1
|
Enache A, Carty SA, Babushok DV. Origins of T-cell-mediated autoimmunity in acquired aplastic anaemia. Br J Haematol 2025; 206:1035-1053. [PMID: 39836983 PMCID: PMC11985373 DOI: 10.1111/bjh.19993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/28/2024] [Indexed: 01/23/2025]
Abstract
Acquired aplastic anaemia (AA) is an autoimmune bone marrow failure disease resulting from a cytotoxic T-cell-mediated attack on haematopoietic stem and progenitor cells (HSPCs). Despite significant progress in understanding the T-cell repertoire alterations in AA, identifying specific pathogenic T cells in AA patients has remained elusive, primarily due to the unknown antigenic targets of the autoimmune attack. In this review, we will synthesize findings from several decades of research to critically evaluate the current knowledge on T-cell repertoires in AA. We will highlight new insights gained from recent in vitro studies of candidate autoreactive T cells isolated from AA patients and will discuss efforts to identify shared T-cell clonotypes in AA. Finally, we will discuss emerging evidence on the potential T-cell cross-reactivity between HSPC and common viral epitopes that may contribute to the development of AA in some patients. We conclude by highlighting the areas of consensus and limitations, as well as the ongoing uncertainties, and we identify promising directions for future research in the field.
Collapse
MESH Headings
- Anemia, Aplastic/genetics
- Anemia, Aplastic/immunology
- Autoimmunity/genetics
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Hematopoietic Stem Cells/immunology
- Epitopes, T-Lymphocyte/immunology
- Antigens, Viral/immunology
- Immune Tolerance
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Lymphocyte Activation
- Humans
- Gene Rearrangement, T-Lymphocyte
- T-Lymphocytes, Cytotoxic/immunology
- Viruses/immunology
Collapse
Affiliation(s)
- Aura Enache
- Drexel University College of MedicineDrexel UniversityPhiladelphiaPennsylvaniaUSA
- Division of Hematology‐Oncology, Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shannon A. Carty
- Division of Hematology and Oncology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Daria V. Babushok
- Division of Hematology‐Oncology, Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Comprehensive Bone Marrow Failure Center, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Mao J, Zhao J, Pan H, Gao Z, Zhang L, Li W, Fang L, Liu C, Su P, Wang H, Zhou J, Shi J. Application of platelet transcriptomics for assessing treatment effectiveness and predicting long-term platelet counts recovery in aplastic anemia. J Thromb Haemost 2025; 23:692-703. [PMID: 39547652 DOI: 10.1016/j.jtha.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Aplastic anemia (AA) is a bone marrow failure disease for which the means of assessing and predicting the therapeutic effectiveness are still relatively limited. Thrombocytopenia is often the earliest and most severe symptom in patients newly diagnosed with AA. While clinical consideration is usually given to the quantitative changes in platelets during treatment, there is little focus on the resolution of the molecular characteristics of platelets in AA. OBJECTIVES To investigate the changes in platelet molecular characteristics throughout the treatment process of AA, and to explore the use of transcriptomics for monitoring and predicting treatment outcomes. METHODS We comprehensively analyzed platelet transcriptomic changes in patients with AA at initial diagnosis and different stages of treatment effectiveness using bulk transcriptome sequencing. RESULTS Genes associated with cell proliferation, erythroid function, and amino acid transport were elevated in newly diagnosed AA. Conversely, genes linked to histones, thrombopoiesis, mitochondrial energy metabolism, and signaling pathways were significantly downregulated. Additionally, 60.6% of the differentially expressed genes were substantially restored following complete remission. Furthermore, through the examination of longitudinal samples, we identified recovery ascending genes that could serve as viable biomarkers for assessing treatment effectiveness in AA. Besides, we observed that higher expression levels of recovery ascending genes may predict superior long-term platelet counts recovery 6 months in advance in patients with partial response. CONCLUSION The platelet transcriptome undergoes profound changes and can serve as a potential indicator for assessing treatment effectiveness and predicting long-term platelet counts recovery in AA.
Collapse
Affiliation(s)
- Jin Mao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Jingyu Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Hong Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Zhen Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Lele Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Weiwang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Liwei Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
3
|
Gupta M, Shanmukhaiah C, Vundinti BR, Jose A, Tiwari S, Bhowmick A, Madkaikar M. Unveiling immunological signatures and predictors of response to immunosuppressive therapy in acquired aplastic anemia. Clin Exp Immunol 2024; 218:291-299. [PMID: 39136361 PMCID: PMC11557134 DOI: 10.1093/cei/uxae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 11/14/2024] Open
Abstract
Acquired aplastic anemia (AA) often results from immune destruction of hematopoietic stem and progenitor cells. However, only 60%-70% of patients with AA respond to immunosuppressive therapy (IST). There is a lack of strong predictive markers for response to IST which can help therapy. Our study sought to pinpoint unique immune markers in AA patients and validate established predictors for response to IST. We enrolled 51 severe AA patients and analyzed 57 immunological parameters via flow cytometry. Additionally, we measured paroxysmal nocturnal hemoglobinuria (PNH) clone, telomere length, and thrombopoietin (TPO) levels prior to IST. After a 6-month follow-up, a response was observed. Patients with AA had a distinct immunological signature characterized by absolute lymphopenia, skewed CD4/CD8 ratio with expansion of CD8 T cells with activated and senescent phenotype. Treg counts were reduced, while the proportion of Treg A and B was comparable to controls. Treatment response was correlated with elevated absolute neutrophil count (ANC), absolute reticulocyte count (ARC), and reduced CD57+ CD8+ naive cells and B cell % before therapy. However, predictors like TPO, telomere length, and PNH did not emerge as indicators of treatment response. Identifying predictors for treatment response in AA is challenging due to abnormal hematopoiesis, genetic mutations, and treatment variables.
Collapse
Affiliation(s)
- Maya Gupta
- Paediatric Immunology and Leucocytes Biology Department, ICMR-National Institute of Immunohematology, Mumbai, India
| | | | - Babu Rao Vundinti
- Paediatric Immunology and Leucocytes Biology Department, ICMR-National Institute of Immunohematology, Mumbai, India
| | - Amrutha Jose
- Paediatric Immunology and Leucocytes Biology Department, ICMR-National Institute of Immunohematology, Mumbai, India
| | - Shashank Tiwari
- Mathematics Department, Institute of Chemical Technology (ICT), Mumbai, India
| | - Amiya Bhowmick
- Mathematics Department, Institute of Chemical Technology (ICT), Mumbai, India
| | - Manisha Madkaikar
- Paediatric Immunology and Leucocytes Biology Department, ICMR-National Institute of Immunohematology, Mumbai, India
| |
Collapse
|
4
|
Sankar D, Oviya IR. Multidisciplinary approaches to study anaemia with special mention on aplastic anaemia (Review). Int J Mol Med 2024; 54:95. [PMID: 39219286 PMCID: PMC11410310 DOI: 10.3892/ijmm.2024.5419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Anaemia is a common health problem worldwide that disproportionately affects vulnerable groups, such as children and expectant mothers. It has a variety of underlying causes, some of which are genetic. A comprehensive strategy combining physical examination, laboratory testing (for example, a complete blood count), and molecular tools for accurate identification is required for diagnosis. With nearly 400 varieties of anaemia, accurate diagnosis remains a challenging task. Red blood cell abnormalities are largely caused by genetic factors, which means that a thorough understanding requires interpretation at the molecular level. As a result, precision medicine has become a key paradigm, utilising artificial intelligence (AI) techniques, such as deep learning and machine learning, to improve prognostic evaluation, treatment prediction, and diagnostic accuracy. Furthermore, exploring the immunomodulatory role of vitamin D along with biomarker‑based molecular techniques offers promising avenues for insight into anaemia's pathophysiology. The intricacy of aplastic anaemia makes it particularly noteworthy as a topic deserving of concentrated molecular research. Given the complexity of anaemia, an integrated strategy integrating clinical, laboratory, molecular, and AI techniques shows a great deal of promise. Such an approach holds promise for enhancing global anaemia management options in addition to advancing our understanding of the illness.
Collapse
Affiliation(s)
- Divya Sankar
- Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu 601103, India
| | - Iyyappan Ramalakshmi Oviya
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu 601103, India
| |
Collapse
|
5
|
Vissers LTW, van Ostaijen-ten Dam MM, Melsen JE, van der Spek YM, Kemna KP, Lankester AC, van der Burg M, Mohseny AB. Potential role of B- and NK-cells in the pathogenesis of pediatric aplastic anemia through deep phenotyping. Front Immunol 2024; 15:1328175. [PMID: 39229270 PMCID: PMC11368747 DOI: 10.3389/fimmu.2024.1328175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Pediatric patients with unexplained bone marrow failure (BMF) are often categorized as aplastic anemia (AA). Based on the accepted hypothesis of an auto-immune mechanism underlying AA, immune suppressive therapy (IST) might be effective. However, due to the lack of diagnostic tools to identify immune AA and prognostic markers to predict IST response together with the unequaled curative potential of hematopoietic stem cell transplantation (HSCT), most pediatric severe AA patients are momentarily treated by HSCT if available. Although several studies indicate oligoclonal T-cells with cytotoxic activities towards the hematopoietic stem cells, increasing evidence points towards defective inhibitory mechanisms failing to inhibit auto-reactive T-cells. Methods We aimed to investigate the role of NK- and B-cells in seven pediatric AA patients through a comprehensive analysis of paired bone marrow and peripheral blood samples with spectral flow cytometry in comparison to healthy age-matched bone marrow donors. Results We observed a reduced absolute number of NK-cells in peripheral blood of AA patients with a skewed distribution towards CD56bright NK-cells in a subgroup of patients. The enriched CD56bright NK-cells had a lower expression of CD45RA and TIGIT and a higher expression of CD16, compared to healthy donors. Functional analysis revealed no differences in degranulation. However, IFN-γ production and perforin expression of NK-cells were reduced in the CD56bright-enriched patient group. The diminished NK-cell function in this subgroup might underly the auto-immunity. Importantly, NK-function of AA patients with reduced CD56bright NK-cells was comparable to healthy donors. Also, B-cell counts were lower in AA patients. Subset analysis revealed a trend towards reduction of transitional B-cells in both absolute and relative numbers compared to healthy controls. As these cells were previously hypothesized as regulatory cells in AA, decreased numbers might be involved in defective inhibition of auto-reactive T-cells. Interestingly, even in patients with normal distribution of precursor B-cells, the transitional compartment was reduced, indicating partial differentiation failure from immature to transitional B-cells or a selective loss. Discussion Our findings provide a base for future studies to unravel the role of transitional B-cells and CD56bright NK-cells in larger cohorts of pediatric AA patients as diagnostic markers for immune AA and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Lotte T. W. Vissers
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Monique M. van Ostaijen-ten Dam
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Janine E. Melsen
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Yanna M. van der Spek
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Koen P. Kemna
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Arjan C. Lankester
- Pediatric Hematology and Stem Cell Transplantation Unit, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Alexander B. Mohseny
- Pediatric Hematology and Stem Cell Transplantation Unit, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| |
Collapse
|
6
|
Sun N, Zhang M, Kong J, Li J, Dong Y, Wang X, Fu L, Zhou Y, Chen Y, Li Y, Sun X, Guo R. Dysregulated T-cell homeostasis and decreased CD30 + Treg proliferating in aplastic anemia. Heliyon 2024; 10:e35775. [PMID: 39170389 PMCID: PMC11337026 DOI: 10.1016/j.heliyon.2024.e35775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Aplastic anemia (AA) is an autoimmune hematopoietic disease mediated by autoreactive T cells leading to bone marrow failure. However, the precise role of autoreactive T cells in the development of AA is not fully understood, hindering the advancement of therapeutic and diagnostic strategies. In this study, we conducted a single-cell transcriptome analysis of CD8+ T cells, conventional CD4+ T (CD4+ Tconv) cells, and Treg cells, to elucidate the potential disruption of T cell homeostasis in patients with AA. We identified changes in CD4+ Tconv cells, including loss of homeostasis in naïve and memory cells and increased differentiation potential in T helper type 1 (TH1), T helper type 2 (TH2), and T helper type 17 (TH17) cells. Additionally, we identified naïve and memory CD8+ T cells that were enforced into an effector state. CD127 is an ideal surface marker for assessing the immune state of CD8+ T cells,as identified by flow cytometry. Abnormal expression of TNFSF8 has been observed in AA and other autoimmune diseases. Flow cytometry analysis revealed that TNFRSF8 (CD30), a receptor for TNFSF8, was predominantly present in human Treg cells. Importantly, patients with AA have a decreased CD30+ Treg subset. RNA-sequencing analysis revealed, that the CD30+ Treg cells are characterized by high proliferation and a remarkable immunosuppressive phenotype. Taken, together, we propose that abnormal TNFSF8/TNFRSF8 signaling is involved in dysfunctional T cell immunity by increasing the destruction of CD30+ Treg cells.
Collapse
Affiliation(s)
- Nannan Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Kong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Dong
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoqian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liyan Fu
- Department of Laboratory Medicine, The First Clinical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yiwei Zhou
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaoyao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlei Sun
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Sun W, Lin ZH, Wang H, Jia H, Tong LG, Zhang ZP, Li W, Zhou CC, Liu H. [Homing and characteristic analysis of macrophage in immune-mediated aplastic anemia model mice]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:594-598. [PMID: 39134493 PMCID: PMC11310798 DOI: 10.3760/cma.j.cn121090-20230927-00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 12/06/2024]
Abstract
To investigate the dynamic homing process and characteristics of macrophages in different organs of immune-mediated aplastic anemia (AA) model mice. Macrophages in donor lymph nodes were sorted by magnetic beads and labeled with PKH67. After modeling according to the preparation method of the AA model, peripheral blood rountine analysis, bone marrow biopsy and HE staining results were analyzed to verify the modeling effect. On days 4, 8, and 12 of modeling, the bone marrow, spleen, and lymph node mononuclear cells were collected, and dynamic changes of PKH67-labeled macrophages in donor mice were analyzed by flow cytometry. In this study, dynamic changes in PKH67-labeled macrophages in the pathogenesis of AA model mice were explored. Macrophages in donor mice homed to the lymph nodes, expanding and differentiating in the lymph nodes, and finally transported to the bone marrow and spleen. Through proteomics mass spectrometry analysis, the related immune inflammatory response pathway of macrophages involved in the activation of the AA bone marrow microenvironment was preliminarily revealed, which provides a basis for the pathological macrophages involved in the pathogenesis of AA model mice.
Collapse
Affiliation(s)
- W Sun
- Medical School, Nantong University, Nantong 226001, China Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Z H Lin
- Medical School, Nantong University, Nantong 226001, China Affiliated Hospital of Nantong University, Nantong 226001, China
| | - H Wang
- Affiliated Hospital of Nantong University, Nantong 226001, China
| | - H Jia
- Affiliated Hospital of Nantong University, Nantong 226001, China
| | - L G Tong
- Yixing People's Hospital, Yixing 214200, China
| | - Z P Zhang
- Medical School, Nantong University, Nantong 226001, China
| | - W Li
- Medical School, Nantong University, Nantong 226001, China
| | - C C Zhou
- Medical School, Nantong University, Nantong 226001, China
| | - H Liu
- Medical School, Nantong University, Nantong 226001, China Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Kinsella FAM, Maroto MAL, Loke J, Craddock C. Strategies to reduce relapse risk in patients undergoing allogeneic stem cell transplantation for acute myeloid leukaemia. Br J Haematol 2024; 204:2173-2183. [PMID: 38602216 DOI: 10.1111/bjh.19463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Allogeneic stem cell transplantation is a centrally important curative strategy in adults with acute myeloid leukaemia; however, relapse occurs in a significant proportion of patients and remains the leading cause of treatment failure. The prognosis for patients who relapse post-transplant remains poor, and the development of new strategies with the ability to reduce disease recurrence without increasing transplant toxicity remains a priority. In this review, within the context of our understanding of disease biology and the graft-versus-leukaemia (GVL) effect, we will discuss established, evolving and novel approaches for increasing remission rates, decreasing measurable residual disease pretransplant, future methods to augment the GVL effect and the opportunities for post-transplant maintenance. Future progress depends upon the development of innovative trials and networks, which will ensure the rapid assessment of emerging therapies in prospective clinical trials.
Collapse
Affiliation(s)
- Francesca A M Kinsella
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Maria A L Maroto
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Justin Loke
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Charles Craddock
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Clinical Trials Unit, University of Warwick, Warwick, UK
| |
Collapse
|
9
|
Sabreen G, Rahman K, Gupta R, Chaturvedi CP, Srivastava J, Chandra D, Singh MK, Yadav S, Sharma A, Sarkar M, Kashyap R. Role of miRNAs in T-cell activation and Th17/Treg-cell imbalance in acquired aplastic anemia. Int J Lab Hematol 2024; 46:515-522. [PMID: 38357712 DOI: 10.1111/ijlh.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Altered T-cell repertoire with an aberrant T-cell activation and imbalance of the Th17/Treg cells has been reported in acquired aplastic anemia (aAA). miRNAs are well known to orchestrate T-cell activation and differentiation, however, their role in aAA is poorly characterized. The study aimed at identifying the profile of miRNAs likely to be involved in T-cell activation and the Th17/Treg-cell imbalance in aAA, to explore newer therapeutic targets. METHODS Five milliliters peripheral blood samples from 30 patients of aAA and 15 healthy controls were subjected to flow cytometry for evaluating Th17- and Treg-cell subsets. The differential expression of 7 selected miRNAs viz; hsa-miR-126-3p, miR-146b-5p, miR-155-5p, miR-16, miR-17, miR-326, and miR-181c was evaluated in the PB-MNCs. Expression analysis of the miRNAs was performed using qRT-PCR and fold change was calculated by 2-ΔΔCt method. The alterations in the target genes of deregulated miRNAs were assessed by qRT-PCR. The targets studied included various transcription factors, cytokines, and downstream proteins. RESULTS The absolute CD3+ lymphocytes were significantly elevated in the PB of aAA patients when compared with healthy controls (p < 0.0035), however, the CD4:CD8 ratio was unperturbed. Th17: Treg-cell ratio was altered in aAA patients (9.1 vs. 3.7%, p value <0.05), which correlated positively with disease severity and the PNH positive aAA. Across all severities of aAA, altered expression of the 07 miRNAs was noted in comparison to controls; upregulation of miR-155 (FC-2.174, p-value-0.0001), miR-146 (FC-2.006, p-value-0.0001), and miR-17 (FC-3.1, p-value-0.0001), and downregulation of miR-126 (FC-0.329, p-value-0.0001), miR-181c (FC-0.317, p-value-0.0001), miR-16 (FC-0.348, p-value-0.0001), and miR-326 (FC-0.334, p-value-0.0001). Target study for these miRNAs revealed an increased expression of transcription factors responsible for Th1 and Th17 differentiation (T-bet, RORϒt, IL-17, IL-6, and IFN-ϒ), T-cell activation (NFκB, MYC, and PIK3R2), downregulation of FOX-P3, and other regulatory downstream molecules like SHIP-1, ETS-1, IRAK-1, TRAF-6, and PTEN. CONCLUSION The study for the first time highlights the plausible role of different miRNAs in deregulating the Th17/Treg-cell imbalance in aAA, and comprehensively suggest the role of altered NF-kB and mTOR pathways in aAA. The axis may be actively explored for development of newer therapeutic targets in aAA.
Collapse
Affiliation(s)
- G Sabreen
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Khaliqur Rahman
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ruchi Gupta
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Chandra P Chaturvedi
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Jyotika Srivastava
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Dinesh Chandra
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Manish K Singh
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - S Yadav
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Akhilesh Sharma
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Sarkar
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rajesh Kashyap
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
10
|
Wang JB, Du MW, Zheng Y. Effect of ginsenoside Rg1 on hematopoietic stem cells in treating aplastic anemia in mice via MAPK pathway. World J Stem Cells 2024; 16:591-603. [PMID: 38817329 PMCID: PMC11135254 DOI: 10.4252/wjsc.v16.i5.591] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Aplastic anemia (AA) presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells, with the current therapeutic options being notably limited. AIM To assess the therapeutic potential of ginsenoside Rg1 on AA, specifically its protective effects, while elucidating the mechanism at play. METHODS We employed a model of myelosuppression induced by cyclophosphamide (CTX) in C57 mice, followed by administration of ginsenoside Rg1 over 13 d. The investigation included examining the bone marrow, thymus and spleen for pathological changes via hematoxylin-eosin staining. Moreover, orbital blood of mice was collected for blood routine examinations. Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice. Additionally, the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot. RESULTS Administration of CTX led to significant damage to the bone marrow's structural integrity and a reduction in hematopoietic cells, establishing a model of AA. Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice. In comparison to the AA group, ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX. Furthermore, it helped alleviate the blockade in the cell cycle. Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway. CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression, primarily through modulating the MAPK signaling pathway, which paves the way for a novel therapeutic strategy in treating AA, highlighting the potential of ginsenoside Rg1 as a beneficial intervention.
Collapse
Affiliation(s)
- Jin-Bo Wang
- Internal Medicine of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Ming-Wei Du
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Yan Zheng
- Department of Hepatic, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310023, Zhejiang Province, China.
| |
Collapse
|
11
|
Piekarska A, Pawelec K, Szmigielska-Kapłon A, Ussowicz M. The state of the art in the treatment of severe aplastic anemia: immunotherapy and hematopoietic cell transplantation in children and adults. Front Immunol 2024; 15:1378432. [PMID: 38646536 PMCID: PMC11026616 DOI: 10.3389/fimmu.2024.1378432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Acquired aplastic anemia (AA) is an immune-mediated bone marrow (BM) failure where marrow disruption is driven by a cytotoxic T-cell-mediated autoimmune attack against hematopoietic stem cells. The key diagnostic challenge in children, but also in adults, is to exclude the possible underlying congenital condition and myelodysplasia. The choice of treatment options, either allogeneic hematopoietic cell transplantation (alloHCT) or immunosuppressive therapy (IST), depends on the patient's age, comorbidities, and access to a suitable donor and effective therapeutic agents. Since 2022, horse antithymocyte globulin (hATG) has been available again in Europe and is recommended for IST as a more effective option than rabbit ATG. Therefore, an update on immunosuppressive strategies is warranted. Despite an improved response to the new immunosuppression protocols with hATG and eltrombopag, some patients are not cured or remain at risk of aplasia relapse or clonal evolution and require postponed alloHCT. The transplantation field has evolved, becoming safer and more accessible. Upfront alloHCT from unrelated donors is becoming a tempting option. With the use of posttransplant cyclophosphamide, haploidentical HCT offers promising outcomes also in AA. In this paper, we present the state of the art in the management of severe AA for pediatric and adult patients based on the available guidelines and recently published studies.
Collapse
Affiliation(s)
- Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Pawelec
- Department of Oncology, Pediatric Hematology, Clinical Transplantology and Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
12
|
Lan H, Qiu W, Wu J, Hu Z, Zhang X, Zhu L. Formononetin reverses Treg/Th17 imbalance in immune-mediated bone marrow failure mice by regulating the PI3K/Akt signaling pathway. Chin Med 2024; 19:55. [PMID: 38528555 DOI: 10.1186/s13020-024-00919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Severe aplastic anemia (SAA) is a syndrome of bone marrow failure which is life-threatening. Recent studies have demonstrated that CD4 + T cell subsets, including T regulatory (Treg) and T helper 17 (Th17) cells, play a pivotal role in the pathogenesis of SAA. Formononetin (FMN) is a natural compound extracted from the traditional Chinese medicine Huangqi, which has the ability to regulate the imbalance of Treg/Th17 cells in some inflammatory diseases. Nevertheless, the therapeutic effect of FMN in SAA has yet to be definitively established. Therefore, the objective of this research was to investigate the effect of FMN on SAA and elucidate its underlying mechanism. METHODS In vivo experiments, the mice were divided into the following five groups: control, model, low-dose FMN, high-dose FMN, and positive control cyclosporine A group. The immune-mediated bone marrow failure (BMF) mouse model was established by the total body X-ray radiation and lymphocyte infusion. After 10 days of continuous administration of FMN, the numbers of Treg/Th17 cells in the bone marrow and spleen were assessed by flow cytometry. The protein expressions of PI3K/Akt pathway in the bone marrow and spleen was assessed by immunohistochemistry and western blotting. In vitro, the impact of FMN on the differentiation of naive CD4 + T cells into Treg cells was investigated by flow cytometry and ELISA. RESULTS In comparison with the control group, the model group showed a reduction in bone marrow nucleated cells, a significant decrease in peripheral blood cells, and an altered CD8 + /CD4 + T cell ratio. These findings indicate the successful establishment of a mouse model of immune-mediated BMF. After FMN treatment, there were the increased levels of red blood cells and hemoglobin. In addition, FMN mitigated the bone marrow destruction and restored the CD8 + /CD4 + T cell ratio. Furthermore, in comparison with the control group, the model group showed the decreased levels of Treg cells and the increased levels of Th17 cells. After FMN treatment, there was a significantly increased number of Treg cells and a decreased number of Th17 cells. Additionally, FMN remarkably down-regulated the expression levels of PI3K and Akt proteins in immune-mediated BMF mice. CONCLUSIONS FMN alleviates immune-mediated BMF by modulating the balance of Treg/Th17 cells through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Huixuan Lan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wei Qiu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jie Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Hematology, Hospital of Integrative Chinese and Western Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Zhijing Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Hematology, Hospital of Integrative Chinese and Western Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Xiaomin Zhang
- International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen, 518060, China.
| | - Lingling Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Hospital of Integrative Chinese and Western Medicine, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
13
|
Huang L, Huang J, Tang N, Xue H, Lin S, Liu S, Chen Q, Lu Y, Liang Q, Wang Y, Zhu Q, Zheng G, Chen Y, Zhu C, Chen C. Insufficient phosphorylation of STAT5 in Tregs inhibits the expression of BLIMP-1 but not IRF4, reduction the proportion of Tregs in pediatric aplastic anemia. Heliyon 2024; 10:e26731. [PMID: 38486772 PMCID: PMC10938128 DOI: 10.1016/j.heliyon.2024.e26731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Deficiency in regulatory T cells (Tregs) is an important mechanism underlying the pathogenesis of pediatric aplastic anemia, but its specific mechanism is unclear. In our study, we aimed to investigate whether IL-2/STAT5 can regulate the proliferation of Tregs in aplastic anemia (AA) by regulating their expression of B lymphocyte-induced mature protein-1 (BLIMP-1) or interferon regulatory factor 4 (IRF4). Through clinical research and animal experiments, we found that poor activation of the IL-2/STAT5 signaling pathway may leads to low expression of BLIMP-1 in Tregs of children with AA, which leads to defects in the differentiation and proliferation of Tregs in AA. In AA model mice, treatment with IL-2c reversed the decrease in Treg proportions and reduction in Blimp-1 expression in Tregs by increasing the phosphorylation of Stat5 in Tregs. In AA, deficiency of IRF4 expression in Tregs is closely related to the deficiency of Tregs, but is not regulated by the IL-2/STAT5 pathway.
Collapse
Affiliation(s)
- Lifen Huang
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Junbin Huang
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Nannan Tang
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Hongman Xue
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Shaofen Lin
- Department of Pediatric Hematopathy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510000, Guangzhou, Guangdong, China
| | - Su Liu
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Qihui Chen
- Department of Pediatric Hematopathy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510000, Guangzhou, Guangdong, China
| | - Yinsi Lu
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Qian Liang
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Yun Wang
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Qingqing Zhu
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Guoxing Zheng
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Yun Chen
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Chengming Zhu
- Department of Pathology, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| | - Chun Chen
- Pediattic Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affifiliated Hospital, Sun Yat-sen University, 518107, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
15
|
Solomou EE, Kattamis A, Symeonidis A, Sirinian C, Salamaliki C, Tzanoudaki M, Diamantopoulos P, Plakoula E, Palasopoulou M, Giannakoulas N, Kontandreopoulou CN, Kollia P, Viniou NA, Galanopoulos A, Liossis SN, Vassilopoulos G. Increased age-associated B cells in patients with acquired aplastic anemia correlate with IFN-γ. Blood Adv 2024; 8:399-402. [PMID: 38011610 PMCID: PMC10820307 DOI: 10.1182/bloodadvances.2023010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Affiliation(s)
- Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Antonis Kattamis
- Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Argyris Symeonidis
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Chaido Sirinian
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Christina Salamaliki
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Marianna Tzanoudaki
- Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Eva Plakoula
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Maria Palasopoulou
- Department of Hematology, University of Thessaly Medical School, Larissa, Greece
| | | | | | - Panagoula Kollia
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | | | - George Vassilopoulos
- Department of Hematology, University of Thessaly Medical School, Larissa, Greece
| |
Collapse
|
16
|
Wang J, Zhou R, Zhong L, Chen Y, Wu X, Huang L, Tian Y, Mo W, Wang S, Liu Y. High-dimensional immune profiling using mass cytometry reveals IL-17A-producing γδ T cells as biomarkers in patients with T-cell-activated idiopathic severe aplastic anemia. Int Immunopharmacol 2023; 125:111163. [PMID: 37976596 DOI: 10.1016/j.intimp.2023.111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Severe aplastic anemia (SAA) is a bone marrow failure syndrome characterized by activated T cells. Features of T-cell activation in the pathophysiology of SAA remain unknown. To understand T cell activation states, we investigated the atlas of peripheral immune cells and the secreted cytokine network with single cell mass cytometry analysis. We found decreased γδ T-cell frequencies in all patients with SAA, together with a significantly increased proportion of interleukin (IL)-17A-producing cell subsets. Cytokine network analysis of immune cells showed significant positive relationship between IL and 17A production from immune cells and disease severity of severe aplastic anemia. On separating SAA into two distinct subgroups based on T-cell activation stage, the proportion of γδ T cells tended to decrease in the T-cell-activated SAA group compared with non-T-cell-activated group. And the proportion of IL-17A-producing γδ T cells (γδT17) within γδ T cells was newly found to be significantly higher in the T-cell-activated SAA group, implying that IL-17A production by γδ T cells was associated with T-cell activation. Overall, our study revealed a role of γδT17 cells in mediating autoreactive T-cell activation in SAA and provided a novel diagnostic indicator for monitoring autoreactive T-cell activation status during the progression of aplastic anemia in the clinic.
Collapse
Affiliation(s)
- Jianwei Wang
- Department of Hematology, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, China; Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510005, China
| | - Ruiqing Zhou
- Department of Hematology, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Limei Zhong
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Yinchun Chen
- Department of Hematology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaojun Wu
- Department of Hematology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Yan Tian
- Department of Anesthesiology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330000, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Yufeng Liu
- Department of Hematology, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, China; Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510005, China.
| |
Collapse
|
17
|
Pool ES, Kooy-Winkelaar Y, van Unen V, Falkenburg JF, Koning F, Heemskerk MHM, Tjon JML. Mass cytometric analysis unveils a disease-specific immune cell network in the bone marrow in acquired aplastic anemia. Front Immunol 2023; 14:1274116. [PMID: 38094307 PMCID: PMC10716190 DOI: 10.3389/fimmu.2023.1274116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Idiopathic acquired aplastic anemia (AA) is considered an immune-mediated syndrome of bone marrow failure since approximately 70% of patients respond to immunosuppressive therapy (IST) consisting of a course of anti-thymocyte globulin (ATG) followed by long-term use of ciclosporin. However, the immune response that underlies the pathogenesis of AA remains poorly understood. In this study, we applied high-dimensional mass cytometry on bone marrow aspirates of AA patients pre-ATG, AA patients post-ATG and healthy donors to decipher which immune cells may be implicated in the pathogenesis of AA. We show that the bone marrow of AA patients features an immune cell composition distinct from healthy donors, with significant differences in the myeloid, B-cell, CD4+ and CD8+ T-cells lineages. Specifically, we discovered that AA pre-ATG is characterized by a disease-specific immune cell network with high frequencies of CD16+ myeloid cells, CCR6++ B-cells, Th17-like CCR6+ memory CD4+ T-cells, CD45RA+CCR7+CD38+ CD8+ T-cells and KLRG1+ terminally differentiated effector memory (EMRA) CD8+ T-cells, compatible with a state of chronic inflammation. Successful treatment with IST strongly reduced the levels of CD16+ myeloid cells and showed a trend toward normalization of the frequencies of CCR6++ B-cells, CCR6+ memory CD4+ T-cells and KLRG1+EMRA CD8+ T-cells. Altogether, our study provides a unique overview of the immune landscape in bone marrow in AA at a single-cell level and proposes CCR6 as a potential new therapeutic target in AA.
Collapse
Affiliation(s)
- Emma S. Pool
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Vincent van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jennifer M-L. Tjon
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
18
|
Vissers LTW, van der Burg M, Lankester AC, Smiers FJW, Bartels M, Mohseny AB. Pediatric Bone Marrow Failure: A Broad Landscape in Need of Personalized Management. J Clin Med 2023; 12:7185. [PMID: 38002797 PMCID: PMC10672506 DOI: 10.3390/jcm12227185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Irreversible severe bone marrow failure (BMF) is a life-threatening condition in pediatric patients. Most important causes are inherited bone marrow failure syndromes (IBMFSs) and (pre)malignant diseases, such as myelodysplastic syndrome (MDS) and (idiopathic) aplastic anemia (AA). Timely treatment is essential to prevent infections and bleeding complications and increase overall survival (OS). Allogeneic hematopoietic stem cell transplantation (HSCT) provides a cure for most types of BMF but cannot restore non-hematological defects. When using a matched sibling donor (MSD) or a matched unrelated donor (MUD), the OS after HSCT ranges between 60 and 90%. Due to the introduction of post-transplantation cyclophosphamide (PT-Cy) to prevent graft versus host disease (GVHD), alternative donor HSCT can reach similar survival rates. Although HSCT can restore ineffective hematopoiesis, it is not always used as a first-line therapy due to the severe risks associated with HSCT. Therefore, depending on the underlying cause, other treatment options might be preferred. Finally, for IBMFSs with an identified genetic etiology, gene therapy might provide a novel treatment strategy as it could bypass certain limitations of HSCT. However, gene therapy for most IBMFSs is still in its infancy. This review summarizes current clinical practices for pediatric BMF, including HSCT as well as other disease-specific treatment options.
Collapse
Affiliation(s)
- Lotte T. W. Vissers
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Arjan C. Lankester
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Frans J. W. Smiers
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Alexander B. Mohseny
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| |
Collapse
|
19
|
Kott KA, Chan AS, Vernon ST, Hansen T, Kim T, de Dreu M, Gunasegaran B, Murphy AJ, Patrick E, Psaltis PJ, Grieve SM, Yang JY, Fazekas de St Groth B, McGuire HM, Figtree GA. Mass cytometry analysis reveals altered immune profiles in patients with coronary artery disease. Clin Transl Immunology 2023; 12:e1462. [PMID: 37927302 PMCID: PMC10621005 DOI: 10.1002/cti2.1462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 11/07/2023] Open
Abstract
Objective The importance of inflammation in atherosclerosis is well accepted, but the role of the adaptive immune system is not yet fully understood. To further explore this, we assessed the circulating immune cell profile of patients with coronary artery disease (CAD) to identify discriminatory features by mass cytometry. Methods Mass cytometry was performed on patient samples from the BioHEART-CT study, gated to detect 82 distinct cell subsets. CT coronary angiograms were analysed to categorise patients as having CAD (CAD+) or having normal coronary arteries (CAD-). Results The discovery cohort included 117 patients (mean age 61 ± 12 years, 49% female); 79 patients (68%) were CAD+. Mass cytometry identified changes in 15 T-cell subsets, with higher numbers of proliferating, highly differentiated and cytotoxic cells and decreases in naïve T cells. Five T-regulatory subsets were related to an age and gender-independent increase in the odds of CAD incidence when expressing CCR2 (OR 1.12), CCR4 (OR 1.08), CD38 and CD45RO (OR 1.13), HLA-DR (OR 1.06) and Ki67 (OR 1.22). Markers of proliferation and differentiation were also increased within B cells, while plasmacytoid dendritic cells were decreased. This combination of changes was assessed using SVM models in discovery and validation cohorts (area under the curve = 0.74 for both), confirming the robust nature of the immune signature detected. Conclusion We identified differences within immune subpopulations of CAD+ patients which are indicative of a systemic immune response to coronary atherosclerosis. This immune signature needs further study via incorporation into risk scoring tools for the precision diagnosis of CAD.
Collapse
Affiliation(s)
- Katharine A Kott
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Adam S Chan
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Stephen T Vernon
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Thomas Hansen
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
| | - Taiyun Kim
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Macha de Dreu
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Bavani Gunasegaran
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | | | - Ellis Patrick
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | | | - Stuart M Grieve
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Department of RadiologyRoyal Prince Alfred HospitalSydneyNSWAustralia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Jean Y Yang
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Barbara Fazekas de St Groth
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyUniversity of SydneySydneyNSWAustralia
| | - Helen M McGuire
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyUniversity of SydneySydneyNSWAustralia
| | - Gemma A Figtree
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
20
|
Wu Z, Young NS. Single-cell genomics in acquired bone marrow failure syndromes. Blood 2023; 142:1193-1207. [PMID: 37478398 PMCID: PMC10644099 DOI: 10.1182/blood.2022018581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023] Open
Abstract
Mechanistic studies of immune bone marrow failure are difficult because of the scarcity of residual cells, the involvement of multiple cell types, and the inherent complexities of hematopoiesis and immunity. Single-cell genomic technologies and bioinformatics allow extensive, multidimensional analysis of a very limited number of cells. We review emerging applications of single-cell techniques, and early results related to disease pathogenesis: effector and target cell populations and relationships, cell-autonomous and nonautonomous phenotypes in clonal hematopoiesis, transcript splicing, chromosomal abnormalities, and T-cell receptor usage and clonality. Dense and complex data from single-cell techniques provide insights into pathophysiology, natural history, and therapeutic drug effects.
Collapse
Affiliation(s)
- Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
Yu W, Wang Q, Ge M, Shi X. Natural killer cells in peripheral blood at diagnosis predict response to immunosuppressive therapy in severe aplastic anemia. Clin Exp Med 2023; 23:1815-1822. [PMID: 36244022 DOI: 10.1007/s10238-022-00909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
Abstract
Immunosuppressive therapy (IST) consisting of antihuman thymocyte globulin and cyclosporine A is the first-line therapy for patients with severe aplastic anemia (AA) who are ineligible for undergoing bone marrow transplantation. The aim of the study was to evaluate the correlation between natural killer (NK) cells and response to IST in SAA patients. We retrospectively included 93 AA patients and detected NK cells in peripheral blood by flow cytometry. Both the proportion and absolute number of NK cells in newly diagnosed SAA patients were significantly lower than in controls, while the proportion and absolute number of NK cells in complete remission patients treated with IST were remarkably increased compared with treatment-naïve SAA patients. Additionally, the absolute number of NK cells at diagnosis was positively correlated with initial blood counts. For SAA patients receiving IST, the proportion of NK cells at baseline and 6 months was significantly higher in responders than in non-responders. Unexpectedly, we found that the increase in the proportion of NK cells at 6 months after IST was closely related to the recovery of hematopoiesis. ROC curve identified 7.3% of NK cells proportion at diagnosis as the cutoff value to predict response to IST. The response rate was higher in NK proportion high group than in NK proportion low group. Multivariate logistic regression analysis further confirmed the independent predictive value of NK cells proportion in assessing IST response. The proportion of NK cells at diagnosis may serve as a promising predictor of response to IST in patients with SAA.
Collapse
Affiliation(s)
- Wei Yu
- The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266555, Shandong, People's Republic of China
| | - Qianqian Wang
- The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266555, Shandong, People's Republic of China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Xue Shi
- The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266555, Shandong, People's Republic of China.
| |
Collapse
|
22
|
Arulraj T, Wang H, Emens LA, Santa-Maria CA, Popel AS. A transcriptome-informed QSP model of metastatic triple-negative breast cancer identifies predictive biomarkers for PD-1 inhibition. SCIENCE ADVANCES 2023; 9:eadg0289. [PMID: 37390206 PMCID: PMC10313177 DOI: 10.1126/sciadv.adg0289] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Triple-negative breast cancer (TNBC), a highly metastatic breast cancer subtype, has limited treatment options. While a small number of patients attain clinical benefit with single-agent checkpoint inhibitors, identifying these patients before the therapy remains challenging. Here, we developed a transcriptome-informed quantitative systems pharmacology model of metastatic TNBC by integrating heterogenous metastatic tumors. In silico clinical trial with an anti-PD-1 drug, pembrolizumab, predicted that several features, such as the density of antigen-presenting cells, the fraction of cytotoxic T cells in lymph nodes, and the richness of cancer clones in tumors, could serve individually as biomarkers but had a higher predictive power as combinations of two biomarkers. We showed that PD-1 inhibition neither consistently enhanced all antitumorigenic factors nor suppressed all protumorigenic factors but ultimately reduced the tumor carrying capacity. Collectively, our predictions suggest several candidate biomarkers that might effectively predict the response to pembrolizumab monotherapy and potential therapeutic targets to develop treatment strategies for metastatic TNBC.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leisha A. Emens
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Cesar A. Santa-Maria
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Zhang J, Liu T, Duan Y, Chang Y, Chang L, Liu C, Chen X, Cheng X, Li T, Yang W, Chen X, Guo Y, Chen Y, Zou Y, Zhang L, Zhu X, Zhang Y. Single-cell analysis highlights a population of Th17-polarized CD4+ naïve T cells showing IL6/JAK3/STAT3 activation in pediatric severe aplastic anemia. J Autoimmun 2023; 136:103026. [PMID: 37001436 DOI: 10.1016/j.jaut.2023.103026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/08/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023]
Abstract
Acquired aplastic anemia (AA) is recognized as an immune-mediated disorder resulting from active destruction of hematopoietic cells in bone marrow (BM) by effector T lymphocytes. Bulk genomic landscape analysis and transcriptomic profiling have contributed to a better understanding of the recurrent cytogenetic abnormalities and immunologic cues associated with the onset of hematopoietic destruction. However, the functional mechanistic determinants underlying the complexity of heterogeneous T lymphocyte populations as well as their correlation with clinical outcomes remain to be elucidated. To uncover dysfunctional mechanisms acting within the heterogeneous marrow-infiltrating immune environment and examine their pathogenic interplay with the hematopoietic stem/progenitor pool, we exploited single-cell mass cytometry for BM mononuclear cells of severe AA (SAA) patients pre- and post-immunosuppressive therapy, in contrast to those of healthy donors. Alignment of BM cellular composition with hematopoietic developmental trajectories revealed potential functional roles for non-canonically activated CD4+ naïve T cells in newly-diagnosed pediatric cases of SAA. Furthermore, single-cell transcriptomic profiling highlighted a population of Th17-polarized CD4+CAMK4+ naïve T cells showing activation of the IL-6/JAK3/STAT3 pathway, while gene signature dissection indicated a predisposition to proinflammatory pathogenesis. Retrospective validation from our SAA cohort of 231 patients revealed high plasma levels of IL-6 as an independent risk factor of delayed hematopoietic response to antithymocyte globulin-based immunosuppressive therapy. Thus, IL-6 warrants further investigation as a putative therapeutic target in SAA.
Collapse
|
24
|
Vaht K, Brenner J, Ednersson SB, Ljungman P, Brune M, Andersson PO. Bone marrow expression of CD68/CD163 macrophages, IL-17 and FOXP3 cells in aplastic anemia and their relation to prognosis. Eur J Haematol 2023; 110:313-321. [PMID: 36469034 PMCID: PMC10108308 DOI: 10.1111/ejh.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The primary mechanism for bone marrow failure in aplastic anemia (AA) is autoimmune hematopoietic stem cell destruction. AA can be cured with antithymocyte globulin (ATG) treatment, and some smaller studies have indicated that the number of regulatory T cells (Tregs) may be predictive of response. Additionally, AA patients appear to have elevated numbers of Th17 cells and bone marrow macrophages, but outcome data are missing. METHODS We performed immunohistochemistry on bone marrow biopsies from 121 ATG-treated AA patients and 14 healthy controls, using antibodies against FOXP3 (for Tregs), IL-17 (for Th17), CD68 (for pan-macrophages) and CD163 (for M2 type macrophages) to study their possible relation to ATG response and AA prognosis. RESULTS AA patients had significantly fewer Tregs and Th17 cells but significantly more macrophages compared with controls. Treg, Th17 and pan-macrophage cell numbers were not associated with ATG response or differences in survival. Patients with higher levels of M2 macrophages had improved 5-year overall survival: 79.6% versus 57.4% (p = .017), and this benefit was primarily seen in AA patients with non-severe disease. CONCLUSIONS We found that Treg and Th17 cell numbers did not predict ATG response or survival, whereas M2 macrophages may be associated with improved survival.
Collapse
Affiliation(s)
- Krista Vaht
- Section of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Jonas Brenner
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Susanne Bram Ednersson
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per Ljungman
- Centre of Allogeneic Stem Cell Transplantation Unit (CAST), Karolinska University Hospital and Department of Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Mats Brune
- Section of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Per-Ola Andersson
- Section of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
25
|
Regulatory T cells (Tregs) in liver fibrosis. Cell Death Discov 2023; 9:53. [PMID: 36759593 PMCID: PMC9911787 DOI: 10.1038/s41420-023-01347-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The ability of the human liver to both synthesize extracellular matrix(ECM), as well as regulate fibrogenesis, are integral functions to maintaining homoeostasis. Chronic liver injury stimulates fibrogenesis in response to the imbalance between ECM accumulation and fibrosis resolution. Liver disease that induces fibrogenesis is associated with multiple risk factors like hepatitis infection, schistosomiasis, alcohol, certain drugs, toxicants and emerging aetiology like diabetes and obesity. The activation of hepatic stellate cells (HSCs), whose function is to generate and accumulate ECM, is a pivotal event in liver fibrosis. Simultaneously, HSCs selectively promote regulatory T-cells (Tregs) in an interleukin-2-dependent pattern that displays a dual relationship. On the one hand, Tregs can protect HSCs from NK cell attack, while on the other hand, they demonstrate an inhibitory effect on HSCs. This paper reviews the dual role of Tregs in liver fibrogenesis which includes its promotion of immunosuppression, as well as its activation of fibrosis. In particular, the balance between Tregs and the Th17 cell population, which produce interleukin (IL)-17 and IL-22, is explored to demonstrate their key role in maintaining homoeostasis and immunoregulation. The contradictory roles of Tregs in liver fibrosis in different immune microenvironments and molecular pathways need to be better understood if they are to be deployed to manage this disease.
Collapse
|
26
|
Abstract
Regulatory T cells are an important component of the immune system that plays a key role in maintaining homeostasis. Identification of distinct regulatory T cell subsets is essential to understand their function. Mass cytometry or CyTOF is a technology that enables the simultaneous measurement of up to 50 markers in single cells by using antibodies tagged with heavy metals, which are then detected with time-of-flight mass spectrometry. This chapter describes a mass cytometry approach for phenotypic characterization of regulatory T cells and determination of their master transcription factor Foxp3.
Collapse
Affiliation(s)
- Hugo Barcenilla
- Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Mikael Pihl
- Core Facility, Flow cytometry Unit, Linköping University, Linköping, Sweden
| | - Florence Sjögren
- Core Facility, Flow cytometry Unit, Linköping University, Linköping, Sweden
| | - Louise Magnusson
- Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Rosaura Casas
- Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
27
|
Aplastic Anemia as a Roadmap for Bone Marrow Failure: An Overview and a Clinical Workflow. Int J Mol Sci 2022; 23:ijms231911765. [PMID: 36233062 PMCID: PMC9569739 DOI: 10.3390/ijms231911765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, it has become increasingly apparent that bone marrow (BM) failures and myeloid malignancy predisposition syndromes are characterized by a wide phenotypic spectrum and that these diseases must be considered in the differential diagnosis of children and adults with unexplained hematopoiesis defects. Clinically, hypocellular BM failure still represents a challenge in pathobiology-guided treatment. There are three fundamental topics that emerged from our review of the existing data. An exogenous stressor, an immune defect, and a constitutional genetic defect fuel a vicious cycle of hematopoietic stem cells, immune niches, and stroma compartments. A wide phenotypic spectrum exists for inherited and acquired BM failures and predispositions to myeloid malignancies. In order to effectively manage patients, it is crucial to establish the right diagnosis. New theragnostic windows can be revealed by exploring BM failure pathomechanisms.
Collapse
|
28
|
Kelkka T, Tyster M, Lundgren S, Feng X, Kerr C, Hosokawa K, Huuhtanen J, Keränen M, Patel B, Kawakami T, Maeda Y, Nieminen O, Kasanen T, Aronen P, Yadav B, Rajala H, Nakazawa H, Jaatinen T, Hellström-Lindberg E, Ogawa S, Ishida F, Nishikawa H, Nakao S, Maciejewski J, Young NS, Mustjoki S. Anti-COX-2 autoantibody is a novel biomarker of immune aplastic anemia. Leukemia 2022; 36:2317-2327. [PMID: 35927326 PMCID: PMC9417997 DOI: 10.1038/s41375-022-01654-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
In immune aplastic anemia (IAA), severe pancytopenia results from the immune-mediated destruction of hematopoietic stem cells. Several autoantibodies have been reported, but no clinically applicable autoantibody tests are available for IAA. We screened autoantibodies using a microarray containing >9000 proteins and validated the findings in a large international cohort of IAA patients (n = 405) and controls (n = 815). We identified a novel autoantibody that binds to the C-terminal end of cyclooxygenase 2 (COX-2, aCOX-2 Ab). In total, 37% of all adult IAA patients tested positive for aCOX-2 Ab, while only 1.7% of the controls were aCOX-2 Ab positive. Sporadic non-IAA aCOX-2 Ab positive cases were observed among patients with related bone marrow failure diseases, multiple sclerosis, and type I diabetes, whereas no aCOX-2 Ab seropositivity was detected in the healthy controls, in patients with non-autoinflammatory diseases or rheumatoid arthritis. In IAA, anti-COX-2 Ab positivity correlated with age and the HLA-DRB1*15:01 genotype. 83% of the >40 years old IAA patients with HLA-DRB1*15:01 were anti-COX-2 Ab positive, indicating an excellent sensitivity in this group. aCOX-2 Ab positive IAA patients also presented lower platelet counts. Our results suggest that aCOX-2 Ab defines a distinct subgroup of IAA and may serve as a valuable disease biomarker.
Collapse
Affiliation(s)
- Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Mikko Tyster
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Sofie Lundgren
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Cassandra Kerr
- Department of Translational Hematology and Oncology Research and Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kohei Hosokawa
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Mikko Keränen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Bhavisha Patel
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Toru Kawakami
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuka Maeda
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Japan, Tokyo, Japan
| | - Otso Nieminen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Tiina Kasanen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Pasi Aronen
- Biostatistics Unit, Faculty of Medicine, University of Helsinki and Helsinki-Uusimaa Hospital District, Helsinki, Finland
| | - Bhagwan Yadav
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Hanna Rajala
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Hideyuki Nakazawa
- Department of Hematology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Taina Jaatinen
- Histocompatibility Testing Laboratory, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Eva Hellström-Lindberg
- Division of Hematology, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiro Ishida
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Japan, Tokyo, Japan
| | - Shinji Nakao
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research and Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland. .,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland. .,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
29
|
Atmar K, Ruivenkamp CAL, Hooimeijer L, Nibbeling EAR, Eckhardt CL, Huisman EJ, Lankester AC, Bartels M, Santen GWE, Smiers FJ, van der Burg M, Mohseny AB. Diagnostic Value of a Protocolized In-Depth Evaluation of Pediatric Bone Marrow Failure: A Multi-Center Prospective Cohort Study. Front Immunol 2022; 13:883826. [PMID: 35572556 PMCID: PMC9094492 DOI: 10.3389/fimmu.2022.883826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Severe multilineage cytopenia in childhood caused by bone marrow failure (BMF) often represents a serious condition requiring specific management. Patients are at risk for invasive infections and bleeding complications. Previous studies report low rates of identifiable causes of pediatric BMF, rendering most patients with a descriptive diagnosis such as aplastic anemia (AA). Methods We conducted a multi-center prospective cohort study in which an extensive diagnostic approach for pediatric patients with suspected BMF was implemented. After exclusion of malignant and transient causes of BMF, patients entered thorough diagnostic evaluation including bone marrow analysis, whole exome sequencing (WES) including copy number variation (CNV) analysis and/or single nucleotide polymorphisms (SNP) array analysis. In addition, functional and immunological evaluation were performed. Here we report the outcomes of the first 50 patients (2017-2021) evaluated by this approach. Results In 20 patients (40%) a causative diagnosis was made. In this group, 18 diagnoses were established by genetic analysis, including 14 mutations and 4 chromosomal deletions. The 2 remaining patients had short telomeres while no causative genetic defect was found. Of the remaining 30 patients (60%), 21 were diagnosed with severe aplastic anemia (SAA) based on peripheral multi-lineage cytopenia and hypoplastic bone marrow, and 9 were classified as unexplained cytopenia without bone marrow hypoplasia. In total 28 patients had undergone hematopoietic stem cell transplantation (HSCT) of which 22 patients with an unknown cause and 6 patients with an identified cause for BMF. Conclusion We conclude that a standardized in-depth diagnostic protocol as presented here, can increase the frequency of identifiable causes within the heterogeneous group of pediatric BMF. We underline the importance of full genetic analysis complemented by functional tests of all patients as genetic causes are not limited to patients with typical (syndromal) clinical characteristics beyond cytopenia. In addition, it is of importance to apply genome wide genetic analysis, since defects in novel genes are frequently discovered in this group. Identification of a causal abnormality consequently has implications for the choice of treatment and in some cases prevention of invasive therapies.
Collapse
Affiliation(s)
- Khaled Atmar
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Louise Hooimeijer
- Department of Pediatric Hematology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Esther A R Nibbeling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Corien L Eckhardt
- Department of Pediatric Hematology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Elise J Huisman
- Department of Pediatric Hematology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Arjan C Lankester
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frans J Smiers
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Alexander B Mohseny
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
30
|
Effects of Sodium Chlorophyllin Copper on APO-1 Expression in Bone Marrow Mesenchymal Stem Cells of Rats with Aplastic Anaemia. J Immunol Res 2022; 2022:6792866. [PMID: 35434141 PMCID: PMC9007642 DOI: 10.1155/2022/6792866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Aplastic anaemia (AA) is a highly prevalent blood disorder in the East and Southeast Asian countries, and a proportion of the patients is poorly treated with immunosuppressive agents. This study is aimed at exploring the effects of sodium copper chlorophyllin (SCC) on rats with AA and at providing the theoretical basis for the treatment of AA using traditional Chinese medicine. Methods. A rat model of AA was induced by combining 5-fluorouracil with busulfan, and different groups were treated with 25 mg/kg cyclosporin A (CsA) and low-, medium-, and high-dose SCC (25-, 50-, and 100-mg/kg; L-, M-, and H-SCC, respectively). A comparative analysis of peripheral blood counts, T-cell subsets, cytokine levels, bone marrow pathology, and APO-1 expression in mesenchymal stem cells in each group was conducted. Results. SCC can increase the platelet count and haemoglobin concentration in the peripheral blood of AA rats, whereas bone marrow biopsies revealed that the number of nucleated cells and megakaryocytes of SCC-treated rats increased compared with the model group. This was particularly evident in the H-SCC group. As regards the correction of immune function, unlike CsA, which reduced the absolute CD8+ T-cell count, SCC corrected the imbalanced CD4/CD8 ratio by increasing the absolute CD4+ T-cell count, whereas SCC increased the number of regulatory T-cells and reduced the level of interferon-γ in AA rats. When comparing the expression of APO-1 in the MSCs, results of the reverse-transcriptase polymerase chain reaction and Western blot analysis showed that SCC can increase the expression of APO-1 both at the mRNA and protein levels. Conclusion. We found that SCC can improve haematopoietic function and regress immune disorders in AA rats, which enhanced the expression of APO-1 in bone marrow MSCs. This may be one of the mechanisms of SCC in treating AA.
Collapse
|
31
|
He D, Dan W, Du Q, Shen BB, Chen L, Fang LZ, Kuang JJ, Tang CY, Cai P, Yu R, Zhang SH, Huang JH. Integrated Network Pharmacology and Metabolomics Analysis to Reveal the Potential Mechanism of Siwu Paste on Aplastic Anemia Induced by Chemotherapy Drugs. Drug Des Devel Ther 2022; 16:1231-1254. [PMID: 35517983 PMCID: PMC9061215 DOI: 10.2147/dddt.s327433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose This study aimed to reveal the multicomponent synergy mechanisms of SWP based on network pharmacology and metabolomics for exploring the relationships of active ingredients, biological targets, and crucial metabolic pathways. Materials Network pharmacology, including TRRUST, GO, and KEGG, enrichment was used to discover the active ingredients and potential regulation mechanisms of SWP. LC-MS and multivariate data analysis method were further applied to analyze serum metabolomics profiling for discovering the potential metabolic mechanisms of SWP on AA induced by Cyclophosphamide (CTX) and 1-Acetyl-2-phenylhydrazine (APH). Results A total of 27 important bioactive ingredients meeting the ADME (absorption, distribution, metabolism, and excretion) screening criteria from SWP were selected. Interaction networks were constructed and validated based on the 10 associated ingredients with the relevant targets. A total of 125 biomarkers were found by Metabolomics approach, which associated with the development of AA, mainly involved in amino acid metabolism and lipid metabolism. While SWP can reverse the above 12 metabolites changed by AA. Network analysis revealed the synergistic effects of SWP through the 43 crucial pathways, including Sphingolipid signaling pathway, Sphingolipid metabolism, Arginine and proline metabolism, VEGF signaling pathway, Estrogen signaling pathway. Conclusion The study suggested that SWP is a useful alternative for the treatment of AA induced by CTX + APH. Its potential mechanisms are to improve hematopoietic microenvironment and promote bone marrow hematopoiesis therapies.
Collapse
Affiliation(s)
- Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Wan Dan
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Qing Du
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Bing-Bing Shen
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Lin Chen
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Liang-zi Fang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Jian-Jun Kuang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Chun-yu Tang
- Hunan Times Sunshine Pharmaceutical Co., Ltd., Changsha, Hunan, 425007, People’s Republic of China
| | - Ping Cai
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
| | - Rong Yu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine Hunan, Changsha, Hunan, 410208, People’s Republic of China
| | - Shui-han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
- Correspondence: Shui-han Zhang; Jian-hua Huang, Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China, Tel +86 13637400650; +86 18692265317, Email ;
| | - Jian-hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, People’s Republic of China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine Hunan, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
32
|
Necrotizing Bacterial Myositis as the Initial Presentation of Severe Aplastic Anaemia. Case Rep Hematol 2022; 2021:8276937. [PMID: 34970463 PMCID: PMC8714340 DOI: 10.1155/2021/8276937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Necrotizing soft tissue infections are rapidly progressing infections associated with severe inflammation and cytokine release. Early recognition and surgical intervention are key factors to secure survival. The current case presents a patient with multifocal necrotizing soft tissue infection as the initial presentation of severe aplastic anaemia. Case Presentation. A man in his fifties was admitted with septic shock with multiorgan failure and severe pancytopenia, after two days of malaise with high fever and right flank pain. The diagnosis streptococcal necrotizing myositis was significantly delayed due to atypical clinical findings. After initial surgical exploration, the decision was made to defer from surgical debridement due to extensive involvement of several muscle groups, grave pancytopenia, and suspected dismal prognosis. Surprisingly, the patient stabilized after antibiotics and intensive care treatment. Based on severe pancytopenia and hypocellular bone marrow, with no evidence of other bone marrow disorders, the patient was diagnosed with aplastic anaemia. Treatment for aplastic anaemia with antithymocyte globulin, cyclosporine, and eltrombopaq was started, and 2 months later, a partial haematological recovery was observed. The patient could be discharged from hospital without antibiotic treatment. Conclusions This case illustrates the crucial role of a multidisciplinary approach on admission and further during the clinical course. Clinical improvement despite severe neutropenia and stabilization during immunosuppressive therapy suggest that immunological factors modulate clinical course in necrotizing soft tissue infections.
Collapse
|
33
|
The Evolving Role of Allogeneic Stem Cell Transplant in the Era of Molecularly Targeted Agents. Cancer J 2022; 28:78-84. [DOI: 10.1097/ppo.0000000000000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Pagliuca S, Gurnari C, Awada H, Kishtagari A, Kongkiatkamon S, Terkawi L, Zawit M, Guan Y, LaFramboise T, Jha BK, Patel BJ, Hamilton BK, Majhail NS, Lundgren S, Mustjoki S, Saunthararajah Y, Visconte V, Chan TA, Yang CY, Lenz TL, Maciejewski JP. The similarity of class II HLA genotypes defines patterns of autoreactivity in idiopathic bone marrow failure disorders. Blood 2021; 138:2781-2798. [PMID: 34748628 PMCID: PMC8718627 DOI: 10.1182/blood.2021012900] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Idiopathic aplastic anemia (IAA) is a rare autoimmune bone marrow failure (BMF) disorder initiated by a human leukocyte antigen (HLA)-restricted T-cell response to unknown antigens. As in other autoimmune disorders, the predilection for certain HLA profiles seems to represent an etiologic factor; however, the structure-function patterns involved in the self-presentation in this disease remain unclear. Herein, we analyzed the molecular landscape of HLA complexes of a cohort of 300 IAA patients and almost 3000 healthy and disease controls by deeply dissecting their genotypic configurations, functional divergence, self-antigen binding capabilities, and T-cell receptor (TCR) repertoire specificities. Specifically, analysis of the evolutionary divergence of HLA genotypes (HED) showed that IAA patients carried class II HLA molecules whose antigen-binding sites were characterized by a high level of structural homology, only partially explained by specific risk allele profiles. This pattern implies reduced HLA binding capabilities, confirmed by binding analysis of hematopoietic stem cell (HSC)-derived self-peptides. IAA phenotype was associated with the enrichment in a few amino acids at specific positions within the peptide-binding groove of DRB1 molecules, affecting the interface HLA-antigen-TCR β and potentially constituting the basis of T-cell dysfunction and autoreactivity. When analyzing associations with clinical outcomes, low HED was associated with risk of malignant progression and worse survival, underlying reduced tumor surveillance in clearing potential neoantigens derived from mechanisms of clonal hematopoiesis. Our data shed light on the immunogenetic risk associated with IAA etiology and clonal evolution and on general pathophysiological mechanisms potentially involved in other autoimmune disorders.
Collapse
Affiliation(s)
- Simona Pagliuca
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
- University of Paris, Paris, France
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Hassan Awada
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
| | - Ashwin Kishtagari
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
| | - Sunisa Kongkiatkamon
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
| | - Laila Terkawi
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
| | - Misam Zawit
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
| | - Yihong Guan
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Babal K Jha
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
| | - Bhumika J Patel
- Leukemia Program, Department of Hematology and Oncology, Cleveland Clinic, Cleveland, OH
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Cleveland Clinic, Cleveland, OH
| | - Navneet S Majhail
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Cleveland Clinic, Cleveland, OH
| | - Sofie Lundgren
- Hematology Research Unit Helsinki, University of Helsinki-Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki-Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Yogen Saunthararajah
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
| | - Valeria Visconte
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany; and
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
35
|
Votavova H, Belickova M. Hypoplastic myelodysplastic syndrome and acquired aplastic anemia: Immune‑mediated bone marrow failure syndromes (Review). Int J Oncol 2021; 60:7. [PMID: 34958107 PMCID: PMC8727136 DOI: 10.3892/ijo.2021.5297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022] Open
Abstract
Hypoplastic myelodysplastic syndrome (hMDS) and aplastic anemia (AA) are rare hematopoietic disorders characterized by pancytopenia with hypoplastic bone marrow (BM). hMDS and idiopathic AA share overlapping clinicopathological features, making a diagnosis very difficult. The differential diagnosis is mainly based on the presence of dysgranulopoiesis, dysmegakaryocytopoiesis, an increased percentage of blasts, and abnormal karyotype, all favouring the diagnosis of hMDS. An accurate diagnosis has important clinical implications, as the prognosis and treatment can be quite different for these diseases. Patients with hMDS have a greater risk of neoplastic progression, a shorter survival time and a lower response to immunosuppressive therapy compared with patients with AA. There is compelling evidence that these distinct clinical entities share a common pathophysiology based on the damage of hematopoietic stem and progenitor cells (HSPCs) by cytotoxic T cells. Expanded T cells overproduce proinflammatory cytokines (interferon-γ and tumor necrosis factor-α), resulting in decreased proliferation and increased apoptosis of HSPCs. The antigens that trigger this abnormal immune response are not known, but potential candidates have been suggested, including Wilms tumor protein 1 and human leukocyte antigen class I molecules. Our understanding of the molecular pathogenesis of these BM failure syndromes has been improved by next-generation sequencing, which has enabled the identification of a large spectrum of mutations. It has also brought new challenges, such as the interpretation of variants of uncertain significance and clonal hematopoiesis of indeterminate potential. The present review discusses the main clinicopathological differences between hMDS and acquired AA, focuses on the molecular background and highlights the importance of molecular testing.
Collapse
Affiliation(s)
- Hana Votavova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague 128 00, Czech Republic
| | - Monika Belickova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague 128 00, Czech Republic
| |
Collapse
|
36
|
Huang J, Huang L, Liu S, Lin S, Cheng Y, Jiang X, Xue H, Li C, Chen C. Clinical Outcome of Acquired Post-Immunosuppressive-Therapy Aplastic Anemia in Pediatric Patients: A 13-Year Experience in Two Southern China Tertiary Care Centers. Int J Gen Med 2021; 14:3133-3144. [PMID: 34239322 PMCID: PMC8259937 DOI: 10.2147/ijgm.s313898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of the present study is to evaluate the efficacy, complications, and contributing factors of immunosuppressive therapy (IST) response in children with acquired aplastic anemia (AA) and to explore optimal therapeutic methods for different clinical AA types. Methods A total of 130 children diagnosed with acquired AA underwent IST in the Department of Pediatrics at Sun Yat-sen Memorial Hospital and the Department of Pediatrics at Seventh Affiliated Hospital, Sun Yat-sen University, between January 1, 2006, and July 15, 2020. The overall survival (OS), response rates, complications, and response predictors were analyzed. The response rates were compared according to clinical AA type. Results All 130 children with AA were followed up with for a median of 50.6 months. Among the patients, 25 had non-severe AA (NSAA), 64 had severe AA (SAA), and 41 had very severe AA (VSAA). All patients initially received IST. In 13 patients, the IST failed; these patients received an allo-hematopoietic stem cell transplant as a salvage regimen. The OS rate was 90.3% ± 2.8%, and the response rates at 3, 6, 9, and 12 months were 34.19%, 39.32%, 49.57%, and 66.67%, respectively. The prolonged follow-up period might have led to higher response rates, especially in patients with SAA and VSAA. A multivariate logistic regression analysis of prognostic factors was conducted; the results showed that high red blood cell (RBC) and platelet (PLT) counts were associated with a high overall response rate and that the RBC count at diagnosis is a major contributing factor. Conclusion With the use of rabbit anti-thymocyte globulin, proper cyclosporine management, and a prolonged IST follow-up period, a higher number of patients with acquired AA than normal achieved response. Proportionally, the number of patients who achieved remission within 12 months was higher in the SAA group (38.18%→63.64%) and VSAA group (28.95%→65.79%) than in the NSAA group (58.33%→75%). Higher RBC and PLT counts at diagnosis can predict a favorable outcome.
Collapse
Affiliation(s)
- Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Lifen Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Su Liu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Shaofen Lin
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Yucai Cheng
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 518000, People's Republic of China
| | - Hongman Xue
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Chikong Li
- Division of Haematology/Oncology/BMT, Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| |
Collapse
|
37
|
Kerbauy LN, Marin ND, Kaplan M, Banerjee PP, Berrien-Elliott MM, Becker-Hapak M, Basar R, Foster M, Garcia Melo L, Neal CC, McClain E, Daher M, Nunez Cortes AK, Desai S, Inng Lim FW, Mendt MC, Schappe T, Li L, Shaim H, Shanley M, Ensley EL, Uprety N, Wong P, Liu E, Ang SO, Cai R, Nandivada V, Mohanty V, Miao Q, Shen Y, Baran N, Fowlkes NW, Chen K, Muniz-Feliciano L, Champlin RE, Nieto YL, Koch J, Treder M, Fischer W, Okamoto OK, Shpall EJ, Fehniger TA, Rezvani K. Combining AFM13, a Bispecific CD30/CD16 Antibody, with Cytokine-Activated Blood and Cord Blood-Derived NK Cells Facilitates CAR-like Responses Against CD30 + Malignancies. Clin Cancer Res 2021; 27:3744-3756. [PMID: 33986022 PMCID: PMC8254785 DOI: 10.1158/1078-0432.ccr-21-0164] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.
Collapse
Affiliation(s)
- Lucila N Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Departments of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), Sao Paulo, Brazil
| | - Nancy D Marin
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pinaki P Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michelle Becker-Hapak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Foster
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Luciana Garcia Melo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carly C Neal
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Ethan McClain
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sweta Desai
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Francesca Wei Inng Lim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayela Carolina Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Li Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily L Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sonny O Ang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rong Cai
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vandana Nandivada
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Yifei Shen
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Natalia Baran
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yago L Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Oswaldo Keith Okamoto
- Departments of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), Sao Paulo, Brazil
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri.
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
38
|
Duetz C, Van Gassen S, Westers TM, van Spronsen MF, Bachas C, Saeys Y, van de Loosdrecht AA. Computational flow cytometry as a diagnostic tool in suspected-myelodysplastic syndromes. Cytometry A 2021; 99:814-824. [PMID: 33942494 PMCID: PMC8453916 DOI: 10.1002/cyto.a.24360] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022]
Abstract
The diagnostic work‐up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this study, we developed and prospectively validated a fully computational tool for flow cytometry diagnostics in suspected‐MDS. The computational diagnostic workflow consists of methods for pre‐processing flow cytometry data, followed by a cell population detection method (FlowSOM) and a machine learning classifier (Random Forest). Based on a six tubes FC panel, the workflow obtained a 90% sensitivity and 93% specificity in an independent validation cohort. For practical advantages (e.g., reduced processing time and costs), a second computational diagnostic workflow was trained, solely based on the best performing single tube of the training cohort. This workflow obtained 97% sensitivity and 95% specificity in the prospective validation cohort. Both workflows outperformed the conventional, expert analyzed flow cytometry scores for diagnosis with respect to accuracy, objectivity and time investment (less than 2 min per patient).
Collapse
Affiliation(s)
- Carolien Duetz
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sofie Van Gassen
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Margot F van Spronsen
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Yvan Saeys
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
39
|
Li Y, Wan D, Guo R, Wang F, Han L, Zhang D, Xing H, Cao W, Liu Y, Xie X, Yu J, Jiang Z. Decreased bone marrow regulatory innate lymphoid cells show a distinctive miRNA profiling in aplastic anemia. ACTA ACUST UNITED AC 2021; 26:37-42. [PMID: 33375909 DOI: 10.1080/16078454.2020.1866304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES A new regulatory subpopulation of innate lymphoid cells (ILCs), regulatory innate lymphoid cells (ILCregs), has been identified with both innate lymphoid cells and regulatory cells characteristics. The purpose of this study is to explore ILCregs and its associated miRNAs in patients with aplastic anemia (AA) by evaluating ILCregs frequency, associated miRNA quantification, and their significance. METHODS Using 4 color combinations of surface and intracellular antibody staining, the CD45+Lin-CD127+IL-10+ ILCregs from 30 healthy donors and 30 patients newly diagnosed with AA were measured by flow cytometry. Bone marrow cells were studied by next-generation sequence miRNAs quantification. RESULTS Our results showed that the frequency of ILCregs in bone marrow cells from healthy donors (HD) and AA patients were 0.703 ± 0.941 and 0.171 ± 0.233%, respectively. The frequencies of ILCregs in AA patients were significantly lower than that in HD (p <0.05). miRNA detection results showed different expression patterns in the AA patient group comparing with HD. Comparing with HD, there were 52 miRNAs up-regulated and 130 miRNAs down-regulated from AA patients. Analysis of miRNAs from ILCregs associated genes demonstrated different miRNAs expression patterns between HD and AA patient. CONCLUSION The present study demonstrated the deficiency of ILCregs and differential expression pattern of ILCregs gene-related miRNA in patients with AA. Further studies need to be done to explore the clinical significance of ILCregs and related miRNAs in patients with AA with large samples size and clinical follow-up.
Collapse
Affiliation(s)
- Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dingming Wan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Rong Guo
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Fang Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lijie Han
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Danfeng Zhang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haizhou Xing
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Weijie Cao
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yu Liu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinsheng Xie
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Oncology, Academy of Medical and Pharmaceutical Sciences of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
40
|
Opzoomer JW, Timms JA, Blighe K, Mourikis TP, Chapuis N, Bekoe R, Kareemaghay S, Nocerino P, Apollonio B, Ramsay AG, Tavassoli M, Harrison C, Ciccarelli F, Parker P, Fontenay M, Barber PR, Arnold JN, Kordasti S. ImmunoCluster provides a computational framework for the nonspecialist to profile high-dimensional cytometry data. eLife 2021; 10:e62915. [PMID: 33929322 PMCID: PMC8112868 DOI: 10.7554/elife.62915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
High-dimensional cytometry is an innovative tool for immune monitoring in health and disease, and it has provided novel insight into the underlying biology as well as biomarkers for a variety of diseases. However, the analysis of large multiparametric datasets usually requires specialist computational knowledge. Here, we describe ImmunoCluster (https://github.com/kordastilab/ImmunoCluster), an R package for immune profiling cellular heterogeneity in high-dimensional liquid and imaging mass cytometry, and flow cytometry data, designed to facilitate computational analysis by a nonspecialist. The analysis framework implemented within ImmunoCluster is readily scalable to millions of cells and provides a variety of visualization and analytical approaches, as well as a rich array of plotting tools that can be tailored to users' needs. The protocol consists of three core computational stages: (1) data import and quality control; (2) dimensionality reduction and unsupervised clustering; and (3) annotation and differential testing, all contained within an R-based open-source framework.
Collapse
Affiliation(s)
- James W Opzoomer
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Jessica A Timms
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Kevin Blighe
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Thanos P Mourikis
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Nicolas Chapuis
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Université Paris DescartesParisFrance
| | - Richard Bekoe
- UCL Cancer Institute, Paul O'Gorman Building, University College LondonLondonUnited Kingdom
| | - Sedigeh Kareemaghay
- Centre for Host Microbiome Interaction, FoDOCS, King’s College, Guy’s HospitalLondonUnited Kingdom
| | - Paola Nocerino
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Benedetta Apollonio
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Alan G Ramsay
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interaction, FoDOCS, King’s College, Guy’s HospitalLondonUnited Kingdom
| | - Claire Harrison
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
- Haematology Department, Guy’s HospitalLondonUnited Kingdom
| | - Francesca Ciccarelli
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
- Cancer Systems Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Peter Parker
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
- Francis Crick InstituteLondonUnited Kingdom
| | - Michaela Fontenay
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Université Paris DescartesParisFrance
| | - Paul R Barber
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
- UCL Cancer Institute, Paul O'Gorman Building, University College LondonLondonUnited Kingdom
| | - James N Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Shahram Kordasti
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
- Haematology Department, Guy’s HospitalLondonUnited Kingdom
| |
Collapse
|
41
|
Zaimoku Y, Patel BA, Shalhoub R, Groarke EM, Feng X, Wu CO, Young NS. Predicting response of severe aplastic anemia to immunosuppression combined with eltrombopag. Haematologica 2021; 107:126-133. [PMID: 33910334 PMCID: PMC8719075 DOI: 10.3324/haematol.2021.278413] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 11/20/2022] Open
Abstract
Pretreatment blood counts, particularly an absolute reticulocyte count ≥25×109/L, correlate with response to immunosuppressive therapy in severe aplastic anemia. In recent trials, eltrombopag combined with standard immunosuppressive therapy yielded superior responses than those to immunosuppressive therapy alone. Our single institution retrospective study aimed to elucidate whether historical predictors of response to immunosuppressive therapy alone were also associated with response to immunosuppressive therapy plus eltrombopag. We sought correlations of blood counts, thrombopoietin levels and the presence of paroxysmal nocturnal hemoglobinuria clones with both overall and complete responses in 416 patients with severe aplastic anemia, aged 2-82 years (median, 30 years), initially treated with immunosuppressive therapy plus eltrombopag between 2012 and 2019 (n=176) or with immunosuppressive therapy alone between 1999 and 2010 (n=240). Compared to non-responders, patients in the group of overall responders to immunosuppressive therapy plus eltrombopag had significantly higher pretreatment absolute reticulocyte counts, higher neutrophil counts and reduced thrombopoietin levels, as also observed for the group treated with immunosuppressive therapy alone. Addition of eltrombopag markedly improved the overall response in subjects with an absolute reticulocyte count between 10-30×109/L from 60% (54 of 90) to 91% (62 of 68). Absolute lymphocyte count correlated with complete response in the groups treated with immunosuppressive therapy with or without eltrombopag, especially in adolescents aged ≥10 years and adults, but the correlation was reversed in younger children. Platelet count and the presence of a paroxysmal nocturnal hemoglobinuria clone did not correlate with responses to immunosuppressive therapy. Blood counts remain the best predictors of response to nontransplant therapies in severe aplastic anemia. Addition of eltrombopag to immunosuppressive therapy shifted patients with a lower absolute reticulocyte count into a better prognostic category.
Collapse
Affiliation(s)
- Yoshitaka Zaimoku
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health.
| | - Bhavisha A Patel
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Ruba Shalhoub
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Colin O Wu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health
| |
Collapse
|
42
|
Scheinberg P. Acquired severe aplastic anaemia: how medical therapy evolved in the 20th and 21st centuries. Br J Haematol 2021; 194:954-969. [PMID: 33855695 DOI: 10.1111/bjh.17403] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
The progress in aplastic anaemia (AA) management is one of success. Once an obscure entity resulting in death in most affected can now be successfully treated with either haematopoietic stem cell transplantation (HSCT) or immunosuppressive therapy (IST). The mechanisms that underly the diminution of haematopoietic stem cells (HSCs) are now better elucidated, and include genetics and immunological alterations. Advances in supportive care with better antimicrobials, safer blood products and iron chelation have greatly impacted AA outcomes. Working somewhat 'mysteriously', anti-thymocyte globulin (ATG) forms the base for both HSCT and IST protocols. Efforts to augment immunosuppression potency have not, unfortunately, led to better outcomes. Stimulating HSCs, an often-sought approach, has not been effective historically. The thrombopoietin receptor agonists (Tpo-RA) have been effective in stimulating early HSCs in AA despite the high endogenous Tpo levels. Dosing, timing and best combinations with Tpo-RAs are being defined to improve HSCs expansion in AA with minimal added toxicity. The more comprehensive access and advances in HSCT and IST protocols are likely to benefit AA patients worldwide. The focus of this review will be on the medical treatment advances in AA.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Division of Haematology, Hospital A Beneficência Portuguesa, São Paulo, Brazil
| |
Collapse
|
43
|
Treg sensitivity to FasL and relative IL-2 deprivation drive idiopathic aplastic anemia immune dysfunction. Blood 2021; 136:885-897. [PMID: 32294156 DOI: 10.1182/blood.2019001347] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Idiopathic aplastic anemia (AA) has 2 key characteristics: an autoimmune response against hematopoietic stem/progenitor cells and regulatory T-cells (Tregs) deficiency. We have previously demonstrated reduction in a specific subpopulation of Treg in AA, which predicts response to immunosuppression. The aims of the present study were to define mechanisms of Treg subpopulation imbalance and identify potential for therapeutic intervention. We have identified 2 mechanisms that lead to skewed Treg composition in AA: first, FasL-mediated apoptosis on ligand interaction; and, second, relative interleukin-2 (IL-2) deprivation. We have shown that IL-2 augmentation can overcome these mechanisms. Interestingly, when high concentrations of IL-2 were used for in vitro Treg expansion cultures, AA Tregs were able to expand. The expanded populations expressed a high level of p-BCL-2, which makes them resistant to apoptosis. Using a xenograft mouse model, the function and stability of expanded AA Tregs were tested. We have shown that these Tregs were able to suppress the macroscopic clinical features and tissue manifestations of T-cell-mediated graft-versus-host disease. These Tregs maintained their suppressive properties as well as their phenotype in a highly inflammatory environment. Our findings provide an insight into the mechanisms of Treg reduction in AA. We have identified novel targets with potential for therapeutic interventions. Supplementation of ex vivo expansion cultures of Tregs with high concentrations of IL-2 or delivery of IL-2 directly to patients could improve clinical outcomes in addition to standard immunosuppressive therapy.
Collapse
|
44
|
Solorzano S, Kim J, Chen J, Feng X, Young NS. Minimal role of interleukin 6 and toll-like receptor 2 and 4 in murine models of immune-mediated bone marrow failure. PLoS One 2021; 16:e0248343. [PMID: 33711076 PMCID: PMC7954294 DOI: 10.1371/journal.pone.0248343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
Immune aplastic anemia (AA) results from T cell attack on hematopoietic cells, resulting in bone marrow hypocellularity and pancytopenia. Animal models have been successfully developed to study pathophysiological mechanisms in AA. While we have systemically defined the critical components of the adaptive immune response in the pathogenesis of immune marrow failure using this model, the role of innate immunity has not been fully investigated. Here, we demonstrate that lymph node (LN) cells from B6-based donor mice carrying IL-6, TLR2, or TLR4 gene deletions were fully functional in inducing severe pancytopenia and bone marrow failure (BMF) when infused into MHC-mismatched CByB6F1 recipients. Conversely, B6-based recipient mice with IL-6, TLR2, and TLR4 deletion backgrounds were all susceptible to immune-mediated BMF relative to wild-type B6 recipients following infusion of MHC-mismatched LN cells from FVB donors, but the disease appeared more severe in IL-6 deficient mice. We conclude that IL-6, TLR2, and TLR4, molecular elements important in maintenance of normal innate immunity, have limited roles in a murine model of immune-mediated BMF. Rather, adaptive immunity appears to be the major contributor to the animal disease.
Collapse
Affiliation(s)
- Sabrina Solorzano
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Washington DC, United States of America
| | - Jisoo Kim
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
45
|
Adhikari S, Nayek K, Bandyopadhyay A, Mandal P. Implication of therapeutic outcomes associated with molecular characterization of paediatric aplastic anaemia. Biochem Biophys Rep 2021; 25:100899. [PMID: 33490648 PMCID: PMC7809188 DOI: 10.1016/j.bbrep.2020.100899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022] Open
Abstract
Objectives Severe aplastic anemia is characterized by a hypocellular bone marrow and peripheral cytopenia. Mesenchymal stem cells (MSCs) play a crucial role in haematopoietic stem cells (HSCs) development and the development of microenvironment suitable for hematopoiesis. Molecular characterization of telomere maintenance pathway and gene expression profiling of MSCs can be important for the therapeutic interventions among paediatric aplastic anaemia patients. Methods The study involved paediatric aplastic anaemia patients (n = 10) and age matched paediatric healthy donors (n = 8). Peripheral blood samples were collected from the individuals. Average leucocyte telomere length and gene expression of the telomere maintenance genes were determined by quantitative real time PCR. Microarray based gene expression profiles (GSE33812) of MSCs for five paediatric aplastic anaemia patients were analyzed compared to five healthy controls and the data was downloaded from the GEO database. Results The telomere length was significantly shorter among paediatric AA patients compared to age matched healthy donors. Interestingly, one subgroup (n = 2) of paediatric AA patients has moderate telomere length comparable to age matched healthy donors. Based on the gene expression analysis of telomere maintenance pathway, TERF2 was significantly downregulated among paediatric patients with shorter telomere length but not among paediatric patients with moderate telomere length. Gene expression profiling of MSCs revealed three differentially expressed genes (GAS2L3, MK167 and TMSB15A) among the patients and was associated with therapeutic outcome. Conclusion Telomere length estimation and gene expression patterns of the MSCs and telomere length maintenance pathway may serve as a potential biomarker and could be associated with therapeutic choice of paediatric aplastic anaemia patients. One subgroup of paediatric AA patients has moderate telomere length comparable to age matched healthy donors. TERF2 was differentially downregulated among paediatric patients with shorter telomere length. Differential downregulation of GAS2L3, MK167 and TMSB15A genes in MSCs among the patients with immunosuppressive therapy.
Collapse
Affiliation(s)
- Sarmistha Adhikari
- Biomedical Genetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | - Kaustav Nayek
- Department of Paediatric Medicine, Burdwan Medical College & Hospital, West Bengal, India
| | | | - Paramita Mandal
- Biomedical Genetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
- Corresponding author. Biomedical Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
46
|
Du Y, Huang Y, Zhou W, Liu X, Chen F, Yang C, Chen M, Ruan J, Han B. Effective Tacrolimus Treatment for Patients with Non-Severe Aplastic Anemia That is Refractory/Intolerant to Cyclosporine A: A Retrospective Study. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 14:5711-5719. [PMID: 33408460 PMCID: PMC7779311 DOI: 10.2147/dddt.s275975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
Background For symptomatic non-severe aplastic anemia (NSAA) patients who cannot afford anti-thymocyte globulin (ATG) or allogeneic hematopoietic stem cell transplantation (HSCT), tacrolimus (FK) may be an option if these patients do not respond or become tolerant to cyclosporine A (CsA). Methods We enrolled 101 NSAA patients who were refractory or intolerant to CsA with no chance of HSCT or ATG treatment and treated these patients with tacrolimus for at least 6 months, with follow-up for at least one year. Results The overall response rate (ORR) was 38.6% (complete response: 9.9%; partial response: 28.7%), and the median time to optimal response was 6 (3~10) months. Thirty-two (31.7%) cases had elevated creatinine levels. Eight (7.9%) cases had elevations in AST/ALT. A total of 25.6% (10/39) of patients relapsed at the end of follow-up. Age (P=0.0005), FK concentration (4.0~12 ng/mL, P=0.0005) and intolerance to CsA (P=0.012) were the independent risk factors for ORR. Treg cell levels pre-FK treatment were much lower than those of healthy controls (3.7±0.6% vs 6.8±0.7%, P=0.0004) but increased significantly after FK treatment (3.7±0.6% vs 7.1±0.8%, P=0.0039). Conclusion Our data suggest that tacrolimus is a salvage treatment for patients with NSAA that is refractory or intolerant to CsA.
Collapse
Affiliation(s)
- Yali Du
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Yuzhou Huang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Wenzhe Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xinjian Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Institute of Hematology of Henan Province, Zhengzhou, People's Republic of China
| | - Fangfei Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Jing Ruan
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
47
|
Alimam S, Ann Timms J, Harrison CN, Dillon R, Mare T, DeLavallade H, Radia D, Woodley C, Francis Y, Sanchez K, Kordasti S, McLornan DP. Altered immune response to the annual influenza A vaccine in patients with myeloproliferative neoplasms. Br J Haematol 2020; 193:150-154. [PMID: 33159465 DOI: 10.1111/bjh.17096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
The seasonal influenza A vaccine is recommended for patients with myeloproliferative neoplasms (MPNs). We hypothesised that immune deregulation associated with MPNs may affect the immune response gained following vaccinations when compared to healthy controls. Using deep immunophenotyping with high-dimensional single-cell analysis and mass cytometry we could demonstrate an altered immune response in MPN patients following vaccination. We found that prior to vaccination, MPN patients had reduced numbers of naive CD4 T cells. Furthermore, at 3-weeks and 3-months post-vaccination there was evidence of both delayed and impaired B- and T-memory cells responses. Thus, although, the immune systems of MPN patients can 'recognise' the Influenza A vaccine, the response appears inferior compared to healthy controls.
Collapse
Affiliation(s)
- Samah Alimam
- Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK.,Department of Medical and Molecular Genetics, King's College, London, UK
| | - Jessica Ann Timms
- Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK.,Systems Cancer Immunology, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK.,Systems Cancer Immunology, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Richard Dillon
- Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK.,Department of Medical and Molecular Genetics, King's College, London, UK
| | - Tracey Mare
- Viapath, Department of Specialist Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK
| | - Hugues DeLavallade
- Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK.,Haematological Medicine, King's College Hospital, London, UK
| | - Deepti Radia
- Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK
| | - Claire Woodley
- Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK
| | - Yvonne Francis
- Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK
| | - Katy Sanchez
- Haematological Medicine, King's College Hospital, London, UK.,Viapath, King's College Hospital, London, UK
| | - Shahram Kordasti
- Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK.,Systems Cancer Immunology, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Donal P McLornan
- Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK.,Systems Cancer Immunology, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| |
Collapse
|
48
|
Iftikhar R, Chaudhry QUN, Anwer F, Neupane K, Rafae A, Mahmood SK, Ghafoor T, Shahbaz N, Khan MA, Khattak TA, Shamshad GU, Rehman J, Farhan M, Khan M, Ansar I, Ashraf R, Marsh J, Satti TM, Ahmed P. Allogeneic hematopoietic stem cell transplantation in aplastic anemia: current indications and transplant strategies. Blood Rev 2020; 47:100772. [PMID: 33187812 DOI: 10.1016/j.blre.2020.100772] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Treatment options for newly diagnosed aplastic anemia (AA) patient includes upfront allogeneic hematopoietic stem cell transplant (HSCT) or immunosuppressive therapy (IST). With recent advances in supportive care, conditioning regimens and post-transplant immunosuppression the overall survival for HSCT approaches 70-90%. Transplant eligibility needs to be assessed considering age, comorbidities, donor availability and probability of response to immunosuppressive therapy (IST). Upfront HSCT should be offered to children and young adults with matched related donor (MRD). Upfront HSCT may also be offered to children and young adults with rapidly available matched unrelated donor (MUD) who require urgent HSCT. Bone marrow (BM) graft source and cyclosporine (CsA) plus methotrexate (MTX) as graft versus host disease (GVHD) prophylaxis are preferable when using anti-thymocyte globulin (ATG) based conditioning regimens. Alemtuzumab is an acceptable alternative to ATG and is used with CsA alone and with either BM or peripheral blood stem cells (PBSC). Cyclophosphamide (CY) plus ATG conditioning is preferable for patients receiving MRD transplant, while Fludarabine (Flu) based conditioning is reserved for older adults, those with risk factors of graft failure and those receiving MUD HSCT. For haploidentical transplant, use of low dose radiotherapy and post-transplant cyclophosphamide has resulted in a marked reduction in graft failure and GVHD.
Collapse
Affiliation(s)
- Raheel Iftikhar
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan.
| | - Qamar Un Nisa Chaudhry
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan
| | - Faiz Anwer
- Department of Hematology, Medical Oncology, Tausig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Karun Neupane
- Department of Internal Medicine, Manipal College of Medical Sciences, Pokhara 33700, Nepal
| | - Abdul Rafae
- Department of Internal Medicine, McLaren Flint Michigan State University, United States
| | - Syed Kamran Mahmood
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan
| | - Tariq Ghafoor
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan
| | - Nighat Shahbaz
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan
| | - Mehreen Ali Khan
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan
| | - Tariq Azam Khattak
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan
| | - Ghassan Umair Shamshad
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan
| | - Jahanzeb Rehman
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan
| | - Muhammad Farhan
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan
| | - Maryam Khan
- Department of Hematology and Stem Cell Transplant, Armed Forces Bone Marrow Transplant Center/National Institute of Blood and Marrow Transplant, Rawalpindi 46000, Pakistan
| | - Iqraa Ansar
- Shifa College of Medicine, Islamabad 44000, Pakistan
| | - Rabia Ashraf
- King Edward Medical University, Lahore 54000, Pakistan
| | - Judith Marsh
- Department of Hematological Medicine, King's College Hospital, Denmark Hill, London SE59RS, UK
| | | | - Parvez Ahmed
- Department of Hematology Oncology and Stem Cell Transplant, Quaid-e-Azam International Hospital, Islamabad 44000, Pakistan
| |
Collapse
|
49
|
Arbore G, Ong VH, Costantini B, Denton CP, Abraham D, Placais L, Blighe K, Mitchell L, Ellis R, Heck S, Nocerino P, Woodruff TM, Kordasti S, Kemper C, Hourcade DE. Deep phenotyping detects a pathological CD4 + T-cell complosome signature in systemic sclerosis. Cell Mol Immunol 2020; 17:1010-1013. [PMID: 31974397 PMCID: PMC7608471 DOI: 10.1038/s41423-019-0360-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Giuseppina Arbore
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| | - Benedetta Costantini
- Systems Cancer Immunology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| | - David Abraham
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| | - Leo Placais
- Complement and Inflammation Research Section, NIH, NHLBI, Bethesda, MD, USA
| | - Kevin Blighe
- Systems Cancer Immunology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Lynne Mitchell
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Richard Ellis
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Susanne Heck
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Paola Nocerino
- Systems Cancer Immunology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Shahram Kordasti
- Systems Cancer Immunology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
- Haematology Department, Guy's Hospital, London, UK.
| | - Claudia Kemper
- Complement and Inflammation Research Section, NIH, NHLBI, Bethesda, MD, USA.
- School of Immunology and Microbial Sciences, King's College London, London, UK.
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| | - Dennis E Hourcade
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
50
|
Mikhaylova EA, Fidarova ZT, Abramova AV, Luchkin AV, Troitskaya VV, Dvirnyk VN, Galtseva IV, Kliasova GA, Kovrigina AM, Kulikov SM, Chabaeva YА, Parovichnikova EN, Savchenko VG, Obukhova TN. [Immunosupressive therapy of aplastic anemia patients: successes and failures (single center experiment 2007-2016)]. TERAPEVT ARKH 2020; 92:4-9. [PMID: 33346440 DOI: 10.26442/00403660.2020.07.000756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/22/2022]
Abstract
Treatment programs for patients with acquired aplastic anemia include two main therapeutic options: allogeneic bone marrow transplantation and combined immunosuppressive therapy (IST). However, combined IST remains the method of choice for most adult AA patients. This study included 120 AA patients who received IST at the National Research Center for Hematology in 20072016. The analysis was applied to 120 patients. Median age was 25 (1765) years, M/F: 66/54, SAA/NSAA: 66%/34%. Effectiveness of IST was carried out in 120 patients with AA. This group did not include 8 SAA patients who died during the first 3 months from the start of treatment from severe infectious complications (early deaths 6.2%) and 2 AA patients who dropped out of surveillance. The observation time was 55 (6120) months. Paroxysmal nocturnal hemoglobinuria (PNH clone) was detected in 67% of AA patients. The median PNH clone size (granulocytes) was 2.5 (0.0199.5)%. The treatment was according to the classical protocol of combined IST: horse antithymocytic globulin and cyclosporin A. Most of patients (87%) responded to combined immunosuppressive therapy. To achieve a positive response, it was sufficient to conduct one course of ATG to 64% of patients, two courses of ATG 24% of patients and 2% of patients responded only after the third course of ATG. A positive response after the first course was obtained in 64% of patients included in the analysis. Most of the responding patients (93%) achieve a positive response after 36 months from the start of treatment. Therefore, the 3rd6th months after the first course of ATG in the absence of an answer to the first line of therapy can be considered the optimal time for the second course of ATG. This tactic allows to get an answer in another 58% of patients who did not respond to the first course of ATG. The probability of an overall 10-year survival rate was 90% (95% confidence interval 83.696.2).
Collapse
|