1
|
Öztürk G, Yeşilipek MA, Akçay A, Uygun V, Özek G, Karasu G, Yılmaz E, Demir Yenigürbüz F, Öztürkmen S, Aksoylar S, Ok Bozkaya İ, Yalçın K, Adaklı Aksoy B, Ünal E, Akıncı B, Daloğlu H, Karagün BŞ, Kansoy S, Özbek N, İnce E, Demir HA, Gündoğdu M, Malbora B, Karakükçü M, Elli M, Akyay A, Güneş AM, Akbayram S, Sarper N, Del Castello BE, Hazar V, Antmen B. Effect of genetic mutations on outcomes of stem cell transplantation in children with hemophagocytic lymphohistiocytosis. Bone Marrow Transplant 2025:10.1038/s41409-025-02592-4. [PMID: 40263637 DOI: 10.1038/s41409-025-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Primary hemophagocytic lymphohistiocytosis (p-HLH) can be cured with allogeneic haematopoietic stem cell transplantation (allo-HSCT). It remains unclear whether HSCT outcomes are affected by the presence of different genetic mutations. We used data obtained from children who underwent allo-HSCT for HLH to examine the effects of genetic mutations on HSCT outcomes. Data from 153 paediatric patients in 18 paediatric stem cell centres were retrospectively evaluated. Patients were divided into four groups: 1) with PRF1 mutation (n = 46), 2) with UNC13D mutation (n = 38), 3) with STX11/STXBP2 mutation (n = 25) and 4) with Griscelli syndrome type 2/ Chediak-Higashi syndrome (GS2/CHS) diagnosis (n = 44). Statistical analysis showed no difference between the subgroups in terms of engraftment, VOD, acute GVHD, chronic GVHD, TRM, OS and EFS rates. The most important factor affecting OS and EFS in all genetic subgroups was remission status before HSCT. The 5-year EFS values for children with mutations in PRF1, UNC13D, STX11/STXBP2 and GS2/CHS were 71%, 66.6%, 74% and 66.7, respectively (log-rank >0.05). However, with prospective studies covering more patients, and creating different genetic subgroups by performing more detailed genetic analyses, special approaches for different genetic subgroups can be revealed in the future.
Collapse
Affiliation(s)
- Gülyüz Öztürk
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | | | - Arzu Akçay
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey.
| | - Vedat Uygun
- Pediatric BMT Unit, Medical Park Antalya Hospital, Istinye University Faculty of Medicine, Antalya, Turkey
| | - Gülcihan Özek
- Pediatric BMT Unit, Ege University Faculty of Medicine, Izmir, Turkey
| | - Gülsün Karasu
- Pediatric BMT Unit, Medical Park Göztepe Hospital, Istanbul, Turkey
| | - Ebru Yılmaz
- Pediatric BMT Unit, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Fatma Demir Yenigürbüz
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | - Seda Öztürkmen
- Pediatric BMT Unit, Medical Park Antalya Hospital, Istinye University Faculty of Medicine, Antalya, Turkey
| | - Serap Aksoylar
- Pediatric BMT Unit, Ege University Faculty of Medicine, Izmir, Turkey
| | - İkbal Ok Bozkaya
- Pediatric BMT Unit, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey
| | - Koray Yalçın
- Pediatric BMT Unit, Medical Park Göztepe Hospital, Istanbul, Turkey
| | - Başak Adaklı Aksoy
- Pediatric BMT Unit, Bahçelievler Medical Park Hospital, Altınbaş University Faculty of Medicine, İstanbul, Turkey
| | - Ekrem Ünal
- Pediatric BMT Unit, Erciyes University Faculty of Medicine, Kayseri, Turkey
- Pediatric Hematology and Oncology Clinic, Medical Point Hospital, School of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Burcu Akıncı
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | - Hayriye Daloğlu
- Pediatric BMT Unit, Medical Park Antalya Hospital, Istinye University Faculty of Medicine, Antalya, Turkey
- Faculty of Health Sciences, Antalya Bilim Univercity, Antalya, Turkey
| | | | - Savaş Kansoy
- Pediatric BMT Unit, Ege University Faculty of Medicine, Izmir, Turkey
| | - Namık Özbek
- Pediatric BMT Unit, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey
| | - Elif İnce
- Pediatric BMT Unit, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | - Müge Gündoğdu
- Pediatric BMT Unit, Memorial Bahçelievler Hospital, Istanbul, Turkey
| | - Barış Malbora
- Pediatric BMT Unit, GOP Hospital, Yüzüncü Yıl University Faculty of Medicine, Istanbul, Turkey
| | - Musa Karakükçü
- Pediatric BMT Unit, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Murat Elli
- Pediatric BMT Unit, İstanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Arzu Akyay
- Pediatric BMT Unit, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Adalet Meral Güneş
- Pediatric BMT Unit, Uludağ University Faculty of Medicine, Bursa, Turkey
| | - Sinan Akbayram
- Pediatric BMT Unit, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Nazan Sarper
- Pediatric BMT Unit, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | | | - Volkan Hazar
- Pediatric Pediatric Hematology and Oncology Clinic, Medstar Yıldız Hospital, Antalya, Turkey
| | - Bülent Antmen
- Pediatric BMT Unit, Acibadem Adana Hospital, Adana, Turkey
| |
Collapse
|
2
|
Zoref-Lorenz A, Rocco J, Schwartz DM, Jordan M. Recognizing and Managing Secondary Hemophagocytic Lymphohistiocytosis in Adults: A Practical Clinical Guide. Hematol Oncol Clin North Am 2025:S0889-8588(25)00025-5. [PMID: 40222878 DOI: 10.1016/j.hoc.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Secondary hemophagocytic lymphohistiocytosis (sHLH) is a life-threatening hyperinflammatory syndrome triggered by infections, malignancies, or rheumatologic conditions. Effective management requires identifying and treating the acute trigger while addressing underlying factors and calming the inflammatory response. Like sepsis, sHLH represents a cytokine storm resulting from diverse triggering events rather than a standalone diagnosis. This review synthesizes current literature and the authors' clinical experience to provide a comprehensive framework for diagnosing and managing sHLH, emphasizing the importance of tailored, trigger-specific interventions. Emerging diagnostic tools and therapeutic strategies and improved mechanistic understanding of sHLH hold promise for improving outcomes in this challenging condition.
Collapse
Affiliation(s)
- Adi Zoref-Lorenz
- Hematology Institute, Department of Medicine, Meir Medical Center, Tchernichovsky Street 59, Kfar Saba 4428164, Israel; Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Joseph Rocco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, NIH Clinical Center Building 10, Room 11B-17 10 Center Drive, Bethesda, MD 20892, USA. https://twitter.com/JMRocco5
| | - Daniella M Schwartz
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, 1551W Starzl Building, 200 Lothrop Street, Pittsburgh, PA 15213, USA. https://twitter.com/SchwartzLab9
| | - Michael Jordan
- Division of Immunobiology and Bone Marrow Transplant, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, ML 7038, Cincinnati, OH 45229-3039, USA. https://twitter.com/Mjordanlab
| |
Collapse
|
3
|
Zoref-Lorenz A, Witzig TE, Cerhan JR, Jordan MB. Malignancy-associated HLH: mechanisms, diagnosis, and treatment of a severe hyperinflammatory syndrome. Leuk Lymphoma 2025; 66:628-636. [PMID: 39656557 DOI: 10.1080/10428194.2024.2436037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a severe hyperinflammatory syndrome characterized by uncontrolled immune activation. While traditionally associated with genetic mutations affecting cytotoxic function, recent advances have highlighted the prevalence and significance of HLH in adults, particularly in hematologic malignancies. This review focuses on malignancy-associated HLH (M-HLH), a complex and challenging condition with a poor prognosis. The review explores four main subtypes of M-HLH: (1) HLH as the initial presentation of malignancy, (2) Chemotherapy Associated HLH, (3) Cytokine Release Syndrome (CRS) Associated HLH-like Syndrome, and (4) immune effector cell-associated HLH-like syndrome. Diagnosis is complicated by overlap with cancer symptoms and limitations of existing criteria. The Optimized HLH Inflammatory (OHI) index shows promise in early identification of hyperinflammation in new-onset hematologic malignancies. Treatment approaches must balance controlling hyperinflammation with addressing the underlying malignancy. Emerging therapies, including targeted agents like anakinra, ruxolitinib, and emapalumab, offer new management possibilities. This review examines the current understanding of M-HLH pathophysiology, diagnostic approaches, and treatment strategies for each subtype. It underscores the critical need for further research to unravel underlying mechanisms and establish evidence-based treatment protocols. Given the complexity of M-HLH, international collaborative efforts are essential to advance knowledge and improve patient outcomes.
Collapse
Affiliation(s)
- Adi Zoref-Lorenz
- Meir Medical Center, Hematology Institute, Tel Aviv University, Tel Aviv, Israel
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thomas E Witzig
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Bone Marrow Transplantation, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
4
|
Meyer LK, Keenan C, Nichols KE. Clinical Characteristics and Treatment of Familial Hemophagocytic Lymphohistiocytosis. Hematol Oncol Clin North Am 2025:S0889-8588(25)00018-8. [PMID: 40133142 DOI: 10.1016/j.hoc.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Familial hemophagocytic lymphohistiocytosis (fHLH) comprises a group of autosomal recessive disorders characterized by germline loss-of-function variants that negatively impact lymphocyte cytotoxicity. These disorders exhibit variable clinical presentations, most often in association with severe hyperinflammation. fHLH is diagnosed through clinical and laboratory assessments as well as genetic testing and immunologic assays. In the absence of therapy to control the hyperactive immune system, fHLH is generally fatal. Treatment has historically taken the form of cytotoxic chemotherapy and/or immunosuppressive therapy, although targeted inhibitors of inflammatory cytokines and their downstream signaling are increasingly being utilized. Definitive treatment requires allogeneic hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Lauren K Meyer
- Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, MB.8.643, Seattle, WA 98105, USA
| | - Camille Keenan
- Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, MB.8.643, Seattle, WA 98105, USA
| | - Kim E Nichols
- Division of Cancer Predisposition, Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1170, Memphis, TN 38105, USA.
| |
Collapse
|
5
|
Zhang M, Cron RR, Chu N, Nguyen J, Gordon SM, Eloseily EM, Atkinson TP, Weiser P, Walter MR, Kreiger PA, Canna SW, Behrens EM, Cron RQ. Role of DOCK8 in cytokine storm syndromes. J Allergy Clin Immunol 2025; 155:1015-1026.e5. [PMID: 39423879 PMCID: PMC11875994 DOI: 10.1016/j.jaci.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Cytokine storm syndromes (CSSs), including hemophagocytic lymphohistiocytosis (HLH), are increasingly recognized as hyperinflammatory states leading to multiorgan failure and death. Familial HLH in infancy results from homozygous genetic defects in perforin-mediated cytolysis by CD8 T lymphocytes and natural killer (NK) cells. Later-onset CSSs are often associated with heterozygous defects in familial HLH genes, but genetic etiologies for most are unknown. We identified rare dedicator of cytokinesis 8 (DOCK8) variants in patients with CSS. OBJECTIVE We sought to explore the role of CSS patient-derived DOCK8 mutations on cytolytic activity in NK cells and to further study effects of DOCK8 deficiency in murine models of CSSs. METHODS DOCK8 cDNAs from 2 unrelated patients with CSS with different missense mutations were introduced into human NK-92 cells by foamy virus transduction. NK-cell degranulation (CD107a), cytolytic activity against K562 target cells, and IFN-γ production were explored by flow cytometry. A third patient with CSS with DOCK8 mRNA splice acceptor site variant was explored by exon trapping. Dock8-/- mice were assessed for features of CSS (weight loss, splenomegaly, hepatic inflammation, cytopenias, and IFN-γ levels) on challenge with lymphocytic choriomeningitis virus and excess IL-18. RESULTS Both patient DOCK8 missense mutations decreased cytolytic function in NK cells in a partial dominant-negative fashion in vitro. The patient DOCK8 splice variant disrupted mRNA splicing in vitro. Lymphocytic choriomeningitis virus infection promoted CSS in Dock8-/- mice and interacted with excess IL-18, limiting T-cell numbers while promoting CD8 T-cell hyperactivation. CONCLUSIONS Mutations in DOCK8 may contribute to CSS-like hyperinflammatory states by altering cytolytic function in a threshold model of disease.
Collapse
Affiliation(s)
- Mingce Zhang
- University of Alabama at Birmingham, Birmingham, Ala
| | - Remy R Cron
- University of Alabama at Birmingham, Birmingham, Ala
| | | | | | | | - Esraa M Eloseily
- University of Texas Southwestern, Dallas, Tex; Faculty of Medicine, Assiut University, Asyut, Egypt
| | | | - Peter Weiser
- University of Alabama at Birmingham, Birmingham, Ala
| | - Mark R Walter
- University of Alabama at Birmingham, Birmingham, Ala
| | | | | | | | - Randy Q Cron
- University of Alabama at Birmingham, Birmingham, Ala.
| |
Collapse
|
6
|
Wang JM, Jiang HW, Zhang YQ, Hu Y, Mei H. Hemophagocytic lymphohistiocytosis post chimeric antigen receptor T cell therapies. Expert Rev Clin Immunol 2025; 21:277-289. [PMID: 39727348 DOI: 10.1080/1744666x.2024.2444673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Besides cytokine release syndromes (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), immune effector cell-associated HLH-like syndrome (IEC-HS) is increasingly recognized across CAR-T recipients. This emergent and fatal syndrome is difficult to separate from other disorders during the early phase, and urgently requires more integrated diagnostic and therapeutic frameworks. AREAS COVERED Existing literature has pointed out the potential role of unbridled proliferation of cytotoxic T lymphocytes, lymphopenia of natural killing cells, and hypercytokinemia in triggering the IEC-HS. The onset time of IEC-HS usually overlaps with CRS or be delayed from CRS. Clinical features include hyperferritinemia, hepatic and renal dysfunctions, cytopenias, coagulopathy, and hemophagocytosis. Multiple diagnostic criteria are based predominantly on ferritin elevation and prerequisite CRS. Corticosteroids are the cornerstone for IEC-HS treatment, while cytokine-targeted agents and pathway inhibitors offer great promise in alleviating IEC-HS syndromes. EXPERT OPINIONS Several controversial predisposing factors of IEC-HS such as disease burden should be further investigated. Future research is anticipated to identify the real-time biomarkers, as well as develop a more sophisticated grading and management network.
Collapse
Affiliation(s)
- Jing-Ming Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Hui-Wen Jiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Yin-Qiang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| |
Collapse
|
7
|
Fang X, Xu S, Cai K, Cong X, Li Y, Li Y, Shen H, Xu X, Huang L. High Epstein-Barr Virus DNA Load in T Cells Predicts Hemophagocytic Lymphohistiocytosis. J Infect Dis 2025:jiaf065. [PMID: 40036428 DOI: 10.1093/infdis/jiaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND To evaluate the risk of hemophagocytic lymphohistiocytosis (HLH) linked to Epstein-Barr virus (EBV) infection in different lymphocyte subtypes during infectious mononucleosis (IM). METHODS Patients with IM and patients with EBV-HLH were included within the Children's Critical EBV Infection cohort for a nested case-control study. Lymphocytes were isolated into T, B, and natural killer cells using magnetic bead sorting, followed by individual polymerase chain reaction testing. Receiver operating characteristic curve analysis identified subtype-specific cutoffs for EBV-HLH prediction. Kaplan-Meier and Cox regression analyses assessed viral load-HLH risk associations. RESULTS Patients with EBV-HLH exhibited significantly higher T-cell viral loads than patients with IM (median, 5.1 × 104 vs 6.0 × 102 copies/106 cells). A T-cell viral load >1.5 × 104 copies/106 cells was linked with higher incidences of viral sepsis, renal dysfunction, hepatic dysfunction, coagulation dysfunction, and cardiovascular dysfunction (odds ratios, 10.0, 4.7, 6.5, 15.7, and 6.5). This elevated T-cell viral load was a strong predictor for distinguishing EBV-HLH (AUC 0.815) and increased the risk of developing EBV-HLH (hazard ratio 4.7). CONCLUSIONS High EBV DNA load in T cells can serve as a potential predictor for the development of EBV-HLH.
Collapse
Affiliation(s)
- Xiaohui Fang
- Department of Infectious Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shanshan Xu
- Department of Infectious Disease, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Cai
- Department of Infectious Disease, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Cong
- Department of Infectious Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yujia Li
- Department of Infectious Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Li
- Department of Infectious Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaojun Xu
- Department of Hematology-Oncology, The Children's Hospital, Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lisu Huang
- Department of Infectious Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
8
|
Richardson AI, Yap KL, Leuer K, Gong S. Hemophagocytic Lymphohistiocytosis with Predominant T-Lymphocytes in Young Child: An Unusual Presentation of Evolving Acute Myeloid Leukemia. J Clin Med 2025; 14:1511. [PMID: 40094975 PMCID: PMC11899776 DOI: 10.3390/jcm14051511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Hemophagocytic lymphohistiocytosis (HLH) is an aggressive, life-threatening condition commonly observed in young children. Distinguishing primary HLH from secondary HLH, such as malignancy-associated HLH, can be challenging, potentially leading to misdiagnosis and inappropriate treatment. Case presentation: A 16-month-old female presented with fever, decreased appetite, and rhinorrhea. A review of the peripheral blood smear revealed anemia and leukopenia, with absolute neutropenia characterized by a high lymphocyte count (approximately 80% were T cells by flow cytometry). Flow cytometry was negative for immunophenotypically abnormal cells. Initially, the cytopenia was attributed to a viral infection. However, the cytopenia did not improve, and a bone marrow evaluation revealed evidence of HLH but no immunophenotypically abnormal population. An extensive work-up for HLH, including next-generation sequencing (NGS) and cytogenetic testing identified the KMT2A::MLLT3 fusion transcript, indicating malignancy-associated HLH in the setting of evolving leukemia. Because there was no increase in blasts or immunophenotypically abnormal cells, the diagnosis of leukemia could not be made at that time. The patient was closely monitored and, seven weeks later, was diagnosed with acute myeloid leukemia/acute monocytic leukemia. In addition to the KMT2A::MLLT3 fusion, pathogenic variants in the PTPN11 and FLT3 genes were detected by NGS. Conclusions: The presentation of evolving acute monocytic leukemia can be nonspecific, mimicking conditions such as HLH, without an initial increase in immature cells or monocytes. Maintaining a broad differential diagnosis and including comprehensive molecular genetic testing may facilitate early diagnosis and appropriate treatment.
Collapse
Affiliation(s)
- Aida I. Richardson
- Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (K.L.Y.); (K.L.); (S.G.)
| | | | | | | |
Collapse
|
9
|
Abrams ED, Basu A, Zavorka Thomas ME, Henrickson SE, Abraham RS. Expanding the diagnostic toolbox for complex genetic immune disorders. J Allergy Clin Immunol 2025; 155:255-274. [PMID: 39581295 DOI: 10.1016/j.jaci.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Laboratory-based immunology evaluation is essential to the diagnostic workup of patients with complex immune disorders, and is as essential, if not more so, depending on the context, as genetic testing, because it enables identification of aberrant pathways amenable to therapeutic intervention and clarifies variants of uncertain significance. There have been considerable advances in techniques and instrumentation in the clinical laboratory in the past 2 decades, although there are still "miles to go." One of the goals of the clinical laboratory is to ensure advanced diagnostic testing is widely accessible to physicians and thus patients, through reference laboratories, particularly in the context of academic medical centers. This ensures a greater likelihood of translating research discoveries into the diagnostic laboratory, on the basis of patient care needs rather than a sole emphasis on commercial utility. However, these advances are under threat from burdensome regulatory oversight that can compromise, at best, and curtail, at worst, the ability to rapidly diagnose rare immune disorders and ensure delivery of precision medicine. This review discusses the clinical utility of diagnostic immunology tools, beyond cellular immunophenotyping of lymphocyte subsets, which can be used in conjunction with clinical and other laboratory data for diagnosis as well as monitoring of therapeutic response in patients with genetic immunologic diseases.
Collapse
Affiliation(s)
- Eric D Abrams
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amrita Basu
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan E Zavorka Thomas
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
10
|
Merrill SA, Spaner C, Chen LYC. Goodbye etoposide? Taking the leap to ruxolitinib in haemophagocytic lymphohistiocytosis. Br J Haematol 2025; 206:391-393. [PMID: 39462212 DOI: 10.1111/bjh.19864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Fang et al. report a retrospective analysis of paediatric patients with haemophagocytic lymphohistiocytosis (HLH) associated with autoimmune/autoinflammatory disorders treated with ruxolitinib. Responses were impressive and rapid, and ruxolitinib was well tolerated. This study demonstrates that a subset of patients with HLH can be treated with JAK inhibition without the need for cytotoxic chemotherapy. Further work will be needed to better define patient selection for therapy, as some patient groups and HLH triggers, such as malignancy-associated HLH, may be better suited for etoposide-based therapy. Commentary on: Fang et al. Ruxolitinib-based regimen in children with autoimmune disease or autoinflammatory disease related hemophagocytic lymphohistiocytosis. Br J Haematol 2025; 206:215-223.
Collapse
Affiliation(s)
- Samuel A Merrill
- Classical Hematology, Department of Oncology, West Virginia University, Morgantown, West Virginia, USA
| | - Caroline Spaner
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke Y C Chen
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Hematology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Wang K, Hu M, Zhu J, Wang W. COX Regression Analysis and Mortality Risk Prediction Model of 85 Adult Patients with Secondary Hemophagocytic Lymphohistiocytosis. Br J Hosp Med (Lond) 2024; 85:1-19. [PMID: 39831483 DOI: 10.12968/hmed.2024.0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aims/Background Secondary hemophagocytic lymphohistiocytosis (sHLH) is a rare, rapidly progressive and highly lethal disease. This retrospective cohort study aims to analyze the factors influencing the mortality risk in adult patients with sHLH, which are instrumental to improving our understanding of the high mortality risks associated with sHLH. Methods This study included 85 patients diagnosed with sHLH who were admitted and treated in the Department of Emergency, Peking University People's Hospital between April 2015 and July 2023. Participants were classified based on prognosis into two groups: the death group and the survival group. We collected demographic data, routine blood tests, comprehensive biochemical profiles, coagulation analyses, serum ferritin levels, natural killer (NK) cell counts, soluble interleukin-2 receptor (sCD25) levels, and potential etiological factors upon admission. The mortality risk factors influencing the prognosis of sHLH were analyzed with univariate and multivariate COX regression. Additionally, a mortality risk prediction model was established, and its accuracy was validated and optimized using the concordance index (C-index), time-dependent receiver operating characteristic (ROC) curve, calibration curves and clinical decision curve analysis (DCA). Results A total of 85 patients were included in this study, the male-to-female ratio is 1:1.4. The median age at diagnosis of sHLH was 56.00 (33.00-69.00) years. Clinical symptoms were atypical, with fever being the most prevalent symptom (81 cases, 95.3%), followed by disturbance of consciousness (10 cases, 11.8%). Univariate COX analysis and Multivariate COX regression analysis revealed that age (hazard ratio (HR) [95% confidence interval (CI)], 1.098 [1.025-1.177], p = 0.008), Alanine transaminase (ALT) (HR [95% CI], 1.016 [1.001-1.031], p = 0.034), Aspartate transaminase (AST) (HR [95% CI], 1.005 [1.001-1.008], p = 0.004), and Troponin I (TNI) levels (HR [95% CI], 1.196 [1.011-1.414], p = 0.037) were independent risk factors affecting prognosis. Specifically, sHLH patients aged ≥63.5 years (sensitivity 82.8%, specificity 85.7%), with AST levels ≥111 U/L (sensitivity 82.8%, specificity 82.1%), ALT ≥41 U/L (sensitivity 58.6%, specificity 64.3%) and TNI levels ≥2.15 ng/mL (sensitivity 62.1%, specificity 100%), faced a higher risk of mortality. We established a mortality risk prediction model for sHLH patients, which yielded a C-index of 0.848 (0.773-0.901), indicating strong agreement between predicted and observed outcomes. The ROC curves of the 28-day, 60-day, and 90-day mortality risk prediction model for sHLH patients were drawn, and the results showed that the 28-day, 60-day, and 90-day area under the curve (AUC) were 0.900 (0.829-0.971), 0.940 (0.882-0.998), and 0.930 (0.874-0.986), respectively. The predictive effect of the prediction model is satisfactory. Additionally, the clinical decision curve analysis for 28, 60 and 90 days in sHLH patients indicated that the net benefit of the nomogram model was higher than that line of extremes models (treat all and treat none). Conclusion Patients with sHLH have frequently atypical clinical presentation, with early death risk and notably elevated mortality rate. Independent risk factors influencing mortality risk in sHLH patients include age ≥63.5 years, AST ≥111 U/L, ALT ≥41 U/L, and TNI ≥2.15 ng/mL. With high accuracy and efficacy, the risk prediction model constructed can facilitate timely identification of sHLH patients at elevated risk of mortality, which is critical for optimizing clinical interventions.
Collapse
Affiliation(s)
- Kai Wang
- Department of Emergency, Peking University People's Hospital, Beijing, China
| | - Meng Hu
- Core Lab of Experimental Pathology, Peking University Health Science Center, Peking University, Beijing, China
| | - Jihong Zhu
- Department of Emergency, Peking University People's Hospital, Beijing, China
| | - Wuchao Wang
- Department of Emergency, Peking University People's Hospital, Beijing, China
| |
Collapse
|
12
|
Martínez S, Triviño J, Arias O, Medina D, Franco A, Patiño J, Pérez P, Pachajoa H, Rodríguez P, Olaya-Hernández M. A hidden enemy: Understanding the hemophagocytic syndrome in children under five years of age in a high-complexity institution in southwestern Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:140-154. [PMID: 39836845 PMCID: PMC11991687 DOI: 10.7705/biomedica.7526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/07/2024] [Indexed: 01/23/2025]
Abstract
Introduction. Hemophagocytic syndrome is an under-recognized condition with high mortality in the pediatric population. It is characterized by excessive activation of immune cells and cytokine release, leading to persistent inflammation. Hemophagocytic syndrome can be primary or secondary and associated with different triggers. Objective. To describe 12 clinical cases of children under five years of age with hemophagocytic syndrome in a high-complexity institution in southwestern Colombia. Materials and methods. We present a retrospective series of 12 cases of hemophagocytic syndrome in children under five years of age treated at a high-complexity institution in Colombia between 2019 and 2022. Results. The median age of the patients was one year and 7 were male. Fever and splenomegaly were the most common clinical manifestations observed in 11 of the patients. The predominant laboratory findings included hyperferritinemia (n = 11), hypertriglyceridemia (n = 10), bicytopenia (n = 6), and pancytopenia (n = 2). Eleven cases had elevated lactate dehydrogenase levels. Genetic studies were conducted in 7 patients. Regarding treatment, the full HLH-2004 protocol was administered to 5 cases, while 3 underwent hematopoietic stem cell transplantation. Three patients died. Conclusion. We highlight the complexity of the hemophagocytic syndrome, especially in children under five years old, because the low prevalence and non-specific clinical presentation of the disease contribute to its underdiagnosis. Emphasis is placed on identifying triggers, performing genetic evaluation for accurate and early diagnosis, adopting a multidisciplinary approach, and considering early hematopoietic stem cell transplantation to improve morbidity and mortality outcomes.
Collapse
Affiliation(s)
- Sofía Martínez
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliColombia
| | - Jacobo Triviño
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliColombia
| | - Oriana Arias
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliColombia
| | - Diego Medina
- Hemato-Oncología Pediátrica, Departamento de Pediatría, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliHemato-Oncología PediátricaDepartamento de PediatríaFundación Valle del LiliCaliColombia
| | - Alexis Franco
- Hemato-Oncología Pediátrica, Departamento de Pediatría, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliHemato-Oncología PediátricaDepartamento de PediatríaFundación Valle del LiliCaliColombia
| | - Jaime Patiño
- Departamento de Infectología Pediátrica, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliDepartamento de Infectología PediátricaFundación Valle del LiliCaliColombia
| | - Paola Pérez
- Departamento de Infectología Pediátrica, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliDepartamento de Infectología PediátricaFundación Valle del LiliCaliColombia
| | - Harry Pachajoa
- Facultad de Ciencias de la Salud, Universidad ICESI, Cali, ColombiaUniversidad ICESIFacultad de Ciencias de la SaludUniversidad ICESICaliColombia
| | - Pamela Rodríguez
- Hemato-Oncología Pediátrica, Departamento de Pediatría, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliHemato-Oncología PediátricaDepartamento de PediatríaFundación Valle del LiliCaliColombia
| | - Manuela Olaya-Hernández
- Facultad de Ciencias de la Salud, Universidad ICESI, Cali, ColombiaUniversidad ICESIFacultad de Ciencias de la SaludUniversidad ICESICaliColombia
- Departamento de Pediatría, Alergología e Inmunología Pediátrica, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliDepartamento de PediatríaAlergología e Inmunología PediátricaFundación Valle del LiliCaliColombia
| |
Collapse
|
13
|
Cortesi M, Dotta L, Cattalini M, Lougaris V, Soresina A, Badolato R. Unmasking inborn errors of immunity: identifying the red flags of immune dysregulation. Front Immunol 2024; 15:1497921. [PMID: 39749336 PMCID: PMC11693724 DOI: 10.3389/fimmu.2024.1497921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Inborn errors of immunity (IEI) are rare diseases that affect the immune system. According to the latest International Union of Immunological Societies (IUIS) classification, 485 different IEI have been identified. Even if increased susceptibility to infections is the best-known symptom, IEI are no longer defined by the higher likelihood of infections alone. Immune dysregulation with autoimmune disease and hyperinflammation, lymphoproliferation, and malignancy are common manifestations and could be the only symptoms of IEI that must be recognized. An exclusive focus on infection-centered warning signs would miss around 25% of patients with IEI who initially present with other manifestations. Timely and appropriate diagnosis and treatment are essential to enhance the quality of life (QoL) and, in some cases, survival, as patients are susceptible to life-threatening infections or autoimmunity. In addition, the advantage of early diagnosis in IEI with immune dysregulation (i.e. CTLA4 deficiency, LRBA deficiency, NF-kB1/NF-kB2 deficiency, activated phosphoinositide 3-kinase delta syndrome -APDS-) is the initiation of targeted therapies with precise re-balancing of the dysregulated immune pathways (i.e., biologicals, selective inhibitors) or definitive therapy (i.e., HSCT).
Collapse
Affiliation(s)
- Manuela Cortesi
- Pediatrics Clinic and Institute for Molecular Medicine “A. Nocivelli”, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Eslami A, Alimoghadam S, Khodadadi S, Allahverdi H, Alimoghadam R, Kasaeian A, Mansouri D, Alimoghaddam K, Alavi Darazam I. Comprehensive insights into tuberculosis-associated hemophagocytic lymphohistiocytosis: a systematic review. BMC Infect Dis 2024; 24:1341. [PMID: 39581974 PMCID: PMC11587777 DOI: 10.1186/s12879-024-10220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Tuberculosis-associated hemophagocytic lymphohistiocytosis (TB-HLH) presents significant challenges in diagnosis and treatment due to its complex interplay between TB and HLH. This systematic review aims to provide comprehensive insights into the epidemiology, clinical characteristics, and treatment outcomes of TB-HLH patients. METHODS We performed a systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching PubMed, Scopus, Web of Science, and Embase up to May 16, 2023, without language restrictions. We included case reports and cases series on patients with both TB and HLH with documented treatment outcomes. Data were analyzed using descriptive statistics, chi-square or Fisher's exact tests, t-tests, and mortality rates. Significant variables (p < 0.05) from univariate analysis and clinically relevant factors were used in binary logistic regression to determine odds ratios, 95% confidence intervals, and p-values. RESULTS A total of 185 articles involving 213 patients were included. The overall mortality rate was 39%. Age ≥ 44 years and comorbidities were identified as independent risk factors for increased mortality (p = 0.005). Anti-tuberculosis treatment (ATT) combined with HLH-specific therapies, was associated with reduced mortality compared to ATT alone (p < 0.05), especially IVIG (p = 0.04). CONCLUSION Integrating ATT with HLH-specific therapies significantly enhances survival in TB-HLH patients. Additionally, IVIG plays a key role in improving outcomes. Age ≥ 44 years and comorbidities are critical risk factors for increased mortality. Early and high suspicion of TB-HLH is essential, especially in high TB burden regions or recent travel contexts. Future research should focus on prospective multicenter studies to validate our findings and develop standardized treatment strategies on TB-HLH. PROSPERO CRD42022364180.
Collapse
Affiliation(s)
- Arvin Eslami
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shaya Alimoghadam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Allahverdi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rojina Alimoghadam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kasaeian
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Datta S, Gupta A, Jagetiya KM, Tiwari V, Yamashita M, Ammann S, Shahrooei M, Yande AR, Sowdhamini R, Dani A, Prakriya M, Vig M. Syntaxin11 Deficiency Inhibits CRAC Channel Priming To Suppress Cytotoxicity And Gene Expression In FHLH4 Patient T Lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620144. [PMID: 39484379 PMCID: PMC11527129 DOI: 10.1101/2024.10.25.620144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
CRAC channels enable calcium entry from the extracellular space in response to a variety of stimuli and are crucial for gene expression and granule exocytosis in lymphocytes. Here we find that Syntaxin11, a Q-SNARE, associated with FHLH4 disease in human patients, directly binds Orai1, the pore forming subunit of CRAC channels. Syntaxin11 depletion strongly inhibited SOCE, CRAC currents, IL-2 expression and cytotoxicity in cell lines and FHLH4 patient T lymphocytes. Constitutively active H134 Orai1 mutant completely reconstituted calcium entry in Syntaxin11 depleted cells and the defects of granule exocytosis as well as gene expression could be bypassed by ionomycin induced calcium influx in FHLH4 T lymphocytes. Our data reveal a Syntaxin11 induced pre-activation state of Orai which is necessary for its subsequent coupling and gating by the endoplasmic reticulum resident Stim protein. We propose that ion channel regulation by specific SNAREs is a primary and conserved function which may have preceded their role in vesicle fusion.
Collapse
Affiliation(s)
- Sritama Datta
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | | | - Vikas Tiwari
- National Centre for Biological Sciences, Bangalore, India
| | - Megumi Yamashita
- Northwestern University, Feinberg School of Medicine, Chicago, USA
| | - Sandra Ammann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mohammad Shahrooei
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | | | | | - Adish Dani
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Murali Prakriya
- Northwestern University, Feinberg School of Medicine, Chicago, USA
| | - Monika Vig
- Tata Institute of Fundamental Research, Hyderabad, India
| |
Collapse
|
16
|
Klangkalya N, Fleisher TA, Rosenzweig SD. Diagnostic tests for primary immunodeficiency disorders: Classic and genetic testing. Allergy Asthma Proc 2024; 45:355-363. [PMID: 39294902 PMCID: PMC11425801 DOI: 10.2500/aap.2024.45.240051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Primary immunodeficiency diseases encompass a variety of genetic conditions characterized by a compromised immune system and typically results in increased susceptibility to infection. In fact, they also manifest as autoimmunity, autoinflammation, atopic diseases, and malignancy. Currently, the number of recognized monogenic primary immunodeficiency disorders is set at ∼500 different entities, owing to the exponential use of unbiased genetic testing for disease discovery. In addition, the prevalence of secondary immunodeficiency has also been on the rise due to the increased use of immunosuppressive drugs to treat diseases based on immune dysregulation, an increase in the number of individuals undergoing hematopoietic stem cell transplantation, and other chronic medical conditions, including autoimmunity. Although the clinical symptoms of immunodeficiency disorders are broad, an early diagnosis and tailored management strategies are essential to mitigate the risk of infections and prevent disease-associated morbidity. Generally, the medical history and physical examination can provide useful information that can help delineate the possibility of immune defects. In turn, this makes it feasible to select focused laboratory tests that identify immunodeficiency disorders based on the specific immune cells and their functions or products that are affected. Laboratory evaluation involves quantitative and functional classic testing (e.g., leukocyte counts, serum immunoglobulin levels, specific antibody titers in response to vaccines, and enumeration of lymphocyte subsets) as well as genetic testing (e.g., individual gene evaluation via Sanger sequencing or unbiased evaluation based on next-generation sequencing). However, in many cases, a diagnosis also requires additional advanced research techniques to validate genetic or other findings. This article updates clinicians about available laboratory tests for evaluating the immune system in patients with primary immunodeficiency disorders. It also provides a comprehensive list of testing options, organized based on different components of host defense.
Collapse
Affiliation(s)
- Natchanun Klangkalya
- From the Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; and
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas A. Fleisher
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Rafati M, McReynolds LJ, Wang Y, Hicks B, Jones K, Spellman SR, He M, Bolon YT, Arrieta-Bolaños E, Saultz JN, Lee SJ, Savage SA, Gadalla SM. Hemophagocytic Lymphohistiocytosis Gene Variants in Severe Aplastic Anemia and Their Impact on Hematopoietic Cell Transplantation Outcomes. Transplant Cell Ther 2024; 30:770.e1-770.e10. [PMID: 38810947 PMCID: PMC11296907 DOI: 10.1016/j.jtct.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Germline genetic testing for patients with severe aplastic anemia (SAA) is recommended to guide treatment, including the use of immunosuppressive therapy and/or adjustment of hematopoietic cell transplantation (HCT) modalities. Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory condition often associated with cytopenias with autosomal recessive (AR) or X-linked recessive (XLR) inheritance. HLH is part of the SAA differential diagnosis, and genetic testing may identify variants in HLH genes in patients with SAA. The impact of pathogenic/likely pathogenic (P/LP) variants in HLH genes on HCT outcomes in SAA is unclear. In this study, we aimed to determine the frequency of HLH gene variants in a large cohort of patients with acquired SAA and to evaluate their association(s) with HCT outcomes. The Transplant Outcomes in Aplastic Anemia project, a collaboration between the National Cancer Institute and the Center for International Blood and Marrow Transplant Research, collected genomic and clinical data from 824 patients who underwent HCT for SAA between 1989 and 2015. We excluded 140 patients with inherited bone marrow failure syndromes and used exome sequencing data from the remaining 684 patients with acquired SAA to identify P/LP variants in 14 HLH-associated genes (11 AR, 3 XLR) curated using American College of Medical Genetics and Genomics/Association of Molecular Pathology (ACMG/AMP) criteria. Deleterious variants of uncertain significance (del-VUS) were defined as those not meeting the ACMG/AMP P/LP criteria but with damaging predictions in ≥3 of 5 meta-predictors (BayesDel, REVEL, CADD, MetaSVM, and/or EIGEN). The Kaplan-Meier estimator was used to calculate the probability of overall survival (OS) after HCT, and the cumulative incidence calculator was used for other HCT outcomes, accounting for relevant competing risks. There were 46 HLH variants in 49 of the 684 patients (7.2%). Seventeen variants in 19 patients (2.8%) were P/LP; 8 of these were loss-of-function variants. Among the 19 patients with P/LP HLH variants, 16 (84%) had monoallelic variants in genes with AR inheritance, and 3 had variants in XLR genes. PRF1 was the most frequently affected gene (in 8 of the 19 patients). We found no statistically significant differences in transplantation-related factors between patients with and those without P/LP HLH variants. The 5-year survival probability was 89% (95% confidence interval [CI], 72% to 99%) in patients with P/LP HLH variants and 70% (95% CI, 53% to 85%) in those with del-VUS HLH variants, compared to 66% (95% CI, 62% to 70%) in those without variants (P = .16, log-rank test). The median time to neutrophil engraftment was 16 days for patients with P/LP HLH variants and 18 days in those with del-VUS HLH variants or without variants combined (P = .01, Gray's test). No statistically significant associations between P/LP HLH variants and the risk of acute or chronic graft-versus-host disease were noted. In this large cohort of patients with acquired SAA, we found that 2.8% of patients harbored a P/LP variant in an HLH gene. No negative effects of HLH gene variants on post-HCT survival were noted. The small number of patients with P/LP HLH variants limits the study's ability to provide conclusive evidence; nonetheless, our data suggest that there is no need for special transplantation considerations for patients with SAA carrying P/LP variants.
Collapse
Affiliation(s)
- Maryam Rafati
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland; Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland; Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, Minnesota
| | - Meilun He
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, Minnesota
| | - Yung-Tsi Bolon
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, Minnesota
| | - Esteban Arrieta-Bolaños
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Heidelberg, Germany
| | - Jennifer N Saultz
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
18
|
Satoh K, Wada T, Tampo A, Takahashi G, Hoshino K, Matsumoto H, Taira T, Kazuma S, Masuda T, Tagami T, Ishikura H. Practical approach to thrombocytopenia in patients with sepsis: a narrative review. Thromb J 2024; 22:67. [PMID: 39039520 PMCID: PMC11265094 DOI: 10.1186/s12959-024-00637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Thrombocytopenia frequently occurs in patients with sepsis. Disseminated intravascular coagulation (DIC) may be a possible cause of thrombocytopenia owing to its high prevalence and association with poor outcomes; however, it is important to keep the presence of other diseases in mind in sepsis practice. Thrombotic microangiopathy (TMA), which is characterized by thrombotic thrombocytopenic purpura, Shiga toxin-producing Escherichia coli hemolytic uremic syndrome (HUS), and complement-mediated HUS, is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and organ damage. TMA has become widely recognized in recent years because of the development of specific treatments. Previous studies have reported a remarkably lower prevalence of TMA than DIC; however, its epidemiology is not well defined, and there may be cases in which TMA is not correctly diagnosed, resulting in poor outcomes. Therefore, it is important to differentiate DIC from TMA. Nevertheless, differentiating between DIC and TMA remains a challenge as indicated by previous reports that most patients with TMA can be diagnosed as DIC using the universal coagulation scoring system. Several algorithms to differentiate sepsis-related DIC from TMA have been suggested, contributing to improving the care of septic patients with thrombocytopenia; however, it may be difficult to apply these algorithms to patients with coexisting DIC and TMA, which has recently been reported. This review describes the disease characteristics, including epidemiology, pathophysiology, and treatment, of DIC, TMA, and other diseases with thrombocytopenia and proposes a novel practical approach flow, which is characterized by the initiation of the diagnosis of TMA in parallel with the diagnosis of DIC. This practical flow also refers to the longitudinal diagnosis and treatment flow with TMA in mind and real clinical timeframes. In conclusion, we aim to widely disseminate the results of this review that emphasize the importance of incorporating consideration of TMA in the management of septic DIC. We anticipate that this practical new approach for the diagnostic and treatment flow will lead to the appropriate diagnosis and treatment of complex cases, improve patient outcomes, and generate new epidemiological evidence regarding TMA.
Collapse
Affiliation(s)
- Kasumi Satoh
- Advanced Emergency and Critical Care Center, Akita University Hospital, Akita, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Akihito Tampo
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Gaku Takahashi
- Department of Critical Care, Disaster and General Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Kota Hoshino
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hironori Matsumoto
- Department of Emergency and Critical Care Medicine, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takayuki Taira
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Satoshi Kazuma
- Department of Intensive Care Medicine, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Takamitsu Masuda
- Department of Emergency Medicine, Emergency and Critical Care Center, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashikosugi Hospital, Tokyo, Japan
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
19
|
Elgaali E, Mezzavilla M, Ahmed I, Elanbari M, Ali A, Abdelaziz G, Fakhro KA, Saleh A, Ben-Omran T, Almulla N, Cugno C. Genetic background of primary and familial HLH in Qatar: registry data and population study. Front Pediatr 2024; 12:1326489. [PMID: 38808104 PMCID: PMC11130942 DOI: 10.3389/fped.2024.1326489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
Background Familial hemophagocytic lymphohistiocytosis (FHLH) is an inherited life-threatening disease. Five types are identified, with the addition of congenital immunodeficiency syndromes in which HLH is a typical manifestation. The literature on this disease is very scarce in the Middle East, with only a few scattered reports. Methods We report detailed demographic, clinical, and genomic data from 28 patients diagnosed with primary and familial HLH over the last decade in Qatar. An evaluation was performed of allele frequencies of deleterious variants from 12 primary and familial HLH causative genes on the Qatar Genome Programme (QGP) cohort of 14,669 Qatari individuals. Results The genetic diagnosis was obtained in 15 patients, and four novel mutations in Perforin 1 (PRF1), UNC13D, LYST, and RAB27A genes were found. We identified 22,945 low/high/moderate/modifier impact variants significantly enriched in the QGP in those 12 genes. The variants rs1271079313 in PRF1 and rs753966933 in RAB27A found in our patient cohort were significantly more prevalent in the QGP compared to the Genome Aggregation Database (gnomAD) database, with a high carrier frequency in the Qatari population. Conclusions We established the first primary and familial HLH Registry in the Gulf Region and identified novel possibly pathogenic variants present at higher frequency in the Qatari population, which could be used for screening purposes. Raising awareness about primary and familial HLH and implementing screening activities in the Qatari highly inbred population could stem into more comprehensive premarital and prenatal evaluations and faster diagnosis.
Collapse
Affiliation(s)
- Elkhansa Elgaali
- Pediatric Hematology and Oncology Department, Sidra Medicine, Doha, Qatar
| | | | - Ikhlak Ahmed
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Aesha Ali
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | - Ayman Saleh
- Pediatric Hematology and Oncology Department, Sidra Medicine, Doha, Qatar
| | - Tawfeg Ben-Omran
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar
| | - Naima Almulla
- Pediatric Hematology and Oncology Department, Sidra Medicine, Doha, Qatar
| | - Chiara Cugno
- Pediatric Hematology and Oncology Department, Sidra Medicine, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
20
|
Liu T, Cheng Z, Hu Y, Tang LV. Tofacitinib for elderly onset hemophagocytic lymphohistiocytosis with gene mutations: a case report. MedComm (Beijing) 2024; 5:e538. [PMID: 38617436 PMCID: PMC11016134 DOI: 10.1002/mco2.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Affiliation(s)
- Tingting Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhi‐Peng Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Liang V. Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
21
|
Magnarelli A, Shalen J, Gutierrez MJ. Cytokine Storm Syndrome Responsive to IL-1 Inhibition in Trisomy 21. Case Rep Pediatr 2024; 2024:9946401. [PMID: 38577256 PMCID: PMC10994700 DOI: 10.1155/2024/9946401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Background Cytokine storm syndromes (CSS) are life-threatening systemic inflammatory disorders caused by immune system dysregulation. They can lead to organ failure and are triggered by various factors, including infections, malignancy, inborn errors of immunity, and autoimmune conditions. Trisomy 21 (TS21), also known as Down syndrome, is a genetic disorder associated with immune dysfunction, increased infection susceptibility, and inflammation. While TS21 has been linked to infectious-triggered hyperinflammation, its role as a primary cause of CSS has not been confirmed. Case Presentation. We present a case of a 16-year-old male with TS21 with fever, rash, joint pain, and abdominal symptoms. Extensive investigations ruled out infections, autoimmune conditions, malignancies, and inborn errors of immunity as triggers for a CSS. The patient's symptoms improved with treatment using IL-1 inhibition and corticosteroids. Conclusions This case reinforces that TS21 is an immune dysregulation disorder and highlights the importance of considering CSS in TS21 patients, even when triggers are unclear. The positive response to IL-1 inhibition in this patient suggests that dysregulation of the IL-1 superfamily and the NLRP3 inflammasome may contribute to CSS in TS21. This finding raises the possibility of using IL-1 inhibition as a treatment approach for CSS in TS21 patients.
Collapse
Affiliation(s)
- Aimee Magnarelli
- Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia Shalen
- Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria J. Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Christensen BR, Kou CTJ, Lee LE. A Rare Case of Extranodal Natural Killer/T-cell Lymphoma, Nasal Type Associated With Hemophagocytic Lymphohistiocytosis in a Patient With Recurrent Sinusitis. Cureus 2024; 16:e56237. [PMID: 38618451 PMCID: PMC11016311 DOI: 10.7759/cureus.56237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
We present a rare case of hemophagocytic lymphohistiocytosis (HLH) secondary to nasal-type extranodal natural killer/T-cell lymphoma (ENKL). Nasal-type ENKL is a rare subtype of non-Hodgkin's lymphoma usually associated with Epstein-Barr virus (EBV). The patient was a 19-year-old woman who presented with facial numbness, diminished hearing, and dysgeusia. She was febrile with palatal necrosis, loss of gag reflex, and cranial nerve palsies. Labs revealed neutropenia. Broad-spectrum antimicrobials, including amphotericin, were started. Given concern for invasive fungal disease, she underwent surgical debridement, which revealed inflamed fibrous tissue and extensive necrosis. Pathology showed no fungal elements or malignancy. Lack of clinical improvement and worsening palatal necrosis prompted additional debridement. Histology identified an atypical CD3+/CD56+ cellular infiltrate. Bone marrow biopsy showed prominent hemophagocytosis, but no malignancy. She met the criteria for HLH and high-dose dexamethasone was started. Her fevers resolved. Additional labs and nasal tissue sampling with EBV-encoded RNA staining were recommended. Flow cytometry was negative, but histology revealed ENKL nasal-type, with positive EBV-encoded RNA in situ hybridization. Plasma EBV DNA level was 11,518 IU/mL. The M-SMILE (dexamethasone, methotrexate, ifosfamide, l-asparaginase, and etoposide) regimen was initiated; one cycle led to marked improvement. EBV level returned to zero. Subsequent radiation and chemotherapy, followed by autologous stem cell transplant consolidation, led to complete remission. We conclude that ENKL may mimic invasive sinusitis clinically. Fibrinoid necrosis in vessels and surrounding tissues often leads to diagnostic delay. It is important to have a high degree of clinical suspicion for malignancy in cases of HLH and sinusitis unresponsive to appropriate therapy. Obtaining proper tissue, communication with the pathologist, and prompt initiation of therapy are crucial.
Collapse
Affiliation(s)
- Bryce R Christensen
- Pulmonary and Critical Care Medicine, Mike O'Callaghan Military Medical Center, Nellis Air Force Base, USA
- Pulmonary and Critical Care Medicine, University of Nevada, Las Vegas, Las Vegas, USA
- Internal Medicine, Brooke Army Medical Center, Fort Sam Houston, USA
| | - Chung-Ting J Kou
- Hematology and Oncology, Brooke Army Medical Center, Fort Sam Houston, USA
| | - Lauren E Lee
- Hematology and Oncology, Brooke Army Medical Center, Fort Sam Houston, USA
| |
Collapse
|
23
|
Kilich G, Perelygina L, Sullivan KE. Rubella virus chronic inflammatory disease and other unusual viral phenotypes in inborn errors of immunity. Immunol Rev 2024; 322:113-137. [PMID: 38009321 PMCID: PMC11844209 DOI: 10.1111/imr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.
Collapse
Affiliation(s)
- Gonench Kilich
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
24
|
Jordan MB. Hemophagocytic lymphohistiocytosis: A disorder of T cell activation, immune regulation, and distinctive immunopathology. Immunol Rev 2024; 322:339-350. [PMID: 38100247 DOI: 10.1111/imr.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a disorder that has been recognized since the middle of the last century. In recent decades, increasing understanding of the genetic roots and pathophysiology of HLH has led to improved diagnosis and treatment of this once universally fatal disorder. HLH is best conceptualized as a maladaptive state of excessive T cell activation driving life-threatening myeloid cell activation, largely via interferon-gamma (IFN-γ). In familial forms of HLH (F-HLH), inherited defects of lymphocyte cytotoxic biology underlie excessive T cell activation, demonstrating the importance of the perforin/granzyme pathway as a negative feedback loop limiting acute T cell activation in response to environmental factors. HLH occurring in other contexts and without apparent inherited genetic predisposition remains poorly understood, though it may share some downstream aspects of pathophysiology including excessive IFN-γ action and activation of innate immune effectors. Iatrogenic forms of HLH occurring after immune-activating therapies for cancer are providing new insights into the potential toxicities of inadequately controlled T cell activation. Diagnosing HLH increasingly relies on context-specific measures of T cell activation, IFN-γ activity, and inflammation. Treatment of HLH largely relies on cytotoxic chemotherapy, though targeted therapies against T cells, IFN-γ, and other cytokines are increasingly utilized.
Collapse
Affiliation(s)
- Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
25
|
Ricci S, Sarli WM, Lodi L, Canessa C, Lippi F, Dini D, Ferrari M, Pisano L, Sieni E, Indolfi G, Resti M, Azzari C. HLH as an additional warning sign of inborn errors of immunity beyond familial-HLH in children: a systematic review. Front Immunol 2024; 15:1282804. [PMID: 38415256 PMCID: PMC10896843 DOI: 10.3389/fimmu.2024.1282804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Background Hemophagocytic Lymphohistiocytosis (HLH) is a rare and life-threatening condition characterized by a severe impairment of the immune homeostasis. While Familial-HLH (FHL) is a known cause, the involvement of other Inborn Errors of Immunity (IEI) in pediatric-HLH remains understudied. Objective This systematic review aimed to assess the clinical features, triggers, laboratory data, treatment, and outcomes of pediatric HLH patients with IEI other than FHL (IEInotFHL), emphasizing the importance of accurate identification and management. Methods A systematic search for studies meeting inclusion criteria was conducted in PubMed, EMBASE, MEDLINE, and Cochrane Central. Quality assessment was performed through JBI criteria. Results A comprehensive search yielded 108 records meeting inclusion criteria, involving 178 patients. We identified 46 different IEI according to IUIS 2022 Classification. Combined immunodeficiencies, immune dysregulation disorders, and phagocyte defects were the IEI most frequently associated with HLH. In 75% of cases, HLH preceded the IEI diagnosis, often with an unrecognized history of severe infections. Triggers reflected the specific infection susceptibilities within IEI groups. Liver and central nervous system involvement were less common than in FHL cases. Treatment approaches and outcomes varied, with limited long-term follow-up data, limiting the assessment of therapeutic efficacy across IEI groups. Conclusion A comprehensive evaluation encompassing immunological, infectious, and genetic aspects is essential in pediatric-HLH. Relying solely on FHL or EBV susceptibility disorders tests is insufficient, as diverse other IEI can contribute to HLH. Early recognition of HLH as a potential warning sign can guide timely diagnostic investigations and facilitate tailored therapeutic interventions for improved outcomes. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=371425, PROSPERO, CRD42022371425.
Collapse
Affiliation(s)
- Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Walter Maria Sarli
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Clementina Canessa
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Francesca Lippi
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Donata Dini
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Marta Ferrari
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Laura Pisano
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Pediatric Hematology-Oncology Department, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Giuseppe Indolfi
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department Neurofarba, University of Florence, Florence, Italy
| | - Massimo Resti
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
26
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
27
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Vasco AE, Talano JA, Broglie L. Hemophagocytic Lymphohistiocytosis in Adolescents and Young Adults: Genetic Predisposition and Secondary Disease. Med Clin North Am 2024; 108:189-200. [PMID: 37951650 DOI: 10.1016/j.mcna.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a disorder of impaired immune regulation resulting in hyperinflammation that is ultimately fatal if not treated. HLH is categorized into familial disease, caused by genetic mutations affecting the function of cytotoxic T lymphocytes and natural killer cells, and secondary disease, triggered by infections, malignancies, rheumatologic disorders, or immune deficiency. Adolescent and young adults with HLH represent a unique population with specific diagnostic challenges. Here we review the diagnostic criteria, possible etiologies, pathophysiology, and management of HLH with focus on the adolescent population.
Collapse
Affiliation(s)
- Alejandra Escobar Vasco
- Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 3018, Milwaukee, WI 53226, USA; Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 3018, Milwaukee, WI 53226, USA
| | - Julie-Ann Talano
- Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 3018, Milwaukee, WI 53226, USA; Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 3018, Milwaukee, WI 53226, USA
| | - Larisa Broglie
- Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 3018, Milwaukee, WI 53226, USA; Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 3018, Milwaukee, WI 53226, USA.
| |
Collapse
|
29
|
Janka GE. History of Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:9-19. [PMID: 39117804 DOI: 10.1007/978-3-031-59815-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a severe cytokine storm syndrome (CSS), which until the turn of the century, was barely known but is now receiving increased attention. The history of HLH dates back to 1939 when it was first described in adults, to be followed in 1952 by the first description of its primary, familial form in children. Secondary forms of HLH are far more frequent and occur with infections, malignancies, metabolic diseases, iatrogenic immune suppression, and autoinflammatory/autoimmune diseases. Identification of the genetic defects leading to the defective function of natural killer (NK) cells and cytotoxic T cells as well as the corresponding mouse models have revolutionized our understanding of HLH and of immune function. Diagnosis relies on clinical and laboratory criteria; functional and genetic tests can help separate primary from secondary forms. Treatment with immunochemotherapy and hematopoietic stem cell transplantation has considerably improved survival in children with primary HLH, a formerly uniformly fatal disease.
Collapse
Affiliation(s)
- Gritta E Janka
- University Medical Center Hamburg, Department of Pediatric Hematology and Oncology, Hamburg, Germany.
| |
Collapse
|
30
|
Bloch C, Jais JP, Gil M, Boubaya M, Lepelletier Y, Bader-Meunier B, Mahlaoui N, Garcelon N, Lambotte O, Launay D, Larroche C, Lazaro E, Liffermann F, Lortholary O, Michel M, Michot JM, Morel P, Cheminant M, Suarez F, Terriou L, Urbanski G, Viallard JF, Alcais A, Fischer A, de Saint Basile G, Hermine O. Severe adult hemophagocytic lymphohistiocytosis (HLHa) correlates with HLH-related gene variants. J Allergy Clin Immunol 2024; 153:256-264. [PMID: 37678575 DOI: 10.1016/j.jaci.2023.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The contribution of genetic factors to the severity of adult hemophagocytic lymphohistiocytosis (HLHa) remains unclear. OBJECTIVE We sought to assess a potential link between HLHa outcomes and HLH-related gene variants. METHODS Clinical characteristics of 130 HLHa patients (age ≥ 18 years and HScore ≥ 169) and genotype of 8 HLH-related genes (LYST, PRF1, UNC13-D, STX11, STXBP2, RAB27A, XIAP, and SAP) were collected. A total of 34 variants found in only 6 genes were selected on the basis of their frequency and criteria predicted to impair protein function. Severity was defined by refractory disease to HLH treatment, death, or transfer to an intensive care unit. RESULTS HLHa-associated diseases (ADs) were neoplasia (n = 49 [37.7%]), autoimmune/inflammatory disease (n = 33 [25.4%]), or idiopathic when no AD was identified (n = 48 [36.9%]). Infectious events occurred in 76 (58.5%) patients and were equally distributed in all ADs. Severe and refractory HLHa were observed in 80 (61.5%) and 64 (49.2%) patients, respectively. HScore, age, sex ratio, AD, and infectious events showed no significant association with HLHa severity. Variants were identified in 71 alleles and were present in 56 (43.1%) patients. They were distributed as follows: 44 (34.4%), 9 (6.9%), and 3 (2.3%) patients carrying 1, 2, and 3 variant alleles, respectively. In a logistic regression model, only the number of variants was significantly associated with HLHa severity (1 vs 0: 3.86 [1.73-9.14], P = .0008; 2-3 vs 0: 29.4 [3.62-3810], P = .0002) and refractoriness (1 vs 0: 2.47 [1.17-5.34], P = .018; 2-3 vs 0: 13.2 [2.91-126.8], P = .0003). CONCLUSIONS HLH-related gene variants may be key components to the severity and refractoriness of HLHa.
Collapse
Affiliation(s)
- Coralie Bloch
- Clinical Research Unit, Avicenne University Hospital, AP-HP, Bobigny, France; Paris 13 University, Sorbonne Paris Cité, Paris, France; Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France.
| | - Jean Philippe Jais
- Imagine Institute, Université Paris Cité, Paris, France; Biostatistic Unit, Necker University Hospital, AP-HP, Paris, France; Human Genetics of Infectious Diseases: Complex Predisposition, INSERM UMR1163, Paris, France
| | - Marine Gil
- Imagine Institute, Université Paris Cité, Paris, France
| | - Marouane Boubaya
- Clinical Research Unit, Avicenne University Hospital, AP-HP, Bobigny, France
| | - Yves Lepelletier
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; Imagine Institute, Université Paris Cité, Paris, France
| | - Brigitte Bader-Meunier
- Imagine Institute, Université Paris Cité, Paris, France; Department of Pediatric Immunology and Rheumatology, Necker University Hospital, AP-HP, Paris, France
| | - Nizar Mahlaoui
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Department of Pediatric Immunology and Rheumatology, Necker University Hospital, AP-HP, Paris, France
| | | | - Olivier Lambotte
- University Paris Saclay, AP-HP, Hôpital Bicêtre, IMVAHB UMR1184, INSERM, CEA, Le Kremlin Bicêtre, France
| | - David Launay
- Université de Lille, CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France; INSERM INFINITE U1286, Lille, France
| | - Claire Larroche
- Internal Medicine Unit, Avicenne Hospital, AP-HP, Bobigny, France
| | - Estibaliz Lazaro
- Internal Medicine Department, Bordeaux Hospital University, Bordeaux, France; CNRS-UMR 5164 Immuno ConcEpT, Bordeaux, France
| | - Francois Liffermann
- Service de medecine interne-hematologie, Centre hospitalier de Dax, Dax, France
| | - Olivier Lortholary
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Service de Maladies Infectieuses et Tropicales, Centre d'Infectiologie Necker Pasteur, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Marc Michel
- Department of Internal Medicine, Centre de Référence maladies rares sur les Cytopénies Auto-Immunes de l'adulte, Hôpitaux Universitaires Henri Mondor, AP-HP, Université Paris-Est Créteil, Créteil, France
| | - Jean-Marie Michot
- Gustave Roussy, University Paris Saclay, Drug Development Department, Villejuif, France
| | - Pierre Morel
- Service d'Hématologie Clinique, Hôpital Schaffner de Lens, Lens Cedex, France
| | - Morgane Cheminant
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Clinical Hematology, Necker University Hospital, AP-HP, Paris, France
| | - Felipe Suarez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Clinical Hematology, Necker University Hospital, AP-HP, Paris, France
| | - Louis Terriou
- Université de Lille, CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France; INSERM INFINITE U1286, Lille, France
| | - Geoffrey Urbanski
- Department of Internal Medicine and Clinical Immunology, University Hospital, Angers, France; MitoLab Team, MITOVASC Institute, UMR CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | | | - Alexandre Alcais
- Imagine Institute, Université Paris Cité, Paris, France; Biostatistic Unit, Necker University Hospital, AP-HP, Paris, France; Human Genetics of Infectious Diseases: Complex Predisposition, INSERM UMR1163, Paris, France
| | - Alain Fischer
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Department of Pediatric Immunology and Rheumatology, Necker University Hospital, AP-HP, Paris, France; Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR1163, Paris, France; Necker University Hospital, AP-HP, Paris, France; College de France, Paris, France
| | - Geneviève de Saint Basile
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR1163, Paris, France
| | - Olivier Hermine
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Clinical Hematology, Necker University Hospital, AP-HP, Paris, France.
| |
Collapse
|
31
|
Dettmer-Monaco V, Weißert K, Ammann S, Monaco G, Lei L, Gräßel L, Rhiel M, Rositzka J, Kaufmann MM, Geiger K, Andrieux G, Lao J, Thoulass G, Schell C, Boerries M, Illert AL, Cornu TI, Ehl S, Aichele P, Cathomen T. Gene editing of hematopoietic stem cells restores T-cell response in familial hemophagocytic lymphohistiocytosis. J Allergy Clin Immunol 2024; 153:243-255.e14. [PMID: 37595758 DOI: 10.1016/j.jaci.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder characterized by a life-threatening cytokine storm and immunopathology. Familial HLH type 3 (FHL3) accounts for approximately 30% of all inborn HLH cases worldwide. It is caused by mutations in the UNC13D gene that result in impaired degranulation of cytotoxic vesicles and hence compromised T-cell- and natural killer-cell-mediated killing. Current treatment protocols, including allogeneic hematopoietic stem cell (HSC) transplantation, still show high mortality. OBJECTIVE We sought to develop and evaluate a curative genome editing strategy in the preclinical FHL3 Jinx mouse model. Jinx mice harbor a cryptic splice donor site in Unc13d intron 26 and develop clinical symptoms of human FHL3 upon infection with lymphocytic choriomeningitis virus (LCMV). METHODS We employed clustered regularly interspaced short palindromic repeats (CRISPR)-Cas technology to delete the disease-causing mutation in HSCs and transplanted Unc13d-edited stem cells into busulfan-conditioned Jinx recipient mice. Safety studies included extensive genotyping and chromosomal aberrations analysis by single targeted linker-mediated PCR sequencing (CAST-Seq)-based off-target analyses. Cure from HLH predisposition was assessed by LCMV infection. RESULTS Hematopoietic cells isolated from transplanted mice revealed efficient gene editing (>95%), polyclonality of the T-cell receptor repertoire, and neither signs of off-target effects nor leukemogenesis. Unc13d transcription levels of edited and wild-type cells were comparable. While LCMV challenge resulted in acute HLH in Jinx mice transplanted with mock-edited HSCs, Jinx mice grafted with Unc13d-edited cells showed rapid virus clearance and protection from HLH. CONCLUSIONS Our study demonstrates that transplantation of CRISPR-Cas edited HSCs supports the development of a functional polyclonal T-cell response in the absence of genotoxicity-associated clonal outgrowth.
Collapse
Affiliation(s)
- Viviane Dettmer-Monaco
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg
| | - Kristoffer Weißert
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg
| | - Sandra Ammann
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg
| | - Gianni Monaco
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg
| | - Lei Lei
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg
| | - Linda Gräßel
- Department of Internal Medicine I, Medical Center-University of Freiburg, Freiburg; German Cancer Consortium, Partner Site Freiburg & German Cancer Research Center, Heidelberg
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg
| | - Julia Rositzka
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg
| | - Masako M Kaufmann
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg
| | - Kerstin Geiger
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Jessica Lao
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg
| | - Gudrun Thoulass
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg
| | - Christoph Schell
- Faculty of Medicine, University of Freiburg, Freiburg; Institute of Surgical Pathology, Medical Center-University of Freiburg, Freiburg
| | - Melanie Boerries
- German Cancer Consortium, Partner Site Freiburg & German Cancer Research Center, Heidelberg; Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Anna L Illert
- Department of Internal Medicine I, Medical Center-University of Freiburg, Freiburg; German Cancer Consortium, Partner Site Freiburg & German Cancer Research Center, Heidelberg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Peter Aichele
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg.
| |
Collapse
|
32
|
Zoref-Lorenz A. Inpatient recognition and management of HLH. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:259-266. [PMID: 38066887 PMCID: PMC10727013 DOI: 10.1182/hematology.2023000509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is one of the life-threatening emergencies that a hematologist may be called upon to diagnose and manage. It is a hyperinflammatory process that develops in patients with genetic abnormalities, hematologic malignancies, chronic inflammatory states, or infections. The main clinical challenges are recognizing HLH, determining whether the immune response is aberrant or appropriate, and deciding upon therapy. Patients may present with fever, central nervous system symptoms, cytopenias, or elevated liver enzymes. Recognizing HLH is challenging because its features overlap with numerous systemic disorders, thus requiring a high level of suspicion and timely investigations to confirm the diagnosis and detect the underlying trigger. Once HLH is diagnosed, careful consideration of immunosuppressive therapy's potential benefit versus harm is necessary. Such therapy can sometimes be tailored to the underlying trigger. In the acute setting, the competing pressures of completing a thorough diagnostic process (including evaluation for the presence of lymphoma and infection) and the need for expedited treatment must be balanced. During the management of an HLH patient, continuous vigilance for the presence of as-yet unrecognized disease triggers, monitoring response, and identifying emerging complications is critical. This review will discuss the recognition and management of HLH in the inpatient setting.
Collapse
Affiliation(s)
- Adi Zoref-Lorenz
- Hematology Institute, Meir Medical Center, Kfar Saba, Israel
- Division of Immunobiology, Cincinnati Children's Medical Center, Cincinnati, OH
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Raimbault S, Monneret G, Gossez M, Venet F, Belot A, Zekre F, Remy S, Javouhey E. Elevated monocyte HLA-DR in pediatric secondary hemophagocytic lymphohistiocytosis: a retrospective study. Front Immunol 2023; 14:1286749. [PMID: 38077325 PMCID: PMC10704813 DOI: 10.3389/fimmu.2023.1286749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening condition, and its diagnosis may be challenging. In particular, some cases show close similarities to sepsis (fever, organ failure, and high ferritin), but their treatment, while urgent, differ: prompt broad-spectrum antibiotherapy for sepsis and immunosuppressive treatment for HLH. We questioned whether monocyte human leucocyte antigen (mHLA)-DR could be a diagnostic marker for secondary HLH (sHLH). Methods We retrospectively reviewed data from patients with a sHLH diagnosis and mHLA-DR quantification. mHLA-DR data from healthy children and children with septic shock, whose HLA-DR expression is reduced, from a previously published study were also included for comparison. Results Six patients with sHLH had mHLA-DR quantification. The median level of monocyte mHLA-DR expression in patients with sHLH [79,409 antibodies bound per cell (AB/C), interquartile range (IQR) (75,734-86,453)] was significantly higher than that in healthy children and those with septic shock (29,668 AB/C, IQR (24,335-39,199), and 7,493 AB/C, IQR (3,758-14,659), respectively). Each patient with sHLH had a mHLA-DR higher than our laboratory normal values. Four patients had a second mHLA-DR sampling 2 to 4 days after the initial analysis and treatment initiation with high-dose corticosteroids; for all patients, mHLA-DR decreased to within or close to the normal range. One patient with systemic juvenile idiopathic arthritis had repeated mHLA-DR measurements over a 200-day period during which she underwent four HLH episodes. mHLA-DR increased during relapses and normalized after treatment incrementation. Conclusion In this small series, mHLA-DR was systematically elevated in patients with sHLH. Elevated mHLA-DR could contribute to sHLH diagnosis and help earlier distinction with septic shock.
Collapse
Affiliation(s)
- Sylvain Raimbault
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service de Réanimation Pédiatrique, Bron, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Laboratoire d’Immunologie, Lyon, France
| | - Morgane Gossez
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Laboratoire d’Immunologie, Lyon, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Laboratoire d’Immunologie, Lyon, France
| | - Alexandre Belot
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service de Néphrologie et Rhumatologie Pédiatrique, Centre de Référence RAISE (Rhumatismes Inflammatoires et Maladies Auto-Immunes Systémiques Rares de l’Enfant), ERN RITA (European Reference Network for Immunodeficiency, Autoinflammatory, Autoimmune and Paediatric Rheumatic Diseases), Bron, France
| | - Franck Zekre
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service de Néphrologie et Rhumatologie Pédiatrique, Centre de Référence RAISE (Rhumatismes Inflammatoires et Maladies Auto-Immunes Systémiques Rares de l’Enfant), ERN RITA (European Reference Network for Immunodeficiency, Autoinflammatory, Autoimmune and Paediatric Rheumatic Diseases), Bron, France
| | - Solene Remy
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service de Réanimation Pédiatrique, Bron, France
| | - Etienne Javouhey
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service de Réanimation Pédiatrique, Bron, France
| |
Collapse
|
34
|
Shakoory B, Geerlinks A, Wilejto M, Kernan K, Hines M, Romano M, Piskin D, Ravelli A, Sinha R, Aletaha D, Allen C, Bassiri H, Behrens EM, Carcillo J, Carl L, Chatham W, Cohen JI, Cron RQ, Drewniak E, Grom AA, Henderson LA, Horne A, Jordan MB, Nichols KE, Schulert G, Vastert S, Demirkaya E, Goldbach-Mansky R, de Benedetti F, Marsh RA, Canna SW. The 2022 EULAR/ACR Points to Consider at the Early Stages of Diagnosis and Management of Suspected Haemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome (HLH/MAS). Arthritis Rheumatol 2023; 75:1714-1732. [PMID: 37486733 PMCID: PMC11040593 DOI: 10.1002/art.42636] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE Haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening systemic hyperinflammatory syndromes that can develop in most inflammatory contexts. They can progress rapidly, and early identification and management are critical for preventing organ failure and mortality. This effort aimed to develop evidence-based and consensus-based points to consider to assist clinicians in optimising decision-making in the early stages of diagnosis, treatment and monitoring of HLH/MAS. METHODS A multinational, multidisciplinary task force of physician experts, including adult and paediatric rheumatologists, haematologist/oncologists, immunologists, infectious disease specialists, intensivists, allied healthcare professionals and patients/parents, formulated relevant research questions and conducted a systematic literature review (SLR). Delphi methodology, informed by SLR results and questionnaires of experts, was used to generate statements aimed at assisting early decision-making and optimising the initial care of patients with HLH/MAS. RESULTS The task force developed 6 overarching statements and 24 specific points to consider relevant to early recognition of HLH/MAS, diagnostic approaches, initial management and monitoring of HLH/MAS. Major themes included the simultaneous need for prompt syndrome recognition, systematic evaluation of underlying contributors, early intervention targeting both hyperinflammation and likely contributors, careful monitoring for progression/complications and expert multidisciplinary assistance. CONCLUSION These 2022 EULAR/American College of Rheumatology points to consider provide up-to-date guidance, based on the best available published data and expert opinion. They are meant to help guide the initial evaluation, management and monitoring of patients with HLH/MAS in order to halt disease progression and prevent life-threatening immunopathology.
Collapse
Affiliation(s)
- Bita Shakoory
- Translational Autoinflammatory Diseases Section, NIH, Bethesda, Maryland
| | - Ashley Geerlinks
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, and Hematology/Oncology, University of Western Ontario Schulich School of Medicine & Dentistry, London, Ontario, Canada
- Hematology/Oncology, University of Western Ontario Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Marta Wilejto
- Hematology/Oncology, University of Western Ontario Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Kate Kernan
- Pediatric Critical Care Medicine, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Melissa Hines
- Pediatric Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Micol Romano
- Pediatrics, University of Western Ontario Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - David Piskin
- Department of Epidemiology and Biostatistics, Western University and Department of Paediatrics, Lawson Health Research Institute, London, Ontario, Canada
| | - Angelo Ravelli
- Direzione Scientifica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Daniel Aletaha
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Carl Allen
- Pediatric Oncology, Texas Children’s Hospital, Houston
| | - Hamid Bassiri
- Pediatric Infectious Diseases, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Edward M. Behrens
- Pediatric Rheumatology, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joseph Carcillo
- Pediatric Critical Care Medicine, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Linda Carl
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Winn Chatham
- Rheumatology, University of Alabama at Birmingham
| | - Jeffrey I. Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Randy Q. Cron
- Pediatric Rheumatology, University of Alabama at Birmingham
| | - Erik Drewniak
- Autoinflammatory Alliance, San Francisco, California
| | - Alexei A. Grom
- Pediatric Rheumatology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Lauren A. Henderson
- Pediatric Immunology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Annacarin Horne
- Department of Women’s and Children’s Health, Karolinska Institutet Cancerforskning KI, Stockholm, Sweden
| | - Michael B. Jordan
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Kim E. Nichols
- Division of Cancer Predisposition Department of Oncology, St. Jude Children’s Research Hospital Department of Oncology, Memphis, Tennessee
| | - Grant Schulert
- Pediatric Rheumatology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Sebastiaan Vastert
- Center for Translational Immunology Research, UMC Utrecht, Utrecht, The Netherlands
| | - Erkan Demirkaya
- Pediatrics, University of Western Ontario Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | | | | | - Rebecca A. Marsh
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Scott W. Canna
- Pediatric Rheumatology, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Moonla C, Polprasert C, Komvilaisak P, Rattanathammethee T, Kongkiatkamon S, Wudhikarn K, Kobbuaklee S, Boonyabaramee P, Tangcheewinsirikul N, Pakakasama S, Rujkijyanont P, Choed-Amphai C, Phuakpet K, Pongudom S, Bunworasate U, Sukswai N, Sosothikul D, Rojnuckarin P. Germline HAVCR2 mutations and their relation to the clinical spectrum of subcutaneous panniculitis-like T-cell lymphoma and hemophagocytic lymphohistiocytosis: results from a multicenter study and meta-analysis. Haematologica 2023; 108:2743-2752. [PMID: 37051767 PMCID: PMC10543163 DOI: 10.3324/haematol.2022.282419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Germline HAVCR2 mutations are frequently detected in subcutaneous panniculitis-like T-cell lymphoma (SPTCL) patients with/without hemophagocytic lymphohistiocytosis (HLH) but factors associated with variable manifestations remain undetermined. To evaluate clinical variations and associated factors in SPTCL and/or HLH with/without HAVCR2 mutations, we performed direct sequencing of HAVCR2 exon 2 using DNA from patients with SPTCL or idiopathic HLH/HLH-like systemic illnesses, defined by HLH alone without secondary causes. The systematic review and individual patient data (IPD) level meta-analysis which included the present and previously published studies reporting HAVCR2 mutations in SPTCL with/without HLH populations was subsequently conducted using random-effects meta-analysis and multivariate logistic regression. Among 34 patients enrolled, ten of 28 SPTCL patients developed HLH/HLH-like systemic illnesses. Six cases with HAVCR2Y82C mutation manifested with HLH without panniculitis. Male sex (P=0.03) and age <18 years (P=0.04) were associated with HLH, corresponding to the inverse correlation between age and HLH-2004 score (r=-0.40; P=0.02). Homozygous HAVCR2Y82C mutation was more common in the presence of HLH compared with the absence (75.0% vs. 44.4%; P=0.02). Using IPD from the present and the other three eligible cohorts (N=127), male sex, heterozygous and homozygous/compound heterozygous HAVCR2 mutations were associated with HLH by the adjusted odds ratio of 2.93 (95% confidence interval [CI]: 1.22-7.06), 4.77 (95% CI: 1.05-21.63) and 8.48 (95% CI: 2.98-24.10), respectively. Patients with male sex and/or germline HAVCR2 mutations showed an increased risk of developing HLH. Younger patients tended to manifest with HLH, while older patients typically presented with SPTCL with less frequent HLH/HLH-like systemic illnesses.
Collapse
Affiliation(s)
- Chatphatai Moonla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chantana Polprasert
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Patcharee Komvilaisak
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Sunisa Kongkiatkamon
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kitsada Wudhikarn
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirorat Kobbuaklee
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pitchayut Boonyabaramee
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nuanrat Tangcheewinsirikul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Samart Pakakasama
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piya Rujkijyanont
- Division of Hematology/Oncology, Department of Pediatrics, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Chane Choed-Amphai
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kamon Phuakpet
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saranya Pongudom
- Department of Medicine, Udon Thani Medical Education Center, Udon Thani Hospital, Udon Thani, Thailand
| | - Udomsak Bunworasate
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Narittee Sukswai
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Darintr Sosothikul
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Integrative and Innovative Hematology/Oncology Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
36
|
Shakoory B, Geerlinks A, Wilejto M, Kernan K, Hines M, Romano M, Piskin D, Ravelli A, Sinha R, Aletaha D, Allen C, Bassiri H, Behrens EM, Carcillo J, Carl L, Chatham W, Cohen JI, Cron RQ, Drewniak E, Grom AA, Henderson LA, Horne A, Jordan MB, Nichols KE, Schulert G, Vastert S, Demirkaya E, Goldbach-Mansky R, de Benedetti F, Marsh RA, Canna SW. The 2022 EULAR/ACR points to consider at the early stages of diagnosis and management of suspected haemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS). Ann Rheum Dis 2023; 82:1271-1285. [PMID: 37487610 PMCID: PMC11017727 DOI: 10.1136/ard-2023-224123] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVE Haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening systemic hyperinflammatory syndromes that can develop in most inflammatory contexts. They can progress rapidly, and early identification and management are critical for preventing organ failure and mortality. This effort aimed to develop evidence-based and consensus-based points to consider to assist clinicians in optimising decision-making in the early stages of diagnosis, treatment and monitoring of HLH/MAS. METHODS A multinational, multidisciplinary task force of physician experts, including adult and paediatric rheumatologists, haematologist/oncologists, immunologists, infectious disease specialists, intensivists, allied healthcare professionals and patients/parents, formulated relevant research questions and conducted a systematic literature review (SLR). Delphi methodology, informed by SLR results and questionnaires of experts, was used to generate statements aimed at assisting early decision-making and optimising the initial care of patients with HLH/MAS. RESULTS The task force developed 6 overarching statements and 24 specific points to consider relevant to early recognition of HLH/MAS, diagnostic approaches, initial management and monitoring of HLH/MAS. Major themes included the simultaneous need for prompt syndrome recognition, systematic evaluation of underlying contributors, early intervention targeting both hyperinflammation and likely contributors, careful monitoring for progression/complications and expert multidisciplinary assistance. CONCLUSION These 2022 EULAR/American College of Rheumatology points to consider provide up-to-date guidance, based on the best available published data and expert opinion. They are meant to help guide the initial evaluation, management and monitoring of patients with HLH/MAS in order to halt disease progression and prevent life-threatening immunopathology.
Collapse
Affiliation(s)
- Bita Shakoory
- Translational Autoinflammatory Diseases Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashley Geerlinks
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
- Hematology/Oncology, University of Western Ontario Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Marta Wilejto
- Hematology/Oncology, University of Western Ontario Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Kate Kernan
- Pediatric Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Melissa Hines
- Pediatric Critical Care Medicine, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Micol Romano
- Pediatrics, University of Western Ontario Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - David Piskin
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
- Department of Paediatrics, Lawson Health Research Institute, London, Ontario, Canada
| | - Angelo Ravelli
- Direzione Scientifica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Daniel Aletaha
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Carl Allen
- Pediatric Oncology, Texas Children's Hospital, Houston, Texas, USA
| | - Hamid Bassiri
- Pediatric Infectious Diseases, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edward M Behrens
- Pediatric Rheumatology, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph Carcillo
- Pediatric Critical Care Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Linda Carl
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Winn Chatham
- Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Randy Q Cron
- Pediatric Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erik Drewniak
- Autoinflammatory Alliance, San Francisco, California, USA
| | - Alexei A Grom
- Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Lauren A Henderson
- Pediatric Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Annacarin Horne
- Department of Women's and Children's Health, Karolinska Institutet Cancerforskning KI, Stockholm, Sweden
| | - Michael B Jordan
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Kim E Nichols
- Division of Cancer Predisposition Department of Oncology, St Jude Children's Research Hospital Department of Oncology, Memphis, Tennessee, USA
| | - Grant Schulert
- Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Sebastiaan Vastert
- Center for Translational Immunology Research, UMC Utrecht, The Netherlands
| | - Erkan Demirkaya
- Pediatrics, University of Western Ontario Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Rebecca A Marsh
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Scott W Canna
- Pediatric Rheumatology, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Martínez-Pomar N, Cunill V, Segura-Guerrero M, Pol-Pol E, Escobar Oblitas D, Pons J, Ayestarán I, Pruneda PC, Losada I, Toledo-Pons N, García Gasalla M, Ferrer Balaguer JM. Hyperinflammatory Immune Response in COVID-19: Host Genetic Factors in Pyrin Inflammasome and Immunity to Virus in a Spanish Population from Majorca Island. Biomedicines 2023; 11:2548. [PMID: 37760989 PMCID: PMC10525993 DOI: 10.3390/biomedicines11092548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The hyperinflammatory response caused by SARS-CoV-2 infection contributes to its severity, and many critically ill patients show features of cytokine storm (CS) syndrome. We investigated, by next-generation sequencing, 24 causative genes of primary immunodeficiencies whose defect predisposes to CS. We studied two cohorts with extreme phenotypes of SARS-CoV-2 infection: critical/severe hyperinflammatory patients (H-P) and asymptomatic patients (AM-risk-P) with a high risk (older age) to severe COVID-19. To explore inborn errors of the immunity, we investigated the presence of pathogenic or rare variants, and to identify COVID-19 severity-associated markers, we compared the allele frequencies of common genetic polymorphisms between our two cohorts. We found: 1 H-P carries the likely pathogenic variant c.887-2 A>C in the IRF7 gene and 5 H-P carries variants in the MEFV gene, whose role in the pathogenicity of the familial Mediterranean fever (FMF) disease is controversial. The common polymorphism analysis showed three potential risk biomarkers for developing the hyperinflammatory response: the homozygous haplotype rs1231123A/A-rs1231122A/A in MEFV gene, the IFNAR2 p.Phe8Ser variant, and the CARMIL2 p.Val181Met variant. The combined analysis showed an increased risk of developing severe COVID-19 in patients that had at least one of our genetic risk markers (odds ratio (OR) = 6.2 (95% CI) (2.430-16.20)).
Collapse
Affiliation(s)
- Natalia Martínez-Pomar
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Vanesa Cunill
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Marina Segura-Guerrero
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Elisabet Pol-Pol
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Danilo Escobar Oblitas
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Jaime Pons
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| | - Ignacio Ayestarán
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
- Intensive Care Unit (ICU), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | | | - Inés Losada
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
- Internal Medicine, Hospital Universitari Son Llàtzer, 07198 Palma de Mallorca, Spain
| | - Nuria Toledo-Pons
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
- Pneumology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Mercedes García Gasalla
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
- Internal Medicine, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Joana Maria Ferrer Balaguer
- Immunology Department, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain; (V.C.); (M.S.-G.); (J.M.F.B.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain (I.L.); (N.T.-P.)
| |
Collapse
|
38
|
Hormigo I, Valente Pinto M, Cordeiro AI, Henriques C, Martins C, Parente Freixo J, Conde M, Gouveia C, Farela Neves J. Hemophagocytic lymphohistiocytosis in an adolescent with NLRP12-related autoinflammatory disorder-A case report. Pediatr Allergy Immunol 2023; 34:e14020. [PMID: 37747755 DOI: 10.1111/pai.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Inês Hormigo
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| | - Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
- Centro de investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Caparica, Portugal
| | - Ana Isabel Cordeiro
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| | - Cristina Henriques
- Pediatric Reumatology Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| | - Catarina Martins
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Immunology Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Parente Freixo
- Centro de Genética Preditiva e preventiva, Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Marta Conde
- Pediatric Reumatology Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
- Auto-inflammatory syndromes Clinics, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| | - Catarina Gouveia
- Pediatric Infectious Diseases Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Auto-inflammatory syndromes Clinics, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central EPE, Lisbon, Portugal
| |
Collapse
|
39
|
Benevenuta C, Mussinatto I, Orsi C, Timeus FS. Secondary hemophagocytic lymphohistiocytosis in children (Review). Exp Ther Med 2023; 26:423. [PMID: 37602304 PMCID: PMC10433411 DOI: 10.3892/etm.2023.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/16/2023] [Indexed: 08/22/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening condition characterized by hyperinflammation in an uncontrolled and ineffective immune response. Despite great improvement in diagnosis and treatment, it still represents a challenge in clinical management, with poor prognosis in the absence of an aggressive therapeutic approach. The present literature review focuses on secondary HLH at pediatric age, which represents a heterogeneous group in terms of etiology and therapeutic approach. It summarizes the most recent evidence on epidemiology, pathophysiology, diagnosis, treatment and prognosis, and provides a detailed description and comparison of the major subtypes of secondary HLH. Finally, it addresses the open questions with a focus on diagnosis and new treatment insights.
Collapse
Affiliation(s)
- Chiara Benevenuta
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| | - Ilaria Mussinatto
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| | - Cecilia Orsi
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| | - Fabio S. Timeus
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| |
Collapse
|
40
|
Rocco JM, Laidlaw E, Galindo F, Anderson M, Sortino O, Kuriakose S, Lisco A, Manion M, Sereti I. Mycobacterial Immune Reconstitution Inflammatory Syndrome in HIV is Associated With Protein-Altering Variants in Hemophagocytic Lymphohistiocytosis-Related Genes. J Infect Dis 2023; 228:111-115. [PMID: 37040388 PMCID: PMC10345459 DOI: 10.1093/infdis/jiad059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/03/2023] [Indexed: 04/12/2023] Open
Abstract
People with HIV (PWH) and mycobacterial infections can develop immune reconstitution inflammatory syndrome (IRIS) after starting antiretroviral therapy. The pathophysiology of mycobacterial-IRIS overlaps with primary hemophagocytic lymphohistiocytosis (pHLH). To assess possible genetic predisposition to IRIS, protein-altering variants in genes associated with HLH were evaluated in 82 PWH and mycobacterial infections who developed IRIS (n = 56) or did not develop IRIS (n = 26). Protein-altering variants in cytotoxicity genes were found in 23.2% of IRIS patients compared to only 3.8% of those without IRIS. These findings suggest a possible genetic component in the risk of mycobacterial IRIS in PWH. Clinical Trials Registration. NCT00286767, NCT02147405.
Collapse
Affiliation(s)
- Joseph M Rocco
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Laidlaw
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Frances Galindo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Megan Anderson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ornella Sortino
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Safia Kuriakose
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maura Manion
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Hines MR, Knight TE, McNerney KO, Leick MB, Jain T, Ahmed S, Frigault MJ, Hill JA, Jain MD, Johnson WT, Lin Y, Mahadeo KM, Maron GM, Marsh RA, Neelapu SS, Nikiforow S, Ombrello AK, Shah NN, Talleur AC, Turicek D, Vatsayan A, Wong SW, Maus MV, Komanduri KV, Berliner N, Henter JI, Perales MA, Frey NV, Teachey DT, Frank MJ, Shah NN. Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transplant Cell Ther 2023; 29:438.e1-438.e16. [PMID: 36906275 PMCID: PMC10330221 DOI: 10.1016/j.jtct.2023.03.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
T cell-mediated hyperinflammatory responses, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), are now well-established toxicities of chimeric antigen receptor (CAR) T cell therapy. As the field of CAR T cells advances, however, there is increasing recognition that hemophagocytic lymphohistiocytosis (HLH)-like toxicities following CAR T cell infusion are occurring broadly across patient populations and CAR T cell constructs. Importantly, these HLH-like toxicities are often not as directly associated with CRS and/or its severity as initially described. This emergent toxicity, however ill-defined, is associated with life-threatening complications, creating an urgent need for improved identification and optimal management. With the goal of improving patient outcomes and formulating a framework to characterize and study this HLH-like syndrome, we established an American Society for Transplantation and Cellular Therapy panel composed of experts in primary and secondary HLH, pediatric and adult HLH, infectious disease, rheumatology and hematology, oncology, and cellular therapy. Through this effort, we provide an overview of the underlying biology of classical primary and secondary HLH, explore its relationship with similar manifestations following CAR T cell infusions, and propose the term "immune effector cell-associated HLH-like syndrome (IEC-HS)" to describe this emergent toxicity. We also delineate a framework for identifying IEC-HS and put forward a grading schema that can be used to assess severity and facilitate cross-trial comparisons. Additionally, given the critical need to optimize outcomes for patients experiencing IEC-HS, we provide insight into potential treatment approaches and strategies to optimize supportive care and delineate alternate etiologies that should be considered in a patient presenting with IEC-HS. By collectively defining IEC-HS as a hyperinflammatory toxicity, we can now embark on further study of the pathophysiology underlying this toxicity profile and make strides toward a more comprehensive assessment and treatment approach.
Collapse
Affiliation(s)
- Melissa R Hines
- Department of Pediatric Medicine, Division of Critical Care, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tristan E Knight
- Pediatric Hematology and Oncology, Seattle Children's Hospital and the University of Washington School of Medicine, Seattle, Washington
| | - Kevin O McNerney
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Mark B Leick
- Cellular Immunotherapy Program and Blood and Marrow Transplant Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Sairah Ahmed
- Departments of Lymphoma and Myeloma and Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew J Frigault
- Cellular Immunotherapy Program and Blood and Marrow Transplant Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Joshua A Hill
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - William T Johnson
- Department of Medicine, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yi Lin
- Division Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Rochester, Minnesota
| | - Kris M Mahadeo
- Pediatric Transplantation and Cellular Therapy, Duke University, Durham, North Carolina
| | - Gabriela M Maron
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, and Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee
| | - Rebecca A Marsh
- University of Cincinnati, and Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sattva S Neelapu
- Departments of Lymphoma and Myeloma and Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah Nikiforow
- Division of Hematologic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nirav N Shah
- Bone Marrow Transplant and Cellular Therapy Program, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee and Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee
| | - David Turicek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anant Vatsayan
- Division of Blood and Marrow Transplantation, Children's National Health System, Washington, District of Columbia
| | - Sandy W Wong
- UCSF Health Division of Hematology and Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Marcela V Maus
- Cellular Immunotherapy Program and Blood and Marrow Transplant Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Krishna V Komanduri
- UCSF Health Division of Hematology and Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | | | - Jan-Inge Henter
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institute, and Department of Paediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Noelle V Frey
- Division of Hematology-Oncology, Abramson Cancer Center and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David T Teachey
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew J Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
42
|
Chinnici A, Beneforti L, Pegoraro F, Trambusti I, Tondo A, Favre C, Coniglio ML, Sieni E. Approaching hemophagocytic lymphohistiocytosis. Front Immunol 2023; 14:1210041. [PMID: 37426667 PMCID: PMC10324660 DOI: 10.3389/fimmu.2023.1210041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Hemophagocytic Lymphohistiocytosis (HLH) is a rare clinical condition characterized by sustained but ineffective immune system activation, leading to severe and systemic hyperinflammation. It may occur as a genetic or sporadic condition, often triggered by an infection. The multifaceted pathogenesis results in a wide range of non-specific signs and symptoms, hampering early recognition. Despite a great improvement in terms of survival in the last decades, a considerable proportion of patients with HLH still die from progressive disease. Thus, prompt diagnosis and treatment are crucial for survival. Faced with the complexity and the heterogeneity of syndrome, expert consultation is recommended to correctly interpret clinical, functional and genetic findings and address therapeutic decisions. Cytofluorimetric and genetic analysis should be performed in reference laboratories. Genetic analysis is mandatory to confirm familial hemophagocytic lymphohistiocytosis (FHL) and Next Generation Sequencing is increasingly adopted to extend the spectrum of genetic predisposition to HLH, though its results should be critically discussed with specialists. In this review, we critically revise the reported laboratory tools for the diagnosis of HLH, in order to outline a comprehensive and widely available workup that allows to reduce the time between the clinical suspicion of HLH and its final diagnosis.
Collapse
Affiliation(s)
- Aurora Chinnici
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Linda Beneforti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Francesco Pegoraro
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Irene Trambusti
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Maria Luisa Coniglio
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
43
|
Diorio C, Teachey DT, Canna SW. Cytokine Storm Syndromes in Pediatric Patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1636-1644. [PMID: 36990432 DOI: 10.1016/j.jaip.2023.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Cytokine storm syndromes (CSS) represent a diverse group of disorders characterized by severe overactivation of the immune system. In the majority of patients, CSS arise from a combination of host factors, including genetic risk and predisposing conditions, and acute triggers such as infections. CSS present differently in adults than in children, who are more likely to present with monogenic forms of these disorders. Individual CSS are rare, but in aggregate represent an important cause of severe illness in both children and adults. We present 3 rare, illustrative cases of CSS in pediatric patients that describe the spectrum of CSS.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa.
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Scott W Canna
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| |
Collapse
|
44
|
Meyer LK, Nichols KE. Deciphering genetic uncertainty in familial HLH. Blood 2023; 141:2288-2290. [PMID: 37166930 DOI: 10.1182/blood.2023019713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
|
45
|
López-Nevado M, Sevilla J, Almendro-Vázquez P, Gil-Etayo FJ, Garcinuño S, Serrano-Hernández A, Paz-Artal E, González-Granado LI, Allende LM. Inborn Error of STAT2-Dependent IFN-I Immunity in a Patient Presented with Hemophagocytic Lymphohistiocytosis and Multisystem Inflammatory Syndrome in Children. J Clin Immunol 2023:10.1007/s10875-023-01488-6. [PMID: 37074537 PMCID: PMC10113994 DOI: 10.1007/s10875-023-01488-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023]
Abstract
Human inborn errors of immunity (IEI) affecting the type I interferon (IFN-I) induction pathway have been associated with predisposition to severe viral infections. Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory syndrome that has been increasingly associated with inborn errors of IFN-I-mediated innate immunity. Here is reported a novel case of complete deficiency of STAT2 in a 3-year-old child that presented with typical features of HLH after mumps, measles, and rubella vaccination at the age of 12 months. Due to the life-threatening risk of viral infection, she received SARS-CoV-2 mRNA vaccination. Unfortunately, she developed multisystem inflammatory syndrome in children (MIS-C) after SARS-CoV-2 infection, 4 months after the last dose. Functional studies showed an impaired IFN-I-induced response and a defective IFNα expression at later stages of STAT2 pathway induction. These results suggest a possible more complex mechanism for hyperinflammatory reactions in this type of patients involving a possible defect in the IFN-I production. Understanding the cellular and molecular links between IFN-I-induced signaling and hyperinflammatory syndromes can be critical for the diagnosis and tailored management of these patients with predisposition to severe viral infection.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain.
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain.
| | - Julián Sevilla
- Hematology and Hemotherapy Unit, University Children's Hospital Niño Jesus, Madrid, Spain
| | - Patricia Almendro-Vázquez
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Francisco J Gil-Etayo
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Sara Garcinuño
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Antonio Serrano-Hernández
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis I González-Granado
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Department of Pediatrics, Immunodeficiency Unit, University Hospital, 12 de Octubre, Madrid, Spain
| | - Luis M Allende
- Immunology Department, University Hospital, 12 de Octubre, Av de Córdoba S/N 28041, Madrid, Spain.
- Research Institute Hospital, 12 Octubre (imas12), Madrid, Spain.
- School of Medicine, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
46
|
Lee PY, Cron RQ. The Multifaceted Immunology of Cytokine Storm Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1015-1024. [PMID: 37011407 PMCID: PMC10071410 DOI: 10.4049/jimmunol.2200808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 04/05/2023]
Abstract
Cytokine storm syndromes (CSSs) are potentially fatal hyperinflammatory states that share the underpinnings of persistent immune cell activation and uninhibited cytokine production. CSSs can be genetically determined by inborn errors of immunity (i.e., familial hemophagocytic lymphohistiocytosis) or develop as a complication of infections, chronic inflammatory diseases (e.g., Still disease), or malignancies (e.g., T cell lymphoma). Therapeutic interventions that activate the immune system such as chimeric Ag receptor T cell therapy and immune checkpoint inhibition can also trigger CSSs in the setting of cancer treatment. In this review, the biology of different types of CSSs is explored, and the current knowledge on the involvement of immune pathways and the contribution of host genetics is discussed. The use of animal models to study CSSs is reviewed, and their relevance for human diseases is discussed. Lastly, treatment approaches for CSSs are discussed with a focus on interventions that target immune cells and cytokines.
Collapse
Affiliation(s)
- Pui Y. Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Randy Q. Cron
- Division of Pediatric Rheumatology, Children’s of Alabama, University of Alabama Heersink School of Medicine, Birmingham, AL
- Department of Pediatrics, University of Alabama Heersink School of Medicine, Birmingham, AL
| |
Collapse
|
47
|
Lee JC, Logan AC. Diagnosis and Management of Adult Malignancy-Associated Hemophagocytic Lymphohistiocytosis. Cancers (Basel) 2023; 15:1839. [PMID: 36980725 PMCID: PMC10046521 DOI: 10.3390/cancers15061839] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of severe, dysregulated inflammation driven by the inability of T cells to clear an antigenic target. When associated with malignancy (mHLH), the HLH syndrome is typically associated with extremely poor survival. Here, we review the diagnosis of secondary HLH (sHLH) syndromes in adults, with emphasis on the appropriate workup and treatment of mHLH. At present, the management of HLH in adults, including most forms of mHLH, is based on the use of corticosteroids and etoposide following the HLH-94 regimen. In some cases, this therapeutic approach may be cohesively incorporated into malignancy-directed therapy, while in other cases, the decision about whether to treat HLH prior to initiating other therapies may be more complicated. Recent studies exploring the efficacy of other agents in HLH, in particular ruxolitinib, offer hope for better outcomes in the management of mHLH. Considerations for the management of lymphoma-associated mHLH, as well as other forms of mHLH and immunotherapy treatment-related HLH, are discussed.
Collapse
Affiliation(s)
- Jerry C. Lee
- Hematology, Blood and Marrow Transplantation, and Cellular Therapy Program, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA;
| | | |
Collapse
|
48
|
Hosahalli Vasanna S, Dalal J. Traffic jam within lymphocytes: A clinician's perspective. Front Immunol 2023; 13:1034317. [PMID: 36726976 PMCID: PMC9885010 DOI: 10.3389/fimmu.2022.1034317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
With the discovery of novel diseases and pathways, as well as a new outlook on certain existing diseases, cellular trafficking disorders attract a great deal of interest and focus. Understanding the function of genes and their products in protein and lipid synthesis, cargo sorting, packaging, and delivery has allowed us to appreciate the intricate pathophysiology of these biological processes at the molecular level and the multi-system disease manifestations of these disorders. This article focuses primarily on lymphocyte intracellular trafficking diseases from a clinician's perspective. Familial hemophagocytic lymphohistiocytosis is the prototypical disease of abnormal vesicular transport in the lymphocytes. In this review, we highlight other mechanisms involved in cellular trafficking, including membrane contact sites, autophagy, and abnormalities of cytoskeletal structures affecting the immune cell function, based on a newer classification system, along with management aspects of these conditions.
Collapse
Affiliation(s)
- Smitha Hosahalli Vasanna
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, United States,School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jignesh Dalal
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, United States,School of Medicine, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Jignesh Dalal,
| |
Collapse
|
49
|
Dojcinov SD, Quintanilla-Martinez L. How I Diagnose EBV-Positive B- and T-Cell Lymphoproliferative Disorders. Am J Clin Pathol 2023; 159:14-33. [PMID: 36214507 DOI: 10.1093/ajcp/aqac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Epstein-Barr virus (EBV)-associated lymphoproliferative disorders (LPDs) encompass a group of well-defined entities of B-, T-, and natural killer (NK)-cell derivation. The diagnosis of these disorders is challenging because of clinical and morphologic features that may overlap with other benign and malignant EBV+ lymphoproliferations. This review describes our approach to the diagnosis of EBV-associated LPDs. METHODS Two cases are presented that illustrate how we diagnose EBV-associated LPDs. The first case represents a systemic EBV+ T-cell lymphoma of childhood and the second case an EBV+ mucocutaneous ulcer. The clinicopathologic features that help distinguish these entities from biological and morphologic mimickers are emphasized. RESULTS The accurate diagnosis of EBV-associated LPDs requires the incorporation of histologic and immunophenotypic features, the assessment of the EBV latency program, and, most important, complete clinical findings. Clonality analysis is not helpful in distinguishing benign from malignant EBV+ LPDs. CONCLUSIONS The better understanding of EBV-associated LPDs has resulted in the recognition of well-defined entities of B-, T-, and NK-cell derivation and consequently improvement of their treatment with curative intent. It is critical to distinguish benign from malignant EBV+ LPDs to avoid overtreatment.
Collapse
Affiliation(s)
- Stefan D Dojcinov
- All Wales Lymphoma Panel, Swansea Bay University Health Board and Swansea University, Swansea, Wales
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
50
|
Khalatbari H, Shulkin BL, Parisi MT. Emerging Trends in Radionuclide Imaging of Infection and Inflammation in Pediatrics: Focus on FDG PET/CT and Immune Reactivity. Semin Nucl Med 2023; 53:18-36. [PMID: 36307254 DOI: 10.1053/j.semnuclmed.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
The most common indication for 18F-FDG PET/CT is tumor imaging, which may be performed for initial diagnosis, staging, therapeutic response monitoring, surveillance, or suspected recurrence. In the routine practice of pediatric nuclear medicine, most infectious, inflammatory, and autoimmune processes that are detected on 18F-FDG PET/CT imaging - except for imaging in fever or inflammation of unknown origin - are coincidental and not the main indication for image acquisition. However, interpreting these "coincidental" findings is of utmost importance to avoid erroneously attributing these findings to a neoplastic process. We review the recent literature on fever of unknown origin as well as inflammation of unknown origin in pediatrics and then focus on the 18F FDG PET/CT imaging findings seen in two specific entities with increased immune reactivity: hemophagocytic lymphohistiocytosis syndrome and the immune-related adverse events associated with checkpoint inhibitors. We will subsequently close with two sections highlighting related topics and relevant references for further reading.
Collapse
Affiliation(s)
- Hedieh Khalatbari
- Department of Radiology, Seattle Children's Hospital, Seattle, WA; Department of Radiology, University of Washington School of Medicine, Seattle, WA
| | - Barry L Shulkin
- Department of Diagnostic Radiology, St. Jude Children's Research Hospital, Memphis, TN.
| | - Marguerite T Parisi
- Department of Radiology, Seattle Children's Hospital, Seattle, WA; Department of Radiology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|