1
|
Chu MQ, Zhang TJ, Feng Y, Shao X, Ji YH, Qian J, Zhou JD. Successful treatment of primary refractory DLBCL/HGBL - MYC/BCL2 transformed from FL using glofitamab: a case report. Front Immunol 2025; 16:1566035. [PMID: 40230856 PMCID: PMC11994609 DOI: 10.3389/fimmu.2025.1566035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Diffuse large B-cell lymphoma/high-grade B-cell lymphoma with MYC and BCL2 rearrangements (DLBCL/HGBL-MYC/BCL2) represents a distinct entity of mature aggressive B-cell lymphoma, constituting a substantial gap in the clinical management of DLBCL. Conventional R-CHOP-like chemoimmunotherapy regimens have demonstrated limited efficacy in DLBCL/HGBL-MYC/BCL2, and the clinical outcome remains poor, with a median overall survival of less than 2 years, and even shorter in cases transformed from indolent lymphoma. We reported a 66-year-old female was firstly diagnosed with follicular lymphoma, but presented with disease progression to DLBCL/HGBL-MYC/BCL2 during the treatment with BR regimen. Moreover, the patient was also primary refractory to Pola-R-CHP. The patient achieved partial response following treatment with the CD20×CD3 bispecific antibody glofitamab and maintained long-term remission. Although only one successful case is presented, glofitamab could be considered as salvage therapy for transformed relapsed/refractory DLBCL/HGBL-MYC/BCL2.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Female
- Aged
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-myc/genetics
- Lymphoma, Follicular/drug therapy
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Treatment Outcome
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
Collapse
Affiliation(s)
- Ming-qiang Chu
- Department of Hematology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Ting-juan Zhang
- Department of Hematology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
- Department of Oncology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuan Feng
- Department of Hematology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Xun Shao
- Department of Nuclear Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yong-hui Ji
- Department of Hematology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Department of Hematology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Jing-dong Zhou
- Department of Hematology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Hematology, Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Vimalathas G, Lang CS, Green TM, Møller MB, Nyvold CG, Hansen MH, Larsen TS. Multilevel Analysis of MYC and BCL2 Aberrations in Diffuse Large B-Cell Lymphoma: Identifying a High-Risk Patient Subgroup Across Cell-of-Origin Using Targeted Sequencing. Eur J Haematol 2025; 114:469-480. [PMID: 39565012 DOI: 10.1111/ejh.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
INTRODUCTION Diffuse large B-cell lymphoma (DLBCL) exhibits striking clinical and biological heterogeneity. Recent studies have identified new subgroups within germinal center B-cell like (GCB) DLBCL, associated with inferior prognosis, irrespective of MYC and BCL2 translocations. We explored the existence of such a DLBCL high-risk subgroup, based on multilevel aberrations, especially focusing on MYC and BCL2. METHODS Tissue samples from 111 DLBCL patients were sequenced with a 90-gene lymphoma panel, followed by integrative analyses combining sequencing data, immunohistochemistry, fluorescent in situ hybridization, and clinical data. RESULTS We identified a high-risk subgroup in DLBCL defined by: dual immunohistochemical MYC and BCL2 expression (DEL), concurrent MYC and BCL2 translocations (DHL-BCL2), mutations in MYC, CXCR4, or both, and/or BCL2 amplification. The high-risk subgroup constituted 41% of the cohort and included DHL-BCL2, DEL, a GCB subgroup likely representing the recently described GCB subgroups, and a subset of non-GCB patients. In multivariate analysis, high-risk features provided independent predictive value from age and IPI. The 5-year overall survival was 36% in high-risk patients, compared to 76% in non-high-risk patients. CONCLUSION We identified a distinct high-risk DLBCL subgroup, characterized by MYC and BCL2 aberrations, beyond conventional DHL-BCL2 and DEL, and irrespective of cell-of-origin, thereby expanding the poor-prognosis group.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/pathology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Male
- Female
- Middle Aged
- Aged
- Prognosis
- Adult
- Aged, 80 and over
- Mutation
- High-Throughput Nucleotide Sequencing
- Translocation, Genetic
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
Collapse
Affiliation(s)
- Gayaththri Vimalathas
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | | | - Tina Marie Green
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Michael Boe Møller
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- Department of Haematology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, Odense, Denmark
- Odense Patient Data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Marcus Høy Hansen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- Department of Haematology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, Odense, Denmark
| | - Thomas Stauffer Larsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- Department of Haematology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Naoi Y, Ennishi D. Understanding the intrinsic biology of diffuse large B-cell lymphoma: recent advances and future prospects. Int J Hematol 2025; 121:321-325. [PMID: 38727950 DOI: 10.1007/s12185-024-03780-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 02/26/2025]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoid tumor, and accounts for approximately 30-40% of non-Hodgkin lymphomas. Although the prognosis has significantly improved with the advent of rituximab combination chemotherapy in the early 2000s, recurrence still occurs in about 40% of cases. Even though chemotherapy with increased dose-intensity is used in recurrent cases, the prognosis of such patients remains poor. Thus, the development of personalized medicine, including molecular-targeted drugs, is required to improve the prognosis of DLBCL patients, and further understanding of the molecular pathogenesis of DLBCL is essential for this purpose. With recent advances in genetic analysis technology, unknown genetic abnormalities and gene expression patterns have been discovered, and based on these discoveries, progress is being made in elucidating and subdividing molecular pathologies. This article summarizes recent findings regarding molecular pathogenesis in DLBCL using transcriptome and genomics technologies, and outlines the path to personalized medicine.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/therapy
- Precision Medicine
- Prognosis
- Gene Expression Profiling
- Transcriptome
- Genomics
- Gene Expression Regulation, Neoplastic
- Molecular Targeted Therapy
- Rituximab
Collapse
Affiliation(s)
- Yusuke Naoi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan.
| |
Collapse
|
4
|
Alig SK, Chapuy B, Ennishi D, Dunleavy K, Hodson DJ. Evolving molecular classification of aggressive B-cell lymphoma. Histopathology 2025; 86:94-105. [PMID: 39545339 PMCID: PMC11648360 DOI: 10.1111/his.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This review aims to provide an overview of the latest developments in the classification and molecular understanding of aggressive B-cell lymphomas, specifically focusing on diffuse large B-cell lymphoma (DLBCL) and high-grade B-cell lymphoma (HGBL). Advances in molecular techniques have led to novel ways to classify these lymphomas based on clinical, histological, transcriptional, and genetic properties. While these methods have predominantly focused on the malignant compartment, recent studies emphasize the value of profiling the tumour microenvironment for a more comprehensive disease classification. Additionally, the integration of liquid biopsies represents a promising advancement, offering less invasive and dynamic insights into tumour characteristics and treatment response. Although molecular profiles are not yet routinely used to guide therapy, emerging data highlight their potential to predict responses to novel treatments. It is our belief that integrating molecular profiling and liquid biopsies into clinical practice and research now will pave the way for more personalized and effective therapies in the future.
Collapse
MESH Headings
- Humans
- Lymphoma, B-Cell/classification
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Tumor Microenvironment
- Gene Expression Profiling
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Stefan K Alig
- Department of Internal Medicine IIILudwig Maximilian University (LMU) HospitalMunichGermany
| | - Björn Chapuy
- Department of Hematology, Oncology and Cancer ImmunologyCharité‐University Medical Center BerlinBerlinGermany
| | - Daisuke Ennishi
- Center for Comprehensive Genomic MedicineOkayama University HospitalOkayamaJapan
| | - Kieron Dunleavy
- Department of HematologyLombardi Comprehensive Cancer CenterWashingtonDCUSA
| | - Daniel J Hodson
- Cambridge Stem Cell Institute and Department of HaematologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
5
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
6
|
Sadeghipour A, Taha SR, Shariat Zadeh M, Kosari F, Babaheidarian P, Fattahi F, Abdi N, Tajik F. Expression and Clinical Significance of Ki-67, CD10, BCL6, MUM1, c-MYC, and EBV in Diffuse Large B Cell Lymphoma Patients. Appl Immunohistochem Mol Morphol 2024; 32:309-321. [PMID: 38872345 DOI: 10.1097/pai.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL) in adults. Although studies regarding the association between the expression of Ki-67, CD10, BCL6, and MUM1 proteins, as well as c-MYC amplification and EBV status with clinicopathologic characteristics have rapidly progressed, their co-expression and prognostic role remain unsatisfactory. Therefore, this study aimed to investigate the association between the expression of all markers and clinicopathologic features and their prognostic value in DLBCL. Also, the co-expression of markers was investigated. METHODS The protein expression levels and prognostic significance of Ki-67, CD10, BCL6, and MUM1 were investigated with clinical follow-up in a total of 53 DLBCL specimens (including germinal center B [GCB] and activated B cell [ABC] subtypes) as well as adjacent normal samples using immunohistochemistry (IHC). Besides, the clinical significance and prognostic value of c-MYC and EBV status were also evaluated through chromogenic in situ hybridization (CISH), and their correlation with other markers was also assessed. RESULTS The results demonstrated a positive correlation between CD10 and BCL6 expression, with both markers being associated with the GCB subtype ( P< 0.001 and P =0.001, respectively). Besides, we observe a statistically significant association between MUM1 protein expression and clinicopathologic type ( P< 0.005) as well as a positive association between c-MYC and recurrence ( P =0.028). Our survival analysis showed that patients who had responded to R-CHOP treatment had better overall survival (OS) and progression-free survival (PFS) than those who did not. CONCLUSION Collectively, this study's results add these markers' value to the existing clinical understanding of DLBCL. However, further investigations are needed to explore markers' prognostic and biological roles in DLBCL patients.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Male
- Female
- Middle Aged
- Interferon Regulatory Factors/metabolism
- Interferon Regulatory Factors/genetics
- Proto-Oncogene Proteins c-bcl-6/metabolism
- Proto-Oncogene Proteins c-bcl-6/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Neprilysin/metabolism
- Adult
- Aged
- Ki-67 Antigen/metabolism
- Herpesvirus 4, Human
- Biomarkers, Tumor/metabolism
- Prognosis
- Epstein-Barr Virus Infections
- Aged, 80 and over
- Doxorubicin/therapeutic use
- Immunohistochemistry
- Gene Expression Regulation, Neoplastic
- Vincristine/therapeutic use
- Clinical Relevance
Collapse
Affiliation(s)
- Alireza Sadeghipour
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
- Oncopathology Research Center, Iran University of Medical Sciences
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences
| | | | - Farid Kosari
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Navid Abdi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA
| |
Collapse
|
7
|
Xie Z, Qin Y, Chen X, Yang S, Yang J, Gui L, Liu P, He X, Zhou S, Zhang C, Tang L, Shi Y. Deciphering the Prognostic Significance of MYD88 and CD79B Mutations in Diffuse Large B-Cell Lymphoma: Insights into Treatment Outcomes. Target Oncol 2024; 19:383-400. [PMID: 38643457 DOI: 10.1007/s11523-024-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The clinical and genetic characteristics, as well as treatment outcomes, of diffuse large B-cell lymphoma (DLBCL) patients with different MYD88 and CD79B mutation status merit further investigation. OBJECTIVE This study aims to investigate the distinctions in clinical manifestations, genetic characteristics, and treatment outcomes among MYD88-CD79Bco-mut, MYD88/CD79Bsingle-mut, and MYD88-CD79Bco-wt DLBCL patients. PATIENTS AND METHODS Clinical and genetic characteristics, along with treatment outcomes among 2696 DLBCL patients bearing MYD88-CD79Bco-mut, MYD88/CD79Bsingle-mut, and MYD88-CD79Bco-wt treated with R-CHOP/R-CHOP-like regimens from the Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College and six external cohorts were analyzed. Potential molecular mechanisms were investigated through Gene Set Enrichment Analysis and xCell methodology. RESULTS In the MCD subtype, patients with MYD88-CD79Bco-mut showed comparable progression-free survival (PFS) and overall survival (OS) compared to MYD88/CD79Bsingle-mut or MYD88-CD79Bco-wt. However, in the non-MCD subtype, patients with MYD88-CD79Bco-mut exhibited significantly inferior OS than MYD88/CD79Bsingle-mut or MYD88-CD79Bco-wt, while there was no significant OS difference between MYD88/CD79Bsingle-mut and MYD88-CD79Bco-wt (median OS: 68.8 [95% CI 22-NA] vs NA [95% CI 112-NA] vs 177.7 [95% CI 159-NA] months; MYD88-CD79Bco-mut vs MYD88/CD79Bsingle-mut: p = 0.02; MYD88-CD79Bco-mut vs MYD88-CD79Bco-wt: p = 0.03; MYD88/CD79Bsingle-mut vs MYD88-CD79Bco-wt: p = 0.33). Regarding patients with MYD88-CD79Bco-mut, there was no significant difference in PFS and OS between the MCD and non-MCD subtypes. Within the MYD88-CD79Bco-mut group, patients with PIM1mut had better PFS than PIM1wt (median PFS: 8.34 [95% CI 5.56-NA] vs 43.8 [95% CI 26.4-NA] months; p = 0.02). Possible mechanisms contributing to the superior PFS of PIM1mut patients may include activated lymphocyte-mediated immunity and interferon response, a higher proportion of natural killer T cells and plasmacytoid dendritic cells, as well as suppressed angiogenesis and epithelial-mesenchymal transition, along with lower fibroblast and stromal score. CONCLUSIONS In the MCD subtype, patients with MYD88-CD79Bco-mut showed comparable PFS and OS compared to MYD88/CD79Bsingle-mut or MYD88-CD79Bco-wt, while in the non-MCD subtype, they exhibited significantly inferior OS. There was no significant disparity in PFS and OS of MYD88-CD79Bco-mut between the MCD and non-MCD subtypes. The presence of PIM1mut within the MYD88-CD79Bco-mut group correlated with better PFS, which may result from an intricate interplay of immune processes and tumor microenvironment alterations.
Collapse
Affiliation(s)
- Zucheng Xie
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xinrui Chen
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Sheng Yang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jianliang Yang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lin Gui
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Peng Liu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xiaohui He
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Shengyu Zhou
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Changgong Zhang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Cho SF, Yeh TJ, Wang HC, Du JS, Gau YC, Lin YY, Chuang TM, Liu YC, Hsiao HH, Moi SH. Prognostic mutation signature would serve as a potential prognostic predictor in patients with diffuse large B-cell lymphoma. Sci Rep 2024; 14:6161. [PMID: 38485750 PMCID: PMC10940711 DOI: 10.1038/s41598-024-56583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
The present study aimed to elucidate the prognostic mutation signature (PMS) associated with long-term survival in a diffuse large B-cell lymphoma (DLBCL) cohort. All data including derivation and validation cohorts were retrospectively retrieved from The Cancer Genome Atlas (TCGA) database and whole-exome sequencing (WES) data. The Lasso Cox regression analysis was used to construct the PMS based on WES data, and the PMS was determined using the area under the receiver operating curve (AUC). The predictive performance of eligible PMS was analyzed by time-dependent receiver operating curve (ROC) analyses. After the initial evaluation, a PMS composed of 94 PFS-related genes was constructed. Notably, this constructed PMS accurately predicted the 12-, 36-, and 60-month PFS, with AUC values of 0.982, 0.983, and 0.987, respectively. A higher level of PMS was closely linked to a significantly worse PFS, regardless of the molecular subtype. Further evaluation by forest plot revealed incorporation of international prognostic index or tumor mutational burden into PMS increased the prediction capability for PFS. The drug-gene interaction and pathway exploration revealed the PFS-related genes were associated with DNA damage, TP53, apoptosis, and immune cell functions. In conclusion, this study utilizing a high throughput genetic approach demonstrated that the PMS could serve as a prognostic predictor in DLBCL patients. Furthermore, the identification of the key signaling pathways for disease progression also provides information for further investigation to gain more insight into novel drug-resistant mechanisms.
Collapse
Affiliation(s)
- Shih-Feng Cho
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tsung-Jang Yeh
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yuh-Ching Gau
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yu-Yin Lin
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tzer-Ming Chuang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Chang Liu
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
9
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Urata T, Naoi Y, Jiang A, Boyle M, Sunami K, Imai T, Nawa Y, Hiramatsu Y, Yamamoto K, Fujii S, Yoshida I, Yano T, Chijimatsu R, Murakami H, Ikeuchi K, Kobayashi H, Tani K, Ujiie H, Inoue H, Tomida S, Yamamoto A, Kondo T, Fujiwara H, Asada N, Nishimori H, Fujii K, Fujii N, Matsuoka KI, Sawada K, Momose S, Tamaru JI, Nishikori A, Sato Y, Yoshino T, Maeda Y, Scott DW, Ennishi D. Distribution and clinical impact of molecular subtypes with dark zone signature of DLBCL in a Japanese real-world study. Blood Adv 2023; 7:7459-7470. [PMID: 37552496 PMCID: PMC10758740 DOI: 10.1182/bloodadvances.2023010402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
The distribution and clinical impact of cell-of-origin (COO) subtypes of diffuse large B-cell lymphoma (DLBCL) outside Western countries remain unknown. Recent literature also suggests that there is an additional COO subtype associated with the germinal center dark zone (DZ) that warrants wider validation to generalize clinical relevance. Here, we assembled a cohort of Japanese patients with untreated DLBCL and determined the refined COO subtypes, which include the DZ signature (DZsig), using the NanoString DLBCL90 assay. To compare the distribution and clinical characteristics of the molecular subtypes, we used a data set from the cohort of British Columbia Cancer (BCC) (n = 804). Through the 1050 patient samples on which DLBCL90 assay was successfully performed in our cohort, 35%, 45%, and 6% of patients were identified to have germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, and DZsig-positive (DZsigpos) DLBCL, respectively, with the highest prevalence of ABC-DLBCL, differing significantly from the BCC result (P < .001). GCB-DLBCL, ABC-DLBCL, and DZsigpos-DLBCL were associated with 2-year overall survival rates of 88%, 75%, and 66%, respectively (P < .0001), with patients with DZsigpos-DLBCL having the poorest prognosis. In contrast, GCB-DLBCL without DZsig showed excellent outcomes after rituximab-containing immunochemotherapy. DZsigpos-DLBCL was associated with the significant enrichment of tumors with CD10 expression, concurrent MYC/BCL2 expression, and depletion of microenvironmental components (all, P < .05). These results provide evidence of the distinct distribution of clinically relevant molecular subtypes in Japanese DLBCL and that refined COO, as measured by the DLBCL90 assay, is a robust prognostic biomarker that is consistent across geographical areas.
Collapse
Affiliation(s)
- Tomohiro Urata
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yusuke Naoi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Aixiang Jiang
- British Columbia Cancer, Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Merrill Boyle
- British Columbia Cancer, Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Kazutaka Sunami
- Department of Hematology, NHO Okayama Medical Center, Okayama, Japan
| | - Toshi Imai
- Department of Hematology and Blood Transfusion, Kochi Health Sciences Center, Kochi, Japan
| | - Yuichiro Nawa
- Division of Hematology, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Yasushi Hiramatsu
- Department of Hematology and Oncology, Japanese Red Cross Society Himeji Hospital, Hyogo, Japan
| | - Kazuhiko Yamamoto
- Department of Hematology and Oncology, Okayama City Hospital, Okayama, Japan
| | - Soichiro Fujii
- Department of Hematology, Japanese Red Cross Okayama Hospital, Okayama, Japan
| | - Isao Yoshida
- Department of Hematologic Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Tomofumi Yano
- Department of Internal Medicine, Okayama Rosai Hospital, Okayama, Japan
| | - Ryota Chijimatsu
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Murakami
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Kazuhiro Ikeuchi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Hiroki Kobayashi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsuma Tani
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Hideki Ujiie
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Hirofumi Inoue
- Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Akira Yamamoto
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Takumi Kondo
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Hisakazu Nishimori
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Keiko Fujii
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Nobuharu Fujii
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Ken-ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Keisuke Sawada
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Jun-ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Asami Nishikori
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Yasuharu Sato
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | | | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - David W. Scott
- British Columbia Cancer, Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Daisuke Ennishi
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
11
|
Chung EYL, Sartori G, Ponzoni M, Cascione L, Priebe V, Xu-Monette ZY, Fang X, Zhang M, Visco C, Tzankov A, Rinaldi A, Sgrignani J, Zucca E, Rossi D, Cavalli A, Inghirami G, Scott DW, Young KH, Bertoni F. ETS1 phosphorylation at threonine 38 is associated with the cell of origin of diffuse large B cell lymphoma and sustains the growth of tumour cells. Br J Haematol 2023; 203:244-254. [PMID: 37584198 DOI: 10.1111/bjh.19018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
The transcriptional factor ETS1 is upregulated in 25% of diffuse large B cell lymphoma (DLBCL). Here, we studied the role of ETS1 phosphorylation at threonine 38, a marker for ETS1 activation, in DLBCL cellular models and clinical specimens. p-ETS1 was detected in activated B cell-like DLBCL (ABC), not in germinal centre B-cell-like DLBCL (GCB) cell lines and, accordingly, it was more common in ABC than GCB DLBCL diagnostic biopsies. MEK inhibition decreased both baseline and IgM stimulation-induced p-ETS1 levels. Genetic inhibition of phosphorylation of ETS1 at threonine 38 affected the growth and the BCR-mediated transcriptome program in DLBCL cell lines. Our data demonstrate that ETS1 phosphorylation at threonine 38 is important for the growth of DLBCL cells and its pharmacological inhibition could benefit lymphoma patients.
Collapse
Affiliation(s)
- Elaine Y L Chung
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Maurilio Ponzoni
- IRCCS San Raffaele Hospital Scientific Institute, Vita Salute San Raffaele University, Milan, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Valdemar Priebe
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | | | - Xiaosheng Fang
- Duke University Medical Center, Durham, North Carolina, USA
| | - Mingzhi Zhang
- Duke University Medical Center, Durham, North Carolina, USA
| | - Carlo Visco
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital, Basel, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, USI, Bellinzona, Switzerland
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andrea Cavalli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, USI, Bellinzona, Switzerland
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine, New York, New York, USA
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ken H Young
- Duke University Medical Center, Durham, North Carolina, USA
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| |
Collapse
|
12
|
Salwa A, Ferraresi A, Secomandi E, Vallino L, Moia R, Patriarca A, Garavaglia B, Gaidano G, Isidoro C. High BECN1 Expression Negatively Correlates with BCL2 Expression and Predicts Better Prognosis in Diffuse Large B-Cell Lymphoma: Role of Autophagy. Cells 2023; 12:1924. [PMID: 37566004 PMCID: PMC10417641 DOI: 10.3390/cells12151924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is characterized by high molecular and clinical heterogeneity. Autophagy, a lysosome-driven catabolic process devoted to macromolecular turnover, is fundamental in maintaining normal hematopoietic stem cells and progenitors homeostasis, and its dysregulation plays a critical role in the initiation and progression of hematological malignancies. One main regulator of autophagy is BECLIN-1, which may interact alternatively with either BCL-2, thus allowing apoptosis, or PI3KC3, thus promoting autophagy. The altered expression of BCL2 and BECN1 correlates with lymphoma outcomes, but whether this is associated with dysregulated cross-talk between autophagy and apoptosis remains to be elucidated. Analysis of the TCGA database revealed that BCL2 and BECN1 mRNA expression were inversely correlated in DLBCL patients. In representative DLBCL cell lines exposed to doxorubicin, the cells highly expressing BCL-2 were resistant, while the ones highly expressing BECLIN-1 were sensitive, and this correlated with low and high autophagy flux, respectively. Venetoclax targeting of BCL-2 increased while the spautin-1-mediated inhibition of BECLIN-1-dependent autophagy reversed doxorubicin sensitivity in the former and in the latter, respectively. By interrogating the TCGA DLBCL dataset, we found that BCL2 and BECN1 acted as negative and positive prognostic markers for DLBCL, respectively. The differentially expressed gene analysis in the respective cohorts revealed that BCL2 positively correlated with oncogenic pathways (e.g., glucose transport, HIF1A signaling, JAK-STAT signaling, PI3K-AKT-mTOR pathway) and negatively correlated with autophagy-related transcripts, while BECN1 showed the opposite trend. Notably, patients with high BECN1 expression displayed longer survival. Our data reveal, for the first time, that the modulation of BECLIN-1-dependent autophagy influences the prognosis of DLBCL patients and provide a mechanistic explanation supporting the therapeutic use of drugs that, by stimulating autophagy, can sensitize lymphoma cells to chemotherapy.
Collapse
Affiliation(s)
- Amreen Salwa
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (R.M.); (A.P.)
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (R.M.); (A.P.)
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (R.M.); (A.P.)
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| |
Collapse
|
13
|
Hoppe MM, Jaynes P, Shuangyi F, Peng Y, Sridhar S, Hoang PM, Liu CX, De Mel S, Poon L, Chan EHL, Lee J, Ong CK, Tang T, Lim ST, Nagarajan C, Grigoropoulos NF, Tan SY, Hue SSS, Chang ST, Chuang SS, Li S, Khoury JD, Choi H, Harris C, Bottos A, Gay LJ, Runge HF, Moutsopoulos I, Mohorianu I, Hodson DJ, Farinha P, Mottok A, Scott DW, Pitt JJ, Chen J, Kumar G, Kannan K, Chng WJ, Chee YL, Ng SB, Tripodo C, Jeyasekharan AD. Patterns of Oncogene Coexpression at Single-Cell Resolution Influence Survival in Lymphoma. Cancer Discov 2023; 13:1144-1163. [PMID: 37071673 PMCID: PMC10157367 DOI: 10.1158/2159-8290.cd-22-0998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 02/13/2023] [Indexed: 04/19/2023]
Abstract
Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets. Comparative bulk/single-cell transcriptomic analyses of DLBCL samples and MYC/BCL2/BCL6-transformed primary B cells identify molecular features, including cyclin D2 and PI3K/AKT as candidate regulators of M+2+6- unfavorable biology. Similar analyses evaluating oncogenic combinations at single-cell resolution in other cancers may facilitate an understanding of cancer evolution and therapy resistance. SIGNIFICANCE Using single-cell-resolved multiplexed imaging, we show that selected subpopulations of cells expressing specific combinations of oncogenes influence clinical outcomes in lymphoma. We describe a probabilistic metric for the estimation of cellular oncogenic coexpression from IHC or bulk transcriptomes, with possible implications for prognostication and therapeutic target discovery in cancer. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fan Shuangyi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shruti Sridhar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Clementine Xin Liu
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Sanjay De Mel
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Limei Poon
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Hian Li Chan
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheng-Tsung Chang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shaoying Li
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D. Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carl Harris
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Laura J. Gay
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | | | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | - Anja Mottok
- BC Cancer Research Centre, Vancouver, Canada
| | | | - Jason J. Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gayatri Kumar
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasthuri Kannan
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Anand D. Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Kurz KS, Ott M, Kalmbach S, Steinlein S, Kalla C, Horn H, Ott G, Staiger AM. Large B-Cell Lymphomas in the 5th Edition of the WHO-Classification of Haematolymphoid Neoplasms-Updated Classification and New Concepts. Cancers (Basel) 2023; 15:cancers15082285. [PMID: 37190213 DOI: 10.3390/cancers15082285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The family/class of the large B-cell lymphomas (LBCL) in the 5th edition of the World Health Organization (WHO) classification of haematolymphoid tumors (WHO-HAEM5) features only a few major changes as compared to the 4th edition. In most entities, there are only subtle changes, many of them only representing some minor modifications in diagnostic terms. Major changes have been made in the diffuse large B-cell lymphomas (DLBCL)/high-grade B-cell lymphomas (HGBL) associated with MYC and BCL2 and/or BCL6 rearrangements. This category now consists of MYC and BCL2 rearranged cases exclusively, while the MYC/BCL6 double hit lymphomas now constitute genetic subtypes of DLBCL, not otherwise specified (NOS) or of HGBL, NOS. Other major changes are the conceptual merger of lymphomas arising in immune-privileged sites and the description of LBCL arising in the setting of immune dysregulation/deficiency. In addition, novel findings concerning underlying biological mechanisms in the pathogenesis of the different entities are provided.
Collapse
Affiliation(s)
- Katrin S Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Michaela Ott
- Department of Pathology, Marienhospital, 70199 Stuttgart, Germany
| | - Sabrina Kalmbach
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Sophia Steinlein
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Claudia Kalla
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| |
Collapse
|
15
|
Shimkus G, Nonaka T. Molecular classification and therapeutics in diffuse large B-cell lymphoma. Front Mol Biosci 2023; 10:1124360. [PMID: 36818048 PMCID: PMC9936827 DOI: 10.3389/fmolb.2023.1124360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) encompasses a wide variety of disease states that have to date been subgrouped and characterized based on immunohistochemical methods, which provide limited prognostic value to clinicians and no alteration in treatment regimen. The addition of rituximab to CHOP therapy was the last leap forward in terms of treatment, but regimens currently follow a standardized course when disease becomes refractory with no individualization based on genotype. Research groups are tentatively proposing new strategies for categorizing DLBCL based on genetic abnormalities that are frequently found together to better predict disease course following dysregulation of specific pathways and to deliver targeted treatment. Novel algorithms in combination with next-generation sequencing techniques have identified between 4 and 7 subgroups of DLBCL, depending on the research team, with potentially significant and actionable genetic alterations. Various drugs aimed at pathways including BCR signaling, NF-κB dysfunction, and epigenetic regulation have shown promise in their respective groups and may show initial utility as second or third line therapies to patients with recurrent DLBCL. Implementation of subgroups will allow collection of necessary data to determine which groups are significant, which treatments may be indicated, and will provide better insight to clinicians and patients on specific disease course.
Collapse
Affiliation(s)
- Gaelen Shimkus
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
16
|
Chen H, Qin Y, Liu P, Yang J, Gui L, He X, Zhang C, Zhou S, Zhou L, Yang S, Shi Y. Genetic Profiling of Diffuse Large B-Cell Lymphoma: A Comparison Between Double-Expressor Lymphoma and Non-Double-Expressor Lymphoma. Mol Diagn Ther 2023; 27:75-86. [PMID: 36401148 DOI: 10.1007/s40291-022-00621-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Data are limited regarding the genetic profiling of diffuse large B-cell lymphoma (DLBCL) with double expression of MYC and BCL2 proteins without underlying rearrangements (double-expressor lymphoma [DEL]). This study aimed to describe the genetic profiling and determine the prognostic significance in patients with DEL and in those with non-DEL. METHODS Capture-based targeted sequencing was performed on 244 patients with de novo DLBCL, not otherwise specified. Immunohistochemistry staining was performed for evaluating the MYC and BCL2 expression. RESULTS Among 244 patients, 46 patients had DEL, and 198 had non-DEL. KMT2D, CD58, EP300, PRDM1, TNFAIP3 and BCL2 gain or amplification (BCL2GA/AMP) were significantly more frequently altered in the DEL group. Alterations in the BCR/TLR (p = 0.021), B-cell development and differentiation (p = 0.004), and NF-κB (p = 0.034) pathways occurred more frequently in patients with DEL. Thirty-seven DEL patients and 132 non-DEL patients were included for survival analyses. DEL was not significantly associated with progression-free survival (PFS) (p = 0.60) and overall survival (OS) (p = 0.49). In DEL patients, after adjusting for the International Prognostic Index, BCL2 alteration (HR 2.516, 95% CI 1.027-6.161; p = 0.044) remained an independent predictor of inferior PFS. BCL2GA/AMP also predicted poor PFS, but with marginal statistical significance (HR 2.489, 95% CI 0.995-6.224; p = 0.051). CONCLUSION There was difference in profiling of altered genes and signaling pathways between the DEL group and the non-DEL group. The presence of DEL alone should not be considered as an adverse prognostic indicator, and BCL2 alteration could define a subset of patients with poor prognosis within DEL.
Collapse
Affiliation(s)
- Haizhu Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohui He
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Changgong Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Liqiang Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
17
|
Wang P, Xu L, Fan Y, Li B, Chen P, Zhang X, Sun Y, Fu J. EZH2 inhibitor DZNep blocks cell proliferation of GCB-DLBCL cells by upregulating p16. Leuk Lymphoma 2022; 63:3370-3377. [PMID: 36239491 DOI: 10.1080/10428194.2022.2131411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Diffuse large B-cell lymphomas (DLBCLs) are phenotypically and genetically heterogeneous. Two main subgroups of DLBCL include germinal center B-cell-like (GCB) and activated B-cell-like (ABC). Molecular profiling can further classify DLBCL into four subtypes: MCD (both CD79B and MYD88 L265P), BN2 (NOTCH2 mutation or BCL6 fusion), N1 (NOTCH1 mutation), or EZB (EZH2 mutation or BCL2 fusion). EZH2 inhibitors were recommended for patients with the EZB subtype of DLBCLs; however, little is known about the therapeutic mechanisms. Our results showed that DZNep arrested G1/S phase of GCB-DLBCL cells and inhibited the cell proliferation in vitro through upregulation of p16 by demethylating its promoter. These results suggest that DZNep may have potential as a novel therapeutic agent for DFLBL therapy. This agent may serve as a novel molecular agent to be applied to GCB DLBCL.
Collapse
Affiliation(s)
- Panjun Wang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Longjiang Xu
- Pathology Department, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Yinyin Fan
- Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Bingzong Li
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Ping Chen
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Xiaohui Zhang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Yu Sun
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Jinxiang Fu
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| |
Collapse
|
18
|
Hwang HS, Sung HJ, Kim MJ, Yoon DH, Park CS, Huh J, Go H. Extra copy number of BCL2 is correlated with increased BCL-2 protein expression and poor survival in diffuse large B-cell lymphoma treated with chemoimmunotherapy. Leuk Lymphoma 2022; 63:3072-3081. [PMID: 36167334 DOI: 10.1080/10428194.2022.2113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The clinical significance of extra copy (EC) genotypes of BCL2, MYC, and BCL6 have not been fully elucidated. We evaluated the EC and translocation statuses of BCL2, MYC, and BCL6 in 190 diffuse large B-cell lymphoma (DLBCL) cases using fluorescence in situ hybridization. EC genotype was sub-classified according to copy number-gained tumor cell ratio (EC1, >20% but ≤50%; EC2, >50%). Only the BCL2-EC groups, not MYC-EC or BCL6-EC groups, displayed significantly increased immunoreactivity of the corresponding protein. Moreover, the BCL2-EC2 group was significantly associated with poor overall survival (OS) and progression-free survival (PFS) in a 147 R-CHOP-treated patient subset, which was also statistically significant as per the multivariate survival analysis for PFS. No significant differences in the survival of MYC, BCL6, concurrent BCL2/MYC, BCL6/MYC, BCL2/BCL6, or triple EC groups were observed. BCL2-EC may contribute to increased BCL-2 protein expression and serve as a predictor of treatment outcomes in DLBCL.
Collapse
Affiliation(s)
- Hee Sang Hwang
- Departments of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hyun-Jung Sung
- Departments of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Mee-Jeong Kim
- Departments of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dok Hyun Yoon
- Departments of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chan-Sik Park
- Departments of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jooryung Huh
- Departments of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Heounjeong Go
- Departments of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
19
|
Miyaoka M, Kikuti YY, Carreras J, Ito A, Ikoma H, Tomita S, Kawada H, Roncador G, Bea S, Campo E, Nakamura N. Copy Number Alteration and Mutational Profile of High-Grade B-Cell Lymphoma with MYC and BCL2 and/or BCL6 Rearrangements, Diffuse Large B-Cell Lymphoma with MYC-Rearrangement, and Diffuse Large B-Cell Lymphoma with MYC-Cluster Amplification. Cancers (Basel) 2022; 14:cancers14235849. [PMID: 36497332 PMCID: PMC9736204 DOI: 10.3390/cancers14235849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) with MYC alteration is classified as high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (double/triple-hit lymphoma; DHL/THL), DLBCL with MYC rearrangement (single-hit lymphoma; SHL) and DLBCL with MYC-cluster amplification (MCAD). To elucidate the genetic features of DHL/THL, SHL, and MCAD, 23 lymphoma cases from Tokai University Hospital were analyzed. The series included 10 cases of DHL/THL, 10 cases of SHL and 3 cases of MCAD. The analysis used whole-genome copy number microarray analysis (OncoScan) and a custom-made next-generation sequencing (NGS) panel of 115 genes associated with aggressive B-cell lymphomas. The copy number alteration (CNA) profiles were similar between DHL/THL and SHL. MCAD had fewer CNAs than those of DHL/THL and SHL, except for +8q24. The NGS profile characterized DHL/THL with a higher "mutation burden" than SHL (17 vs. 10, p = 0.010), and the most relevant genes for DHL/THL were BCL2 and SOCS1, and for SHL was DTX1. MCAD was characterized by mutations of DDX3X, TCF3, HLA-A, and TP53, whereas MYC was unmutated. In conclusion, DHL/THL, SHL, and MCAD have different profiles.
Collapse
Affiliation(s)
- Masashi Miyaoka
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Yara Yukie Kikuti
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
- Correspondence: ; Tel.: +81-046-393-1121
| | - Atsushi Ito
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Haruka Ikoma
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Sakura Tomita
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Hiroshi Kawada
- Department of Hematology/Oncology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Spanish National Cancer Research Center (Centro Nacional de Investigaciones Oncologicas, CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Silvia Bea
- Hematopathology Section, Molecular Pathology Laboratory, Department of Pathology, Hospital Clinic Barcelona, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), University of Barcelona, C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Elias Campo
- Hematopathology Section, Molecular Pathology Laboratory, Department of Pathology, Hospital Clinic Barcelona, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), University of Barcelona, C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Naoya Nakamura
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
20
|
Single-cell profiling reveals a memory B cell-like subtype of follicular lymphoma with increased transformation risk. Nat Commun 2022; 13:6772. [PMID: 36351924 PMCID: PMC9646774 DOI: 10.1038/s41467-022-34408-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Follicular lymphoma (FL) is an indolent cancer of mature B-cells but with ongoing risk of transformation to more aggressive histology over time. Recurrent mutations associated with transformation have been identified; however, prognostic features that can be discerned at diagnosis could be clinically useful. We present here comprehensive profiling of both tumor and immune compartments in 155 diagnostic FL biopsies at single-cell resolution by mass cytometry. This revealed a diversity of phenotypes but included two recurrent patterns, one which closely resembles germinal center B-cells (GCB) and another which appears more related to memory B-cells (MB). GCB-type tumors are enriched for EZH2, TNFRSF14, and MEF2B mutations, while MB-type tumors contain increased follicular helper T-cells. MB-type and intratumoral phenotypic diversity are independently associated with increased risk of transformation, supporting biological relevance of these features. Notably, a reduced 26-marker panel retains sufficient information to allow phenotypic profiling of future cohorts by conventional flow cytometry.
Collapse
|
21
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Çakan E, Gunaydin G. Activation induced cytidine deaminase: An old friend with new faces. Front Immunol 2022; 13:965312. [PMID: 36405752 PMCID: PMC9670734 DOI: 10.3389/fimmu.2022.965312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Activation induced cytidine deaminase (AID) protein is a member of APOBEC family. AID converts cytidine to uracil, which is a key step for somatic hypermutation (SHM) and class switch recombination (CSR). AID also plays critical roles in B cell precursor stages, removing polyreactive B cells from immune repertoire. Since the main function of AID is inducing point mutations, dysregulation can lead to increased mutation load, translocations, disturbed genomic integrity, and lymphomagenesis. As such, expression of AID as well as its function is controlled strictly at various molecular steps. Other members of the APOBEC family also play crucial roles during carcinogenesis. Considering all these functions, AID represents a bridge, linking chronic inflammation to carcinogenesis and immune deficiencies to autoimmune manifestations.
Collapse
Affiliation(s)
- Elif Çakan
- Hacettepe University School of Medicine, Sihhiye, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| |
Collapse
|
23
|
Spriano F, Sartori G, Tarantelli C, Barreca M, Golino G, Rinaldi A, Napoli S, Mascia M, Scalise L, Arribas AJ, Cascione L, Zucca E, Stathis A, Gaudio E, Bertoni F. Pharmacologic screen identifies active combinations with BET inhibitors and LRRK2 as a novel putative target in lymphoma. EJHAEM 2022; 3:764-774. [PMID: 36051080 PMCID: PMC9422027 DOI: 10.1002/jha2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Inhibitors of the Bromo- and Extra-Terminal domain (BET) family proteins have strong preclinical antitumor activity in multiple tumor models, including lymphomas. Limited single-agent activity has been reported in the clinical setting. Here, we have performed a pharmacological screening to identify compounds that can increase the antitumor activity of BET inhibitors in lymphomas. The germinal center B-cell like diffuse large B-cell lymphoma (DLBCL) cell lines OCI-LY-19 and WSU-DLCL2 were exposed to 348 compounds given as single agents at two different concentrations and in combination with the BET inhibitor birabresib. The combination partners included small molecules targeting important biologic pathways such as PI3K/AKT/MAPK signaling and apoptosis, approved anticancer agents, kinase inhibitors, epigenetic compounds. The screening identified a series of compounds leading to a stronger antiproliferative activity when given in combination than as single agents: the histone deacetylase (HDAC) inhibitors panobinostat and dacinostat, the mTOR (mechanistic target of rapamycin) inhibitor everolimus, the ABL/SRC (ABL proto-oncogene/SRC proto oncogene) inhibitor dasatinib, the AKT1/2/3 inhibitor MK-2206, the JAK2 inhibitor TG101209. The novel finding was the benefit given by the addition of the LRRK2 inhibitor LRRK2-IN-1, which was validated in vitro and in vivo. Genetic silencing demonstrated that LRRK2 sustains the proliferation of lymphoma cells, a finding paired with the association between high expression levels and inferior outcome in DLBCL patients. We identified combinations that can improve the response to BET inhibitors in lymphomas, and LRRK2 as a gene essential for lymphomas and as putative novel target for this type of tumors.
Collapse
Affiliation(s)
- Filippo Spriano
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Giulio Sartori
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Chiara Tarantelli
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Marilia Barreca
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Gaetanina Golino
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Andrea Rinaldi
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Sara Napoli
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Michele Mascia
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Lorenzo Scalise
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Alberto J. Arribas
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Luciano Cascione
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Emanuele Zucca
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
- Department of OncologyOncology Institute of Southern SwitzerlandEnte Ospedaliero CantonaleBellinzonaSwitzerland
| | - Anastasios Stathis
- Department of OncologyOncology Institute of Southern SwitzerlandEnte Ospedaliero CantonaleBellinzonaSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
| | - Eugenio Gaudio
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
| | - Francesco Bertoni
- Institute of Oncology ResearchFaculty of Biomedical SciencesUniversità della Svizzera ItalianaBellinzonaSwitzerland
- Department of OncologyOncology Institute of Southern SwitzerlandEnte Ospedaliero CantonaleBellinzonaSwitzerland
| |
Collapse
|
24
|
Leung W, Teater M, Durmaz C, Meydan C, Chivu AG, Chadburn A, Rice EJ, Muley A, Camarillo JM, Arivalagan J, Li Z, Flowers CR, Kelleher NL, Danko CG, Imielinski M, Dave SS, Armstrong SA, Mason CE, Melnick AM. SETD2 Haploinsufficiency Enhances Germinal Center-Associated AICDA Somatic Hypermutation to Drive B-cell Lymphomagenesis. Cancer Discov 2022; 12:1782-1803. [PMID: 35443279 PMCID: PMC9262862 DOI: 10.1158/2159-8290.cd-21-1514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/08/2022] [Accepted: 04/18/2022] [Indexed: 01/26/2023]
Abstract
SETD2 is the sole histone methyltransferase responsible for H3K36me3, with roles in splicing, transcription initiation, and DNA damage response. Homozygous disruption of SETD2 yields a tumor suppressor effect in various cancers. However, SETD2 mutation is typically heterozygous in diffuse large B-cell lymphomas. Here we show that heterozygous Setd2 deficiency results in germinal center (GC) hyperplasia and increased competitive fitness, with reduced DNA damage checkpoint activity and apoptosis, resulting in accelerated lymphomagenesis. Impaired DNA damage sensing in Setd2-haploinsufficient germinal center B (GCB) and lymphoma cells associated with increased AICDA-induced somatic hypermutation, complex structural variants, and increased translocations including those activating MYC. DNA damage was selectively increased on the nontemplate strand, and H3K36me3 loss was associated with greater RNAPII processivity and mutational burden, suggesting that SETD2-mediated H3K36me3 is required for proper sensing of cytosine deamination. Hence, Setd2 haploinsufficiency delineates a novel GCB context-specific oncogenic pathway involving defective epigenetic surveillance of AICDA-mediated effects on transcribed genes. SIGNIFICANCE Our findings define a B cell-specific oncogenic effect of SETD2 heterozygous mutation, which unleashes AICDA mutagenesis of nontemplate strand DNA in the GC reaction, resulting in lymphomas with heavy mutational burden. GC-derived lymphomas did not tolerate SETD2 homozygous deletion, pointing to a novel context-specific therapeutic vulnerability. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Wilfred Leung
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York
| | - Ceyda Durmaz
- Graduate Program of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York
| | - Alexandra G Chivu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Ashlesha Muley
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York
| | - Jeannie M Camarillo
- Departments of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois
| | - Jaison Arivalagan
- Departments of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher R Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- New York Genome Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Sandeep S Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, North Carolina
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
25
|
Gordon MJ, Westin JR. Fitting double-hit lymphoma into the aggressive lymphoma spectrum: a square peg in a round hole? Leuk Lymphoma 2022; 63:1034-1044. [PMID: 34842019 DOI: 10.1080/10428194.2021.2008383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements or both, commonly called double-hit lymphoma (DHL), is an aggressive B-cell lymphoma that is molecularly distinct from diffuse large B-cell lymphoma (DLBCL) and is associated with poor outcomes. Recent advances in the molecular classification of DLBCL have identified distinct subsets, including genetic signatures which correlate with DHL and survival. DHL with concomitant TP53 mutation appears to be associated with a very poor prognosis. Standard chemo-immunotherapy is not an effective treatment for these patients and personalized, innovative strategies are needed. In this review, we summarize recent advances in the subclassification of DLBCL, with a focus on DHL. We also incorporate early, promising clinical trial data using CAR T and targeted therapies. Rationally designed clinical trials for DLBCL are needed to advance the care of patients with DHL and other adverse risk DLBCL subgroups.
Collapse
Affiliation(s)
- Max J Gordon
- University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jason R Westin
- University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Miura K, Takahashi H, Nakagawa M, Hamada T, Uchino Y, Iizuka K, Ohtake S, Iriyama N, Hatta Y, Nakamura H. Ideal dose intensity of R-CHOP in diffuse large B-cell lymphoma. Expert Rev Anticancer Ther 2022; 22:583-595. [PMID: 35472312 DOI: 10.1080/14737140.2022.2071262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The standard of care for diffuse large B-cell lymphoma (DLBCL) is rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). However, its ideal dose intensity varies among cases. AREAS COVERED This review provides the latest insights on the dose intensity of R-CHOP for DLBCL patients. Specifically, we discussed the optimal dose intensity for elderly patients, the optimal number of treatment cycles for limited or advanced-stage diseases, and the role of dose-intensified therapies or adding targeted inhibitors. EXPERT OPINION Performing a comprehensive or simplified geriatric assessment can distinguish elderly DLBCL patients who will likely benefit from curative R-CHOP. Very elderly or medically unfit patients may need dose reduction in R-CHOP; the Age, Comorbidities, and Albumin index may aid decision-making. Four cycles of R-CHOP followed by two rituximab cycles comprise a new standard for low-risk, limited-stage DLBCL patients. Compared to eight cycles, six cycles of R-CHOP have similar efficacy and fewer toxicities for advanced-stage DLBCL. Dose-intensified therapy is not recommended in most DLBCL cases but may be considered for patients with double (or triple)-hit lymphoma. Applying targeted inhibitors and not merely escalating R-CHOP dose intensity through molecular subtyping will improve the treatment outcome for DLBCL.
Collapse
Affiliation(s)
- Katsuhiro Miura
- Tumor Center, Nihon University Itabashi Hospital (Director); 2Department of Hematology and Rheumatology, Nihon University School of Medicine (Associate Professor), Tokyo, Japan.,Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiromichi Takahashi
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan.,Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine (Assistant Professor), Tokyo, Japan
| | - Masaru Nakagawa
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan.,Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine (Assistant Professor), Tokyo, Japan
| | - Takashi Hamada
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshihito Uchino
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuhide Iizuka
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan.,Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine (Assistant Professor), Tokyo, Japan
| | - Shimon Ohtake
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Noriyoshi Iriyama
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshihiro Hatta
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Hideki Nakamura
- Department of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Takata K, Chong LC, Ennishi D, Aoki T, Li MY, Thakur A, Healy S, Viganò E, Dao T, Kwon D, Duns G, Nielsen JS, Ben-Neriah S, Tse E, Hung SS, Boyle M, Mun SS, Bourne CM, Woolcock B, Telenius AH, Kishida M, Rai S, Zhang AW, Bashashati A, Saberi S, D' Antonio G, Nelson BH, Shah SP, Hoodless PA, Melnick AM, Gascoyne RD, Connors JM, Scheinberg DA, Béguelin W, Scott DW, Steidl C. Tumor associated antigen PRAME exhibits dualistic functions that are targetable in diffuse large B-cell lymphoma. J Clin Invest 2022; 132:145343. [PMID: 35380993 PMCID: PMC9106353 DOI: 10.1172/jci145343] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
PRAME is a prominent member of the cancer testis antigen family of proteins, which triggers autologous T cell–mediated immune responses. Integrative genomic analysis in diffuse large B cell lymphoma (DLBCL) uncovered recurrent and highly focal deletions of 22q11.22, including the PRAME gene, which were associated with poor outcome. PRAME-deleted tumors showed cytotoxic T cell immune escape and were associated with cold tumor microenvironments. In addition, PRAME downmodulation was strongly associated with somatic EZH2 Y641 mutations in DLBCL. In turn, PRC2-regulated genes were repressed in isogenic PRAME-KO lymphoma cell lines, and PRAME was found to directly interact with EZH2 as a negative regulator. EZH2 inhibition with EPZ-6438 abrogated these extrinsic and intrinsic effects, leading to PRAME expression and microenvironment restoration in vivo. Our data highlight multiple functions of PRAME during lymphomagenesis and provide a preclinical rationale for synergistic therapies combining epigenetic reprogramming with PRAME-targeted therapies.
Collapse
Affiliation(s)
| | - Lauren C Chong
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Daisuke Ennishi
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Tomohiro Aoki
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Michael Yu Li
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Avinash Thakur
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Shannon Healy
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Elena Viganò
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Daniel Kwon
- Molecular Oncology, BC Cancer Research, Vancouver, Canada
| | - Gerben Duns
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Julie S Nielsen
- Trev and Joyce Deeley Research Centre, BC Cancer Research, Vancouver, Canada
| | | | - Ethan Tse
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Stacy S Hung
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Merrill Boyle
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Sung Soo Mun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Christopher M Bourne
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Bruce Woolcock
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | | | - Makoto Kishida
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Shinya Rai
- Lymphoid Cancer Research, BC Cancer Research, Vancouver, Canada
| | - Allen W Zhang
- Department of Molecular Oncology, BC Cancer Research, Vancouver, Canada
| | - Ali Bashashati
- Department of Molecular Oncology, BC Cancer Research, Vancouver, Canada
| | - Saeed Saberi
- Department of Molecular Oncology, BC Cancer Research, Vancouver, Canada
| | - Gianluca D' Antonio
- Trev and Joyce Deeley Research Centre, BC Cancer Research, Vancouver, Canada
| | - Brad H Nelson
- Trev and Joyce Deeley Research Centre, BC Cancer Research, Vancouver, Canada
| | - Sohrab P Shah
- Department of Epidemiology and Biostatistics, Weill Cornell Medical College, New York, United States of America
| | | | - Ari M Melnick
- Department of Medicine, Weill Cornell Medical College, New York, United States of America
| | | | | | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Wendy Béguelin
- Department of Medicine, Weill Cornell Medical College, New York, United States of America
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer Research, Vancouver, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer Research, Vancouver, Canada
| |
Collapse
|
28
|
Roh J, Cho H, Pak HK, Lee YS, Lee SW, Ryu JS, Chae EJ, Kim KW, Huh J, Choi YS, Jeong SH, Suh C, Yoon DH, Park CS. BCL2 super-expressor diffuse large B-cell lymphoma: a distinct subgroup associated with poor prognosis. Mod Pathol 2022; 35:480-488. [PMID: 34764434 DOI: 10.1038/s41379-021-00962-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Overexpression of the BCL2 protein has been reported as a poor prognostic factor for diffuse large B-cell lymphoma (DLBCL). However, there are currently no standardized criteria for evaluating BCL2 protein expression. We aimed to evaluate the prognostic value of BCL2 expression determined by immunohistochemistry (IHC), incorporating both the staining intensity and proportion, in patients with de novo DLBCL who received rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) as first-line treatment. We defined tumors with BCL2 expression in nearly all tumor cells with a uniformly strong intensity by IHC as BCL2 super-expressor. The BCL2 super-expressors (n = 35) showed significantly worse event-free survival (EFS; HR, 1.903; 95% CI, 1.159-3.126, P = 0.011) and overall survival (OS; HR, 2.467; 95% CI, 1.474-4.127, P = 0.001) compared with the non-BCL2 super-expressors (n = 234) independent of the international prognostic index (IPI), cell of origin (COO), and double expressor status in the training set (n = 269). The adverse prognostic impact of BCL2 super-expression was confirmed in the validation set (n = 195). When the survival outcomes were evaluated in the entire cohort (n = 464), BCL2 super-expressor group was significantly associated with inferior EFS and OS regardless of IPI, COO, MYC expression, and stages. BCL2 super-expressors had genetic aberrations enriched in the NOTCH and TP53 signaling pathways. This study suggests that the BCL2 super-expressor characterizes a distinct subset of DLBCL with a poor prognosis and warrants further investigation as a target population for BCL-2 inhibitors.
Collapse
Affiliation(s)
- Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Hyungwoo Cho
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo-Kyung Pak
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yoon Sei Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Jin Chae
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoon Seok Choi
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Seong Hyun Jeong
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Cheolwon Suh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Zhu Y, Fu D, Shi Q, Shi Z, Dong L, Yi H, Liu Z, Feng Y, Liu Q, Fang H, Cheng S, Wang L, Tian Q, Xu P, Zhao W. Oncogenic Mutations and Tumor Microenvironment Alterations of Older Patients With Diffuse Large B-Cell Lymphoma. Front Immunol 2022; 13:842439. [PMID: 35401516 PMCID: PMC8990904 DOI: 10.3389/fimmu.2022.842439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of diffuse large B-cell lymphoma (DLBCL) increases by age and older DLBCL are commonly related to poor prognosis. However, the clinical and biological features of older DLBCL patients remain to be determined. A total of 2,445 patients with newly diagnosed DLBCL were enrolled for clinical data analysis according to age at diagnosis, with tumor samples of 1,150 patients assessed by DNA sequencing and 385 patients by RNA sequencing. Older DLBCL presented advanced disease stage, elevated serum lactate dehydrogenase, poor performance status, multiple extranodal involvement, high percentage of double expressor subtype, and adverse clinical outcome. According to molecular features, age was positively correlated with the oncogenic mutations of PIM1, MYD88, BTG2, CD79B, TET2, BTG1, CREBBP, TBL1XR1, and with the MYD88-like genetic subtype. These oncogenic mutations were involved in B-cell receptor/NF-κB signaling, B-cell differentiation, and histone acetylation based on biological functions. Older DLBCL also manifested reduction in CD4+ naïve T and CD8+ naïve T cells, and also increased recruitment of exhausted T cells and macrophages, leading to immunosuppressive tumor microenvironment. Our work thus contributes to the understanding of aging-related oncogenic mutations and tumor microenvironment alterations in lymphoma progression, and may provide new insights to mechanism-based targeted therapy in DLBCL.
Collapse
Affiliation(s)
- Yue Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Liu
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| | - Qiang Tian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengpeng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Weili Zhao, ; Pengpeng Xu,
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
- *Correspondence: Weili Zhao, ; Pengpeng Xu,
| |
Collapse
|
30
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
31
|
Liu QH, Dai GR, Wang XN, Wang L, Li LL, Wu ZS, Xia RX. CDK12 activates MYC to repress miR-28-5p/EZH2 and amplifies tonic BCR signaling to promote the development of diffuse large B-cell lymphoma. Cancer Gene Ther 2022; 29:1207-1216. [PMID: 35082399 DOI: 10.1038/s41417-021-00415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12) is a transcription-associated kinase that participates in various cellular processes. However, its regulatory role in the progression of diffuse large B-cell lymphoma (DLBCL), which is the most prevalent subtype of non-Hodgkin lymphoma (NHL), is still elusive and controversial.The expression of CDK12 was detected by immunohistochemistry (IHC), RT-qPCR was performed to detect miR-28-5p expression of OCI-LY3 and SU-DHL-4 cells. MTT and soft agarose colony formation assays were used to detect cell proliferation. The cell apoptosis was determined by flow cytometry. The protein expressions changes of MYC, EZH2 and the biomarkers of BCR signaling were also detected. A subcutaneous transplantation tumor model of OCI-LY3 cells in nude mice was established to evaluate anticarcinogenic activities of CDK12 knockdown. Elevated expression of CDK12 was observed while miR-28-5p was downregulated in DLBCL tissues. CDK12 knockdown or miR-28-5p overexpression could inhibit proliferation and promote apoptosis of DLBCL cells. miR-28-5p inhibition could reverse the effect of CDK12 knockdown on proliferation and apoptosis of DLBCL cells. In addition, CDK12 knockdown could inhibit DLBCL tumor growth in the mice model. CDK12 activated MYC to repress miR-28-5p/EZH2 and amplified tonic BCR signaling to promote the development of DLBCL, which might provide potential therapeutic targets for future therapeutic intervention in DLBCL.
Collapse
Affiliation(s)
- Qin-Hua Liu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
| | - Guan-Rong Dai
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
| | - Xiao-Nan Wang
- Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Lin Wang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
| | - Li-Li Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
| | - Zheng-Sheng Wu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
| | - Rui-Xiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China.
| |
Collapse
|
32
|
Ziel-Swier LJYM, Liu Y, Seitz A, de Jong D, Koerts J, Rutgers B, Veenstra R, Razak FRA, Dzikiewicz-Krawczyk A, van den Berg A, Kluiver J. The Role of the MYC/miR-150/MYB/ZDHHC11 Network in Hodgkin Lymphoma and Diffuse Large B-Cell Lymphoma. Genes (Basel) 2022; 13:genes13020227. [PMID: 35205272 PMCID: PMC8871936 DOI: 10.3390/genes13020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
We previously described involvement of the MYC/miR-150/MYB/ZDHHC11 network in the growth of Burkitt lymphoma (BL) cells. Here we studied the relevance of this network in the two other B-cell lymphomas: Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL). Expression levels of the network components were assessed at the RNA and protein level. The effect of modulating levels of the network components on cell growth was determined through GFP competition assay. AGO2-RNA immunoprecipitation was performed to validate targeting by miR-150. Expression levels of MYC, MYB and ZDHHC11 were increased, while miR-150 levels were decreased similar to the pattern observed in BL. The knockdown of MYC, MYB and ZDHHC11 decreased the growth of HL and DLBCL cells. In contrast, overexpression of miR-150 did not induce clear phenotypes in HL, and limited the effects in DLBCL. This could not be explained by the differences in overexpression levels. Furthermore, we showed that in HL, ZDHHC11 and MYB are efficiently targeted by miR-150. To conclude, MYC, MYB and ZDHHC11 are critical for the growth of HL and DLBCL cells consistent with the role observed in BL cells, while low endogenous miR-150 levels appeared to be less critical for the growth of HL and DLBCL cells despite the effective targeting of ZDHHC11 and MYB.
Collapse
Affiliation(s)
- Lotteke J. Y. M. Ziel-Swier
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.J.Y.M.Z.-S.); (Y.L.); (A.S.); (D.d.J.); (J.K.); (B.R.); (R.V.); (A.v.d.B.)
| | - Yichen Liu
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.J.Y.M.Z.-S.); (Y.L.); (A.S.); (D.d.J.); (J.K.); (B.R.); (R.V.); (A.v.d.B.)
| | - Annika Seitz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.J.Y.M.Z.-S.); (Y.L.); (A.S.); (D.d.J.); (J.K.); (B.R.); (R.V.); (A.v.d.B.)
| | - Debora de Jong
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.J.Y.M.Z.-S.); (Y.L.); (A.S.); (D.d.J.); (J.K.); (B.R.); (R.V.); (A.v.d.B.)
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.J.Y.M.Z.-S.); (Y.L.); (A.S.); (D.d.J.); (J.K.); (B.R.); (R.V.); (A.v.d.B.)
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.J.Y.M.Z.-S.); (Y.L.); (A.S.); (D.d.J.); (J.K.); (B.R.); (R.V.); (A.v.d.B.)
| | - Rianne Veenstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.J.Y.M.Z.-S.); (Y.L.); (A.S.); (D.d.J.); (J.K.); (B.R.); (R.V.); (A.v.d.B.)
| | | | | | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.J.Y.M.Z.-S.); (Y.L.); (A.S.); (D.d.J.); (J.K.); (B.R.); (R.V.); (A.v.d.B.)
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.J.Y.M.Z.-S.); (Y.L.); (A.S.); (D.d.J.); (J.K.); (B.R.); (R.V.); (A.v.d.B.)
- Correspondence:
| |
Collapse
|
33
|
Lue JK, Downs-Canner S, Chaudhuri J. The role of B cells in the development, progression, and treatment of lymphomas and solid tumors. Adv Immunol 2022; 154:71-117. [PMID: 36038195 DOI: 10.1016/bs.ai.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
B cells are integral components of the mammalian immune response as they have the ability to generate antibodies against an almost infinite array of antigens. Over the past several decades, significant scientific progress has been made in understanding that this enormous B cell diversity contributes to pathogen clearance. However, our understanding of the humoral response to solid tumors and to tumor-specific antigens is unclear. In this review, we first discuss how B cells interact with other cells in the tumor microenvironment and influence the development and progression of various solid tumors. The ability of B lymphocytes to generate antibodies against a diverse repertoire of antigens and subsequently tailor the humoral immune response to specific pathogens relies on their ability to undergo genomic alterations during their development and differentiation. We will discuss key transforming events that lead to the development of B cell lymphomas. Overall, this review provides a foundation for innovative therapeutic interventions for both lymphoma and solid tumor malignancies.
Collapse
Affiliation(s)
- Jennifer K Lue
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Stephanie Downs-Canner
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
34
|
Miyaoka M, Kikuti YY, Carreras J, Itou A, Ikoma H, Tomita S, Shiraiwa S, Ando K, Nakamura N. AID is a poor prognostic marker of high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements. Pathol Int 2021; 72:35-42. [PMID: 34727403 DOI: 10.1111/pin.13182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
Diffuse large B-cell lymphoma with MYC rearrangement is defined as double/triple-hit lymphoma (DHL/THL) or single-hit lymphoma (SHL) by the inclusion of the BCL2 and BCL6 rearrangements status. DHL/THL is called as "high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements" in the World Health Organization 2017 Classification of Tumors of Hematopoietic and Lymphoid Tissues. To find a prognostic biomarker of DHL/THL, we firstly examined 19 cases (molecular analysis series;10 cases of DHL/THL and 9 cases of SHL) with gene expression profile analysis. The gene expression profile analysis showed that the high expression of AICDA was associated with an adverse prognosis in DHL/THL, but not in SHL. Then, we evaluated immunohistochemical expression of AID, the protein product of AICDA, in 50 cases (molecular analysis series of 19 cases and additional immunohistochemistry series of 31 cases; 12 cases of DHL/THL and 19 cases of SHL) and confirmed that its expression was also associated with an adverse prognosis in DHL/THL. Therefore, AICDA and AID can be a predictor of an adverse clinical outcome in DHL/THL and immunohistochemistry of AID is useful to find DHL/THL-adverse prognosis group.
Collapse
Affiliation(s)
- Masashi Miyaoka
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Yara Yukie Kikuti
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Joaquim Carreras
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Atsushi Itou
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Haruka Ikoma
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Sakura Tomita
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Sawako Shiraiwa
- Department of Hematology/Oncology, Tokai University, School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University, School of Medicine, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| |
Collapse
|
35
|
A Germinal Center-Associated Microenvironmental Signature Reflects Malignant Phenotype and Outcome of DLBCL. Blood Adv 2021; 6:2388-2402. [PMID: 34638128 PMCID: PMC9006269 DOI: 10.1182/bloodadvances.2021004618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/29/2021] [Indexed: 12/03/2022] Open
Abstract
The DLBCL microenvironment signature scoring system was established using nCounter-based profiling of GC-related microenvironmental genes. DMS scores stratified DLBCL patients with different prognosis independently of existing prognostic models.
Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy, with varying prognosis after the gold standard rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). Several prognostic models have been established by focusing primarily on characteristics of lymphoma cells themselves, including cell-of-origin (COO), genomic alterations, and gene/protein expressions. However, the prognostic impact of the lymphoma microenvironment and its association with characteristics of lymphoma cells are not fully understood. Using the nCounter-based gene expression profiling of untreated DLBCL tissues, we assess the clinical impact of lymphoma microenvironment on the clinical outcomes and pathophysiological, molecular signatures in DLBCL. The presence of normal germinal center (GC)-microenvironmental cells, including follicular T cells, macrophage/dendritic cells, and stromal cells in lymphoma tissue indicates a positive therapeutic response. Our prognostic model, based on quantitation of transcripts from distinct GC-microenvironmental cell markers, clearly identified patients with graded prognosis independently of existing prognostic models. We observed increased incidences of genomic alterations and aberrant gene expression associated with poor prognosis in DLBCL tissues lacking GC-microenvironmental cells relative to those containing these cells. These data suggest that the loss of GC-associated microenvironmental signature dictates clinical outcomes of DLBCL patients reflecting the accumulation of “unfavorable” molecular signatures.
Collapse
|
36
|
He MY, Kridel R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia 2021; 35:2151-2165. [PMID: 34017074 DOI: 10.1038/s41375-021-01285-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 01/29/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease and represents the most common subtype of lymphoma. Although 60-70% of all patients can be cured by the current standard of care in the frontline setting, the majority of the remaining patients will experience treatment resistance and have a poor clinical outcome. Numerous efforts have been made to improve the efficacy of the standard regimen by, for example, dose intensification or adding novel agents. However, these results generally failed to demonstrate significant clinical benefits. Hence, understanding treatment resistance is a pressing need to optimize the outcome of those patients. In this Review, we first describe the conceptual sources of treatment resistance in DLBCL and then provide detailed and up-to-date molecular insight into the mechanisms of resistance to the current treatment options in DLBCL. We lastly highlight the potential strategies for rationally managing treatment resistance from both the preventive and interventional perspectives.
Collapse
Affiliation(s)
- Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Lopez-Santillan M, Lopez-Lopez E, Alvarez-Gonzalez P, Martinez G, Arzuaga-Mendez J, Ruiz-Diaz I, Guerra-Merino I, Gutierrez-Camino A, Martin-Guerrero I. Prognostic and therapeutic value of somatic mutations in diffuse large B-cell lymphoma: A systematic review. Crit Rev Oncol Hematol 2021; 165:103430. [PMID: 34339834 DOI: 10.1016/j.critrevonc.2021.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/05/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of Non-Hodgkin lymphoma (NHL), is a highly heterogeneous and aggressive disease. Regardless of this heterogeneity, all patients receive the same first-line therapy, which fails in 30-40 % of patients, who are either refractory or relapse after remission. With the aim of stratifying patients to improve treatment outcome, different clinical and genetic biomarkers have been studied. The present systematic review aimed to identify somatic mutations that could serve as prognosis biomarkers or as therapeutic target mutations in DLBCL. Regarding their role as prognostic markers, mutations in CD58 and TP53 seem the most promising predictors of poor outcome although the combination of different alterations and other prognostic factors could be a more powerful strategy. On the other hand, different approaches regarding targeted therapy have been proposed. Therefore, mutational analysis could help guide treatment choice in DLBCL yet further studies and clinical trials are needed.
Collapse
Affiliation(s)
- Maria Lopez-Santillan
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Medical Oncology Service, Basurto University Hospital, Avenida De Montevideo, 18, 48013, Bilbao, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain
| | - Paula Alvarez-Gonzalez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Garazi Martinez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain
| | - Javier Arzuaga-Mendez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Hematologic Neoplasm Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, Barakaldo, Spain
| | - Irune Ruiz-Diaz
- Pathology Department, Donostia University Hospital, Paseo Doctor Begiristain, 109, 20014, San Sebastián, Spain
| | - Isabel Guerra-Merino
- Pathology Department, Araba University Hospital, Calle Jose Atxotegi s/n, 01009, Vitoria-Gasteiz, Spain
| | - Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain; Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain; Division of Hematology-Oncology, CHU Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5, Montreal, Canada
| | - Idoia Martin-Guerrero
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903, Barakaldo, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n 48940, Leioa, Spain.
| |
Collapse
|
38
|
Characterization of DLBCL with a PMBL gene expression signature. Blood 2021; 138:136-148. [PMID: 33684939 DOI: 10.1182/blood.2020007683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBL) is a type of aggressive B-cell lymphoma that typically affects young adults, characterized by presence of a bulky anterior mediastinal mass. Lymphomas with gene expression features of PMBL have been described in nonmediastinal sites, raising questions about how these tumors should be classified. Here, we investigated whether these nonmediastinal lymphomas are indeed PMBLs or instead represent a distinct group within diffuse large B-cell lymphoma (DLBCL). From a cohort of 325 de novo DLBCL cases, we identified tumors from patients without evidence of anterior mediastinal involvement that expressed a PMBL expression signature (nm-PMBLsig+; n = 16; 5%). A majority of these tumors expressed MAL and CD23, proteins typically observed in bona fide PMBL (bf-PMBL). Evaluation of clinical features of nm-PMBLsig+ cases revealed close associations with DLBCL, and a majority displayed a germinal center B cell-like cell of origin (GCB). In contrast to patients with bf-PMBL, patients with nm-PMBLsig+ presented at an older age and did not show pleural disease, and bone/bone marrow involvement was observed in 3 cases. However, although clinically distinct from bf-PMBL, nm-PMBLsig+ tumors resembled bf-PMBL at the molecular level, with upregulation of immune response, JAK-STAT, and NF-κB signatures. Mutational analysis revealed frequent somatic gene mutations in SOCS1, IL4R, ITPKB, and STAT6, as well as CD83 and BIRC3, with the latter genes significantly more frequently affected than in GCB DLBCL or bf-PMBL. Our data establish nm-PMBLsig+ lymphomas as a group within DLBCL with distinct phenotypic and genetic features. These findings may have implications for gene expression- and mutation-based subtyping of aggressive B-cell lymphomas and related targeted therapies.
Collapse
|
39
|
Wienand K, Chapuy B. Molecular classification of aggressive lymphomas-past, present, future. Hematol Oncol 2021; 39 Suppl 1:24-30. [PMID: 34105819 DOI: 10.1002/hon.2847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Aggressive large B-cell lymphomas (LBCLs) represent a frequent but clinically and molecularly heterogeneous group of tumors. Technological advances over the last decades prompted the development of different classification schemas to either sharpen diagnoses, dissect molecular heterogeneity, predict outcome, or identify rational treatment targets. Despite increased diagnostic precision and a noticeably improved molecular understanding of these lymphomas, clinical perspectives of patients largely remain unchanged. Recently, finished comprehensive genomic studies discovered genetically defined LBCL subtypes that predict outcome, provide insight into lymphomagenesis, and suggest rational therapies with the hope of generating patient-tailored treatments with increased perspective for patients in greatest need. Current and future efforts integrate multiomics studies and/or leverage single-cell technologies and will provide us with an even more fine-grained picture of LBCL biology. Here, we highlight examples of how high-throughput technologies aided in a better molecular understanding of LBCLs and provide examples of how to select rationally designed targeted treatment approaches that might personalize LBCL treatment and eventually improve patients' perspective in the near future.
Collapse
Affiliation(s)
- Kirsty Wienand
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
40
|
Chabay P. Advances in the Pathogenesis of EBV-Associated Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:2717. [PMID: 34072731 PMCID: PMC8199155 DOI: 10.3390/cancers13112717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin's lymphoma (NHL) in adults. Epstein-Barr virus (EBV) positive DLBCL of the elderly was defined by the World Health Organization (WHO) in 2008, it was restricted only to patients older than 50 years old, and it was attributed to immunesenescence associated with physiological aging. After the description of EBV-associated DLBCL in children and young adults, the WHO redefined the definition, leading to the substitution of the modifier "elderly" with "not otherwise specified" (EBV + DLBCL, NOS) in the updated classification, and it is no more considered provisional. The incidence of EBV + DLBCL, NOS varies around the world, in particular influenced by the percentage of EBV+ cells used as cut-off to define a case as EBV-associated. EBV has effect on the genetic composition of tumor cells, on survival, and at the recruitment of immune cells at the microenvironment. In this review, the role of EBV in the pathogenesis of DLBCL is discussed.
Collapse
Affiliation(s)
- Paola Chabay
- Laboratory of Molecular Biology, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP-CONICET-GCBA), Ricardo Gutiérrez Children's Hospital, Gallo 1330, Buenos Aires C1425EFD, Argentina
| |
Collapse
|
41
|
Papageorgiou SG, Thomopoulos TP, Katagas I, Bouchla A, Pappa V. Prognostic molecular biomarkers in diffuse large B-cell lymphoma in the rituximab era and their therapeutic implications. Ther Adv Hematol 2021; 12:20406207211013987. [PMID: 34104369 PMCID: PMC8150462 DOI: 10.1177/20406207211013987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents a group of tumors characterized by substantial heterogeneity in terms of their pathological and biological features, a causal factor of their varied clinical outcome. This variation has persisted despite the implementation of rituximab in treatment regimens over the last 20 years. In this context, prognostic biomarkers are of great importance in order to identify high-risk patients that might benefit from treatment intensification or the introduction of novel therapeutic agents. Herein, we review current knowledge on specific immunohistochemical or genetic biomarkers that might be useful in clinical practice. Gene-expression profiling is a tool of special consideration in this effort, as it has enriched our understanding of DLBCL biology and has allowed for the classification of DLBCL by cell-of-origin as well as by more elaborate molecular signatures based on distinct gene-expression profiles. These subgroups might outperform individual biomarkers in terms of prognostication; however, their use in clinical practice is still limited. Moreover, the underappreciated role of the tumor microenvironment in DLBCL prognosis is discussed in terms of prognostic gene-expression signatures, as well as in terms of individual biomarkers of prognostic significance. Finally, the efficacy of novel therapeutic agents for the treatment of DLBCL patients are discussed and an evidence-based therapeutic approach by specific genetic subgroup is suggested.
Collapse
Affiliation(s)
- Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital ‘Attikon’, 1 Rimini Street, Haidari, Athens 12462, Greece
| | - Thomas P. Thomopoulos
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Ioannis Katagas
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Anthi Bouchla
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Vassiliki Pappa
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| |
Collapse
|
42
|
Notch activation is pervasive in SMZL and uncommon in DLBCL: implications for Notch signaling in B-cell tumors. Blood Adv 2021; 5:71-83. [PMID: 33570635 DOI: 10.1182/bloodadvances.2020002995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
Notch receptors participate in a signaling pathway in which ligand-induced proteolysis frees the Notch intracellular domain (NICD), allowing it to translocate to the nucleus, form a transcription complex, and induce target gene expression. Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), splenic marginal zone B-cell lymphoma (SMZL), and distinct subsets of diffuse large B-cell lymphoma (DLBCL) are strongly associated with mutations in the 3' end of NOTCH1 or NOTCH2 that disrupt a proline, glutamic acid, serine, and threonine (PEST) degron domain and stabilize NICD1 and NICD2. By contrast, mutations leading to constitutive Notch activation are rare in primary B-cell neoplasms, suggesting that Notch activation is confined to ligand-rich tumor microenvironments, or that cryptic strong gain-of-function mutations have been missed in prior analyses. To test these ideas, we used immunohistochemical stains to screen a broad range of B-cell tumors for Notch activation. Our analyses reveal that among small B-cell neoplasms, NICD2 is primarily detected in SMZL and is a common feature of both NOTCH2 wild-type and NOTCH2-mutated SMZLs, similar to prior findings with NOTCH1 in CLL/SLL. The greatest NOTCH2 activation was observed in NOTCH2-mutated SMZLs, particularly within splenic marginal zones. By contrast, little evidence of NOTCH2 activation was observed in DLBCL, even in NOTCH2-mutated tumors, suggesting that selective pressure for NOTCH2 activation is mainly confined to low-grade B-cell neoplasms, whereas DLBCLs with NOTCH1 mutations frequently showed evidence of ongoing NOTCH1 activation. These observations have important implications for the pathogenic role of Notch and its therapeutic targeting in B-cell lymphomas.
Collapse
|
43
|
Molecular background delineates outcome of double protein expressor diffuse large B-cell lymphoma. Blood Adv 2021; 4:3742-3753. [PMID: 32780847 DOI: 10.1182/bloodadvances.2020001727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/03/2020] [Indexed: 01/10/2023] Open
Abstract
Concomitant deregulation of MYC and BCL2 comprises clinically significant, yet poorly characterized biological high-risk feature in diffuse large B-cell lymphoma (DLBCL). To interrogate these lymphomas, we analyzed translocations and protein expression of BCL2, BCL6, and MYC; correlated the findings with comprehensive mutational, transcriptomic, and clinical data in 181 patients with primary DLBCL; and validated the key findings in independent data sets. Structural variations of BCL2 were subtype-specific and specifically increased BCL2 expression. Molecular dissection of MYC deregulation revealed associations with other lymphoma drivers, including loss of TP53, and distinctive gene expression profiles. Double protein expression (DPE) arose from heterogeneous molecular backgrounds that exhibited subtype-dependent patterns. In the germinal center B-cell (GCB) DLBCL, concurrent alterations of MYC and BCL2 loci gave rise to the majority of DPE DLBCLs, whereas among the activated B-cell (ABC) DLBCLs, concurrent alterations were infrequent. Clinically, DPE DLBCL defined a prognostic entity, which was independent of the International Prognostic Index (IPI) and cell of origin, and together with the loss of TP53 had a synergistic dismal impact on survival. In the DPE DLBCL, the loss of TP53 was associated with a chemorefractory disease, whereas among the other DLBCLs, no correlation with survival was seen. Importantly, BCL6 translocations identified non-GCB lymphomas with favorable BN2/C1-like survival independent of IPI and concurrent DPE status. Taken together, our findings define molecular characteristics of the DPE in DLBCL, and recognize clinically feasible predictors of outcome. Given the emerging taxonomical significance of BCL2, BCL6, MYC, and TP53, our findings provide further depth and validation to the genomic classification of DLBCL.
Collapse
|
44
|
Genetic Events Inhibiting Apoptosis in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092167. [PMID: 33946435 PMCID: PMC8125500 DOI: 10.3390/cancers13092167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Despite the genetic heterogeneity of the disease, most patients are initially treated with a combination of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), but relapse occurs in ~50% of patients. One of the hallmarks of DLBCL is the occurrence of genetic events that inhibit apoptosis, which contributes to disease development and resistance to therapy. These events can affect the intrinsic or extrinsic apoptotic pathways, or their modulators. Understanding the factors that contribute to inhibition of apoptosis in DLBCL is crucial in order to be able to develop targeted therapies and improve outcomes, particularly in relapsed and refractory DLBCL (rrDLBCL). This review provides a description of the genetic events inhibiting apoptosis in DLBCL, their contribution to lymphomagenesis and chemoresistance, and their implication for the future of DLBCL therapy. Abstract Diffuse large B cell lymphoma (DLBCL) is curable with chemoimmunotherapy in ~65% of patients. One of the hallmarks of the pathogenesis and resistance to therapy in DLBCL is inhibition of apoptosis, which allows malignant cells to survive and acquire further alterations. Inhibition of apoptosis can be the result of genetic events inhibiting the intrinsic or extrinsic apoptotic pathways, as well as their modulators, such as the inhibitor of apoptosis proteins, P53, and components of the NF-kB pathway. Mechanisms of dysregulation include upregulation of anti-apoptotic proteins and downregulation of pro-apoptotic proteins via point mutations, amplifications, deletions, translocations, and influences of other proteins. Understanding the factors contributing to resistance to apoptosis in DLBCL is crucial in order to be able to develop targeted therapies that could improve outcomes by restoring apoptosis in malignant cells. This review describes the genetic events inhibiting apoptosis in DLBCL, provides a perspective of their interactions in lymphomagenesis, and discusses their implication for the future of DLBCL therapy.
Collapse
|
45
|
Miura K, Iriyama N, Hatta Y, Takei M. Personalized patient care with aggressive hematological malignancies in non-responders to first-line treatment. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1903314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Katsuhiro Miura
- Tumor Center, Nihon University Itabashi Hospital, 173-8610, Itabashi city, Japan
- Department of Hematology and Rheumatology, Nihon University School of Medicine, 173-8610, Itabashi city, Tokyo, Japan
| | - Noriyoshi Iriyama
- Department of Hematology and Rheumatology, Nihon University School of Medicine, 173-8610, Itabashi city, Tokyo, Japan
| | - Yoshihiro Hatta
- Department of Hematology and Rheumatology, Nihon University School of Medicine, 173-8610, Itabashi city, Tokyo, Japan
| | - Masami Takei
- Department of Hematology and Rheumatology, Nihon University School of Medicine, 173-8610, Itabashi city, Tokyo, Japan
| |
Collapse
|
46
|
Mosquera Orgueira A, Cid López M, Peleteiro Raíndo A, Díaz Arias JÁ, Antelo Rodríguez B, Bao Pérez L, Alonso Vence N, Bendaña López Á, Abuin Blanco A, Melero Valentín P, Ferreiro Ferro R, Aliste Santos C, Fraga Rodríguez MF, González Pérez MS, Pérez Encinas MM, Bello López JL. Detection of Rare Germline Variants in the Genomes of Patients with B-Cell Neoplasms. Cancers (Basel) 2021; 13:cancers13061340. [PMID: 33809641 PMCID: PMC8001490 DOI: 10.3390/cancers13061340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The global importance of rare variants in tumorigenesis has been addressed by some pan-cancer analysis, revealing significant enrichments in protein-truncating variants affecting genes such as ATM, BRCA1/2, BRIP1, and MSH6. Germline variants can influence treatment response and contribute to the development of treatment-related second neoplasms, especially in childhood leukemia. We aimed to analyze the genomes of patients with B-cell lymphoproliferative disorders for the discovery of genes enriched in rare pathogenic variants. We discovered a significant enrichment for two genes in germline rare and dysfunctional variants. Additionally, we detected rare and likely pathogenic variants associated with disease prognosis and potential druggability, indicating a relevant role of these events in the variability of cancer phenotypes. Abstract There is growing evidence indicating the implication of germline variation in cancer predisposition and prognostication. Here, we describe an analysis of likely disruptive rare variants across the genomes of 726 patients with B-cell lymphoid neoplasms. We discovered a significant enrichment for two genes in rare dysfunctional variants, both of which participate in the regulation of oxidative stress pathways (CHMP6 and GSTA4). Additionally, we detected 1675 likely disrupting variants in genes associated with cancer, of which 44.75% were novel events and 7.88% were protein-truncating variants. Among these, the most frequently affected genes were ATM, BIRC6, CLTCL1A, and TSC2. Homozygous or germline double-hit variants were detected in 28 cases, and coexisting somatic events were observed in 17 patients, some of which affected key lymphoma drivers such as ATM, KMT2D, and MYC. Finally, we observed that variants in six different genes were independently associated with shorter survival in CLL. Our study results support an important role for rare germline variation in the pathogenesis and prognosis of B-cell lymphoid neoplasms.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-981-950-191
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - José Ángel Díaz Arias
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Laura Bao Pérez
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Ángeles Bendaña López
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Aitor Abuin Blanco
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Paula Melero Valentín
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Roi Ferreiro Ferro
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Carlos Aliste Santos
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Máximo Francisco Fraga Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
- Department of Medicine, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Marta Sonia González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Manuel Mateo Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - José Luis Bello López
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Department of Medicine, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
47
|
Candelaria M, Dueñas-Gonzalez A. Rituximab in combination with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in diffuse large B-cell lymphoma. Ther Adv Hematol 2021; 12:2040620721989579. [PMID: 33796235 PMCID: PMC7970687 DOI: 10.1177/2040620721989579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most frequent non-Hodgkin lymphoma worldwide. The current standard of care is chemoimmunotherapy with an R-CHOP regimen. We aim to review the role of this regimen after two decades of being the standard of care. Methods A comprehensive literature review of DLBCL, including the epidemiology, trials defining R-CHOP as the standard of care, as well as dose intensification and dose reduction schemes. Additionally, we briefly review the development of rituximab biosimilars and the addition of targeted drugs to R-CHOP in clinical trials. Discussion R-CHOP cures approximately 70% of DLBCL patients. Dose-dense regimens do not show a benefit in response and increase toxicity. Dose reduction, particularly in elderly patients or with comorbidities, may be a treatment option. DLBCL constitutes a group of diseases that activate different biological pathways. Matching specific treatments to a defined genetic alteration is under development. Rituximab biosimilars have become available to a broader population, particularly in developing countries, where access to treatment is limited because of economic resources. Conclusion DLBCL landscape is heterogeneous. R-CHOP immunochemotherapy has been a standard of care for two decades and cures approximately 70% of cases. Molecular characterization of patients is evolving and may have critical therapeutic implications.
Collapse
Affiliation(s)
- Myrna Candelaria
- Clinical Research, Instituto Nacional de Cancerología México, Av San Fernando 22, Col Sección XVI, Tlalpan, 14370, Mexico City, Mexico
| | - Alfonso Dueñas-Gonzalez
- Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología México, Unit of Biomedical Research on Cancer, Mexico City, Mexico
| |
Collapse
|
48
|
Qin Y, Jiang S, Liu P, Yang J, Yang S, He X, Zhou S, Gui L, Lin J, Du X, Yi Y, Sun Y, Shi Y. Characteristics and Management of TP53-Mutated Diffuse Large B-Cell Lymphoma Patients. Cancer Manag Res 2020; 12:11515-11522. [PMID: 33204162 PMCID: PMC7666999 DOI: 10.2147/cmar.s269624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023] Open
Abstract
Background/Aim TP53 mutation is recognized as a negative prognostic factor for patients with diffuse large B-cell lymphoma (DLBCL). Here, we present the characteristics of TP53mut DLBCL patients following investigation of the effect of a treatment approach on survival of TP53mut DLBCL patients. Methods A total of 44 DLBCL patients with TP53mut and treated with an R-CHOP regimen were included for analysis. Patients who failed to achieve a complete response (CR) to initial treatment or relapsed in the first 6 months after initial CR were deemed to have primary refractory disease. Results Among 44 patients harboring TP53 mutations who underwent upfront R-CHOP or R-CHOP–like treatment, 21 (47.7%) had limited-stage and 23 (52.3%) presented advanced-stage disease. Apart from the seven patients receiving upfront surgical resection, 37 had measurable disease under the R-CHOP regimen, with 59.1% (n=26) developing primary refractory disease. Seven limited-stage patients after early complete resection and one with residue resection remained event-free at median follow-up of 37 months. Multivariate analysis revealed that elevated baseline lactate dehydrogenase (LDH), extranodal involvement (two or more), Ann Arbor stage, and locoregional treatment (surgery or radiation therapy) were independent indicators for progression-free survival (PFS). After adjustment for baseline LDH and extranodal involvement, adding locoregional treatment including surgery and radiation to the R-CHOP regimen significantly improved PFS (p=0.008) and overall survival (p=0.017) in limited-stage TP53mut DLBCL patients compared to R-CHOP–only treatment. Conclusion This study presents the characteristics of TP53-mutated DLBCL and implies a potential benefit of locoregional treatment in limited-stage DLBCL patients with TP53 mutations.
Collapse
Affiliation(s)
- Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Shiyu Jiang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Xiaohui He
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Jing Lin
- Burning Rock Biotech, Guangzhou, Mainland China
| | - Xinhua Du
- Geneplus Beijing, Beijing, People's Republic of China
| | - Yuting Yi
- Geneplus Beijing, Beijing, People's Republic of China
| | - Yan Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| |
Collapse
|
49
|
Wei AH, Roberts AW, Spencer A, Rosenberg AS, Siegel D, Walter RB, Caenepeel S, Hughes P, McIver Z, Mezzi K, Morrow PK, Stein A. Targeting MCL-1 in hematologic malignancies: Rationale and progress. Blood Rev 2020; 44:100672. [PMID: 32204955 PMCID: PMC7442684 DOI: 10.1016/j.blre.2020.100672] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
Myeloid cell leukemia sequence 1 (MCL-1) is an antiapoptotic protein that plays a key role in promoting cell survival in multiple myeloma (MM), acute myeloid leukemia (AML), and non-Hodgkin lymphoma (NHL). Overexpression of MCL-1 is associated with treatment resistance and poor prognosis; thus, MCL-1 inhibitors are rational therapeutic options for malignancies depending on MCL-1. Several MCL-1 inhibitors have entered clinical trials, including AZD5991, S64315, AMG 176, and AMG 397. A key area of investigation is whether MCL-1 inhibitors will complement the activity of BCL-2 inhibitors, such as venetoclax, and synergistically enhance anti-tumor efficacy when given in combination with other anti-cancer drugs. Another important question is whether a safe therapeutic window can be found for this new class of inhibitors. In summary, inhibition of MCL-1 shows potential as a treatment for hematologic malignancies and clinical evaluation of MCL-1 inhibitors is currently underway.
Collapse
Affiliation(s)
- Andrew H Wei
- Alfred Hospital and Monash University, Melbourne, VIC, Australia.
| | - Andrew W Roberts
- University of Melbourne, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Andrew Spencer
- Alfred Hospital, Monash University, Australian Centre for Blood Diseases, Melbourne, VIC, Australia
| | | | - David Siegel
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | - Anthony Stein
- Gehr Family Center for Leukemia, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
50
|
Crombie JL, Armand P. Diffuse Large B-Cell Lymphoma's New Genomics: The Bridge and the Chasm. J Clin Oncol 2020; 38:3565-3574. [PMID: 32813609 PMCID: PMC7571794 DOI: 10.1200/jco.20.01501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
|