1
|
Mohammad A, Jha S. The TIP60-CD44 Axis Modulates Colorectal Cancer Stemness. Cells 2025; 14:686. [PMID: 40422189 DOI: 10.3390/cells14100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
HIV-1 Tat-interactive protein of 60 kDa (TIP60) is a lysine acetyltransferase protein that can acetylate histone and non-histone proteins. This study highlights TIP60's role in regulating colorectal cancer (CRC) stemness. The depletion of TIP60 resulted in a marked decrease in cellular proliferation, highlighting TIP60's involvement in the progression of CRC. Additionally, the loss of TIP60 impacted colony formation, transitioning from densely packed structures to dispersed spindle networks along with the loss of E-cadherin, indicating its role in the epithelial-mesenchymal transition (EMT). Three-dimensional culture models suggest that TIP60 is vital for spheroid formation, highlighting its importance in maintaining cancer stem cell properties in CRC. TIP60-depleted cells showed increased invasion in a 3D basement membrane extract (BME) invasion matrix, demonstrating its essential role in cellular invasiveness. Mechanistically, the reduction of TIP60 resulted in a decrease in CD44 expression, a critical marker for cancer stem cells (CSCs). Notably, CD44 overexpression restored the efficiency of spheroid formation and cell proliferation while reversing the EMT phenotype. Developing the TIP60-CD44 axis as a therapeutic target to treat CRC stemness and metastasis will help decrease the burden due to the deadly disease.
Collapse
Affiliation(s)
- Asad Mohammad
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sudhakar Jha
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
2
|
Wang X, Harty KR, Wan TC, Qu Z, Smith BC, Lough JW, Auchampach JA. Mitigation of Injury from Myocardial Infarction by Pentamidine, an Inhibitor of the Acetyltransferase Tip60. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07696-z. [PMID: 40202550 DOI: 10.1007/s10557-025-07696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE There is an urgent unmet need for new pharmacologic approaches that promote re-muscularization and repair following myocardial infarction (MI). We previously reported that genetic depletion of the acetyltransferase Tip60 after MI in a mouse model activates the CM cell-cycle, reduces scarring, and restores cardiac function, and that these beneficial effects are mimicked by the Tip60-selective inhibitor TH1834. Here, we investigated whether the FDA-approved anti-microbial agent pentamidine, a Tip60 inhibitor from which TH1834 is derived, also protects from the damaging effects of MI. METHODS Adult (10-14 weeks old) C57Bl/6 mice were subjected to permanent left coronary artery ligation to induce MI. Subsequently, echocardiography, electrocardiography, cardiac staining, and molecular analyses were performed to monitor the effects of treatment with pentamidine on cardiac injury and function. RESULTS We report that transient systemic administration of pentamidine on days 3-16 post-MI at a daily dose of 3 mg/kg efficiently improved cardiac function for up to ten months. This was accompanied by improved survival, diminished scarring, and increased activation of cell-cycle markers in CMs located in the infarct border zone in the absence of hypertrophy. Histological assessments suggested that post-MI treatment with pentamidine reduced site-specific acetylation of the minor histone variant H2A.Z at lysines K4 and K7 in CMs, indicative of the dedifferentiation process which must occur prior to CM proliferation. Treating mice with pentamidine post-MI produced no prominent electrophysiological changes. CONCLUSIONS These findings support the translational potential of pentamidine for treatment of MI, and provide evidence that functional improvement is mediated, in part, by CM renewal due to inhibition of the acetyltransferase activity of Tip60.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Katherine R Harty
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tina C Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zhuocheng Qu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - John W Lough
- Department of Cell Biology Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - John A Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Diegmüller F, Leers J, Hake SB. The "Ins and Outs and What-Abouts" of H2A.Z: A tribute to C. David Allis. J Biol Chem 2025; 301:108154. [PMID: 39761855 PMCID: PMC11808731 DOI: 10.1016/j.jbc.2025.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.Z, a nucleosome component he was the first to discover as hv1 in Tetrahymena. We summarize the latest findings from the past 5 years regarding the mammalian H2A.Z histone, focusing on its deposition and eviction mechanisms, its roles in transcriptional regulation, DNA damage repair, chromatin structure organization, and embryonic development, as well as how its deregulation or mutation(s) of its histone chaperones contribute to disease development. As Dave liked to say 'Every amino acid matters'; the discovery and characterization of functionally different H2A.Z's isoforms, which vary only in three amino acids, prove him-once again-right.
Collapse
Affiliation(s)
- Felix Diegmüller
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Jörg Leers
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
4
|
Wang X, Kulik K, Wan TC, Lough JW, Auchampach JA. Histone H2A.Z Deacetylation and Dedifferentiation in Infarcted/Tip60-depleted Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.11.575312. [PMID: 38260622 PMCID: PMC10802610 DOI: 10.1101/2024.01.11.575312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Myocardial infarction (MI) results in the loss of billions of cardiomyocytes (CMs), resulting in cardiac dysfunction. To re-muscularize injured myocardium, new CMs must be generated via renewed proliferation of surviving CMs. Approaches to induce proliferation of CMs after injury have been insufficient. Toward this end we are targeting the acetyltransferase Tip60, encoded by the Kat5 gene, based on the rationale that its pleiotropic functions combine to block CM proliferation at multiple checkpoints. We previously demonstrated that genetic depletion of Tip60 in a mouse model after MI reduces scarring, retains cardiac function, and activates the CM cell-cycle, although it remains unclear whether this culminates in the generation of daughter CMs. In order for pre-existing CMs in the adult heart to undergo proliferation, it has become accepted that they must first dedifferentiate, a process highlighted by loss of maturity, epithelial to mesenchymal transitioning (EMT), and reversion from fatty acid oxidation to glycolytic metabolism, accompanied by softening of the myocardial extracellular matrix (ECM). Based on recently published findings that Tip60 induces and maintains the differentiated state of hematopoietic stem cells and neurons via site-specific acetylation of the histone variant H2A.Z, we assessed levels of acetylated H2A.Z and dedifferentiation markers after depleting Tip60 in CMs post-MI. We report that genetic depletion of Tip60 from CMs after MI results in the near obliteration of acetylated H2A.Z in CM nuclei, accompanied by the altered expression of genes indicative of EMT induction, ECM softening, decreased fatty acid oxidation, and depressed expression of genes that regulate the TCA cycle. In accord with the possibility that site-specific acetylation of H2A.Z maintains adult CMs in a mature state of differentiation, CUT&Tag revealed enrichment of H2A.ZacK4/K7 in genetic motifs and in GO terms respectively associated with CM transcription factor binding and muscle development/differentiation. Along with our previous findings, these results support the notion that Tip60 has multiple targets in CMs that combine to maintain the differentiated state and prevent proliferation.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - Katherine Kulik
- Department of Cell Biology Neurobiology and Anatomy
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - Tina C. Wan
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - John W. Lough
- Department of Cell Biology Neurobiology and Anatomy
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - John A. Auchampach
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| |
Collapse
|
5
|
Xiao Z, He R, Zhao Z, Chen T, Ying Z. Dysregulation of epigenetic modifications in inborn errors of immunity. Epigenomics 2024; 16:1301-1313. [PMID: 39404224 PMCID: PMC11534118 DOI: 10.1080/17501911.2024.2410695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Inborn errors of immunity (IEIs) are a group of typically monogenic disorders characterized by dysfunction in the immune system. Individuals with these disorders experience increased susceptibility to infections, autoimmunity and malignancies due to abnormal immune responses. Epigenetic modifications, including DNA methylation, histone modifications and chromatin remodeling, have been well explored in the regulation of immune cell development and effector function. Aberrant epigenetic modifications can disrupt gene expression profiles crucial for immune responses, resulting in impaired immune cell differentiation and function. Dysregulation of these processes caused by mutations in genes involving in epigenetic modifications has been associated with various IEIs. In this review article, we focus on IEIs that are caused by mutations in 13 genes involved in the regulation of DNA methylation, histone modification and chromatin remodeling.
Collapse
Affiliation(s)
- Zhongyao Xiao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Rongjing He
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zihan Zhao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Taiping Chen
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Zhengzhou Ying
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
6
|
Li X, Zhu G, Zhao B. Chromatin remodeling in tissue stem cell fate determination. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:18. [PMID: 39348027 PMCID: PMC11442411 DOI: 10.1186/s13619-024-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China
| | - Gaoxiang Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China.
| |
Collapse
|
7
|
Yang Z, Mameri A, Cattoglio C, Lachance C, Ariza AJF, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, Fradet-Turcotte A, Lambert JP, Ranish JA, Côté J, Nogales E. Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science 2024; 385:eadl5816. [PMID: 39088653 PMCID: PMC11995519 DOI: 10.1126/science.adl5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024]
Abstract
The human nucleosome acetyltransferase of histone H4 (NuA4)/Tat-interactive protein, 60 kilodalton (TIP60) coactivator complex, a fusion of the yeast switch/sucrose nonfermentable related 1 (SWR1) and NuA4 complexes, both incorporates the histone variant H2A.Z into nucleosomes and acetylates histones H4, H2A, and H2A.Z to regulate gene expression and maintain genome stability. Our cryo-electron microscopy studies show that, within the NuA4/TIP60 complex, the E1A binding protein P400 (EP400) subunit serves as a scaffold holding the different functional modules in specific positions, creating a distinct arrangement of the actin-related protein (ARP) module. EP400 interacts with the transformation/transcription domain-associated protein (TRRAP) subunit by using a footprint that overlaps with that of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, preventing the formation of a hybrid complex. Loss of the TRRAP subunit leads to mislocalization of NuA4/TIP60, resulting in the redistribution of H2A.Z and its acetylation across the genome, emphasizing the dual functionality of NuA4/TIP60 as a single macromolecular assembly.
Collapse
Affiliation(s)
- Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Alfredo Jose Florez Ariza
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Deepthi Sudarshan
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Arul Banerjea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Amélie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Endocrinology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
8
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
9
|
Jostes S, Vardabasso C, Dong J, Carcamo S, Singh R, Phelps R, Meadows A, Grossi E, Hasson D, Bernstein E. H2A.Z chaperones converge on E2F target genes for melanoma cell proliferation. Genes Dev 2024; 38:336-353. [PMID: 38744503 PMCID: PMC11146596 DOI: 10.1101/gad.351318.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.Z histone chaperone complexes SRCAP and P400-TIP60 in melanoma remains unclear. Here, we show that individual subunit depletion of SRCAP, P400, and VPS72 (YL1) results in not only the loss of H2A.Z deposition into chromatin but also a reduction of H4 acetylation in melanoma cells. This loss of H4 acetylation is particularly found at the promoters of cell cycle genes directly bound by H2A.Z and its chaperones, suggesting a coordinated regulation between H2A.Z deposition and H4 acetylation to promote their expression. Knockdown of each of the three subunits downregulates E2F1 and its targets, resulting in a cell cycle arrest akin to H2A.Z depletion. However, unlike H2A.Z deficiency, loss of the shared H2A.Z chaperone subunit YL1 induces apoptosis. Furthermore, YL1 is overexpressed in melanoma tissues, and its upregulation is associated with poor patient outcome. Together, these findings provide a rationale for future targeting of H2A.Z chaperones as an epigenetic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Sina Jostes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Joanna Dong
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Bioinformatics for Next-Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Rajendra Singh
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert Phelps
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Austin Meadows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Bioinformatics for Next-Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
10
|
Lai PM, Chan KM. Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment. Int J Mol Sci 2024; 25:3144. [PMID: 38542118 PMCID: PMC10969971 DOI: 10.3390/ijms25063144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 07/16/2024] Open
Abstract
Histones are nuclear proteins essential for packaging genomic DNA and epigenetic gene regulation. Paralogs that can substitute core histones (H2A, H2B, H3, and H4), named histone variants, are constitutively expressed in a replication-independent manner throughout the cell cycle. With specific chaperones, they can be incorporated to chromatin to modify nucleosome stability by modulating interactions with nucleosomal DNA. This allows the regulation of essential fundamental cellular processes for instance, DNA damage repair, chromosomal segregation, and transcriptional regulation. Among all the histone families, histone H2A family has the largest number of histone variants reported to date. Each H2A variant has multiple functions apart from their primary role and some, even be further specialized to perform additional tasks in distinct lineages, such as testis specific shortH2A (sH2A). In the past decades, the discoveries of genetic alterations and mutations in genes encoding H2A variants in cancer had revealed variants' potentiality in driving carcinogenesis. In addition, there is growing evidence that H2A variants may act as novel prognostic indicators or biomarkers for both early cancer detection and therapeutic treatments. Nevertheless, no studies have ever concluded all identified variants in a single report. Here, in this review, we summarize the respective functions for all the 19 mammalian H2A variants and their roles in cancer biology whilst potentiality being used in clinical setting.
Collapse
Affiliation(s)
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
11
|
Kao YR, Chen J, Kumari R, Ng A, Zintiridou A, Tatiparthy M, Ma Y, Aivalioti MM, Moulik D, Sundaravel S, Sun D, Reisz JA, Grimm J, Martinez-Lopez N, Stransky S, Sidoli S, Steidl U, Singh R, D'Alessandro A, Will B. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024; 31:378-397.e12. [PMID: 38402617 PMCID: PMC10939794 DOI: 10.1016/j.stem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Ng
- Karches Center for Oncology Research, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Madhuri Tatiparthy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Deeposree Moulik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juliane Grimm
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Britta Will
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Zhang Y, Luo L, Xu X, Wu J, Wang F, Lu Y, Zhang N, Ding Y, Lu B, Zhao K. Acetylation is required for full activation of the NLRP3 inflammasome. Nat Commun 2023; 14:8396. [PMID: 38110429 PMCID: PMC10728138 DOI: 10.1038/s41467-023-44203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Full activation of the NLRP3 inflammasome needs two sequential signals: a priming signal, followed by a second, assembly signal. Several studies have shown that the two signals trigger post-translational modification (PTM) of NLRP3, affecting activity of the inflammasome, however, the PTMs induced by the second signal are less well characterized. Here, we show that the assembly signal involves acetylation of NLRP3 at lysine 24, which is important for the oligomerization and the actual assembly of NLRP3 without affecting its recruitment to dispersed trans-Golgi network (dTGN). Accordingly, NLRP3 inflammasome activation is impaired in NLRP3-K24R knock-in mice. We identify KAT5 as an acetyltransferase able to acetylate NLRP3. KAT5 deficiency in myeloid cells and pharmacological inhibition of KAT5 enzymatic activity reduce activation of the NLRP3 inflammasome, both in vitro and in vivo. Thus, our study reveals a key mechanism for the oligomerization and full activation of NLRP3 and lays down the proof of principle for therapeutic targeting of the KAT5-NLRP3 axis.
Collapse
Affiliation(s)
- Yening Zhang
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Ling Luo
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Xueming Xu
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361005, P. R. China
| | - Fupeng Wang
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Yanyan Lu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Yingying Ding
- Department of Pathogen Biology, NavaMedical University, Shanghai, 200082, P. R. China
| | - Ben Lu
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China.
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province, 410000, P. R. China.
| | - Kai Zhao
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China.
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province, 410000, P. R. China.
| |
Collapse
|
13
|
Jostes S, Vardabasso C, Dong J, Carcamo S, Singh R, Phelps R, Meadows A, Hasson D, Bernstein E. H2A.Z chaperones converge on histone H4 acetylation for melanoma cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.26.568747. [PMID: 38076914 PMCID: PMC10705243 DOI: 10.1101/2023.11.26.568747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.Z histone chaperone complexes, SRCAP and P400-TIP60, in melanoma remains unclear. Here, we show that individual depletion of SRCAP, P400, and VPS72 (YL1) not only results in loss of H2A.Z deposition into chromatin, but also a striking reduction of H4 acetylation in melanoma cells. This loss of H4 acetylation is found at the promoters of cell cycle genes directly bound by H2A.Z and its chaperones, suggesting a highly coordinated regulation between H2A.Z deposition and H4 acetylation to promote their expression. Knockdown of each of the three subunits downregulates E2F1 and its targets, resulting in a cell cycle arrest akin to H2A.Z depletion. However, unlike H2A.Z deficiency, loss of the shared H2A.Z chaperone subunit YL1 induces apoptosis. Furthermore, YL1 is overexpressed in melanoma tissues, and its upregulation is associated with poor patient outcome. Together, these findings provide a rationale for future targeting of H2A.Z chaperones as an epigenetic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Sina Jostes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joanna Dong
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajendra Singh
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Phelps
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Austin Meadows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Romhányi D, Szabó K, Kemény L, Groma G. Histone and Histone Acetylation-Related Alterations of Gene Expression in Uninvolved Psoriatic Skin and Their Effects on Cell Proliferation, Differentiation, and Immune Responses. Int J Mol Sci 2023; 24:14551. [PMID: 37833997 PMCID: PMC10572426 DOI: 10.3390/ijms241914551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Psoriasis is a chronic immune-mediated skin disease in which the symptom-free, uninvolved skin carries alterations in gene expression, serving as a basis for lesion formation. Histones and histone acetylation-related processes are key regulators of gene expression, controlling cell proliferation and immune responses. Dysregulation of these processes is likely to play an important role in the pathogenesis of psoriasis. To gain a complete overview of these potential alterations, we performed a meta-analysis of a psoriatic uninvolved skin dataset containing differentially expressed transcripts from nearly 300 individuals and screened for histones and histone acetylation-related molecules. We identified altered expression of the replication-dependent histones HIST2H2AA3 and HIST2H4A and the replication-independent histones H2AFY, H2AFZ, and H3F3A/B. Eight histone chaperones were also identified. Among the histone acetyltransferases, ELP3 and KAT5 and members of the ATAC, NSL, and SAGA acetyltransferase complexes are affected in uninvolved skin. Histone deacetylation-related alterations were found to affect eight HDACs and members of the NCOR/SMRT, NURD, SIN3, and SHIP HDAC complexes. In this article, we discuss how histone and histone acetylation-related expression changes may affect proliferation and differentiation, as well as innate, macrophage-mediated, and T cell-mediated pro- and anti-inflammatory responses, which are known to play a central role in the development of psoriasis.
Collapse
Affiliation(s)
- Dóra Romhányi
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
| | - Kornélia Szabó
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Gergely Groma
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| |
Collapse
|
15
|
Takubo K, Htun PW, Ueda T, Sera Y, Iwasaki M, Koizumi M, Shiroshita K, Kobayashi H, Haraguchi M, Watanuki S, Honda ZI, Yamasaki N, Nakamura-Ishizu A, Arai F, Motoyama N, Hatta T, Natsume T, Suda T, Honda H. MBTD1 preserves adult hematopoietic stem cell pool size and function. Proc Natl Acad Sci U S A 2023; 120:e2206860120. [PMID: 37523546 PMCID: PMC10410756 DOI: 10.1073/pnas.2206860120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Mbtd1 (mbt domain containing 1) encodes a nuclear protein containing a zinc finger domain and four malignant brain tumor (MBT) repeats. We previously generated Mbtd1-deficient mice and found that MBTD1 is highly expressed in fetal hematopoietic stem cells (HSCs) and sustains the number and function of fetal HSCs. However, since Mbtd1-deficient mice die soon after birth possibly due to skeletal abnormalities, its role in adult hematopoiesis remains unclear. To address this issue, we generated Mbtd1 conditional knockout mice and analyzed adult hematopoietic tissues deficient in Mbtd1. We observed that the numbers of HSCs and progenitors increased and Mbtd1-deficient HSCs exhibited hyperactive cell cycle, resulting in a defective response to exogenous stresses. Mechanistically, we found that MBTD1 directly binds to the promoter region of FoxO3a, encoding a forkhead protein essential for HSC quiescence, and interacts with components of TIP60 chromatin remodeling complex and other proteins involved in HSC and other stem cell functions. Restoration of FOXO3a activity in Mbtd1-deficient HSCs in vivo rescued cell cycle and pool size abnormalities. These findings indicate that MBTD1 is a critical regulator for HSC pool size and function, mainly through the maintenance of cell cycle quiescence by FOXO3a.
Collapse
Affiliation(s)
- Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Phyo Wai Htun
- Medical Department, 7887 Healthcare Call Center, Yangon11062, Myanmar
| | - Takeshi Ueda
- Department of Biochemistry, Kindai University Faculty of Medicine,Sayama-shi, Osaka589-8511, Japan
| | - Yasuyuki Sera
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo162-8666, Japan
| | - Masayuki Iwasaki
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo162-8666, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo162-8666, Japan
| | - Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Miho Haraguchi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Zen-ichiro Honda
- Health Care Center and Graduate School of Humanities and Sciences, Institute of Environmental Science for Human Life, Ochanomizu University, Bunkyo-ku, Tokyo112-8611, Japan
| | - Norimasa Yamasaki
- Department of Molecular Oncology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima734-8553, Japan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo162-8666, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Science, Kyusyu University, Fukuoka812-8582, Japan
| | - Noboru Motoyama
- Department of Human Nutrition, Sugiyama Jogakuen University School of Life Studies, Nagoya464-8662, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo135-0064, Japan
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore Center for Translational Medicine, Singapore117599, Singapore
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo162-8666, Japan
| |
Collapse
|
16
|
Kirkiz E, Meers O, Grebien F, Buschbeck M. Histone Variants and Their Chaperones in Hematological Malignancies. Hemasphere 2023; 7:e927. [PMID: 37449197 PMCID: PMC10337764 DOI: 10.1097/hs9.0000000000000927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Epigenetic regulation occurs on the level of compacting DNA into chromatin. The functional unit of chromatin is the nucleosome, which consists of DNA wrapped around a core of histone proteins. While canonical histone proteins are incorporated into chromatin through a replication-coupled process, structural variants of histones, commonly named histone variants, are deposited into chromatin in a replication-independent manner. Specific chaperones and chromatin remodelers mediate the locus-specific deposition of histone variants. Although histone variants comprise one of the least understood layers of epigenetic regulation, it has been proposed that they play an essential role in directly regulating gene expression in health and disease. Here, we review the emerging evidence suggesting that histone variants have a role at different stages of hematopoiesis, with a particular focus on the histone variants H2A, H3, and H1. Moreover, we discuss the current knowledge on how the dysregulation of histone variants can contribute to hematopoietic malignancies.
Collapse
Affiliation(s)
- Ecem Kirkiz
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- PhD Programme in Biomedicine, University of Barcelona, Spain
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
17
|
Shibahara D, Akanuma N, Kobayashi IS, Heo E, Ando M, Fujii M, Jiang F, Prin PN, Pan G, Wong K, Costa DB, Bararia D, Tenen DG, Watanabe H, Kobayashi SS. TIP60 is required for tumorigenesis in non-small cell lung cancer. Cancer Sci 2023; 114:2400-2413. [PMID: 36916958 PMCID: PMC10236639 DOI: 10.1111/cas.15785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development and maintenance, although its function in lung cancer remains controversial. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cell lines decreased tumor cell growth, migration, and invasion. Furthermore, analysis of a mouse lung cancer model with lung-specific conditional Tip60 knockout revealed suppressed tumor formation relative to controls, but no apparent effects on normal lung homeostasis. RNA-seq and ChIP-seq analyses of inducible TIP60 knockdown H1975 cells relative to controls revealed transglutaminase enzyme (TGM5) as downstream of TIP60. Investigation of a connectivity map database identified several candidate compounds that decrease TIP60 mRNA, one that suppressed tumor growth in cell culture and in vivo. In addition, TH1834, a TIP60 acetyltransferase inhibitor, showed comparable antitumor effects in cell culture and in vivo. Taken together, suppression of TIP60 activity shows tumor-specific efficacy against lung cancer, with no overt effect on normal tissues. Our work suggests that targeting TIP60 could be a promising approach to treating lung cancer.
Collapse
Affiliation(s)
- Daisuke Shibahara
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Naoki Akanuma
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ikei S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Eunyoung Heo
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Internal MedicineSMG‐SNU Boramae Medical CenterSeoulSouth Korea
| | - Mariko Ando
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Masanori Fujii
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Feng Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Department of Genetics and Genomic SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - P. Nicholas Prin
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Gilbert Pan
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Kwok‐Kin Wong
- Perlmutter Cancer CenterNYU Langone Medical CenterNew YorkNew YorkUSA
| | - Daniel B. Costa
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Deepak Bararia
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daniel G. Tenen
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Department of Genetics and Genomic SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susumu S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| |
Collapse
|
18
|
Fu L, Zhao L, Liao C, Wang P, Gu Y, Li S, Shi L, Wang Q, Xie J, Zhang L, Liu X, Zhang B. Knockdown of KAT5/KIF11 induces autophagy and promotes apoptosis in anaplastic thyroid cancer cells. Exp Ther Med 2023; 25:247. [PMID: 37153895 PMCID: PMC10160912 DOI: 10.3892/etm.2023.11946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 05/10/2023] Open
Abstract
K (lysine) acetyltransferase (KAT) 5, which is a member of the KAT family of enzymes, has been found to act as a regulatory factor in various types of cancer. However, the role of KAT5 in anaplastic thyroid carcinoma (ATC) and its underlying mechanism is still elusive. The expression levels of KAT5 and kinesin family member 11 (KIF11) in ATC cells were assessed utilizing reverse transcription-quantitative PCR and western blot analyses. The cell proliferative ability was assessed via Cell Counting Kit-8 assay and using 5-ethynyl-2'-deoxyuridine staining. Flow cytometry and western blot analyses were applied for the assessment of cell apoptosis. Cell autophagy was investigated by employing western blot analysis and immunofluorescence staining. In addition, the enrichment of histone H3 lysine 27 acetylation (H3K27ac) and RNA polymerase II (RNA pol II) was analyzed by chromatin immunoprecipitation assay. It was shown that KAT5 expression was markedly increased in ATC cells. KAT5 depletion suppressed the cell proliferative capability but promoted the induction of apoptosis and autophagy. In addition, the autophagy inhibitor 3-methyladenine reversed the effects of KAT5 deficiency on the proliferative and apoptotic activities of 8505C cells. With regard to the mechanism, it was found that KAT5 inhibited the expression of KIF11 by repressing the enrichment of H3K27ac and RNA pol II. Upregulation of KIF11 expression reversed the effects of KAT5 silencing on the proliferative activity, apoptosis and autophagy of 8505C cells. In conclusion, the results indicated that KAT5 induced autophagy and promoted apoptosis of ATC cells by targeting KIF11, which may provide a promising target for the treatment of ATC.
Collapse
Affiliation(s)
- Lei Fu
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lina Zhao
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chunyan Liao
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Pengzhen Wang
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ying Gu
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Sha Li
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Liying Shi
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qiaorong Wang
- Department of Medicine, University Town Hospital, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou 550025, P.R. China
| | - Jin Xie
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lixin Zhang
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiaoming Liu
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Bei Zhang
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Correspondence to: Dr Bei Zhang, Ultrasound Center, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
19
|
Sporrij A, Choudhuri A, Prasad M, Muhire B, Fast EM, Manning ME, Weiss JD, Koh M, Yang S, Kingston RE, Tolstorukov MY, Clevers H, Zon LI. PGE 2 alters chromatin through H2A.Z-variant enhancer nucleosome modification to promote hematopoietic stem cell fate. Proc Natl Acad Sci U S A 2023; 120:e2220613120. [PMID: 37126722 PMCID: PMC10175842 DOI: 10.1073/pnas.2220613120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023] Open
Abstract
Prostaglandin E2 (PGE2) and 16,16-dimethyl-PGE2 (dmPGE2) are important regulators of hematopoietic stem and progenitor cell (HSPC) fate and offer potential to enhance stem cell therapies [C. Cutler et al. Blood 122, 3074-3081(2013); W. Goessling et al. Cell Stem Cell 8, 445-458 (2011); W. Goessling et al. Cell 136, 1136-1147 (2009)]. Here, we report that PGE2-induced changes in chromatin at enhancer regions through histone-variant H2A.Z permit acute inflammatory gene induction to promote HSPC fate. We found that dmPGE2-inducible enhancers retain MNase-accessible, H2A.Z-variant nucleosomes permissive of CREB transcription factor (TF) binding. CREB binding to enhancer nucleosomes following dmPGE2 stimulation is concomitant with deposition of histone acetyltransferases p300 and Tip60 on chromatin. Subsequent H2A.Z acetylation improves chromatin accessibility at stimuli-responsive enhancers. Our findings support a model where histone-variant nucleosomes retained within inducible enhancers facilitate TF binding. Histone-variant acetylation by TF-associated nucleosome remodelers creates the accessible nucleosome landscape required for immediate enhancer activation and gene induction. Our work provides a mechanism through which inflammatory mediators, such as dmPGE2, lead to acute transcriptional changes and modify HSPC behavior to improve stem cell transplantation.
Collapse
Affiliation(s)
- Audrey Sporrij
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Avik Choudhuri
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Meera Prasad
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Brejnev Muhire
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Eva M. Fast
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Margot E. Manning
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Jodi D. Weiss
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Michelle Koh
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | | | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht3584 CT, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht3584 CS, The Netherlands
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
- HHMI, Harvard Stem Cell Institute, Boston, MA02115
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA02115
| |
Collapse
|
20
|
Lu Y, Yang L, Shen M, Zhang Z, Wang S, Chen F, Chen N, Xu Y, Zeng H, Chen M, Chen S, Wang F, Hu M, Wang J. Tespa1 facilitates hematopoietic and leukemic stem cell maintenance by restricting c-Myc degradation. Leukemia 2023; 37:1039-1047. [PMID: 36997676 PMCID: PMC10169665 DOI: 10.1038/s41375-023-01880-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/11/2023]
Abstract
Hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have robust self-renewal potential, which is responsible for sustaining normal and malignant hematopoiesis, respectively. Although considerable efforts have been made to explore the regulation of HSC and LSC maintenance, the underlying molecular mechanism remains obscure. Here, we observe that the expression of thymocyte-expressed, positive selection-associated 1 (Tespa1) is markedly increased in HSCs after stresses exposure. Of note, deletion of Tespa1 results in short-term expansion but long-term exhaustion of HSCs in mice under stress conditions due to impaired quiescence. Mechanistically, Tespa1 can interact with CSN subunit 6 (CSN6), a subunit of COP9 signalosome, to prevent ubiquitination-mediated degradation of c-Myc protein in HSCs. As a consequence, forcing c-Myc expression improves the functional defect of Tespa1-null HSCs. On the other hand, Tespa1 is identified to be highly enriched in human acute myeloid leukemia (AML) cells and is essential for AML cell growth. Furthermore, using MLL-AF9-induced AML model, we find that Tespa1 deficiency suppresses leukemogenesis and LSC maintenance. In summary, our findings reveal the important role of Tespa1 in promoting HSC and LSC maintenance and therefore provide new insights on the feasibility of hematopoietic regeneration and AML treatment.
Collapse
Affiliation(s)
- Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
- Frontier Medical Training Brigade, Third Military Medical University, Xinjiang, 831200, China
| | - Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
21
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
22
|
Tu Z, Zheng Y. Role of ATP-dependent chromatin remodelers in hematopoietic stem and progenitor cell maintenance. Curr Opin Hematol 2022; 29:174-180. [PMID: 35787545 PMCID: PMC9257093 DOI: 10.1097/moh.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW ATP-dependent chromatin remodeling factors utilize energy from ATP hydrolysis to modulate DNA-histone structures and regulate gene transcription. They are essential during hematopoiesis and for hematopoietic stem and progenitor cell (HSPC) function. This review discusses the recently unveiled roles of these chromatin remodelers in HSPC regulation, with an emphasis on the mechanism of chromodomain helicase DNA-binding (CHD) family members. RECENT FINDINGS Recent studies of ATP-dependent chromatin remodelers have revealed that individual CHD family members engage in distinct mechanisms in regulating HSPC cell fate. For example, CHD8 is required for HSPC survival by restricting both P53 transcriptional activity and protein stability in steady state hematopoiesis while the related CHD7 physically interacts with RUNX family transcription factor 1 (RUNX1) and suppresses RUNX1-induced expansion of HSPCs during blood development. Moreover, other CHD subfamily members such as CHD1/CHD2 and CHD3/CHD4, as well as the switch/sucrose non-fermentable, imitation SWI, and SWI2/SNF2 related (SWR) families of chromatin modulators, have also been found important for HSPC maintenance by distinct mechanisms. SUMMARY The expanding knowledge of ATP-dependent chromatin remodelers in hematopoiesis illustrates their respective critical roles in HSPC maintenance including the regulation of HSPC differentiation, survival, and self-renewal. Further studies are warranted to elucidate how different chromatin remodeling complexes are integrated in various HSPC cell fate decisions during steady-state and stress hematopoiesis.
Collapse
Affiliation(s)
- Zhaowei Tu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
23
|
Abrine Elicits Liver Carcinoma Immunity and Enhances Antitumor Efficacy of Immune Checkpoint Blockade by Modulating PD-L1 Signaling. JOURNAL OF ONCOLOGY 2022; 2022:7609676. [PMID: 35602291 PMCID: PMC9119764 DOI: 10.1155/2022/7609676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022]
Abstract
Background Liver cancer is the most malignant type of human malignancies. In recent years, immune therapy that targets the immune check points such as programmed cell death ligand 1 (PD-L1) has achieve great success. Abrine is the dominant alkaloid in Abrus cantoniensis and Abrus precatorius Linn. that exhibited anticancer effect. This work is aimed at studying the effects of abrine in immunity of liver cancer. Methods Cell viability, proliferation, and migration were assessed by CCK-8, Edu, and Transwell assay. Cell apoptosis was checked by flow cytometry. Tumor growth was determined by an in vivo xenograft model. Quantitative real-time PCR assay was conducted to evaluate the levels of KAT5 and PD-L1. T cells and liver cancer cells were cocultured in a Transwell system, and the levels of PD-L1 and PD-1 was checked by flow cytometry. The interaction between KAT5 and PD-L1 was determined by ChIP assay. Results Abrine treatment suppressed liver tumor growth both in vitro and in vivo and simultaneously decreased the level of PD-L1 and KAT5. In the coculture system, treatment with abrine inhibited proliferation and activity of cocultured T cell. KAT5 epigenetically elevated recruitment of H3k27ac and RNA polymerase II to PD-L1 promoter region. Ectopic expression of KAT5 and PD-L1 reversed the function of abrine on tumor growth and T cell function. Conclusion Abrine modulated growth and apoptosis of liver cancer cells and regulated proliferation and activation of T cells through the KAT5/PD-L1 axis.
Collapse
|
24
|
Kwon B, Fansler MM, Patel ND, Lee J, Ma W, Mayr C. Enhancers regulate 3' end processing activity to control expression of alternative 3'UTR isoforms. Nat Commun 2022; 13:2709. [PMID: 35581194 PMCID: PMC9114392 DOI: 10.1038/s41467-022-30525-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multi-UTR genes are widely transcribed and express their alternative 3'UTR isoforms in a cell type-specific manner. As transcriptional enhancers regulate mRNA expression, we investigated if they also regulate 3'UTR isoform expression. Endogenous enhancer deletion of the multi-UTR gene PTEN did not impair transcript production but prevented 3'UTR isoform switching which was recapitulated by silencing of an enhancer-bound transcription factor. In reporter assays, enhancers increase transcript production when paired with single-UTR gene promoters. However, when combined with multi-UTR gene promoters, they change 3'UTR isoform expression by increasing 3' end processing activity of polyadenylation sites. Processing activity of polyadenylation sites is affected by transcription factors, including NF-κB and MYC, transcription elongation factors, chromatin remodelers, and histone acetyltransferases. As endogenous cell type-specific enhancers are associated with genes that increase their short 3'UTRs in a cell type-specific manner, our data suggest that transcriptional enhancers integrate cellular signals to regulate cell type-and condition-specific 3'UTR isoform expression.
Collapse
Affiliation(s)
- Buki Kwon
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA
| | - Neil D Patel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jihye Lee
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Weirui Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA.
| |
Collapse
|
25
|
Luo F, Tao Y, Wang M, Yang L, Su R, Pan Z, Tan X. The Protective Effects of KAT5 Inhibition on Ocular Inflammation by Mediating the PI3K/AKT Pathway in a Murine Model of Allergic Conjunctivitis. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 35503228 PMCID: PMC9078075 DOI: 10.1167/iovs.63.5.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We aimed to explore the effect of lysine acetyltransferase KAT5 on allergic conjunctivitis (AC). Methods The effect of KAT5 on inflammatory response during AC progression was analyzed in the experimental allergic conjunctivitis (EAC) mouse model. Results The clinical score, permeability, total IgE, ovalbumin (OVA)-specific IgE, and IgG1/IgG2a were induced in the EAC mice, in which the overexpression of KAT5 could further enhance but KAT5 inhibitor NU9056 reduce the phenotypes. The eosinophilic infiltration was induced in EAC mice, in which the overexpression of KAT5 was able to further promote but NU9056 attenuate the phenotype. The expression of Eotaxin and RANTES and the inflammatory factors were upregulated in EAC mice and KAT5 overexpression increased, but NU9056 decreased the expression in the model. Significantly, the CD11c+ dendritic cells and CD4+ T cells infiltration in the conjunctiva was enhanced in EAC mice, whereas KAT5 overexpression induced but NU9056 suppressed the effect in the model. Mechanically, the phosphorylation of PI3K and Akt and the levels of histone H3 lysine 27 acetylation (H3K27ac) were enhanced in EAC mice, whereas the overexpression of KAT5 promoted and NU9056 repressed the phenotype in the mice. The enrichment of KAT5 and H3K27ac on PI3K promoter was increased in EAC mice, and the overexpression of KAT5 further enhanced the enrichment in the mice. Significantly, we observed similar results in the KAT5 knockout mice as well. Moreover, PI3K/AKT signaling inhibitor LY294002 reversed KAT5 overexpression-mediated phenotypes and inflammatory response after induction AC in vivo. Conclusions Therefore we concluded that KAT5 inhibition protected against ocular inflammation by mediating the PI3K/AKT pathway in EAC mouse model.
Collapse
Affiliation(s)
- Fei Luo
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences Key Lab, China
| | - Yu Tao
- Department of Ophthalmology, the Affiliated Hospital of Chengde Medical University, China
| | - Mengyu Wang
- Department of Ophthalmology, the Affiliated Hospital of Chengde Medical University, China
| | - Liuqing Yang
- Department of Ophthalmology, the Affiliated Hospital of Chengde Medical University, China
| | - Ruifeng Su
- Department of Ophthalmology, the Affiliated Hospital of Chengde Medical University, China
| | - Zhiqiang Pan
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences Key Lab, China
| | - Xiaobo Tan
- Department of Ophthalmology, the Affiliated Hospital of Chengde Medical University, China
| |
Collapse
|
26
|
Colino-Sanguino Y, Clark SJ, Valdes-Mora F. The H2A.Z-nuclesome code in mammals: emerging functions. Trends Genet 2021; 38:273-289. [PMID: 34702577 DOI: 10.1016/j.tig.2021.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
H2A.Z is a histone variant that provides specific structural and docking-side properties to the nucleosome, resulting in diverse and specialised molecular and cellular functions. In this review, we discuss the latest studies uncovering new functional aspects of mammalian H2A.Z in gene transcription, including pausing and elongation of RNA polymerase II (RNAPII) and enhancer activity; DNA repair; DNA replication; and 3D chromatin structure. We also review the recently described role of H2A.Z in embryonic development, cell differentiation, neurodevelopment, and brain function. In conclusion, our cumulative knowledge of H2A.Z over the past 40 years, in combination with the implementation of novel molecular technologies, is unravelling an unexpected and complex role of histone variants in gene regulation and disease.
Collapse
Affiliation(s)
- Yolanda Colino-Sanguino
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, University of NSW Sydney, Sydney, NSW, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Tip60 activates Hoxa9 and Meis1 expression through acetylation of H2A.Z, promoting MLL-AF10 and MLL-ENL acute myeloid leukemia. Leukemia 2021; 35:2840-2853. [PMID: 33967269 DOI: 10.1038/s41375-021-01244-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Chromosome translocations involving the MLL gene are common rearrangements in leukemia. Such translocations fuse the MLL 5'-region to partner genes in frame, producing MLL-fusions that cause MLL-related leukemia. MLL-fusions activate transcription of target genes such as HoxA cluster and Meis1, but the underlying mechanisms remain to be fully elucidated. In this study, we discovered that Tip60, a MYST-type histone acetyltransferase, was required for the expression of HoxA cluster and Meis1 genes and the development of MLL-fusion leukemia. Tip60 was recruited by MLL-AF10 and MLL-ENL fusions to the Hoxa9 locus, where it acetylated H2A.Z, thereby promoting Hoxa9 gene expression. Conditional deletion of Tip60 prevented the development of MLL-AF10 and MLL-ENL leukemia, indicating that Tip60 is indispensable for the leukemogenic activity of the MLL-AF10 and MLL-ENL-fusions. Our findings provide novel insight about epigenetic regulation in the development of MLL-AF10 and MLL-ENL-fusion leukemia.
Collapse
|
28
|
Galloy M, Lachance C, Cheng X, Distéfano-Gagné F, Côté J, Fradet-Turcotte A. Approaches to Study Native Chromatin-Modifying Complex Activities and Functions. Front Cell Dev Biol 2021; 9:729338. [PMID: 34604228 PMCID: PMC8481805 DOI: 10.3389/fcell.2021.729338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The modification of histones-the structural components of chromatin-is a central topic in research efforts to understand the mechanisms regulating genome expression and stability. These modifications frequently occur through associations with multisubunit complexes, which contain active enzymes and additional components that orient their specificity and read the histone modifications that comprise epigenetic signatures. To understand the functions of these modifications it is critical to study the enzymes and substrates involved in their native contexts. Here, we describe experimental approaches to purify native chromatin modifiers complexes from mammalian cells and to produce recombinant nucleosomes that are used as substrates to determine the activity of the complex. In addition, we present a novel approach, similar to the yeast anchor-away system, to study the functions of essential chromatin modifiers by quickly inducing their depletion from the nucleus. The step-by-step protocols included will help standardize these approaches in the research community, enabling convincing conclusions about the specificities and functions of these crucial regulators of the eukaryotic genome.
Collapse
Affiliation(s)
- Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Félix Distéfano-Gagné
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Amelie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
29
|
Circular RNA circRHOT1 contributes to pathogenesis of non-small cell lung cancer by epigenetically enhancing C-MYC expression through recruiting KAT5. Aging (Albany NY) 2021; 13:20372-20382. [PMID: 34406978 PMCID: PMC8436947 DOI: 10.18632/aging.203417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022]
Abstract
Non-small cell lung cancer (NSCLC) one of the most prevalent and severe malignancies globally and the molecular mechanisms of NSCLC are poor understood, limiting the development of diagnostic biomarkers and targeted therapies. Circular RNAs (circRNAs) have been identified as a sort of critical regulator in cancer progression. In this study, we identities the epigenetic regulation function of circular RNA circRHOT1 in promoting NSCLC cell proliferation. We found that circRHOT1 were elevated in the clinical tumor tissues relative to that in the peritumor tissues from NSCLC patients. circRHOT1 was up-regulated in human lung cancer cell lines compared with normal human lung epithelial cell line. MTT assays revealed that the silencing of circRHOT1 by siRNA suppressed cell viabilities of NSCLC cells. Colony formation and Edu assays confirmed that circRHOT1 knockdown attenuated NSCLC cell proliferation in vitro. Meanwhile, the depletion of circRHOT1 induced NSCLC cell apoptosis and cell cycle arrest in vitro. Mechanically, the depletion of circRHOT1 remarkably reduced c-MYC mRNA and protein expression in NSCLC cells. Inhibition of circRHOT1 reduced the enrichment of transcription active marker histone H3 lysine 27 acetylation (H3K27ac) and RNA polymerase II on the promoter of c-MYC. RNA pull down analysis showed that circRHOT1 was able to directly interact with acetyltransferase KAT5 in NSCLC cells. In summary, we concluded that circRHOT1 contributed to pathogenesis of NSCLC by epigenetically enhancing c-MYC expression through recruiting KAT5. CircRHOT1 and KAT5 may be used as the potential targets for NSCLC therapy.
Collapse
|
30
|
Tu Z, Wang C, Davis AK, Hu M, Zhao C, Xin M, Lu QR, Zheng Y. The chromatin remodeler CHD8 governs hematopoietic stem/progenitor survival by regulating ATM-mediated P53 protein stability. Blood 2021; 138:221-233. [PMID: 34292326 PMCID: PMC8310427 DOI: 10.1182/blood.2020009997] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
The Chd8 gene encodes a member of the chromodomain helicase DNA-binding (CHD) family of SNF2H-like adenosine triphosphate (ATP)-dependent chromatin remodeler, the mutations of which define a subtype of autism spectrum disorders. Increasing evidence from recent studies indicates that ATP-dependent chromatin-remodeling genes are involved in the control of crucial gene-expression programs in hematopoietic stem/progenitor cell (HSPC) regulation. In this study, we identified CHD8 as a specific and essential regulator of normal hematopoiesis. Loss of Chd8 leads to severe anemia, pancytopenia, bone marrow failure, and engraftment failure related to a drastic depletion of HSPCs. CHD8 forms a complex with ATM and its deficiency increases chromatin accessibility and drives genomic instability in HSPCs causing an activation of ATM kinase that further stabilizes P53 protein by phosphorylation and leads to increased HSPC apoptosis. Deletion of P53 rescues the apoptotic defects of HSPCs and restores overall hematopoiesis in Chd8-/- mice. Our findings demonstrate that chromatin organization by CHD8 is uniquely necessary for the maintenance of hematopoiesis by integrating the ATM-P53-mediated survival of HSPCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
31
|
Wang X, Lupton C, Lauth A, Wan TC, Foster P, Patterson M, Auchampach JA, Lough JW. Evidence that the acetyltransferase Tip60 induces the DNA damage response and cell-cycle arrest in neonatal cardiomyocytes. J Mol Cell Cardiol 2021; 155:88-98. [PMID: 33609538 PMCID: PMC8154663 DOI: 10.1016/j.yjmcc.2021.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022]
Abstract
Tip60, a pan-acetyltransferase encoded by the Kat5 gene, is enriched in the myocardium; however, its function in the heart is unknown. In cancer cells, Tip60 acetylates Atm (Ataxia-telangiectasia mutated), enabling its auto-phosphorylation (pAtm), which activates the DNA damage response (DDR). It was recently reported that activation of pAtm at the time of birth induces the DDR in cardiomyocytes (CMs), resulting in proliferative senescence. We therefore hypothesized that Tip60 initiates this process, and that depletion of Tip60 accordingly diminishes the DDR while extending the duration of CM cell-cycle activation. To test this hypothesis, an experimental model was used wherein a Myh6-driven Cre-recombinase transgene was activated on postnatal day 0 (P0) to recombine floxed Kat5 alleles and induce Tip60 depletion in neonatal CMs, without causing pathogenesis. Depletion of Tip60 resulted in reduced numbers of pAtm-positive CMs during the neonatal period, which correlated with reduced numbers of pH2A.X-positive CMs and decreased expression of genes encoding markers of the DDR as well as inflammation. This was accompanied by decreased expression of the cell-cycle inhibitors Meis1 and p27, activation of the cell-cycle in CMs, reduced CM size, and increased numbers of mononuclear/diploid CMs. Increased expression of fetal markers suggested that Tip60 depletion promotes a fetal-like proliferative state. Finally, infarction of Tip60-depleted hearts at P7 revealed improved cardiac function at P39 accompanied by reduced fibrosis, increased CM cell-cycle activation, and reduced apoptosis in the remote zone. These findings indicate that, among its pleiotropic functions, Tip60 induces the DDR in CMs, contributing to proliferative senescence.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Carri Lupton
- Department of Cell Biology, Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Amelia Lauth
- Department of Cell Biology, Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Tina C Wan
- Department of Pharmacology and Toxicology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Parker Foster
- Department of Cell Biology, Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Michaela Patterson
- Department of Cell Biology, Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - John A Auchampach
- Department of Pharmacology and Toxicology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America.
| | - John W Lough
- Department of Cell Biology, Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America.
| |
Collapse
|
32
|
Zhou Q, Yu M, Tirado-Magallanes R, Li B, Kong L, Guo M, Tan ZH, Lee S, Chai L, Numata A, Benoukraf T, Fullwood MJ, Osato M, Ren B, Tenen DG. ZNF143 mediates CTCF-bound promoter-enhancer loops required for murine hematopoietic stem and progenitor cell function. Nat Commun 2021; 12:43. [PMID: 33397967 PMCID: PMC7782510 DOI: 10.1038/s41467-020-20282-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022] Open
Abstract
CCCTC binding factor (CTCF) is an important factor in the maintenance of chromatin-chromatin interactions, yet the mechanism regulating its binding to chromatin is unknown. We demonstrate that zinc finger protein 143 (ZNF143) is a key regulator for CTCF-bound promoter-enhancer loops. In the murine genome, a large percentage of CTCF and ZNF143 DNA binding motifs are distributed 37 bp apart in the convergent orientation. Furthermore, deletion of ZNF143 leads to loss of CTCF binding on promoter and enhancer regions associated with gene expression changes. CTCF-bound promoter-enhancer loops are also disrupted after excision of ZNF143. ZNF143-CTCF-bound promoter-enhancer loops regulate gene expression patterns essential for maintenance of murine hematopoietic stem and progenitor cell integrity. Our data suggest a common feature of gene regulation is that ZNF143 is a critical factor for CTCF-bound promoter-enhancer loops.
Collapse
Affiliation(s)
- Qiling Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- YLL School of Medicine, National University of Singapore, 119228, Singapore, Singapore
| | - Miao Yu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Roberto Tirado-Magallanes
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Bin Li
- Ludwig Institute for Cancer Research, La Jolla, CA, 92093, USA
| | - Lingshi Kong
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Mingrui Guo
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- YLL School of Medicine, National University of Singapore, 119228, Singapore, Singapore
| | - Zi Hui Tan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Sanghoon Lee
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Akihiko Numata
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, 92093, USA
- Department of Cellular & Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
33
|
Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:224. [PMID: 33109235 PMCID: PMC7592369 DOI: 10.1186/s13046-020-01733-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia is the major influence factor in physiological and pathological courses which are mainly mediated by hypoxia-inducible factors (HIFs) in response to low oxygen tensions within solid tumors. Under normoxia, HIF signaling pathway is inhibited due to HIF-α subunits degradation. However, in hypoxic conditions, HIF-α is activated and stabilized, and HIF target genes are successively activated, resulting in a series of tumour-specific activities. The activation of HIFs, including HIF-1α, HIF-2α and HIF-3α, subsequently induce downstream target genes which leads to series of responses, the resulting abnormal processes or metabolites in turn affect HIFs stability. Given its functions in tumors progression, HIFs have been regarded as therapeutic targets for improved treatment efficacy. Epigenetics refers to alterations in gene expression that are stable between cell divisions, and sometimes between generations, but do not involve changes in the underlying DNA sequence of the organism. And with the development of research, epigenetic regulation has been found to play an important role in the development of tumors, which providing accumulating basic or clinical evidences for tumor treatments. Here, given how little has been reported about the overall association between hypoxic tumors and epigenetics, we made a more systematic review from epigenetic perspective in hope of helping others better understand hypoxia or HIF pathway, and providing more established and potential therapeutic strategies in tumors to facilitate epigenetic studies of tumors.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chao Mao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|