heterodimer to play crucial roles in cellular DNA damage response (DDR). Once DNA double strand breaks (DSBs) occur in the cells, DNA-PKcs is promptly recruited into damage sites and activated. DNA-PKcs is auto-phosphorylated and phosphorylated by Ataxia-Telangiectasia Mutated at multiple sites, and phosphorylates other targets, participating in a series of DDR and repair processes, which determine the cells' fates: DSBs NHEJ repair and pathway choice, replication stress response, cell cycle checkpoints, telomeres length maintenance, senescence, autophagy, etc. Due to the special and multi-faceted roles of DNA-PKcs in the cellular responses to DNA damage, it is important to precisely regulate the formation and dynamic of its functional complex and activities for guarding genomic stability. On the other hand, targeting DNA-PKcs has been considered as a promising strategy of exploring novel radiosensitizers and killing agents of cancer cells. Combining DNA-PKcs inhibitors with radiotherapy can effectively enhance the efficacy of radiotherapy, offering more possibilities for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqiao Yue
- School of Public Health, University of South China, Hengyang, China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
24
|
Bürkel F, Jost T, Hecht M, Heinzerling L, Fietkau R, Distel L. Dual mTOR/DNA-PK Inhibitor CC-115 Induces Cell Death in Melanoma Cells and Has Radiosensitizing Potential. Int J Mol Sci 2020; 21:ijms21239321. [PMID: 33297429 PMCID: PMC7730287 DOI: 10.3390/ijms21239321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
CC-115 is a dual inhibitor of the mechanistic target of rapamycin (mTOR) kinase and the DNA-dependent protein kinase (DNA-PK) that is currently being studied in phase I/II clinical trials. DNA-PK is essential for the repair of DNA-double strand breaks (DSB). Radiotherapy is frequently used in the palliative treatment of metastatic melanoma patients and induces DSBs. Melanoma cell lines and healthy-donor skin fibroblast cell lines were treated with CC‑115 and ionizing irradiation (IR). Apoptosis, necrosis, and cell cycle distribution were analyzed. Colony forming assays were conducted to study radiosensitizing effects. Immunofluorescence microscopy was performed to determine the activity of homologous recombination (HR). In most of the malign cell lines, an increasing concentration of CC-115 resulted in increased cell death. Furthermore, strong cytotoxic effects were only observed in malignant cell lines. Regarding clonogenicity, all cell lines displayed decreased survival fractions during combined inhibitor and IR treatment and supra-additive effects of the combination were observable in 5 out of 9 melanoma cell lines. CC-115 showed radiosensitizing potential in 7 out of 9 melanoma cell lines, but not in healthy skin fibroblasts. Based on our data CC-115 treatment could be a promising approach for patients with metastatic melanoma, particularly in the combination with radiotherapy.
Collapse
Affiliation(s)
- Felix Bürkel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Tina Jost
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany;
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
| | - Luitpold Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (F.B.); (T.J.); (M.H.); (R.F.)
- Correspondence: ; Tel.: +49-9131-85-32312
| |
Collapse
|
25
|
Peng X, Wei Z, Gerweck LE. Making radiation therapy more effective in the era of precision medicine. PRECISION CLINICAL MEDICINE 2020; 3:272-283. [PMID: 35692625 PMCID: PMC8982539 DOI: 10.1093/pcmedi/pbaa038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer has become a leading cause of death and constitutes an enormous burden worldwide. Radiation is a principle treatment modality used alone or in combination with other forms of therapy, with 50%–70% of cancer patients receiving radiotherapy at some point during their illness. It has been suggested that traditional radiotherapy (daily fractions of approximately 1.8–2 Gy over several weeks) might select for radioresistant tumor cell sub-populations, which, if not sterilized, give rise to local treatment failure and distant metastases. Thus, the challenge is to develop treatment strategies and schedules to eradicate the resistant subpopulation of tumorigenic cells rather than the predominant sensitive tumor cell population. With continued technological advances including enhanced conformal treatment technology, radiation oncologists can increasingly maximize the dose to tumors while sparing adjacent normal tissues, to limit toxicity and damage to the latter. Increased dose conformality also facilitates changes in treatment schedules, such as changes in dose per treatment fraction and number of treatment fractions, to enhance the therapeutic ratio. For example, the recently developed large dose per fraction treatment schedules (hypofractionation) have shown clinical advantage over conventional treatment schedules in some tumor types. Experimental studies suggest that following large acute doses of radiation, recurrent tumors, presumably sustained by the most resistant tumor cell populations, may in fact be equally or more radiation sensitive than the primary tumor. In this review, we summarize the related advances in radiotherapy, including the increasing understanding of the molecular mechanisms of radioresistance, and the targeting of these mechanisms with potent small molecule inhibitors, which may selectively sensitize tumor cells to radiation.
Collapse
Affiliation(s)
- Xingchen Peng
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhigong Wei
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leo E Gerweck
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
26
|
Carrassa L, Colombo I, Damia G, Bertoni F. Targeting the DNA damage response for patients with lymphoma: Preclinical and clinical evidences. Cancer Treat Rev 2020; 90:102090. [DOI: 10.1016/j.ctrv.2020.102090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
|
27
|
Zheng B, Sun X, Chen XF, Chen Z, Zhu WL, Zhu H, Gu DH. Dual inhibition of DNA-PKcs and mTOR by CC-115 potently inhibits human renal cell carcinoma cell growth. Aging (Albany NY) 2020; 12:20445-20456. [PMID: 33109772 PMCID: PMC7655216 DOI: 10.18632/aging.103847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
CC-115 is a dual inhibitor of DNA-PKcs and mTOR, both are valuable therapeutic targets for renal cell carcinoma (RCC). Our results showed that CC-115 inhibited survival and proliferation of established RCC cell lines (786-O and A489) and primary human RCC cells. The dual inhibitor induced selective apoptosis activation in RCC cells, as compared to no cytotoxicity nor apoptotic effects toward normal renal epithelial cells. CC-115 inhibited DNA-PKcs and mTORC1/2 activation in RCC cells. It was however ineffective in DNA-PKcs-mTOR double knockout (DKO) 786-O cells. CC-115 induced feedback autophagy activation in RCC cells. Autophagy inhibitors or Beclin-1/Light chain 3 (LC3) silencing potentiated CC-115-induced anti-RCC cell activity. Conversely, ectopic overexpression of Beclin-1 inhibited CC-115-induced cytotoxicity. At last CC-115 oral administration inhibited 786-O subcutaneous xenograft growth in nude mice. Taken together, dual inhibition of DNA-PKcs and mTOR by CC-115 potently inhibited RCC cell growth.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xu Sun
- Department of Hand and Foot Surgery, Hospital Affiliated 5 to Nantong University, Taizhou People’s Hospital, Taizhou, China
| | - Xin-Feng Chen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhan Chen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Wei-Li Zhu
- Port Clinic, Changshu Customs, Changshu, China
| | - Hua Zhu
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Dong-Hua Gu
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
28
|
Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol 2020; 10:591577. [PMID: 33154951 PMCID: PMC7116322 DOI: 10.3389/fonc.2020.591577] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The approval of BTK and PI3K inhibitors (ibrutinib, idelalisib) represents a revolution in the therapy of B cell malignancies such as chronic lymphocytic leukemia (CLL), mantle-cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), or Waldenström's macroglobulinemia (WM). However, these "BCR inhibitors" function by interfering with B cell pathophysiology in a more complex way than anticipated, and resistance develops through multiple mechanisms. In ibrutinib treated patients, the most commonly described resistance-mechanism is a mutation in BTK itself, which prevents the covalent binding of ibrutinib, or a mutation in PLCG2, which acts to bypass the dependency on BTK at the BCR signalosome. However, additional genetic aberrations leading to resistance are being described (such as mutations in the CARD11, CCND1, BIRC3, TRAF2, TRAF3, TNFAIP3, loss of chromosomal region 6q or 8p, a gain of Toll-like receptor (TLR)/MYD88 signaling or gain of 2p chromosomal region). Furthermore, relative resistance to BTK inhibitors can be caused by non-genetic adaptive mechanisms leading to compensatory pro-survival pathway activation. For instance, PI3K/mTOR/Akt, NFkB and MAPK activation, BCL2, MYC, and XPO1 upregulation or PTEN downregulation lead to B cell survival despite BTK inhibition. Resistance could also arise from activating microenvironmental pathways such as chemokine or integrin signaling via CXCR4 or VLA4 upregulation, respectively. Defining these compensatory pro-survival mechanisms can help to develop novel therapeutic combinations of BTK inhibitors with other inhibitors (such as BH3-mimetic venetoclax, XPO1 inhibitor selinexor, mTOR, or MEK inhibitors). The mechanisms of resistance to PI3K inhibitors remain relatively unclear, but some studies point to MAPK signaling upregulation via both genetic and non-genetic changes, which could be co-targeted therapeutically. Alternatively, drugs mimicking the BTK/PI3K inhibition effect can be used to prevent adhesion and/or malignant B cell migration (chemokine and integrin inhibitors) or to block the pro-proliferative T cell signals in the microenvironment (such as IL4/STAT signaling inhibitors). Here we review the genetic and non-genetic mechanisms of resistance and adaptation to the first generation of BTK and PI3K inhibitors (ibrutinib and idelalisib, respectively), and discuss possible combinatorial therapeutic strategies to overcome resistance or to increase clinical efficacy.
Collapse
Affiliation(s)
- Laura Ondrisova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
29
|
Rahimian E, Amini A, Alikarami F, Pezeshki SMS, Saki N, Safa M. DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair (Amst) 2020; 96:102951. [PMID: 32971475 DOI: 10.1016/j.dnarep.2020.102951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
DNA repair pathways, which are also identified as guardians of the genome, protect cells from frequent damage that can lead to DNA breaks. The most deleterious types of damage are double-strand breaks (DSBs), which are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). Single strand breaks (SSBs) can be corrected through base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Failure to restore DNA lesions or inappropriately repaired DNA damage culminates in genomic instability and changes in the regulation of cellular functions. Intriguingly, particular mutations and translocations are accompanied by special types of leukemia. Besides, expression patterns of certain repair genes are altered in different hematologic malignancies. Moreover, analysis of mutations in key mediators of DNA damage repair (DDR) pathways, as well as investigation of their expression and function, may provide us with emerging biomarkers of response/resistance to treatment. Therefore, defective DDR pathways can offer a rational starting point for developing DNA repair-targeted drugs. In this review, we address genetic alterations and gene/protein expression changes, as well as provide an overview of DNA repair pathways.
Collapse
Affiliation(s)
- Elahe Rahimian
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA 19104, USA
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Wong NHM, So CWE. Novel therapeutic strategies for MLL-rearranged leukemias. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194584. [PMID: 32534041 DOI: 10.1016/j.bbagrm.2020.194584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/18/2022]
Abstract
MLL rearrangement is one of the key drivers and generally regarded as an independent poor prognostic marker in acute leukemias. The standard of care for MLL-rearranged (MLL-r) leukemias has remained largely unchanged for the past 50 years despite unsatisfying clinical outcomes, so there is an urgent need for novel therapeutic strategies. An increasing body of evidence demonstrates that a vast number of epigenetic regulators are directly or indirectly involved in MLL-r leukemia, and they are responsible for supporting the aberrant gene expression program mediated by MLL-fusions. Unlike genetic mutations, epigenetic modifications can be reversed by pharmacologic targeting of the responsible epigenetic regulators. This leads to significant interest in developing epigenetic therapies for MLL-r leukemia. Intriguingly, many of the epigenetic enzymes also involve in DNA damage response (DDR), which can be potential targets for synthetic lethality-induced therapies. In this review, we will summarize some of the recent advances in the development of epigenetic and DDR therapeutics by targeting epigenetic regulators or protein complexes that mediate MLL-r leukemia gene expression program and key players in DDR that safeguard essential genome integrity. The rationale and molecular mechanisms underpinning the therapeutic effects will also be discussed with a focus on how these treatments can disrupt MLL-fusion mediated transcriptional programs and impair DDR, which may help overcome treatment resistance.
Collapse
Affiliation(s)
- Nok-Hei Mickey Wong
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Chi Wai Eric So
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK.
| |
Collapse
|
31
|
Abstract
Agents that specifically target pathologic mechanisms of survival have now been approved for the treatment of chronic lymphocytic leukemia in both the treatment-naive and relapsed/refractory settings. These 4 agents include the Bruton tyrosine kinase inhibitor ibrutinib, the B-cell leukemia/lymphoma-2 inhibitor venetoclax, and the phosphatidylinositol-3 kinase inhibitors idelalisib and duvelisib. Although clinical outcomes are improved with all of these inhibitors, acquired resistance does occur and leads to progression of disease. Resistance to targeted therapy can occur through direct mutations of the target or through the overexpression of alternative cell survival pathways not affected by the specific inhibitor. Determining which patients will develop resistance, why resistance occurs, how to overcome resistance, and when to test for resistance are all subjects of ongoing research. In this review, we describe the current data relative to the development of resistance to targeted therapies in CLL.
Collapse
|
32
|
DNA-PK in human malignant disorders: Mechanisms and implications for pharmacological interventions. Pharmacol Ther 2020; 215:107617. [PMID: 32610116 DOI: 10.1016/j.pharmthera.2020.107617] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
The DNA-PK holoenzyme is a fundamental element of the DNA damage response machinery (DDR), which is responsible for cellular genomic stability. Consequently, and predictably, over the last decades since its identification and characterization, numerous pre-clinical and clinical studies reported observations correlating aberrant DNA-PK status and activity with cancer onset, progression and responses to therapeutic modalities. Notably, various studies have established in recent years the role of DNA-PK outside the DDR network, corroborating its role as a pleiotropic complex involved in transcriptional programs that operate biologic processes as epithelial to mesenchymal transition (EMT), hypoxia, metabolism, nuclear receptors signaling and inflammatory responses. In particular tumor entities as prostate cancer, immense research efforts assisted mapping and describing the overall signaling networks regulated by DNA-PK that control metastasis and tumor progression. Correspondingly, DNA-PK emerges as an obvious therapeutic target in cancer and data pertaining to various pharmacological approaches have been published, largely in context of combination with DNA-damaging agents (DDAs) that act by inflicting DNA double strand breaks (DSBs). Currently, new generation inhibitors are tested in clinical trials. Several excellent reviews have been published in recent years covering the biology of DNA-PK and its role in cancer. In the current article we are aiming to systematically describe the main findings on DNA-PK signaling in major cancer types, focusing on both preclinical and clinical reports and present a detailed current status of the DNA-PK inhibitors repertoire.
Collapse
|
33
|
Kim SY, Kim HJ, Kim HJ, Kim CH. Non-Thermal Plasma Induces Antileukemic Effect Through mTOR Ubiquitination. Cells 2020; 9:cells9030595. [PMID: 32131492 PMCID: PMC7140413 DOI: 10.3390/cells9030595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Non-thermal plasma (NTP) has been studied as a novel therapeutic tool for cancer that does not damage healthy cells. In this study, we show that NTP-treated solutions (NTS) can induce death in various leukemia cells through mechanistic target of rapamycin (mTOR) ubiquitination. Previously, we manufactured and demonstrated the efficacy of NTS in solid cancers. NTS did not exhibit any deleterious side effects, such as acute death or weight loss in nude mice. In the present study, NTS induced cell death in myeloid leukemia cells, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). We found that mTOR was downregulated in NTS-treated cells via the ubiquitin-proteasome system (UPS). We also identified ‘really interesting new gene’ finger protein 126 (RNF126) as a novel binding protein for mTOR through protein arrays and determined the role of E3 ligase in NTS-induced mTOR ubiquitination. NTS-derived reactive oxygen species (ROS) affected RNF126 expression and lysosomal dysfunction. These findings suggest that NTS has potential antileukemic effects through RNF126-mediated mTOR ubiquitination with no deleterious side effects. Thus, NTS may represent a new therapeutic method for chemotherapy-resistant leukemia.
Collapse
Affiliation(s)
- Sun-Yong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
| | - Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-5269
| |
Collapse
|
34
|
Abstract
DNA-dependent protein kinase (DNA-PK) is involved in many cellular pathways. It has a key role in the cellular response to DNA damage, in the repair of DNA double-strand break (DNA-DSBs) and as a consequence an important role in maintaining genomic integrity. In addition, DNA-PK has been shown to modulate transcription, to be involved in the development of the immune system and to protect telomeres. These pleotropic involvements and the fact that its expression is de-regulated in cancer have made DNA-PK an intriguing therapeutic target in cancer therapy, especially when combined with agents causing DNA-DSBs such as topoisomerase II inhibitors and ionizing radiation. Different small molecule inhibitors of DNA-PK have been recently synthesized and some are now being tested in clinical trials. This review discusses what is known about DNA-PK, its role in tumor biology, DNA repair and cancer therapy and critically discusses its inhibition as a potential therapeutic approach.
Collapse
Affiliation(s)
- Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy.
| |
Collapse
|
35
|
Munster P, Mita M, Mahipal A, Nemunaitis J, Massard C, Mikkelsen T, Cruz C, Paz-Ares L, Hidalgo M, Rathkopf D, Blumenschein G, Smith DC, Eichhorst B, Cloughesy T, Filvaroff EH, Li S, Raymon H, de Haan H, Hege K, Bendell JC. First-In-Human Phase I Study Of A Dual mTOR Kinase And DNA-PK Inhibitor (CC-115) In Advanced Malignancy. Cancer Manag Res 2019; 11:10463-10476. [PMID: 31853198 PMCID: PMC6916675 DOI: 10.2147/cmar.s208720] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/16/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose This first-in-human Phase I study investigated the safety, pharmacokinetics (PK), pharmacodynamic profile, and preliminary efficacy of CC-115, a dual inhibitor of mammalian target of rapamycin (mTOR) kinase and DNA-dependent protein kinase. Patients and Methods Patients with advanced solid or hematologic malignancies were enrolled in dose-finding and cohort expansion phases. In dose-finding, once-daily or twice-daily (BID) ascending oral doses of CC-115 (range: 0.5-40 mg/day) in 28-day continuous cycles identified the maximum-tolerated dose for cohort expansion in 5 specified tumor types. Twelve additional patients with mixed solid tumors participated in a bioavailability substudy. Results Forty-four patients were enrolled in the dose-finding cohort. Dose-limiting toxicity included thrombocytopenia, stomatitis, hyperglycemia, asthenia/fatigue, and increased transaminases. CC-115 10 mg BID was selected for cohort expansion (n=74) in which fatigue, nausea, and decreased appetite were the most frequent toxicities. Dose-proportional PK was found. CC-115 distributed to glioblastoma tissue (mean tumor/plasma concentration ratio: 0.713). Total exposure of CC-115 was similar under fasting and fed conditions. A patient with endometrial carcinoma remained in complete remission >4 years. Partial response (PR; n=2) and stable disease (SD; n=4) were reported in the bioavailability substudy; SD was reached in 53%, 22%, 21%, and 64% of patients with head and neck squamous cell carcinoma, Ewing sarcoma, glioblastoma multiforme, and castration-resistant prostate cancer, respectively. Chronic lymphocytic leukemia/small lymphocytic lymphoma showed 38% PR and 25% SD. Conclusion CC-115 was well-tolerated, with toxicities consistent with mTOR inhibitors. Together with biomarker inhibition and preliminary efficacy, oral CC-115 10 mg BID is a promising novel anticancer treatment. Clinical trial registration NCT01353625.
Collapse
Affiliation(s)
- Pamela Munster
- UCSF Helen Diller Family Comprehensive Cancer Center, Department of Medicine, San Francisco, CA, USA
| | - Monica Mita
- Samuel Oschin Comprehensive Cancer Institute, Internal Medicine Medical Oncology Department, Los Angeles, CA, USA
| | - Amit Mahipal
- Mayo Clinic, Medical Oncology Department, Rochester, MN, USA
| | - John Nemunaitis
- University of Toledo College of Medicine and Life Sciences, Hematology/Oncology Department, Toledo, OH, USA
| | | | - Tom Mikkelsen
- Henry Ford Health System, Neurology Department, Detroit, MI, USA
| | - Cristina Cruz
- Vall d'Hebron University Hospital, Medical Oncology Department, Barcelona, Spain
| | - Luis Paz-Ares
- University Hospital 12 de Octubre, CNIO, Universidad Complutense & Ciberonc, Medical Oncology Department, Madrid, Spain
| | - Manuel Hidalgo
- Centro Integral Oncológico Clara Campal, Oncology Department, Madrid, Spain
| | - Dana Rathkopf
- Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY, USA
| | - George Blumenschein
- The University of Texas MD Anderson Cancer Center, Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - David C Smith
- University of Michigan, Urology Oncology, Ann Arbor, MI, USA
| | - Barbara Eichhorst
- University Hospital of Cologne, Department I for Internal Medicine, Cologne, Germany
| | - Tim Cloughesy
- David Geffen School of Medicine, Neurology Department, UCLA, Los Angeles, CA, USA
| | - Ellen H Filvaroff
- Celgene Corporation, Translational Development Department, San Francisco, CA, USA
| | - Shaoyi Li
- Celgene Corporation, Department of Statistics, Summit, NJ, USA
| | - Heather Raymon
- Celgene Corporation, Department of Pharmacology, San Diego, CA, USA
| | - Hans de Haan
- Celgene Corporation, Translational Development Department, San Francisco, CA, USA
| | - Kristen Hege
- Celgene Corporation, Translational Development Department, San Francisco, CA, USA
| | - Johanna C Bendell
- Sarah Cannon Research Institute, Drug Development Unit, Tennessee Oncology, Nashville, TN, USA
| |
Collapse
|
36
|
Trenner A, Sartori AA. Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Front Oncol 2019; 9:1388. [PMID: 31921645 PMCID: PMC6921965 DOI: 10.3389/fonc.2019.01388] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly deleterious, with a single unrepaired DSB being sufficient to trigger cell death. Compared to healthy cells, cancer cells have a higher DSB burden due to oncogene-induced replication stress and acquired defects in DNA damage response (DDR) mechanisms. Consequently, hyperproliferating cancer cells rely on efficient DSB repair for their survival. Moreover, augmented DSB repair capacity is a major cause of radio- and chemoresistance and, ultimately, cancer recurrence. Although inherited DDR defects can predispose individuals to develop certain cancers, the very same vulnerability may be therapeutically exploited to preferentially kill tumor cells. A paradigm for DNA repair targeted therapy has emerged in cancers that exhibit mutations in BRCA1 or BRCA2 tumor suppressor genes, conferring a strong defect in homologous recombination, a major and error-free DSB repair pathway. Clinical validation of such approaches, commonly described as synthetic lethality (SL), has been provided by the regulatory approval of poly(ADP-ribose) polymerase 1 inhibitors (PARPi) as monotherapy for BRCA1/2-mutated breast and ovarian tumors. In this review, we will describe the different DSB repair mechanisms and discuss how their specific features could be exploited for cancer therapy. A major emphasis is put on advances in combinatorial treatment modalities and SL approaches arising from DSB repair pathway interdependencies.
Collapse
Affiliation(s)
- Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Puła B, Gołos A, Górniak P, Jamroziak K. Overcoming Ibrutinib Resistance in Chronic Lymphocytic Leukemia. Cancers (Basel) 2019; 11:E1834. [PMID: 31766355 PMCID: PMC6966427 DOI: 10.3390/cancers11121834] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Ibrutinib is the first Bruton's tyrosine kinase (BTK) inhibitor, which showed significant clinical activity in chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) patients regardless of cytogenetic risk factors. Recent results of phase III clinical trials in treatment-naïve CLL patients shift the importance of the agent to frontline therapy. Nevertheless, beside its clinical efficacy, ibrutinib possesses some off-target activity resulting in ibrutinib-characteristic adverse events including bleeding diathesis and arrhythmias. Furthermore, acquired and primary resistance to the drug have been described. As the use of ibrutinib in clinical practice increases, the problem of resistance is becoming apparent, and new methods of overcoming this clinical problem arise. In this review, we summarize the mechanisms of BTK inhibitors' resistance and discuss the post-ibrutinib treatment options.
Collapse
Affiliation(s)
- Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Aleksandra Gołos
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Patryk Górniak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| |
Collapse
|
38
|
Beebe J, Zhang JT. CC-115, a Dual Mammalian Target of Rapamycin/DNA-Dependent Protein Kinase Inhibitor in Clinical Trial, Is a Substrate of ATP-Binding Cassette G2, a Risk Factor for CC-115 Resistance. J Pharmacol Exp Ther 2019; 371:320-326. [PMID: 31455631 DOI: 10.1124/jpet.119.258392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/16/2019] [Indexed: 01/04/2023] Open
Abstract
CC-115, a triazole-containing compound, is a dual mammalian target of rapamycin (mTOR)/DNA-dependent protein kinase (DNA-PK) inhibitor currently in clinical trials. To develop this compound further, we investigated factors that may affect cellular response to CC-115. Previously, fatty acid synthase (FASN) was shown to upregulate DNA-PK activity and contribute to drug resistance; therefore, we hypothesized that FASN may affect cellular response to CC-115. Instead, however, we showed that CC-115 is a substrate of ATP-binding cassette G2 (ABCG2), a member of the ATP-binding cassette transporter superfamily, and that expression of ABCG2, not FASN, affects the potency of CC-115. ABCG2 overexpression significantly increases resistance to CC-115. Inhibiting ABCG2 function, using small-molecule inhibitors, sensitizes cancer cells to CC-115. We also found that CC-115 may be a substrate of ABCB1, another known ABC protein that contributes to drug resistance. These findings suggest that expression of ABC transporters, including ABCB1 and ABCG2, may affect the outcome in clinical trials testing CC-115. Additionally, the data indicate that ABC transporters may be used as markers for future precision use of CC-115. SIGNIFICANCE STATEMENT: In this article, we report our findings on the potential mechanism of resistance to CC-115, a dual inhibitor of mTOR and DNA-PK currently in clinical trials. We show that CC-115 is a substrate of ABCG2 and can be recognized by ABCB1, which contributes to CC-115 resistance. These findings provide novel information and potential guidance on future clinical testing of CC-115.
Collapse
Affiliation(s)
- Jenny Beebe
- Department of Pharmacology and Toxicology (J.B., J.-T.Z.) and IU Simon Cancer Center (J.-T.Z.), Indiana University School of Medicine, Indianapolis, Indiana; and Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.-T.Z.)
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology (J.B., J.-T.Z.) and IU Simon Cancer Center (J.-T.Z.), Indiana University School of Medicine, Indianapolis, Indiana; and Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.-T.Z.)
| |
Collapse
|
39
|
Kothari V, Goodwin JF, Zhao SG, Drake JM, Yin Y, Chang SL, Evans JR, Wilder-Romans K, Gabbara K, Dylgjeri E, Chou J, Sun G, Tomlins SA, Mehra R, Hege K, Filvaroff EH, Schaeffer EM, Karnes RJ, Quigley DA, Rathkopf DE, He HH, Speers C, Spratt DE, Gilbert LA, Ashworth A, Chinnaiyan AM, Raj GV, Knudsen KE, Feng FY. DNA-Dependent Protein Kinase Drives Prostate Cancer Progression through Transcriptional Regulation of the Wnt Signaling Pathway. Clin Cancer Res 2019; 25:5608-5622. [PMID: 31266829 PMCID: PMC6744969 DOI: 10.1158/1078-0432.ccr-18-2387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/07/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Protein kinases are known to play a prominent role in oncogenic progression across multiple cancer subtypes, yet their role in prostate cancer progression remains underexplored. The purpose of this study was to identify kinases that drive prostate cancer progression.Experimental Design: To discover kinases that drive prostate cancer progression, we investigated the association between gene expression of all known kinases and long-term clinical outcomes in tumor samples from 545 patients with high-risk disease. We evaluated the impact of genetic and pharmacologic inhibition of the most significant kinase associated with metastatic progression in vitro and in vivo. RESULTS DNA-dependent protein kinase (DNAPK) was identified as the most significant kinase associated with metastatic progression in high-risk prostate cancer. Inhibition of DNAPK suppressed the growth of both AR-dependent and AR-independent prostate cancer cells. Gene set enrichment analysis nominated Wnt as the top pathway associated with DNAPK. We found that DNAPK interacts with the Wnt transcription factor LEF1 and is critical for LEF1-mediated transcription. CONCLUSIONS Our data show that DNAPK drives prostate cancer progression through transcriptional regulation of Wnt signaling and is an attractive therapeutic target in aggressive prostate cancer.
Collapse
Affiliation(s)
- Vishal Kothari
- Department of Radiation Oncology, University of California at San Francisco, CA
| | - Jonathan F Goodwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Yi Yin
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - S Laura Chang
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Joseph R Evans
- Department of Radiation Oncology, OSF Healthcare, Peoria, Illinois
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Kristina Gabbara
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jonathan Chou
- Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Grace Sun
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rohit Mehra
- Department of Pathology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | - Edward M Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | | | - Housheng H He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Luke A Gilbert
- Department of Urology, University of California at San Francisco, San Francisco, California
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Urology, University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Ganesh V Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, CA.
- Department of Medicine, University of California at San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Department of Urology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
40
|
Dylgjeri E, McNair C, Goodwin JF, Raymon HK, McCue PA, Shafi AA, Leiby BE, de Leeuw R, Kothari V, McCann JJ, Mandigo AC, Chand SN, Schiewer MJ, Brand LJ, Vasilevskaya I, Gordon N, Laufer TS, Gomella LG, Lallas CD, Trabulsi EJ, Feng FY, Filvaroff EH, Hege K, Rathkopf D, Knudsen KE. Pleiotropic Impact of DNA-PK in Cancer and Implications for Therapeutic Strategies. Clin Cancer Res 2019; 25:5623-5637. [PMID: 31266833 DOI: 10.1158/1078-0432.ccr-18-2207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 03/05/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE DNA-dependent protein kinase catalytic subunit (DNA-PK) is a pleiotropic kinase involved in DNA repair and transcriptional regulation. DNA-PK is deregulated in selected cancer types and is strongly associated with poor outcome. The underlying mechanisms by which DNA-PK promotes aggressive tumor phenotypes are not well understood. Here, unbiased molecular investigation in clinically relevant tumor models reveals novel functions of DNA-PK in cancer.Experimental Design: DNA-PK function was modulated using both genetic and pharmacologic methods in a series of in vitro models, in vivo xenografts, and patient-derived explants (PDE), and the impact on the downstream signaling and cellular cancer phenotypes was discerned. Data obtained were used to develop novel strategies for combinatorial targeting of DNA-PK and hormone signaling pathways. RESULTS Key findings reveal that (i) DNA-PK regulates tumor cell proliferation; (ii) pharmacologic targeting of DNA-PK suppresses tumor growth both in vitro, in vivo, and ex vivo; (iii) DNA-PK transcriptionally regulates the known DNA-PK-mediated functions as well as novel cancer-related pathways that promote tumor growth; (iv) dual targeting of DNA-PK/TOR kinase (TORK) transcriptionally upregulates androgen signaling, which can be mitigated using the androgen receptor (AR) antagonist enzalutamide; (v) cotargeting AR and DNA-PK/TORK leads to the expansion of antitumor effects, uncovering the modulation of novel, highly relevant protumorigenic cancer pathways; and (viii) cotargeting DNA-PK/TORK and AR has cooperative growth inhibitory effects in vitro and in vivo. CONCLUSIONS These findings uncovered novel DNA-PK transcriptional regulatory functions and led to the development of a combinatorial therapeutic strategy for patients with advanced prostate cancer, currently being tested in the clinical setting.
Collapse
Affiliation(s)
- Emanuela Dylgjeri
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher McNair
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jonathan F Goodwin
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Peter A McCue
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayesha A Shafi
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin E Leiby
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renée de Leeuw
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vishal Kothari
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jennifer J McCann
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amy C Mandigo
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saswati N Chand
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucas J Brand
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Irina Vasilevskaya
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicolas Gordon
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Talya S Laufer
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard J Trabulsi
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | - Dana Rathkopf
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Karen E Knudsen
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania.,Departments of Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Recent lymphoma genome sequencing projects have shed light on the genomic landscape of indolent and aggressive lymphomas, as well as some of the molecular mechanisms underlying recurrent mutations and translocations in these entities. Here, we review these recent genomic discoveries, focusing on acquired DNA repair defects in lymphoma. In addition, we highlight recently identified actionable molecular vulnerabilities associated with recurrent mutations in chronic lymphocytic leukemia (CLL), which serves as a model entity. RECENT FINDINGS The results of several large lymphoma genome sequencing projects have recently been reported, including CLL, T-PLL and DLBCL. We align these discoveries with proposed mechanisms of mutation acquisition in B-cell lymphomas. Moreover, novel autochthonous mouse models of CLL have recently been generated and we discuss how these models serve as preclinical tools to drive the development of novel targeted therapeutic interventions. Lastly, we highlight the results of early clinical data on novel compounds targeting defects in the DNA damage response of CLL with a particular focus on deleterious ATM mutations. SUMMARY Defects in DNA repair pathways are selected events in cancer, including lymphomas. Specifically, ATM deficiency is associated with PARP1- and DNA-PKcs inhibitor sensitivity in vitro and in vivo.
Collapse
|
42
|
Schmitt A, Feldmann G, Zander T, Reinhardt HC. Targeting Defects in the Cellular DNA Damage Response for the Treatment of Pancreatic Ductal Adenocarcinoma. Oncol Res Treat 2018; 41:619-625. [DOI: 10.1159/000493401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
|
43
|
Enhancement of Radiation Effectiveness in Cervical Cancer Cells by Combining Ionizing Radiation with Hyperthermia and Molecular Targeting Agents. Int J Mol Sci 2018; 19:ijms19082420. [PMID: 30115874 PMCID: PMC6121622 DOI: 10.3390/ijms19082420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 01/03/2023] Open
Abstract
Hyperthermia (HT) and molecular targeting agents can be used to enhance the effect of radiotherapy (RT). The purpose of this paper is to evaluate radiation sensitization by HT and different molecular targeting agents (Poly [ADP-ribose] polymerase 1 inhibitor, PARP1-i; DNA-dependent protein kinase catalytic subunit inhibitor, DNA-PKcs-i and Heat Shock Protein 90 inhibitor, HSP90-i) in cervical cancer cell lines. Survival curves of SiHa and HeLa cells, concerning the combined effects of radiation with hyperthermia and PARP1-i, DNA-PKcs-i or HSP90-i, were analyzed using the linear-quadratic model: S(D)/S(0) = exp − (αD + βD2). The values of the linear-quadratic (LQ) parameters α and β, determine the effectiveness at low and high doses, respectively. The effects of these sensitizing agents on the LQ parameters are compared to evaluate dose-dependent differences in radio enhancement. Combination of radiation with hyperthermia, PARP1-i and DNA-PKcs-i significantly increased the value of the linear parameter α. Both α and β were significantly increased for HSP90-i combined with hyperthermia in HeLa cells, though not in SiHa cells. The Homologous Recombination pathway is inhibited by hyperthermia. When hyperthermia is combined with DNA-PKcs-i and PARP1-i, the Non-Homologous End Joining or Alternative Non-Homologous End Joining pathway is also inhibited, leading to a more potent radio enhancement. The observed increments of the α value imply that significant radio enhancement is obtained at clinically-used radiotherapy doses. Furthermore, the sensitizing effects of hyperthermia can be even further enhanced when combined with other molecular targeting agents.
Collapse
|
44
|
Biological Aspects of mTOR in Leukemia. Int J Mol Sci 2018; 19:ijms19082396. [PMID: 30110936 PMCID: PMC6121663 DOI: 10.3390/ijms19082396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a central processor of intra- and extracellular signals, regulating many fundamental cellular processes such as metabolism, growth, proliferation, and survival. Strong evidences have indicated that mTOR dysregulation is deeply implicated in leukemogenesis. This has led to growing interest in the development of modulators of its activity for leukemia treatment. This review intends to provide an outline of the principal biological and molecular functions of mTOR. We summarize the current understanding of how mTOR interacts with microRNAs, with components of cell metabolism, and with controllers of apoptotic machinery. Lastly, from a clinical/translational perspective, we recapitulate the therapeutic results in leukemia, obtained by using mTOR inhibitors as single agents and in combination with other compounds.
Collapse
|
45
|
George VC, Ansari SA, Chelakkot VS, Chelakkot AL, Chelakkot C, Menon V, Ramadan W, Ethiraj KR, El-Awady R, Mantso T, Mitsiogianni M, Panagiotidis MI, Dellaire G, Vasantha Rupasinghe HP. DNA-dependent protein kinase: Epigenetic alterations and the role in genomic stability of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 780:92-105. [PMID: 31395353 DOI: 10.1016/j.mrrev.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022]
Abstract
DNA-dependent protein kinase (DNA-PK), a member of phosphatidylinositol-kinase family, is a key protein in mammalian DNA double-strand break (DSB) repair that helps to maintain genomic integrity. DNA-PK also plays a central role in immune cell development and protects telomerase during cellular aging. Epigenetic deregulation due to endogenous and exogenous factors may affect the normal function of DNA-PK, which in turn could impair DNA repair and contribute to genomic instability. Recent studies implicate a role for epigenetics in the regulation of DNA-PK expression in normal and cancer cells, which may impact cancer progression and metastasis as well as provide opportunities for treatment and use of DNA-PK as a novel cancer biomarker. In addition, several small molecules and biological agents have been recently identified that can inhibit DNA-PK function or expression, and thus hold promise for cancer treatments. This review discusses the impact of epigenetic alterations and the expression of DNA-PK in relation to the DNA repair mechanisms with a focus on its differential levels in normal and cancer cells.
Collapse
Affiliation(s)
- Vazhappilly Cijo George
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shabbir Ahmed Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Vipin Shankar Chelakkot
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | - Chaithanya Chelakkot
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Cancer Biology Department, National Cancer Institute and College of Medicine, Cairo University, Cairo, Egypt
| | - Theodora Mantso
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Melina Mitsiogianni
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Mihalis I Panagiotidis
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
46
|
Mihalyova J, Jelinek T, Growkova K, Hrdinka M, Simicek M, Hajek R. Venetoclax: A new wave in hematooncology. Exp Hematol 2018; 61:10-25. [PMID: 29477371 DOI: 10.1016/j.exphem.2018.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
Inhibitors of antiapoptotic proteins of the BCL2 family can successfully restart the deregulated process of apoptosis in malignant cells. Whereas nonselective agents have been limited by their affinity to different BCL2 members, thus inducing excessive toxicity, the highly selective BCL2 inhibitor venetoclax (ABT-199, Venclexta™) has an acceptable safety profile. To date, it has been approved in monotherapy for the treatment of relapsed or refractory chronic lymphocytic leukemia (CLL) with 17p deletion. Extension of indications can be expected in monotherapy and in combination regimens. Sensitivity to venetoclax is not common in lymphomas, but promising outcomes have been achieved in the mantle cell lymphoma group. Venetoclax is also active in multiple myeloma patients, especially in those with translocation t(11;14), even if high-risk features such as del17p are also present. Surprisingly, positive results are being obtained in elderly acute myeloid leukemia patients, in whom inhibition of BCL2 is able to substantially increase the efficacy of low-dose cytarabine or hypomethylating agents. Here, we provide a summary of available results from clinical trials and describe a specific mechanism of action that stands behind the efficacy of venetoclax in hematological malignancies.
Collapse
Affiliation(s)
- Jana Mihalyova
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Tomas Jelinek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Katerina Growkova
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Matous Hrdinka
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michal Simicek
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Roman Hajek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
47
|
The role of mTOR-mediated signaling in the regulation of cellular migration. Immunol Lett 2018; 196:74-79. [PMID: 29408410 DOI: 10.1016/j.imlet.2018.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Mechanistic target for rapamycin (mTOR) is a serine/threonine protein kinase that forms two distinct complexes mTORC1 and mTORC2, integrating mitogen and nutrient signals to regulate cell survival and proliferation; processes which are commonly deregulated in human cancers. mTORC1 and mTORC2 have divergent molecular associations and cellular functions: mTORC1 regulates in mRNA translation and protein synthesis, while mTORC2 is involved in the regulation of cellular survival and metabolism. Through AKT phosphorylation/activation, mTORC2 has also been reported to regulate cell migration. Recent attention has focused on the aberrant activation of the PI3K/mTOR pathway in B cell malignancies and there is growing evidence for its involvement in disease pathogenesis, due to its location downstream of other established novel drug targets that intercept B cell receptor (BCR) signals. Shared pharmacological features of BCR signal inhibitors include a striking "lymphocyte redistribution" effect whereby patients experience a sharp increase in lymphocyte count on initiation of therapy followed by a steady decline. Chronic lymphocytic leukemia (CLL) serves as a paradigm for migration studies as lymphocytes are among the most widely travelled cells in the body, a product of their role in immunological surveillance. The subversion of normal lymphocyte movement in CLL is being elucidated; this review aims to describe the migration impairment which occurs as part of the wider context of cancer cell migration defects, with a focus on the role of mTOR in mediating migration effects downstream of BCR ligation and other microenvironmental signals.
Collapse
|
48
|
|
49
|
Abstract
Maintaining the genetic integrity is a key process in cell viability and is enabled by a wide network of repair pathways. When this system is defective, it generates genomic instability and results in an accumulation of chromosomal aberrations and mutations that may be responsible for various clinical phenotypes, including susceptibility to develop cancer. Indeed, these defects can promote not only the initiation of cancer, but also allow the tumor cells to rapidly acquire mutations during their evolution. Several genes are involved in these damage repair systems and particular polymorphisms are predictive of the onset of cancer, the best described of them being BRCA. In addition to its impact on carcinogenesis, the DNA damage repair system is now considered as a therapeutic target of choice for cancer treatment, as monotherapy or in combination with other cytotoxic therapies, such as chemotherapies or radiotherapy. PARP inhibitors are nowadays the best known, but other agents are emerging in the field of clinical research. The enthusiasm in this area is coupled with promising results and a successful collaboration between clinicians and biologists would allow to optimize treatment plans in order to take full advantage of the DNA repair system modulation.
Collapse
|
50
|
Eberst L, Brahmi M, Cassier PA. [DNA repair as a therapeutic target]. Bull Cancer 2017; 104:988-998. [PMID: 29132681 DOI: 10.1016/j.bulcan.2017.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
The transmission of an intact and stable genetic code at each cell division relies on different DNA repair systems. Germline mutations of some of these genes cause cancer predisposition, whereas somatic mutations are frequently found in various cancer types, generating genomic instability. As a consequence, cancer cell becomes more susceptible to additional DNA damage. Pharmacological inhibition of DNA repair pathways exploits this frailty: it triggers more damages than cancer cell can tolerate, finally leading to apoptosis. The success of PARP (poly-ADP-ribose polymerase) inhibitors in BRCA1/2-mutated ovarian cancer shows the clinical relevance of this strategy. Herein, we explain the functioning of different DNA-repair pathways, describe the implicated proteins, and their close relation with cell-cycle checkpoints. We focus on novel therapeutic agents targeting DNA repair, their clinical results, and discuss challenges of combination therapies.
Collapse
Affiliation(s)
- Lauriane Eberst
- Centre Léon-Bérard, département de médecine, 28, rue Laennec, 69008 Lyon, France.
| | - Medhi Brahmi
- Centre Léon-Bérard, département de médecine, 28, rue Laennec, 69008 Lyon, France
| | - Philippe A Cassier
- Centre Léon-Bérard, département de médecine, 28, rue Laennec, 69008 Lyon, France
| |
Collapse
|