1
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
2
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
3
|
Tanzi M, Montini E, Rumolo A, Moretta A, Comoli P, Acquafredda G, Rotella J, Taurino G, Compagno F, Cave FD, Perotti C, Marseglia GL, Zecca M, Montagna D. Production of donor-derived cytotoxic T lymphocytes with potent anti-leukemia activity for adoptive immunotherapy in high-risk pediatric patients given haploidentical hematopoietic stem cell transplantation. Cytotherapy 2024; 26:878-889. [PMID: 38703155 DOI: 10.1016/j.jcyt.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AIMS Somatic cell therapy based on the infusion of donor-derived cytotoxic T lymphocytes (CTL) able to recognize patients' leukemia blasts (LB) is a promising approach to control leukemia relapse after allogeneic HSCT. The success of this approach strongly depends on the ex vivo generation of high-quality donor-derived anti-leukemia CTL in compliance with Good Manufacturing Practices (GMP). We previously described a procedure for generating large numbers of donor-derived anti-leukemia CTL through stimulation of CD8-enriched lymphocytes with dendritic cells (DCs) pulsed with apoptotic LB in the presence of interleukin (IL)-12, IL-7 and IL-15. Here we report that the use of IFN-DC and the addition of IFNα2b during the priming phase significantly improve the generation of an efficient anti-leukemia T cells response in vitro. METHODS Using this approach, 20 high-risk pediatric patients given haploidentical HSCT for high-risk acute leukemia were enrolled and 51 batches of advanced therapy medical products (ATMP), anti-leukemia CTL, were produced. RESULTS Quality controls demonstrated that all batches were sterile, free of mycoplasma and conformed to acceptable endotoxin levels. Genotype analysis confirmed the molecular identity of the ATMP based on the starting biological material used for their production. The majority of ATMP were CD3+/CD8+ cells, with a memory/terminal activated phenotype, including T-central memory populations. ATMP were viable after thawing, and most ATMP batches displayed efficient capacity to lyse patients' LB and to secrete interferon-γ and tumor necrosis factor-α. CONCLUSIONS These results demonstrated that our protocol is highly reproducible and allows the generation of large numbers of immunologically safe and functional anti-leukemia CTL with a high level of standardization.
Collapse
Affiliation(s)
- Matteo Tanzi
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Enrica Montini
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Agnese Rumolo
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonia Moretta
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gloria Acquafredda
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jessica Rotella
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gloria Taurino
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Compagno
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Delle Cave
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cesare Perotti
- Immunohaematology and Transfusion Medicine Service (SIMT), Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, Pavia, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Montagna
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Tirtakusuma R, Milne P, Blair HJ, Shi Y, Bomken S, Heidenreich O. Fusion transcripts are present in early progenitor cells in KMT2A-rearranged B-ALL. Leukemia 2024; 38:883-886. [PMID: 38307942 PMCID: PMC10997500 DOI: 10.1038/s41375-024-02164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Affiliation(s)
- Ricky Tirtakusuma
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Paul Milne
- Haematopoiesis and Immunogenomics Laboratory, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, England
| | - Helen J Blair
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Yuzhe Shi
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Capelli C, Cuofano C, Pavoni C, Frigerio S, Lisini D, Nava S, Quaroni M, Colombo V, Galli F, Bezukladova S, Panina-Bordignon P, Gaipa G, Comoli P, Cossu G, Martino G, Biondi A, Introna M, Golay J. Potency assays and biomarkers for cell-based advanced therapy medicinal products. Front Immunol 2023; 14:1186224. [PMID: 37359560 PMCID: PMC10288881 DOI: 10.3389/fimmu.2023.1186224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Advanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded in vitro, with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy in vivo. Here we summarize the state of the art with regard to potency assays used for the assessment of the quality of the major ATMPs used clinic settings. We also review the data available on biomarkers that may substitute more complex functional potency tests and predict the efficacy in vivo of these cell-based drugs.
Collapse
Affiliation(s)
- Chiara Capelli
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Carolina Cuofano
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Pavoni
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michele Quaroni
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Valentina Colombo
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
| | - Svetlana Bezukladova
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Paola Panina-Bordignon
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianvito Martino
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Biondi
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Martino Introna
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Josée Golay
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
6
|
De Cicco M, Lagreca I, Basso S, Barozzi P, Muscianisi S, Bianco A, Riva G, Di Vincenzo S, Pulvirenti C, Sapuppo D, Siciliano M, Rosti V, Candoni A, Zecca M, Forghieri F, Luppi M, Comoli P. Preclinical Validation of an Advanced Therapy Medicinal Product Based on Cytotoxic T Lymphocytes Specific for Mutated Nucleophosmin (NPM1 mut) for the Treatment of NPM1 mut-Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:2731. [PMID: 37345068 DOI: 10.3390/cancers15102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Acute myeloid leukemia (AML) with nucleophosmin (NPM1) genetic mutations is the most common subtype in adult patients. Refractory or relapsed disease in unfit patients or after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a poor prognosis. NPM1-mutated protein, stably expressed on tumor cells but not on normal tissues, may serve as an ideal target for NPM1-mutated AML immunotherapy. The study aim was to investigate the feasibility of producing mutated-NPM1-specific cytotoxic T cells (CTLs) suitable for somatic cell therapy to prevent or treat hematologic relapse in patients with NPM1-mutated AML. T cells were expanded or primed from patient or donor peripheral blood mononuclear cells by NPM1-mutated protein-derived peptides, and tested for leukemia antigen-targeted cytotoxic activity, cytokine production and hematopoietic precursor inhibitory effect. We found that mutated-NPM1-specific CTLs, displaying specific cytokine production and high-level cytotoxicity against patients' leukemia blasts, and limited inhibitory activity in clonogenic assays, could be obtained from both patients and donors. The polyfunctional mutated-NPM1-specific CTLs included both CD8+ and CD4+ T cells endowed with strong lytic capacity. Our results suggest that mutated-NPM1-targeted CTLs may be a useful therapeutic option to control low-tumor burden relapse following conventional chemotherapy in older NPM1-mutated AML patients or eradicate persistent MRD after HSCT.
Collapse
Affiliation(s)
- Marica De Cicco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Sabrina Basso
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Stella Muscianisi
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alba Bianco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, 41126 Modena, Italy
| | - Sara Di Vincenzo
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chiara Pulvirenti
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Davide Sapuppo
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mariangela Siciliano
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, General Medicine 2, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Anna Candoni
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Marco Zecca
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Patrizia Comoli
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| |
Collapse
|
7
|
Lagreca I, Nasillo V, Barozzi P, Castelli I, Basso S, Castellano S, Paolini A, Maccaferri M, Colaci E, Vallerini D, Natali P, Debbia D, Pirotti T, Ottomano AM, Maffei R, Bettelli F, Giusti D, Messerotti A, Gilioli A, Pioli V, Leonardi G, Forghieri F, Bresciani P, Cuoghi A, Morselli M, Manfredini R, Longo G, Candoni A, Marasca R, Potenza L, Tagliafico E, Trenti T, Comoli P, Luppi M, Riva G. Prognostic Relevance of Multi-Antigenic Myeloma-Specific T-Cell Assay in Patients with Monoclonal Gammopathies. Cancers (Basel) 2023; 15:cancers15030972. [PMID: 36765928 PMCID: PMC9913154 DOI: 10.3390/cancers15030972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple Myeloma (MM) typically originates from underlying precursor conditions, known as Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM). Validated risk factors, related to the main features of the clonal plasma cells, are employed in the current prognostic models to assess long-term probabilities of progression to MM. In addition, new prognostic immunologic parameters, measuring protective MM-specific T-cell responses, could help to identify patients with shorter time-to-progression. In this report, we described a novel Multi-antigenic Myeloma-specific (MaMs) T-cell assay, based on ELISpot technology, providing simultaneous evaluation of T-cell responses towards ten different MM-associated antigens. When performed during long-term follow-up (mean 28 months) of 33 patients with either MGUS or SMM, such deca-antigenic myeloma-specific immunoassay allowed to significantly distinguish between stable vs. progressive disease (p < 0.001), independently from the Mayo Clinic risk category. Here, we report the first clinical experience showing that a wide (multi-antigen), standardized (irrespective to patients' HLA), MM-specific T-cell assay may routinely be applied, as a promising prognostic tool, during the follow-up of MGUS/SMM patients. Larger studies are needed to improve the antigenic panel and further explore the prognostic value of MaMs test in the risk assessment of patients with monoclonal gammopathies.
Collapse
Affiliation(s)
- Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Vincenzo Nasillo
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Ilaria Castelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Sabrina Basso
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Sara Castellano
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Ambra Paolini
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Elisabetta Colaci
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Daniela Vallerini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Patrizia Natali
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Daria Debbia
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Tommaso Pirotti
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Anna Maria Ottomano
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Rossana Maffei
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Giovanna Leonardi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Paola Bresciani
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Angela Cuoghi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Monica Morselli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine “S. Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Longo
- Department of Oncology and Hematology, AOU Modena, 41124 Modena, Italy
| | - Anna Candoni
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Enrico Tagliafico
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Tommaso Trenti
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
- Correspondence: (M.L.); (G.R.); Tel.: +39-059-422-5570 (M.L.); +39-059-422-3025 (G.R.)
| | - Giovanni Riva
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy
- Correspondence: (M.L.); (G.R.); Tel.: +39-059-422-5570 (M.L.); +39-059-422-3025 (G.R.)
| |
Collapse
|
8
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Do you need the immune system to cure ALL? Blood 2022; 140:1457-1458. [PMID: 36173662 DOI: 10.1182/blood.2022017282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
|
10
|
Li Y, Yang X, Sun Y, Li Z, Yang W, Ju B, Easton J, Pei D, Cheng C, Lee S, Pui CH, Yu J, Chi H, Yang JJ. Impact of T-cell immunity on chemotherapy response in childhood acute lymphoblastic leukemia. Blood 2022; 140:1507-1521. [PMID: 35675514 PMCID: PMC9523375 DOI: 10.1182/blood.2021014495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/29/2022] [Indexed: 11/20/2022] Open
Abstract
Although acute lymphoblastic leukemia (ALL) is highly responsive to chemotherapy, it is unknown how or which host immune factors influence the long-term remission of this cancer. To this end, we systematically evaluated the effects of T-cell immunity on Ph+ ALL therapy outcomes. Using a murine Arf-/-BCR-ABL1 B-cell ALL model, we showed that loss of T cells in the host drastically increased leukemia relapse after dasatinib or cytotoxic chemotherapy. Although ABL1 mutations emerged early during dasatinib treatment in both immunocompetent and immunocompromised hosts, T-cell immunity was essential for suppressing the outgrowth of drug-resistant leukemia. Bulk and single-cell transcriptome profiling of T cells during therapy pointed to the activation of type 1 immunity-related cytokine signaling being linked to long-term leukemia remission in mice. Consistent with these observations, interferon γ and interleukin 12 directly modulated dasatinib antileukemia efficacy in vivo. Finally, we evaluated peripheral blood immune cell composition in 102 children with ALL during chemotherapy and observed a significant association of T-cell abundance with treatment outcomes. Together, these results suggest that T-cell immunity plays pivotal roles in maintaining long-term remission of ALL, highlighting that the interplay between host immunity and drug resistance can be harnessed to improve ALL chemotherapy outcomes.
Collapse
Affiliation(s)
- Yizhen Li
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yu Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Zhenhua Li
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Wenjian Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Shawn Lee
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jun J Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
11
|
Sources of Cancer Neoantigens beyond Single-Nucleotide Variants. Int J Mol Sci 2022; 23:ijms231710131. [PMID: 36077528 PMCID: PMC9455963 DOI: 10.3390/ijms231710131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The success of checkpoint blockade therapy against cancer has unequivocally shown that cancer cells can be effectively recognized by the immune system and eliminated. However, the identity of the cancer antigens that elicit protective immunity remains to be fully explored. Over the last decade, most of the focus has been on somatic mutations derived from non-synonymous single-nucleotide variants (SNVs) and small insertion/deletion mutations (indels) that accumulate during cancer progression. Mutated peptides can be presented on MHC molecules and give rise to novel antigens or neoantigens, which have been shown to induce potent anti-tumor immune responses. A limitation with SNV-neoantigens is that they are patient-specific and their accurate prediction is critical for the development of effective immunotherapies. In addition, cancer types with low mutation burden may not display sufficient high-quality [SNV/small indels] neoantigens to alone stimulate effective T cell responses. Accumulating evidence suggests the existence of alternative sources of cancer neoantigens, such as gene fusions, alternative splicing variants, post-translational modifications, and transposable elements, which may be attractive novel targets for immunotherapy. In this review, we describe the recent technological advances in the identification of these novel sources of neoantigens, the experimental evidence for their presentation on MHC molecules and their immunogenicity, as well as the current clinical development stage of immunotherapy targeting these neoantigens.
Collapse
|
12
|
Molvi Z, O'Reilly RJ. Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer. Cancer Treat Res 2022; 183:131-159. [PMID: 35551658 DOI: 10.1007/978-3-030-96376-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
T cells specific for major histocompatibility complex (MHC)-presented tumor antigens are capable of inducing durable remissions when adoptively transferred to patients with refractory cancers presenting such antigens. When such T cells are derived from healthy donors, they can be banked for off-the-shelf administration in appropriately tissue matched patients. Therefore, tumor antigen-specific, donor-derived T cells are expected to be a mainstay in the cancer immunotherapy armamentarium. In this chapter, we analyze clinical evidence that tumor antigen-specific donor-derived T cells can induce tumor regressions when administered to appropriately matched patients whose tumors are refractory to standard therapy. We also delineate the landscape of MHC-presented and unconventional tumor antigens recognized by T cells in healthy individuals that have been targeted for adoptive T cell therapy, as well as emerging antigens for which mounting evidence suggests their utility as targets for adoptive T cell therapy. We discuss the growing technological advancements that have facilitated sequence identification of such antigens and their cognate T cells, and applicability of such technologies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Richard J O'Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
13
|
Capelli C, Frigerio S, Lisini D, Nava S, Gaipa G, Belotti D, Cabiati B, Budelli S, Lazzari L, Bagnarino J, Tanzi M, Comoli P, Perico N, Introna M, Golay J. A comprehensive report of long-term stability data for a range ATMPs: A need to develop guidelines for safe and harmonized stability studies. Cytotherapy 2022; 24:544-556. [PMID: 35177338 DOI: 10.1016/j.jcyt.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AIMS Advanced therapy medicinal products (ATMPs) are novel drugs based on genes, cells or tissues developed to treat many different diseases. Stability studies of each new ATMP need to be performed to define its shelf life and guarantee efficacy and safety upon infusion, and these are presently based on guidelines originally drafted for standard pharmaceutical drugs, which have properties and are stored in conditions quite different from cell products. The aim of this report is to provide evidence-based information for stability studies on ATMPs that will facilitate the interlaboratory harmonization of practices in this area. METHODS We have collected and analyzed the results of stability studies on 19 different cell-based experimental ATMPs, produced by five authorized cell factories forming the Lombardy "Plagencell network" for use in 36 approved phase I/II clinical trials; most were cryopreserved and stored in liquid nitrogen vapors for 1 to 13 years. RESULTS The cell attributes collected in stability studies included cell viability, immunophenotype and potency assays, in particular immunosuppression, cytotoxicity, cytokine release and proliferation/differentiation capacity. Microbiological attributes including sterility, endotoxin levels and mycoplasma contamination were also analyzed. All drug products (DPs), cryopreserved in various excipients containing 10% DMSO and in different primary containers, were very stable long term at <-150°C and did not show any tendency for diminished viability or efficacy for up to 13.5 years. CONCLUSIONS Our data indicate that new guidelines for stability studies, specific for ATMPs and based on risk analyses, should be drafted to harmonize practices, significantly reduce the costs of stability studies without diminishing safety. Some specific suggestions are presented in the discussion.
Collapse
Affiliation(s)
- Chiara Capelli
- Center of Cellular Therapy "G. Lanzani", ASST Papa Giovanni XXIII, Bergamo, Italy; Fondazione per la Ricerca Ospedale di Bergamo, Bergamo, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Daniela Belotti
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Benedetta Cabiati
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Silvia Budelli
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Jessica Bagnarino
- UOSD Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Tanzi
- UOSD Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- UOSD Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Norberto Perico
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Martino Introna
- Center of Cellular Therapy "G. Lanzani", ASST Papa Giovanni XXIII, Bergamo, Italy.
| | - Josée Golay
- Center of Cellular Therapy "G. Lanzani", ASST Papa Giovanni XXIII, Bergamo, Italy; Fondazione per la Ricerca Ospedale di Bergamo, Bergamo, Italy
| |
Collapse
|
14
|
Vettenranta K, Dobsinska V, Kertész G, Svec P, Buechner J, Schultz KR. What Is the Role of HSCT in Philadelphia-Chromosome-Positive and Philadelphia-Chromosome-Like ALL in the Tyrosine Kinase Inhibitor Era? Front Pediatr 2022; 9:807002. [PMID: 35186828 PMCID: PMC8848997 DOI: 10.3389/fped.2021.807002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Previously, the outcome of paediatric Philadelphia-chromosome-positive (Ph+) ALL treated with conventional chemotherapy alone was poor, necessitating the use of haematopoietic stem cell transplantation (HSCT) for the best outcomes. The recent addition of tyrosine kinase inhibitors (TKIs) alongside the chemotherapy regimens for Ph+ ALL has markedly improved outcomes, replacing the need for HSCT for lower risk patients. An additional poor prognosis group of Philadelphia-chromosome-like (Ph-like) ALL has also been identified. This group also can be targeted by TKIs in combination with chemotherapy, but the role of HSCT in this population is not clear. The impact of novel targeted immunotherapies (chimeric antigen receptor T cells and bispecific or drug-conjugated antibodies) has improved the outcome of patients, in combination with chemotherapy, and made the role of HSCT as the optimal curative therapy for Ph+ ALL and Ph-like ALL less clear. The prognosis of patients with Ph+ ALL and persistent minimal residual disease (MRD) at the end of consolidation despite TKI therapy or with additional genetic risk factors remains inferior when HSCT is not used. For such high-risk patients, HSCT using total-body-irradiation-containing conditioning is currently recommended. This review aims to provide an update on the current and future role of HSCT for Ph+ ALL and addresses key questions related to the management of these patients, including the role of HSCT in first complete remission, MRD evaluation and related actions post HSCT, TKI usage post HSCT, and the putative role of HSCT in Ph-like ALL.
Collapse
Affiliation(s)
- Kim Vettenranta
- University of Helsinki and Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Veronika Dobsinska
- Department of Pediatric Hematology and Oncology, National Institute of Children's Diseases, Comenius University, Bratislava, Slovakia
| | - Gabriella Kertész
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest – National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Peter Svec
- Department of Pediatric Hematology and Oncology, National Institute of Children's Diseases, Comenius University, Bratislava, Slovakia
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Multiparametric Flow Cytometry for MRD Monitoring in Hematologic Malignancies: Clinical Applications and New Challenges. Cancers (Basel) 2021; 13:cancers13184582. [PMID: 34572809 PMCID: PMC8470441 DOI: 10.3390/cancers13184582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In hematologic cancers, Minimal Residual Disease (MRD) monitoring, using either molecular (PCR) or immunophenotypic (MFC) diagnostics, allows the identification of rare cancer cells, readily detectable either in the bone marrow or in the peripheral blood at very low levels, far below the limit of classic microscopy. In this paper, we outlined the state-of-the-art of MFC-based MRD detection in different hematologic settings, highlighting main recommendations and new challenges for using such method in patients with acute leukemias or chronic hematologic neoplasms. The combination of new molecular technologies with advanced flow cytometry is progressively allowing clinicians to design a personalized therapeutic path, proportionate to the biological aggressiveness of the disease, in particular by using novel immunotherapies, in view of a modern decision-making process, based on precision medicine. Abstract Along with the evolution of immunophenotypic and molecular diagnostics, the assessment of Minimal Residual Disease (MRD) has progressively become a keystone in the clinical management of hematologic malignancies, enabling valuable post-therapy risk stratifications and guiding risk-adapted therapeutic approaches. However, specific prognostic values of MRD in different hematological settings, as well as its appropriate clinical uses (basically, when to measure it and how to deal with different MRD levels), still need further investigations, aiming to improve standardization and harmonization of MRD monitoring protocols and MRD-driven therapeutic strategies. Currently, MRD measurement in hematological neoplasms with bone marrow involvement is based on advanced highly sensitive methods, able to detect either specific genetic abnormalities (by PCR-based techniques and next-generation sequencing) or tumor-associated immunophenotypic profiles (by multiparametric flow cytometry, MFC). In this review, we focus on the growing clinical role for MFC-MRD diagnostics in hematological malignancies—from acute myeloid and lymphoblastic leukemias (AML, B-ALL and T-ALL) to chronic lymphocytic leukemia (CLL) and multiple myeloma (MM)—providing a comparative overview on technical aspects, clinical implications, advantages and pitfalls of MFC-MRD monitoring in different clinical settings.
Collapse
|
16
|
Neoantigen-Specific T-Cell Immune Responses: The Paradigm of NPM1-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22179159. [PMID: 34502069 PMCID: PMC8431540 DOI: 10.3390/ijms22179159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.
Collapse
|
17
|
Verdon DJ, Jenkins MR. Identification and Targeting of Mutant Peptide Neoantigens in Cancer Immunotherapy. Cancers (Basel) 2021; 13:4245. [PMID: 34439399 PMCID: PMC8391927 DOI: 10.3390/cancers13164245] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
In recent decades, adoptive cell transfer and checkpoint blockade therapies have revolutionized immunotherapeutic approaches to cancer treatment. Advances in whole exome/genome sequencing and bioinformatic detection of tumour-specific genetic variations and the amino acid sequence alterations they induce have revealed that T cell mediated anti-tumour immunity is substantially directed at mutated peptide sequences, and the identification and therapeutic targeting of patient-specific mutated peptide antigens now represents an exciting and rapidly progressing frontier of personalized medicine in the treatment of cancer. This review outlines the historical identification and validation of mutated peptide neoantigens as a target of the immune system, and the technical development of bioinformatic and experimental strategies for detecting, confirming and prioritizing both patient-specific or "private" and frequently occurring, shared "public" neoantigenic targets. Further, we examine the range of therapeutic modalities that have demonstrated preclinical and clinical anti-tumour efficacy through specifically targeting neoantigens, including adoptive T cell transfer, checkpoint blockade and neoantigen vaccination.
Collapse
Affiliation(s)
- Daniel J. Verdon
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Misty R. Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
18
|
Pearlman AH, Hwang MS, Konig MF, Hsiue EHC, Douglass J, DiNapoli SR, Mog BJ, Bettegowda C, Pardoll DM, Gabelli SB, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Targeting public neoantigens for cancer immunotherapy. NATURE CANCER 2021; 2:487-497. [PMID: 34676374 PMCID: PMC8525885 DOI: 10.1038/s43018-021-00210-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Several current immunotherapy approaches target private neoantigens derived from mutations that are unique to individual patients' tumors. However, immunotherapeutic agents can also be developed against public neoantigens derived from recurrent mutations in cancer driver genes. The latter approaches target proteins that are indispensable for tumor growth, and each therapeutic agent can be applied to numerous patients. Here we review the opportunities and challenges involved in the identification of suitable public neoantigen targets and the development of therapeutic agents targeting them.
Collapse
Affiliation(s)
- Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sandra B Gabelli
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
19
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021; 22:ijms22041906. [PMID: 33672997 PMCID: PMC7918142 DOI: 10.3390/ijms22041906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
- Correspondence: ; Tel.: +39-059-422-2173
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.R.); (A.M.)
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Rossella Manfredini
- Centre for Regenerative Medicine “S. Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.R.); (A.M.)
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| |
Collapse
|
20
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021. [PMID: 33672997 DOI: 10.3390/ijms22041906.pmid:33672997;pmcid:pmc7918142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| |
Collapse
|
21
|
Schmid C, Kuball J, Bug G. Defining the Role of Donor Lymphocyte Infusion in High-Risk Hematologic Malignancies. J Clin Oncol 2021; 39:397-418. [PMID: 33434060 DOI: 10.1200/jco.20.01719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital, Augsburg, Germany
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gesine Bug
- Department of Medicine 2, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
22
|
In vitro induction of neoantigen-specific T cells in myelodysplastic syndrome, a disease with low mutational burden. Cytotherapy 2020; 23:320-328. [PMID: 33262074 DOI: 10.1016/j.jcyt.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 12/30/2022]
Abstract
Therapies that utilize immune checkpoint inhibition work by leveraging mutation-derived neoantigens and have shown greater clinical efficacy in tumors with higher mutational burden. Whether tumors with a low mutational burden are susceptible to neoantigen-targeted therapy has not been fully addressed. To examine the feasibility of neoantigen-specific adoptive T-cell therapy, the authors studied the T-cell response against somatic variants in five patients with myelodysplastic syndrome (MDS), a malignancy with a very low tumor mutational burden. DNA and RNA from tumor (CD34+) and normal (CD3+) cells isolated from the patients' blood were sequenced to predict patient-specific MDS neopeptides. Neopeptides representing the somatic variants were used to induce and expand autologous T cells ex vivo, and these were systematically tested in killing assays to determine the proportion of neopeptides yielding neoantigen-specific T cells. The authors identified a total of 32 somatic variants (four to eight per patient) and found that 21 (66%) induced a peptide-specific T-cell response and 19 (59%) induced a T-cell response capable of killing autologous tumor cells. Of the 32 somatic variants, 11 (34%) induced a CD4+ response and 11 (34%) induced a CD8+ response that killed the tumor. These results indicate that in vitro induction of neoantigen-specific T cells is feasible for tumors with very low mutational burden and that this approach warrants investigation as a therapeutic option for such patients.
Collapse
|
23
|
Phan CL, Tan SN, Tan SM, Kadir SSSA, Ramli NLM, Lim TO, Ng CC. A variant e13a3 BCR-ABL1 fusion transcript in refractory adult B-cell acute lymphoblastic leukemia achieving complete remission with CAR-Tcell therapy. Cancer Genet 2020; 250-251:20-24. [PMID: 33220656 DOI: 10.1016/j.cancergen.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022]
Abstract
Acute lymphoblastic leukemia (ALL) cases with e13a3 fusion transcripts are extremely rare. We report a 24-year-old male with Ph-positive (Ph+) ALL with an aberrant e13a3 fusion transcript treated with CD19-specific chimeric antigen receptor T-cell (CAR-T) therapy. He developed refractory disease post-chemotherapy induction, andreceived allogeneic hematopoietic stem cell transplantation (allo-HSCT) after salvage with imatinib in combination with chemotherapy regimen. Unfortunately, the patient relapsed after +90 days post-transplant. He was consented to CAR-T therapy trial and achieved complete remission, highlighting the efficacy of CAR-T treatment in relapsed-refractory B-ALL irrespective of the underlying genetic drivers in leukemia cells .
Collapse
Affiliation(s)
- Chin Lee Phan
- Department of Haematology, Hospital Ampang, Jalan Mewah Utara, Pandan Mewah, 68000 Ampang, Selangor, Malaysia; Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Siew Ngoh Tan
- Department of Haematology, Hospital Ampang, Jalan Mewah Utara, Pandan Mewah, 68000 Ampang, Selangor, Malaysia
| | - Sen Mui Tan
- Department of Haematology, Hospital Ampang, Jalan Mewah Utara, Pandan Mewah, 68000 Ampang, Selangor, Malaysia
| | | | - Nur Liyana Mohd Ramli
- Department of Haematology, Hospital Ampang, Jalan Mewah Utara, Pandan Mewah, 68000 Ampang, Selangor, Malaysia
| | | | - Ching Ching Ng
- Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Yuan XL, Tan YM, Shi JM, Zhao YM, Yu J, Lai XY, Yang LX, Huang H, Luo Y. Preemptive low-dose interleukin-2 or DLI for late-onset minimal residual disease in acute leukemia or myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2020; 100:517-527. [PMID: 33128124 DOI: 10.1007/s00277-020-04326-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023]
Abstract
Minimal residual disease (MRD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) heralds high risk of relapse. Whether preemptive recombinant interleukin-2 (pre-IL2) is effective for patients with late-onset MRD (LMRD) remains unknown. We retrospectively compared the efficacy and safety of pre-IL2 (n = 30) and pre-DLI (n = 25) for LMRD in patients receiving allo-HSCT for acute leukemia or myelodysplastic syndrome. The 1-year overall survival (OS) and disease-free survival (DFS) rates were 86.7% and 78.4% (P = 0.267), 83.3% and 75.6% (P = 0.329), the cumulative incidence of grades III-IV acute graft-versus-host disease (aGVHD) at 100 days post-preemptive intervention was 3.3% and 12.0% (P = 0.226) in the pre-IL2 group and pre-DLI group, respectively. The 1-year cumulative incidence of moderate/severe chronic GVHD (cGVHD), relapse (CIR), and non-relapse mortality (NRM) were 7.7% and 27.9% (P = 0.018), 13.6% and 20.0% (P = 0.561) and 3.3% and 5.5% (P = 0.321) in the two groups, respectively. No remarkable differences in CIR, OS, and DFS between the two intervention groups were found in multivariate analysis. The GVHD-free and relapse-free survival (GRFS) were better in the pre-IL2 group than in the pre-DLI group (HR = 0.31, 95% confidence interval (CI), 0.12-0.76; P = 0.011). In conclusion, preemptive low-dose IL2 and preemptive DLI yield comparable outcomes for patients with LMRD receiving allo-HSCT, in terms of aGVHD, NRM, relapse, OS, and DFS. However, preemptive low-dose IL2 has a lower incidence of moderate/severe cGVHD and a higher CRFS. Preemptive low-dose IL2 may be an alternative method for patients who develop LMRD after allo-HSCT, particularly for patients who cannot receive preemptive DLI.
Collapse
Affiliation(s)
- Xiao-Lin Yuan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Ya-Min Tan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Ji-Min Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yan-Min Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Lu-Xin Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Leung W, Heslop HE. Adoptive Immunotherapy with Antigen-Specific T Cells Expressing a Native TCR. Cancer Immunol Res 2020; 7:528-533. [PMID: 30936089 DOI: 10.1158/2326-6066.cir-18-0888] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although T cells genetically modified with chimeric antigen receptors became the first immune effector product to obtain FDA approval, T-cell products that recognize their antigenic targets through their native receptors have also produced encouraging responses. For instance, T cells recognizing immunogenic viral antigens are effective when infused in immunosuppressed patients. A large number of tumor antigens are also expressed on nonviral tumors, but these antigens are less immunogenic. Many tumors can evade a transferred immune response by producing variants, which have lost the targeted antigens, or inhibitory molecules that recruit suppressive cells, impeding persistence and function of immune effectors. Nevertheless, infusion of antigen-specific T cells has been well-tolerated, and clinical responses have been consistently associated with immune activity against tumor antigens and epitope spreading. To overcome some of the obstacles mentioned above, current research is focused on defining ex vivo culture conditions that promote in vivo persistence and activity of infused antigen-specific T cells. Combinations with immune checkpoint inhibitors or epigenetic modifiers to improve T-cell activity are also being evaluated in the clinic. Antigen-specific T cells may also be manufactured to overcome tumor evasion mechanisms by targeting multiple antigens and engineered to be resistant to inhibitory factors, such as TGFβ, or to produce the cytokines that are essential for T-cell expansion and sustained antitumor activity. Here, we discuss the use of T cells specific to tumor antigens through their native receptors and strategies under investigation to improve antitumor responses.
Collapse
Affiliation(s)
- Wingchi Leung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
26
|
Tavitian S, Uzunov M, Bérard E, Bouscary D, Thomas X, Raffoux E, Leguay T, Gallego Hernanz MP, Berceanu A, Leprêtre S, Hicheri Y, Chevallier P, Bertoli S, Lhéritier V, Dombret H, Huguet F. Ponatinib-based therapy in adults with relapsed or refractory Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the real-life OPAL study. Leuk Lymphoma 2020; 61:2161-2167. [DOI: 10.1080/10428194.2020.1762876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Suzanne Tavitian
- Department of Hematology, Institut Universitaire du Cancer Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Madalina Uzunov
- Department of Hematology, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Emilie Bérard
- CHU de Toulouse, UMR 1027, INSERM-Université Toulouse III, Toulouse, France
| | | | - Xavier Thomas
- Department of Hematology, CHU de Lyon Sud, Pierre-Bénite, France
| | - Emmanuel Raffoux
- AP-HP, Hopital Saint-Louis, Service Hematologie Adulte, Paris, France
| | - Thibaut Leguay
- Service d'hématologie clinique et thérapie cellulaire, Hôpital du Haut-Lévèque, CHU de Bordeaux, Bordeaux, France
| | | | - Ana Berceanu
- Department of Hematology, CHU Besancon, Besancon, France
| | | | | | | | - Sarah Bertoli
- Department of Hematology, Institut Universitaire du Cancer Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Véronique Lhéritier
- Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL), Lyon, France
| | - Hervé Dombret
- Hospital Saint-Louis, Hématologie Adulte, Paris, France
| | - Françoise Huguet
- Department of Hematology, Institut Universitaire du Cancer Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| |
Collapse
|
27
|
Biernacki MA, Sheth VS, Bleakley M. T cell optimization for graft-versus-leukemia responses. JCI Insight 2020; 5:134939. [PMID: 32376800 DOI: 10.1172/jci.insight.134939] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protection from relapse after allogeneic hematopoietic cell transplantation (HCT) is partly due to donor T cell-mediated graft-versus-leukemia (GVL) immune responses. Relapse remains common in HCT recipients, but strategies to augment GVL could significantly improve outcomes after HCT. Donor T cells with αβ T cell receptors (TCRs) mediate GVL through recognition of minor histocompatibility antigens and alloantigens in HLA-matched and -mismatched HCT, respectively. αβ T cells specific for other leukemia-associated antigens, including nonpolymorphic antigens and neoantigens, may also deliver an antileukemic effect. γδ T cells may contribute to GVL, although their biology and specificity are less well understood. Vaccination or adoptive transfer of donor-derived T cells with natural or transgenic receptors are strategies with potential to selectively enhance αβ and γδ T cell GVL effects.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, and
| | - Vipul S Sheth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Penter L, Wu CJ. Personal tumor antigens in blood malignancies: genomics-directed identification and targeting. J Clin Invest 2020; 130:1595-1607. [PMID: 31985488 PMCID: PMC7108890 DOI: 10.1172/jci129209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hematological malignancies have long been at the forefront of the development of novel immune-based treatment strategies. The earliest successful efforts originated from the extensive body of work in the field of allogeneic hematopoietic stem cell transplantation. These efforts laid the foundation for the recent exciting era of cancer immunotherapy, which includes immune checkpoint blockade, personal neoantigen vaccines, and adoptive T cell transfer. At the heart of the specificity of these novel strategies is the recognition of target antigens presented by malignant cells to T cells. Here, we review the advances in systematic identification of minor histocompatibility antigens and neoantigens arising from personal somatic alterations or recurrent driver mutations. These exciting efforts pave the path for the implementation of personalized combinatorial cancer therapy.
Collapse
Affiliation(s)
- Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité – Universitätsmedizin Berlin (CVK), Berlin, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Janelle V, Rulleau C, Del Testa S, Carli C, Delisle JS. T-Cell Immunotherapies Targeting Histocompatibility and Tumor Antigens in Hematological Malignancies. Front Immunol 2020; 11:276. [PMID: 32153583 PMCID: PMC7046834 DOI: 10.3389/fimmu.2020.00276] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last decades, T-cell immunotherapy has revealed itself as a powerful, and often curative, strategy to treat blood cancers. In hematopoietic cell transplantation, most of the so-called graft-vs.-leukemia (GVL) effect hinges on the recognition of histocompatibility antigens that reflect immunologically relevant genetic variants between donors and recipients. Whether other variants acquired during the neoplastic transformation, or the aberrant expression of gene products can yield antigenic targets of similar relevance as the minor histocompatibility antigens is actively being pursued. Modern genomics and proteomics have enabled the high throughput identification of candidate antigens for immunotherapy in both autologous and allogeneic settings. As such, these major histocompatibility complex-associated tumor-specific (TSA) and tumor-associated antigens (TAA) can allow for the targeting of multiple blood neoplasms, which is a limitation for other immunotherapeutic approaches, such as chimeric antigen receptor (CAR)-modified T cells. We review the current strategies taken to translate these discoveries into T-cell therapies and propose how these could be introduced in clinical practice. Specifically, we discuss the criteria that are used to select the antigens with the greatest therapeutic value and we review the various T-cell manufacturing approaches in place to either expand antigen-specific T cells from the native repertoire or genetically engineer T cells with minor histocompatibility antigen or TSA/TAA-specific recombinant T-cell receptors. Finally, we elaborate on the current and future incorporation of these therapeutic T-cell products into the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Valérie Janelle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Caroline Rulleau
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Simon Del Testa
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Cédric Carli
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Jean-Sébastien Delisle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,Division Hématologie et Oncologie, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| |
Collapse
|
30
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
Climent N, Plana M. Immunomodulatory Activity of Tyrosine Kinase Inhibitors to Elicit Cytotoxicity Against Cancer and Viral Infection. Front Pharmacol 2019; 10:1232. [PMID: 31680987 PMCID: PMC6813222 DOI: 10.3389/fphar.2019.01232] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) of aberrant tyrosine kinase (TK) activity have been widely used to treat chronic myeloid leukemia (CML) for decades in clinic. An area of growing interest is the reported ability of TKIs to induce immunomodulatory effects with anti-tumor and anti-viral activity, which appears to be mediated by directly or indirectly acting on immune cells. In selected cases of patients with CML, TKI treatment may be interrupted and a non-drug remission may be observed. In these patients, an immune mechanism of increased anti-tumor cytotoxic activity induced by chronic administration of TKIs has been suggested. TKIs increase some populations of natural killer (NK), NK-LGL, and T-LGLs cells especially in dasatinib treated CML patients infected with cytomegalovirus (CMV). In addition, dasatinib increases responses against CMV and is able to inhibit HIV replication in vitro. Recent studies suggest that subclinical reactivation of CMV could drive expansion of specific subsets of NK- and T-cells with both anti-tumoral and anti-viral function. Therefore, the underlying mechanisms implicated in the expansion of this increased anti-tumor and anti-viral cytotoxic activity induced by TKIs could be a new therapeutic approach to take into account against cancer and viral infections such as HIV-1 infection. The present review will briefly summarize the immunomodulatory effects of TKIs on T cells, NKs, and B cells. Therapeutic implications for modulating immunity against cancer and viral infections and critical open questions are also discussed.
Collapse
Affiliation(s)
- Núria Climent
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
BCR: a promiscuous fusion partner in hematopoietic disorders. Oncotarget 2019; 10:2738-2754. [PMID: 31105873 PMCID: PMC6505627 DOI: 10.18632/oncotarget.26837] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/23/2019] [Indexed: 12/23/2022] Open
Abstract
Considerable advances have been made in our understanding of the molecular basis of hematopoietic cancers. The discovery of the BCR-ABL fusion protein over 50 years ago has brought about a new era of therapeutic progress and overall improvement in patient care, mainly due to the development and use of personalized medicine and tyrosine kinase inhibitors (TKIs). However, since the detection of BCR-ABL, BCR has been identified as a commonly occurring fusion partner in hematopoietic disorders. BCR has been discovered fused to additional tyrosine kinases, including: Fibroblast Growth Factor Receptor 1 (FGFR1), Platelet-derived Growth Factor Receptor Alpha (PDGFRA), Ret Proto-Oncogene (RET), and Janus Kinase 2 (JAK2). While BCR translocations are infrequent in hematopoietic malignancies, clinical evidence suggests that patients who harbor these mutations benefit from TKIs and additional personalized therapies. The improvement of further methodologies for characterization of these fusions is crucial to determine a patient’s treatment regimen, and optimal outcome. However, potential relapse and drug resistance among patients’ highlights the need for additional treatment options and further understanding of these oncogenic fusion proteins. This review explores the mechanisms behind cancer progression of these BCR oncogenic fusion proteins, comparing their similarities and differences, examining the significance of BCR as a partner gene, and discussing current treatment options for these translocation-induced hematopoietic malignancies.
Collapse
|
33
|
Bauer J, Nelde A, Bilich T, Walz JS. Antigen Targets for the Development of Immunotherapies in Leukemia. Int J Mol Sci 2019; 20:ijms20061397. [PMID: 30897713 PMCID: PMC6471800 DOI: 10.3390/ijms20061397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotherapeutic approaches, including allogeneic stem cell transplantation and donor lymphocyte infusion, have significantly improved the prognosis of leukemia patients. Further efforts are now focusing on the development of immunotherapies that are able to target leukemic cells more specifically, comprising monoclonal antibodies, chimeric antigen receptor (CAR) T cells, and dendritic cell- or peptide-based vaccination strategies. One main prerequisite for such antigen-specific approaches is the selection of suitable target structures on leukemic cells. In general, the targets for anti-cancer immunotherapies can be divided into two groups: (1) T-cell epitopes relying on the presentation of peptides via human leukocyte antigen (HLA) molecules and (2) surface structures, which are HLA-independently expressed on cancer cells. This review discusses the most promising tumor antigens as well as the underlying discovery and selection strategies for the development of anti-leukemia immunotherapies.
Collapse
Affiliation(s)
- Jens Bauer
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Annika Nelde
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Tatjana Bilich
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Juliane S Walz
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
34
|
Forghieri F, Riva G, Lagreca I, Barozzi P, Vallerini D, Morselli M, Paolini A, Bresciani P, Colaci E, Maccaferri M, Gilioli A, Nasillo V, Messerotti A, Pioli V, Arletti L, Giusti D, Bettelli F, Celli M, Donatelli F, Corradini G, Basso S, Gurrado A, Cellini M, Trenti T, Marasca R, Narni F, Martelli MP, Falini B, Potenza L, Luppi M, Comoli P. Characterization and dynamics of specific T cells against nucleophosmin-1 (NPM1)-mutated peptides in patients with NPM1-mutated acute myeloid leukemia. Oncotarget 2019; 10:869-882. [PMID: 30783516 PMCID: PMC6368236 DOI: 10.18632/oncotarget.26617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin(NPM1)-mutated protein, a leukemia-specific antigen, represents an ideal target for AML immunotherapy. We investigated the dynamics of NPM1-mutated-specific T cells on PB and BM samples, collected from 31 adult NPM1-mutated AML patients throughout the disease course, and stimulated with mixtures of 18 short and long peptides (9-18mers), deriving from the complete C-terminal of the NPM1-mutated protein. Two 9-mer peptides, namely LAVEEVSLR and AVEEVSLRK (13.9-14.9), were identified as the most immunogenic epitopes. IFNγ-producing NPM1-mutated-specific T cells were observed by ELISPOT assay after stimulation with peptides 13.9-14.9 in 43/85 (50.6%) PB and 34/80 (42.5%) BM samples. An inverse correlation between MRD kinetics and anti-leukemic specific T cells was observed. Cytokine Secretion Assays allowed to predominantly and respectively identify Effector Memory and Central Memory T cells among IFNγ-producing and IL2-producing T cells. Moreover, NPM1-mutated-specific CTLs against primary leukemic blasts or PHA-blasts pulsed with different peptide pools could be expanded ex vivo from NPM1-mutated AML patients or primed in healthy donors. We describe the spontaneous appearance and persistence of NPM1-mutated-specific T cells, which may contribute to the maintenance of long-lasting remissions. Future studies are warranted to investigate the potential role of both autologous and allogeneic adoptive immunotherapy in NPM1-mutated AML patients.
Collapse
Affiliation(s)
- Fabio Forghieri
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, Modena, Italy
| | - Ivana Lagreca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Patrizia Barozzi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Daniela Vallerini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Monica Morselli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Ambra Paolini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Paola Bresciani
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Elisabetta Colaci
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Monica Maccaferri
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Andrea Gilioli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Vincenzo Nasillo
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Andrea Messerotti
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Valeria Pioli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Laura Arletti
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Davide Giusti
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Francesca Bettelli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Melania Celli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Francesca Donatelli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Giorgia Corradini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Sabrina Basso
- Pediatric Hematology/Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Antonella Gurrado
- Pediatric Hematology/Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Monica Cellini
- Department of Medical and Surgical Sciences, Section of Pediatric Hemato-Oncology, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, Modena, Italy
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Franco Narni
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Maria Paola Martelli
- Institute of Hematology, Centro di Ricerca Emato-Oncologico, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, Perugia, Italy
| | - Brunangelo Falini
- Institute of Hematology, Centro di Ricerca Emato-Oncologico, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, Perugia, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.,Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
35
|
Chang YJ, Zhao XY, Huang XJ. Strategies for Enhancing and Preserving Anti-leukemia Effects Without Aggravating Graft-Versus-Host Disease. Front Immunol 2018; 9:3041. [PMID: 30619371 PMCID: PMC6308132 DOI: 10.3389/fimmu.2018.03041] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
Allogeneic stem cell transplantation (allo-SCT) is a curable method for the treatment of hematological malignancies. In the past two decades, the establishment of haploidentical transplant modalities make “everyone has a donor” become a reality. However, graft-versus-host disease (GVHD) and relapse remain the major two causes of death either in the human leukocyte antigen (HLA)-matched transplant or haploidentical transplant settings, both of which restrict the improvement of transplant outcomes. Preclinical mice model showed that both donor-derived T cells and natural killer (NK) cells play important role in the pathogenesis of GVHD and the effects of graft-versus-leukemia (GVL). Hence, understanding the immune mechanisms of GVHD and GVL would provide potential strategies for the control of leukemia relapse without aggravating GVHD. The purpose of the current review is to summarize the biology of GVHD and GVL responses in preclinical models and to discuss potential novel therapeutic strategies to reduce the relapse rate after allo-SCT. We will also review the approaches, including optimal donor selection and, conditioning regimens, donor lymphocyte infusion, BCR/ABL-specific CTL, and chimeric antigen receptor-modified T cells, which have been successfully used in the clinic to enhance and preserve anti-leukemia activity, especially GVL effects, without aggravating GVHD or alleviate GVHD.
Collapse
Affiliation(s)
- Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
36
|
Warda W, Larosa F, Neto Da Rocha M, Trad R, Deconinck E, Fajloun Z, Faure C, Caillot D, Moldovan M, Valmary-Degano S, Biichle S, Daguindau E, Garnache-Ottou F, Tabruyn S, Adotevi O, Deschamps M, Ferrand C. CML Hematopoietic Stem Cells Expressing IL1RAP Can Be Targeted by Chimeric Antigen Receptor-Engineered T Cells. Cancer Res 2018; 79:663-675. [PMID: 30514753 DOI: 10.1158/0008-5472.can-18-1078] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/09/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022]
Abstract
Chronic myeloid leukemia (CML) is a chronic disease resulting in myeloid cell expansion through expression of the BCR-ABL1 fusion transcript. Tyrosine kinase inhibitors (TKI) have significantly increased survival of patients with CML, and deep responders may consider stopping the treatment. However, more than 50% of patients relapse and restart TKI, subsequently suffering unknown toxicity. Because CML is a model immune system-sensitive disease, we hypothesize that chimeric antigen receptor (CAR) T cells targeting IL1 receptor-associated protein (IL1RAP) in quiescent CML stem cells may offer an opportunity for a permanent cure. In this study, we produced and molecularly characterized a specific monoclonal anti-IL1RAP antibody from which fragment antigen-binding nucleotide coding sequences were cloned as a single chain into a lentiviral backbone and secured with the suicide gene iCASP9/rimiducid system. Our CAR T-cell therapy exhibited cytotoxicity against both leukemic stem cells and, to a lesser extent, monocytes expressing IL1RAP, with no apparent effect on the hematopoietic system, including CD34+ stem cells. This suggests IL1RAP as a tumor-associated antigen for immunotherapy cell targeting. IL1RAP CAR T cells were activated in the presence of IL1RAP+ cell lines or primary CML cells, resulting in secretion of proinflammatory cytokines and specifically killing in vitro and in a xenograft murine model. Overall, we demonstrate the proof of concept of a CAR T-cell immunotherapy approach in the context of CML that is applicable for young patients and primary TKI-resistant, intolerant, or allograft candidate patients. SIGNIFICANCE: These findings present the first characterization and proof of concept of a chimeric antigen receptor directed against IL1RAP expressed by leukemic stem cells in the context of CML.
Collapse
Affiliation(s)
- Walid Warda
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France.,Laboratory of Applied Biotechnology, Azm Centre for Research in Biotechnology and its Applications, EDST and Faculty of Sciences 3, Lebanese University, Tripoli, Liban
| | - Fabrice Larosa
- Department of Hematology, University Hospital of Besancon, Besancon, France
| | | | - Rim Trad
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France.,Department of Hematology, University Hospital of Besancon, Besancon, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology, Azm Centre for Research in Biotechnology and its Applications, EDST and Faculty of Sciences 3, Lebanese University, Tripoli, Liban
| | - Cyril Faure
- Department of Internal Medicine, Hospital of Haute Saone, Vesoul, France
| | - Denis Caillot
- Department of Hematology, University Hospital of Dijon, Dijon, France
| | - Marius Moldovan
- Department of Internal Medicine, Hospital Nord Franche-Comté, Belfort, France
| | | | - Sabeha Biichle
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France
| | - Etienne Daguindau
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France.,Department of Hematology, University Hospital of Besancon, Besancon, France
| | | | | | - Olivier Adotevi
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France
| | - Marina Deschamps
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- INSERM UMR1098, EFS BFC, University of Bourgogne Franche-Comté, Besançon, France.
| |
Collapse
|
37
|
Copelan EA, Chojecki A, Lazarus HM, Avalos BR. Allogeneic hematopoietic cell transplantation; the current renaissance. Blood Rev 2018; 34:34-44. [PMID: 30467067 DOI: 10.1016/j.blre.2018.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) provides the best chance for cure for many patients with malignant and nonmalignant hematologic disorders. Recent advances in selecting candidates and determining risk, procedure safety, utilization in older patients, use of alternative donors, and new or novel application of anti-cancer, immunosuppressive and antimicrobial agents have improved outcomes and expanded the role of HCT in hematologic disorders. Relapse remains the predominant cause of failure but enlightened use of new targeted and immunotherapeutic agents in combination with HCT promises to reduce relapse and further improve HCT outcomes.
Collapse
Affiliation(s)
- Edward A Copelan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA.
| | - Aleksander Chojecki
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Hillard M Lazarus
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Belinda R Avalos
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
38
|
Deola S, Guerrouahen BS, Sidahmed H, Al-Mohannadi A, Elnaggar M, Elsadig R, Abdelalim EM, Petrovski G, Gadina M, Thrasher A, Wels WS, Hunger SP, Wang E, Marincola FM, Maccalli C, Cugno C. Tailoring cells for clinical needs: Meeting report from the Advanced Therapy in Healthcare symposium (October 28-29 2017, Doha, Qatar). J Transl Med 2018; 16:276. [PMID: 30305089 PMCID: PMC6180452 DOI: 10.1186/s12967-018-1652-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
New technologies and therapies designed to facilitate development of personalized treatments are rapidly emerging in the field of biomedicine. Strikingly, the goal of personalized medicine refined the concept of therapy by developing cell-based therapies, the so-called “living drugs”. Breakthrough advancements were achieved in this regard in the fields of gene therapy, cell therapy, tissue-engineered products and advanced therapeutic techniques. The Advanced Therapies in Healthcare symposium, organized by the Clinical Research Center Department of Sidra Medicine, in Doha, Qatar (October 2017), brought together world-renowned experts from the fields of oncology, hematology, immunology, inflammation, autoimmune disorders, and stem cells to offer a comprehensive picture of the status of worldwide advanced therapies in both pre-clinical and clinical development, providing insights to the research phase, clinical data and regulatory aspects of these therapies. Highlights of the meeting are provided in this meeting report.
Collapse
Affiliation(s)
- Sara Deola
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | | | - Heba Sidahmed
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Anjud Al-Mohannadi
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Muhammad Elnaggar
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Ramaz Elsadig
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | | | | | - Adrian Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Winfried S Wels
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | | | - Ena Wang
- Immune Oncology Discovery and System Biology, AbbVie, Redwood City, CA, USA
| | | | | | - Cristina Maccalli
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar
| | - Chiara Cugno
- Research Department, Clinical Research Center, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
39
|
Endometrial Stromal Sarcomas: A Revision of Their Potential as Targets for Immunotherapy. Vaccines (Basel) 2018; 6:vaccines6030056. [PMID: 30149610 PMCID: PMC6161160 DOI: 10.3390/vaccines6030056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
Endometrial stromal sarcomas are a subtype of uterine sarcomas that are characterized by recurrent chromosomal translocations, resulting in the expression of tumor-specific fusion proteins that contribute to their tumorigenicity. These characteristics make the translocation breakpoints promising targets for immunotherapeutic approaches. In this review, we first describe the current knowledge about the classification of endometrial stromal sarcomas, and their molecular and genetic characteristics. Next, we summarize the available data on the use of translocation breakpoints as immunotherapeutic targets. Finally, we propose a roadmap to evaluate the feasibility of immunologic targeting of the endometrial stromal sarcoma-specific translocations in patients with recurrent disease.
Collapse
|
40
|
Short NJ, Kantarjian H, Pui CH, Goldstone A, Jabbour E. SOHO State of the Art Update and Next Questions: Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA MYELOMA AND LEUKEMIA 2018; 18:439-446. [DOI: 10.1016/j.clml.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
|
41
|
Chang YJ, Huang XJ. [How I manage minimal residual disease positive patients with acute leukemia who underwent allogeneic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:448-453. [PMID: 30032558 PMCID: PMC7342920 DOI: 10.3760/cma.j.issn.0253-2727.2018.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Y J Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | | |
Collapse
|
42
|
Chabannon C, Kuball J, Bondanza A, Dazzi F, Pedrazzoli P, Toubert A, Ruggeri A, Fleischhauer K, Bonini C. Hematopoietic stem cell transplantation in its 60s: A platform for cellular therapies. Sci Transl Med 2018; 10:10/436/eaap9630. [DOI: 10.1126/scitranslmed.aap9630] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Over the last 60 years, more than a million patients received hematopoietic cell transplantation. Having incorporated multiple changes in clinical practices, it remains a complex procedure facing a dual challenge: cure of the underlying disease and prevention of relapse while controlling potentially severe complications. Improved understanding of underlying biological processes resulted in the design of innovative therapies engineered from defined cell populations and testing of these therapies as addition or substitution at virtually every step of the procedure. This review provides an overview of these developments, many of them now applied outside the historical field of hematopoietic cell transplantation.
Collapse
|
43
|
Lovisa F, Zecca M, Rossi B, Campeggio M, Magrin E, Giarin E, Buldini B, Songia S, Cazzaniga G, Mina T, Acquafredda G, Quarello P, Locatelli F, Fagioli F, Basso G. Pre- and post-transplant minimal residual disease predicts relapse occurrence in children with acute lymphoblastic leukaemia. Br J Haematol 2018; 180:680-693. [DOI: 10.1111/bjh.15086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/07/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Federica Lovisa
- Clinic of Paediatric Haemato-Oncology, Department of Women's and Children's Health; University of Padua; Padua Italy
- Istituto di Ricerca Pediatrica Città della Speranza; Padua Italy
| | - Marco Zecca
- Paediatric Haematology/Oncology; Fondazione IRCCS Policlinico San Matteo; Pavia Italy
| | - Bartolomeo Rossi
- Clinic of Paediatric Haemato-Oncology, Department of Women's and Children's Health; University of Padua; Padua Italy
- Istituto di Ricerca Pediatrica Città della Speranza; Padua Italy
| | - Mimma Campeggio
- Clinic of Paediatric Haemato-Oncology, Department of Women's and Children's Health; University of Padua; Padua Italy
- Istituto di Ricerca Pediatrica Città della Speranza; Padua Italy
| | - Elisa Magrin
- Clinic of Paediatric Haemato-Oncology, Department of Women's and Children's Health; University of Padua; Padua Italy
- Istituto di Ricerca Pediatrica Città della Speranza; Padua Italy
- Departments of Biotherapy; Necker Children's Hospital; Assistance Publique-Hôpitaux de Paris; Paris France
| | - Emanuela Giarin
- Clinic of Paediatric Haemato-Oncology, Department of Women's and Children's Health; University of Padua; Padua Italy
- Istituto di Ricerca Pediatrica Città della Speranza; Padua Italy
| | - Barbara Buldini
- Clinic of Paediatric Haemato-Oncology, Department of Women's and Children's Health; University of Padua; Padua Italy
| | - Simona Songia
- Centro Ricerca Tettamanti; Paediatric Clinics; University of Milano-Bicocca; San Gerardo Hospital/Fondazione MBBM; Monza Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti; Paediatric Clinics; University of Milano-Bicocca; San Gerardo Hospital/Fondazione MBBM; Monza Italy
| | - Tommaso Mina
- Paediatric Haematology/Oncology; Fondazione IRCCS Policlinico San Matteo; Pavia Italy
| | - Gloria Acquafredda
- Paediatric Haematology/Oncology; Fondazione IRCCS Policlinico San Matteo; Pavia Italy
| | - Paola Quarello
- Paediatric Onco-Haematology; Stem Cell Transplantation and Cellular Therapy Division; Regina Margherita Children's Hospital; Turin Italy
| | - Franco Locatelli
- Paediatric Haematology/Oncology; IRCCS Ospedale “Bambino Gesù”; Roma Italy
- Department of Paediatric Sciences; University of Pavia; Pavia Italy
| | - Franca Fagioli
- Paediatric Onco-Haematology; Stem Cell Transplantation and Cellular Therapy Division; Regina Margherita Children's Hospital; Turin Italy
| | - Giuseppe Basso
- Clinic of Paediatric Haemato-Oncology, Department of Women's and Children's Health; University of Padua; Padua Italy
- Istituto di Ricerca Pediatrica Città della Speranza; Padua Italy
| |
Collapse
|
44
|
|
45
|
Biondi A, Magnani CF, Tettamanti S, Gaipa G, Biagi E. Redirecting T cells with Chimeric Antigen Receptor (CAR) for the treatment of childhood acute lymphoblastic leukemia. J Autoimmun 2017; 85:141-152. [PMID: 28843422 DOI: 10.1016/j.jaut.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/27/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Nowadays the survival rate is around 85%. Nevertheless, an urgent clinical need is still represented by primary refractory and relapsed patients who do not significantly benefit from standard approaches, including chemo-radiotherapy and hematopoietic stem cell transplantation (HSCT). For this reason, immunotherapy has so far represented a challenging novel treatment opportunity, including, as the most validated therapeutic options, cancer vaccines, donor-lymphocyte infusions and tumor-specific immune effector cells. More recently, unexpected positive clinical results in ALL have been achieved by application of gene-engineered chimeric antigen expressing (CAR) T cells. Several CAR designs across different trials have generated similar response rates, with Complete Response (CR) of 60-90% at 1 month and an Event-Free Survival (EFS) of 70% at 6 months. Relevant challenges anyway remain to be addressed, such as amelioration of technical, cost and feasibility aspects of cell and gene manipulation and the necessity to face the occurrence of relapse mechanisms. This review describes the state of the art of ALL immunotherapies, the novelties in terms of gene manipulation approaches and the problems emerged from early clinical studies. We describe and discuss the process of clinical translation, including the design of a cell manufacturing protocol, vector production and regulatory issues. Multiple antigen targeting and combination of CAR T cells with molecular targeted drugs have also been evaluated as latest strategies to prevail over immune-evasion.
Collapse
Affiliation(s)
- Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy.
| | - Chiara F Magnani
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Giuseppe Gaipa
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| | - Ettore Biagi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Osp. San Gerardo, Monza, Italy
| |
Collapse
|
46
|
Byun JM, Koh Y, Shin DY, Kim I, Yoon SS, Lee JO, Bang SM, Kim KH, Jung SH, Lee WS, Park Y, Jang JH, Han JJ, Yhim HY, Kim DS, Lee YJ, Lee H, Choi YS, Lee S. BCR-ABL translocation as a favorable prognostic factor in elderly patients with acute lymphoblastic leukemia in the era of potent tyrosine kinase inhibitors. Haematologica 2017; 102:e187-e190. [PMID: 28082339 DOI: 10.3324/haematol.2016.159988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ja Min Byun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Ki Hwan Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Seoul, Korea
| | - Won Sik Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Seoul, Korea
| | - Yong Park
- Department of Internal Medicine, Korea University School of Medicine Anam Hospital, Seoul, Korea
| | - Jun Ho Jang
- Divison of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Joon Han
- Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ho-Young Yhim
- Division of Hematology-Oncology, Department of Internal Medicine, Chonbuk National University Hospital, Seoul, Korea
| | - Dae Sik Kim
- Department of Internal Medicine, Korea University School of Medicine, Seoul, Korea
| | - Yoo Jin Lee
- Department of Hematology-Oncology, Kyungpook National University Hospital, Goyang, Korea
| | - Hyewon Lee
- Hematologic-Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center, Goyang, Korea
| | - Yun-Suk Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - Seok Lee
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea, Korea
| | | |
Collapse
|