1
|
Klangkalya N, Esteve-Sole A, Gil Silva AA, Stoddard JL, Niemela JE, Prader S, Dueckers G, Igel L, Niehues T, Stewart-Bates BC, Mousallem T, Fleisher TA, Rosenzweig SD, Kuehn HS. IKAROS protein stability is regulated by its early N-terminal region and C-terminal dimerization domain. Clin Immunol 2025; 274:110469. [PMID: 40024461 PMCID: PMC11929600 DOI: 10.1016/j.clim.2025.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
IKAROS, encoded by IKZF1, is a six zinc-finger (ZF) transcription factor integral to lymphocyte development and function. IKZF1 mutations affecting DNA-binding (ZF1-4) and dimerization (ZF5-6) have been extensively reported and result in human disease. Herein, we investigated IKZF1 mutations affecting protein stability. We identified ten individuals in three families carrying IKZF1 mutations mapping either to the pre-ZF1 area (D22N), or the dimerization domain (M494Vfs*86, Y503*) presenting with infections, immune dysregulation and/or lymphoproliferation with incomplete clinical penetrance. IKAROS expression was reduced in all mutation-carrier evaluated. Protein stability was decreased for D22N, V52L (another pre-ZF1 variant reported in COSMIC), Y503* and Del1-116, a laboratory-designed mutant encompassing the pre-ZF1 area. Mutants Y503* and Del1-116 also exhibited other impaired functions. IKAROS N-terminal pre-ZF1 area, encompassing a previously uncharacterized protein stability-associated region (PSAR), is crucial for IKAROS stability. Variants in the IKAROS PSAR leading to decreased protein stability and IKAROS haploinsufficiency seem sufficient to result in immune defects and IKAROS-associated diseases.
Collapse
Affiliation(s)
- Natchanun Klangkalya
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA; Department of Pediatric, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ana Esteve-Sole
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Agustin A Gil Silva
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Jennifer L Stoddard
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Seraina Prader
- Division of Immunology and the Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gregor Dueckers
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Academic Hospital of the RWTH, Aachen, Germany
| | - Lina Igel
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Academic Hospital of the RWTH, Aachen, Germany
| | - Tim Niehues
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Academic Hospital of the RWTH, Aachen, Germany
| | - Benjamin C Stewart-Bates
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Talal Mousallem
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA.
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Stoltze U, Junk SV, Byrjalsen A, Cavé H, Cazzaniga G, Elitzur S, Fronkova E, Hjalgrim LL, Kuiper RP, Lundgren L, Mescher M, Mikkelsen T, Pastorczak A, Strullu M, Trka J, Wadt K, Izraeli S, Borkhardt A, Schmiegelow K. Overt and covert genetic causes of pediatric acute lymphoblastic leukemia. Leukemia 2025:10.1038/s41375-025-02535-4. [PMID: 40128563 DOI: 10.1038/s41375-025-02535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 03/26/2025]
Abstract
Pediatric acute lymphoblastic leukemia (pALL) is the most common childhood malignancy, yet its etiology remains incompletely understood. However, over the course of three waves of germline genetic research, several non-environmental causes have been identified. Beginning with trisomy 21, seven overt cancer predisposition syndromes (CPSs)-characterized by broad clinical phenotypes that include an elevated risk of pALL-were first described. More recently, newly described CPSs conferring high risk of pALL are increasingly covert, with six exhibiting only minimal or no non-cancer features. These 13 CPSs now represent the principal known hereditary causes of pALL, and human pangenomic data indicates a strong negative selection against mutations in the genes associated with these conditions. Collectively they affect approximately 1 in 450 newborns, of which just a minority will develop the disease. As evidenced by tailored leukemia care protocols for children with trisomy 21, there is growing recognition that CPSs warrant specialized diagnostic, therapeutic, and long-term management strategies. In this review, we investigate the evidence that the 12 other CPSs associated with high risk of pALL may also see benefits from specialized care - even if these needs are often incompletely mapped or addressed in the clinic. Given the rarity of each syndrome, collaborative international research and shared data initiatives will be crucial for advancing knowledge and improving outcomes for these patients.
Collapse
Affiliation(s)
- Ulrik Stoltze
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark.
| | - Stefanie V Junk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Byrjalsen
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Hélène Cavé
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France
- University Paris Cité, Paris, France
- INSERM UMR_S1131 - Institut de Recherche Saint-Louis, Paris France, Paris, France
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eva Fronkova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Lisa Lyngsie Hjalgrim
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Louise Lundgren
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Melina Mescher
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Theis Mikkelsen
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Agata Pastorczak
- Department of Pediatrics, Oncology, and Hematology, Medical University of Lodz, Lodz, Poland
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Marion Strullu
- University Paris Cité, Paris, France
- INSERM UMR_S1131 - Institut de Recherche Saint-Louis, Paris France, Paris, France
- Pediatric Hematology and Immunology Department, Robert Debré Academic Hospital, GHU AP-HP Nord Paris, Paris, France
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Shai Izraeli
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kjeld Schmiegelow
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
3
|
Ramón-Vázquez A, Flood P, Cashman TL, Patil P, Ghosh S. T lymphocyte plasticity in chronic inflammatory diseases: The emerging role of the Ikaros family as a key Th17-Treg switch. Autoimmun Rev 2025; 24:103735. [PMID: 39719186 DOI: 10.1016/j.autrev.2024.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
T helper (Th) 17 and regulatory T (Treg) cells are highly plastic CD4+ Th cell subsets, being able not only to actively adapt to their microenvironment, but also to interconvert, acquiring mixed identity markers. These phenotypic changes are underpinned by transcriptional control mechanisms, chromatin reorganization events and epigenetic modifications, that can be hereditable and stable over time. The Ikaros family of transcription factors have a predominant role in T cell subset specification through mechanisms of transcriptional program regulation that enable phenotypical diversification. They are crucial factors in maintaining Th17/Treg balance and therefore, homeostatic conditions in the tissues. However, they are also implicated in pathogenic processes, where their transcriptional repression contributes to the control of autoimmune processes. In this review, we discuss how T cell fate, specifically in humans, is regulated by the Ikaros family and its interplay with additional factors like the Notch signaling pathway, gut microbiota and myeloid-T cell interactions. Further, we highlight how the transcriptional activity of the Ikaros family impacts the course of T cell mediated chronic inflammatory diseases like rheumatoid and psoriatic arthritis, inflammatory bowel disease, systemic lupus erythematosus and multiple sclerosis. We conclude by discussing recently developed therapeutics designed to target Ikaros family members.
Collapse
Affiliation(s)
| | - P Flood
- APC Microbiome Ireland, University College Cork, Ireland
| | - T L Cashman
- APC Microbiome Ireland, University College Cork, Ireland
| | - P Patil
- APC Microbiome Ireland, University College Cork, Ireland
| | - S Ghosh
- APC Microbiome Ireland, University College Cork, Ireland; College of Medicine and Health, University College Cork, Ireland
| |
Collapse
|
4
|
Affar M, Bottardi S, Quansah N, Lemarié M, Ramón AC, Affar EB, Milot E. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ 2025; 32:37-55. [PMID: 37620540 PMCID: PMC11742659 DOI: 10.1038/s41418-023-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.
Collapse
Affiliation(s)
- Malik Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Maud Lemarié
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Ailyn C Ramón
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - El Bachir Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| | - Eric Milot
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
5
|
Hetemäki I, Arstila TP, Kekäläinen E. Helios-Illuminating the way for lymphocyte self-control. Immunology 2025; 174:17-29. [PMID: 39354708 PMCID: PMC11652420 DOI: 10.1111/imm.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
Transcription factor Helios, encoded by the IKZF2 gene, has an important role in regulatory T cells by stabilizing their suppressive phenotype. While Helios is prominently expressed in regulatory T cells, its expression extends beyond to include effector T cells, follicular regulatory T cells, B cells, and innate-like lymphocyte populations. Recent characterizations of patients with inborn error of immunity due to damaging IKZF2 variants coupled with translational research on lymphocytes from healthy individuals, have increased our understanding on Helios' multifaceted role in controlling the human adaptive immune system. A less studied role for Helios beyond the stabilizing of regulatory T cells has emerged in directing effector T cell maturation. In the absence of functional Helios, effector T cells acquire more inflammatory phenotype and are prone to senescence. Loss of Helios expression disrupts the regulation of the germinal centre reaction, often resulting in either hypogammaglobulinemia or B cell autoimmunity. This review summarizes findings from studies in both mice and men offering a comprehensive understanding of the impact of the transcription factor Helios on the adaptive immune system.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - T. Petteri Arstila
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eliisa Kekäläinen
- Translational Immunology Research ProgramUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
6
|
Hu W, Zang L, Feng X, Zhuang S, Chang L, Liu Y, Huang J, Zhang Y. Advances in epigenetic therapies for B-cell non-hodgkin lymphoma. Ann Hematol 2024; 103:5085-5101. [PMID: 39652169 DOI: 10.1007/s00277-024-06131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) constitute a varied group of cancers originating from B lymphocytes. B-NHLs can occur at any stage of normal B-cell development, with most arising from germinal centres (e.g. diffuse large B-cell lymphoma, DLBCL and follicular lymphoma, FL). The standard initial treatment usually involves the chemoimmunotherapy regimen. Although there is a high initial response rate, 30-40% of high-risk patients often face relapsed or refractory lymphoma due to drug resistance. Recent research has uncovered a significant link between the development of B-NHLs and various epigenetic processes, such as DNA methylation, histone modification, regulation by non-coding RNAs, and chromatin remodeling. Therapies targeting these epigenetic changes have demonstrated considerable potential in clinical studies. This article examines the influence of epigenetic regulation on the onset and progression of B-NHLs. It discusses the current therapeutic targets and agents linked to these epigenetic mechanisms, with the goal of offering new perspectives and approaches for targeted therapies and combination chemotherapy in treating B-NHLs.
Collapse
Affiliation(s)
- Weiwen Hu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Lanlan Zang
- Pharmaceutical laboratory, Department of Pharmacy, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Xiaoxi Feng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Shuhui Zhuang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Liudi Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Yongjing Liu
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China.
| |
Collapse
|
7
|
Okuyama K, Yamashita M, Koumoundourou A, Wiegreffe C, Ohno-Oishi M, Murphy SJH, Zhao X, Yoshida H, Ebihara T, Satoh-Takayama N, Kojo S, Ohno H, Morio T, Wu Y, Puck J, Xue HH, Britsch S, Taniuchi I. A mutant BCL11B-N440K protein interferes with BCL11A function during T lymphocyte and neuronal development. Nat Immunol 2024; 25:2284-2296. [PMID: 39487351 DOI: 10.1038/s41590-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Genetic studies in mice have shown that the zinc finger transcription factor BCL11B has an essential role in regulating early T cell development and neurogenesis. A de novo heterozygous missense BCL11B variant, BCL11BN441K, was isolated from a patient with T cell deficiency and neurological disorders. Here, we show that mice harboring the corresponding Bcl11bN440K mutation show the emergence of natural killer (NK)/group 1 innate lymphoid cell (ILC1)-like NKp46+ cells in the thymus and reduction in TBR1+ neurons in the neocortex, which are observed with loss of Bcl11a but not Bcl11b. Thus, the mutant BCL11B-N440K protein interferes with BCL11A function upon heterodimerization. Mechanistically, the Bcl11bN440K mutation dampens the interaction of BCL11B with T cell factor 1 (TCF1) in thymocytes, resulting in weakened antagonism against TCF1 activity that supports the differentiation of NK/ILC1-like cells. Collectively, our results shed new light on the function of BCL11A in suppressing non-T lymphoid developmental potential and uncover the pathogenic mechanism by which BCL11B-N440K interferes with partner BCL11 family proteins.
Collapse
Affiliation(s)
- Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Samuel J H Murphy
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Chemical Biology Mass Spectrometry Platform, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jennifer Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
| |
Collapse
|
8
|
Suzuki K, Koyama D, Oka Y, Sato Y, Sekine R, Fukatsu M, Hayashi K, Takano M, Hashimoto Y, Ikezoe T. Myeloid sarcoma with plasmacytoid dendritic cell-like proliferation associated with IKZF1, ETV6 and DNMT3A mutations. Int J Hematol 2024; 120:382-388. [PMID: 38861243 DOI: 10.1007/s12185-024-03806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The classification of clonal plasmacytoid dendritic cell (pDC) proliferation associated with myeloid neoplasms remains a topic of ongoing debate. Although the fifth edition of the World Health Organization classification classifies clonal pDC proliferation into two categories, it is unclear whether this classification adequately captures the complexities of clonal pDC pathogenesis. We present a clinical case featuring myeloid sarcoma with pDC-like cells in cervical lymph nodes and bone marrow (BM). Analysis of biopsy specimens and BM aspirate revealed two distinct cellular populations expressing myeloid and pDC markers. One population exhibited myeloid leukemia and monocyte markers, including MPO, CD13, CD33, CD11b, and CD14, while the other manifested an immunophenotype reminiscent of pDCs, characterized by expression of CD56 and CD123. Additionally, whole exome sequencing and RNA sequencing of BM mononuclear cells were conducted to explore the pathophysiology of this rare malignancy, and unveiled pDC-like cell proliferation driven by IKZF1 and ETV6 mutations originating from clonal hematopoiesis initiated by a DNMT3A mutation. Notably, venetoclax-based therapy exhibited efficacy for achieving and sustaining complete remission. This case provides pivotal insights into the mechanistic aspects of pDC/pDC-like cell proliferation in myeloid sarcoma, offering valuable perspectives on therapeutic strategies.
Collapse
Affiliation(s)
- Kengo Suzuki
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Daisuke Koyama
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan.
| | - Yuka Oka
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yuki Sato
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Rei Sekine
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kiyohito Hayashi
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Motoki Takano
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan
| |
Collapse
|
9
|
Guirguis J, Iosim S, Jones D, Likhite M, Chen F, Kesserwan C, Gindin T, Kahn PJ, Beck D, Oza VS, Hillier K. Neutrophilic dermatosis in a patient with an IKZF1 variant and a review of monogenic autoinflammatory disorders presenting with neutrophilic dermatoses. Pediatr Dermatol 2024; 41:707-713. [PMID: 38413050 DOI: 10.1111/pde.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Monogenic diseases of immune dysregulation should be considered in the evaluation of children presenting with recurrent neutrophilic dermatoses in association with systemic signs of inflammation, autoimmune disease, hematologic abnormalities, and opportunistic or recurrent infections. We report the case of a 2-year-old boy presenting with a neutrophilic dermatosis, found to have a novel likely pathogenic germline variant of the IKAROS Family Zinc Finger 1 (IKZF1) gene; the mutation likely results in a loss of function dimerization defective protein based on reports and studies of similar variants. IKZF1 variants could potentially lead to aberrant neutrophil chemotaxis and development of neutrophilic dermatoses. Long-term surveillance is required to monitor the development of hematologic malignancy, autoimmunity, immunodeficiency, and infection in patients with pathogenic IKZF1 germline variants.
Collapse
Affiliation(s)
- Justina Guirguis
- Department of Dermatology, The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Sonia Iosim
- Department of Pediatrics, Hassenfeld Children's Hospital at NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Derek Jones
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Maryel Likhite
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, New York, USA
| | - Fei Chen
- Department of Pathology, NYU Langone Health, New York, New York, USA
| | - Chimene Kesserwan
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Tatyana Gindin
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Philip J Kahn
- Department of Pediatrics, Division of Pediatric Rheumatology, Hassenfeld Children's Hospital at NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| | - David Beck
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
| | - Vikash S Oza
- Department of Dermatology and Pediatrics, The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Kirsty Hillier
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hassenfeld Children's Hospital at NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
10
|
Hoshino A, Picard BH, Polychronopoulou S, Kelaidi C, Azarnoush S, Kracker S, Rieux-Laucat F, Boutboul D, Latour S. Loss-of-phosphorylation of IKZF1 results in gain-of-function associated with immune dysregulation. J Allergy Clin Immunol 2024; 154:229-236.e2. [PMID: 38438084 DOI: 10.1016/j.jaci.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Immune dysregulation often presents as autoimmunity, inflammation, and/or lymphoproliferation. Several germline genetic defects have been associated with immune dysregulation; they include heterozygous gain-of-function (GOF) mutations in IKZF1, an essential transcription factor for hematopoiesis containing zinc finger domains (ZFs). However, in a large percentage of patients, the genetic origin of their immunedysregulation remains undetermined. OBJECTIVE A family with 2 members presenting immune dysregulation signs was studied to identify the genetic cause of their disease. METHODS Whole exome sequencing, analysis of immunologic parameters, and functional assays (including Western blotting, electrophoretic mobility shift assay during the cell cycle, and TH cell differentiation) were performed. RESULTS The 2 patients carried a novel heterozygous mutation in IKZF1 (IKZF1T398M). IKZF1 heterozygous mutations have previously been shown to be responsible for several distinct human immunologic diseases by directly affecting the ability of ZFs to bind to DNA or to dimerize. Herein, we showed that the IKZF1T398M, which is outside the ZFs, caused impaired phosphorylation of IKZF1, resulting in enhanced DNA-binding ability at the S phase of the cell cycle, reduction of the G1-S phase transition, and decreased proliferation. Confirming these data, similar functional alterations were observed with IKZF1T398A, but not with IKZF1T398D, mimicking dephosphorylation and phosphorylation, respectively. In T lymphocytes, expression of IKZF1T398M led to TH cell differentiation skewed toward TH2 cells. Thus, our data indicate that IKZF1T398M behaves as a GOF variant underlying immune dysregulation. CONCLUSION Disturbed IKZF1 phosphorylation represents a novel GOF mechanism (GOF by loss of phosphorylation (termed as GOF-LOP) associated with immune dysregulation, highlighting the regulatory role of IKZF1 during cell cycle progression through phosphorylation.
Collapse
Affiliation(s)
- Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Benoît Heid Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France; Université de Paris-Cité, Paris, France
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Goudi-Athens, Athens, Greece
| | - Charikleia Kelaidi
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Goudi-Athens, Athens, Greece
| | - Saba Azarnoush
- Department of Pediatric Immuno-Hematology, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sven Kracker
- Université de Paris-Cité, Paris, France; Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Frédéric Rieux-Laucat
- Université de Paris-Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmunity, INSERM UMR 1163, Imagine Institute, Paris, France
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France; Université de Paris-Cité, Paris, France.
| |
Collapse
|
11
|
Feng L, Zhang H, Liu T. Multifaceted roles of IKZF1 gene, perspectives from bench to bedside. Front Oncol 2024; 14:1383419. [PMID: 38978740 PMCID: PMC11228169 DOI: 10.3389/fonc.2024.1383419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
The IKZF1 gene encodes a transcription factor that belongs to the family of zinc-finger DNA-binding proteins associated with chromatin remodeling. The protein product, IKAROS, had been proved to regulate lymphopoiesis. Subsequent mouse model studies have further confirmed its regulating role in lymphopoiesis as well as in hematopoiesis; besides, it associates with immune function, certain immune disorders like common variable immunodeficiency and dysgammaglobulinemia have been proved to be associated with germline IKZF1 mutations. Dysfunction of IKAROS also bears paramount significance in leukemic transformation and alterations of IKZF1 gene predicts a poor prognosis in hematological malignancies. As an independent prognostic marker, IKZF1 has been incorporated in the risk stratification of BCP-ALL and stratification-guided therapy has also been generated. In this review, we provide a concise and comprehensive overview on the multifaceted roles of IKZF1 gene.
Collapse
Affiliation(s)
| | | | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Liu Q, Zheng Y, Sturmlechner I, Jain A, Own M, Yang Q, Zhang H, Pinto e Vairo F, Cerosaletti K, Buckner JH, Warrington KJ, Koster MJ, Weyand CM, Goronzy JJ. IKZF1 and UBR4 gene variants drive autoimmunity and Th2 polarization in IgG4-related disease. J Clin Invest 2024; 134:e178692. [PMID: 38885295 PMCID: PMC11324302 DOI: 10.1172/jci178692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
IgG4-related disease (IgG4-RD) is a systemic immune-mediated fibroinflammatory disease whose pathomechanisms remain poorly understood. Here, we identified gene variants in familial IgG4-RD and determined their functional consequences. All 3 affected members of the family shared variants of the transcription factor IKAROS, encoded by IKZF1, and the E3 ubiquitin ligase UBR4. The IKAROS variant increased binding to the FYN promoter, resulting in higher transcription of FYN in T cells. The UBR4 variant prevented the lysosomal degradation of the phosphatase CD45. In the presence of elevated FYN, CD45 functioned as a positive regulatory loop, lowering the threshold for T cell activation. Consequently, T cells from the affected family members were hyperresponsive to stimulation. When transduced with a low-avidity, autoreactive T cell receptor, their T cells responded to the autoantigenic peptide. In parallel, high expression of FYN in T cells biased their differentiation toward Th2 polarization by stabilizing the transcription factor JunB. This bias was consistent with the frequent atopic manifestations in patients with IgG4-RD, including the affected family members in the present study. Building on the functional consequences of these 2 variants, we propose a disease model that is not only instructive for IgG4-RD but also for atopic diseases and autoimmune diseases associated with an IKZF1 risk haplotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Filippo Pinto e Vairo
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
13
|
Ma L, Yin C, Zhang Y, Li J, Shi L, Zhou T, Huang X, Liu Y, Cao J, Wu G, Gu H, He L. KCTD5 regulates Ikaros degradation induced by chemotherapeutic drug etoposide in hematological cells. Biol Chem 2024; 405:341-349. [PMID: 38424700 DOI: 10.1515/hsz-2023-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Therapy-related leukemia carries a poor prognosis, and leukemia after chemotherapy is a growing risk in clinic, whose mechanism is still not well understood. Ikaros transcription factor is an important regulator in hematopoietic cells development and differentiation. In the absence of Ikaros, lymphoid cell differentiation is blocked at an extremely early stage, and myeloid cell differentiation is also significantly affected. In this work, we showed that chemotherapeutic drug etoposide reduced the protein levels of several isoforms of Ikaros including IK1, IK2 and IK4, but not IK6 or IK7, by accelerating protein degradation, in leukemic cells. To investigate the molecular mechanism of Ikaros degradation induced by etoposide, immunoprecipitation coupled with LC-MS/MS analysis was conducted to identify changes in protein interaction with Ikaros before and after etoposide treatment, which uncovered KCTD5 protein. Our further study demonstrates that KCTD5 is the key stabilizing factor of Ikaros and chemotherapeutic drug etoposide induces Ikaros protein degradation through decreasing the interaction of Ikaros with KCTD5. These results suggest that etoposide may induce leukemic transformation by downregulating Ikaros via KCTD5, and our work may provide insights to attenuate the negative impact of chemotherapy on hematopoiesis.
Collapse
Affiliation(s)
- Lan Ma
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
- Department of Nephropathy, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Changqing Yin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jie Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Liuzhi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Tong Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Xixi Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yaqi Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Licai He
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
14
|
Yamashita M, Morio T. AIOLOS-Associated Inborn Errors of Immunity. J Clin Immunol 2024; 44:128. [PMID: 38773004 PMCID: PMC11108880 DOI: 10.1007/s10875-024-01730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
AIOLOS, encoded by the IKZF3 gene, belongs to the Ikaros zinc finger transcription factor family and plays a pivotal role in regulating lymphocyte development. Recently, heterozygous missense loss-of-function variants within the DNA-binding domain of the IKZF3 gene (G159R, N160S, and G191R) have been identified in patients with inborn errors of immunity (IEI). Additionally, a missense and a truncating variant (E82K and Q402X) leading to the AIOLOS haploinsufficiency have been documented. The majority of individuals with AIOLOS-associated IEI manifest recurrent sinopulmonary infections, as well as various bacterial and viral infections. The patients carrying the AIOLOSN160S variant exhibit severe immunodeficient phenotypes. In contrast, patients harboring AIOLOS haploinsufficient variants predominantly present with clinical phenotypes associated with immune dysregulation. A varying degree of B-lymphopenia and hypoimmunoglobulinemia was noted in approximately half of the patients. Mouse models of AIOLOSG159R and AIOLOSN160S variants (AiolosG158R and AiolosN159S in mice, respectively) recapitulated most of the immune abnormalities observed in the patients. Among these models, AiolosG158R mice prominently exhibited defects in early B cell differentiation resulting from mutant Aiolos interfering with Ikaros function through heterodimer formation. In contrast, AiolosN159S mice did not manifest early B cell differentiation defects. However, they displayed a distinct immune abnormality characterized by impaired induction of CD62L expression in lymphocytes, which is likely attributable to dysfunction of Ikaros, leading to defective lymphocyte homing to lymph nodes. Considering the diverse clinical phenotypes observed in the reported cases and the distinct molecular pathogenesis associated with each variant, further studies with more patients with AIOLOS-associated IEI would contribute to a better understanding of the clinical spectrum and underlying molecular mechanisms associated with this disorder.
Collapse
Affiliation(s)
- Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan.
- Laboratory of Immunology and Molecular Medicine, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan.
| |
Collapse
|
15
|
Klangkalya N, Stoddard J, Niemela J, Sponaugle J, Greenwell IB, Reigh E, Kuehn HS, Kanakry JA, Rosenzweig SD, Dimitrova D. IKAROS gain of function disease: Allogeneic hematopoietic cell transplantation experience and expanded clinical phenotypes. Clin Immunol 2024; 260:109922. [PMID: 38320737 PMCID: PMC10923168 DOI: 10.1016/j.clim.2024.109922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
IKAROS, encoded by IKZF1, is a tumor suppressor and a key hematopoietic transcription factor responsible for lymphoid and myeloid differentiation. IKZF1 mutations result in inborn errors of immunity presenting with increased susceptibility to infections, immune dysregulation, and malignancies. In particular, patients carrying IKZF1 gain-of-function (GOF) mutations mostly exhibit symptoms of immune dysregulation and polyclonal plasma cell proliferation. Herein, we describe seven new IKAROS GOF cases from two unrelated families, presenting with novel infectious, immune dysregulation and hematologic diseases. Two of the patients underwent allogeneic hematopoietic cell transplantation (HCT) due to poorly responsive complications. HCT was well-tolerated achieving full engraftment in both patients receiving reduced intensity, matched unrelated donor grafts, with no severe acute or chronic graft-vs-host-disease, and in remission from their diseases 2.5 and 4 years post-HCT, respectively. These results suggest that HCT is a valid and curative option in patients with IKAROS GOF disease and severe clinical manifestations.
Collapse
Affiliation(s)
- Natchanun Klangkalya
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA; Department of Pediatric, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Jennifer Sponaugle
- Center for Immuno-Oncology, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Irl Brian Greenwell
- Division of Hematology and Medical Oncology, Hollings Cancer Center of the Medical University of South Carolina, Charleston, SC, USA
| | - Erin Reigh
- Section of Allergy and Clinical Immunology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Jennifer A Kanakry
- Center for Immuno-Oncology, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA.
| | - Dimana Dimitrova
- Center for Immuno-Oncology, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Kuehn HS, Sakovich IS, Niemela JE, Gil Silva AA, Stoddard JL, Polyakova EA, Esteve Sole A, Aleshkevich SN, Uglova TA, Belevtsev MV, Vertelko VR, Shman TV, Kupchinskaya AN, Walter JE, Fleisher TA, Notarangelo LD, Peng XP, Delmonte OM, Sharapova SO, Rosenzweig SD. Disease-associated AIOLOS variants lead to immune deficiency/dysregulation by haploinsufficiency and redefine AIOLOS functional domains. J Clin Invest 2024; 134:e172573. [PMID: 38015619 PMCID: PMC10836806 DOI: 10.1172/jci172573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
AIOLOS, also known as IKZF3, is a transcription factor that is highly expressed in the lymphoid lineage and is critical for lymphocyte differentiation and development. Here, we report on 9 individuals from 3 unrelated families carrying AIOLOS variants Q402* or E82K, which led to AIOLOS haploinsufficiency through different mechanisms of action. Nonsense mutant Q402* displayed abnormal DNA binding, pericentromeric targeting, posttranscriptional modification, and transcriptome regulation. Structurally, the mutant lacked the AIOLOS zinc finger (ZF) 5-6 dimerization domain, but was still able to homodimerize with WT AIOLOS and negatively regulate DNA binding through ZF1, a previously unrecognized function for this domain. Missense mutant E82K showed overall normal AIOLOS functions; however, by affecting a redefined AIOLOS protein stability domain, it also led to haploinsufficiency. Patients with AIOLOS haploinsufficiency showed hypogammaglobulinemia, recurrent infections, autoimmunity, and allergy, but with incomplete clinical penetrance. Altogether, these data redefine the AIOLOS structure-function relationship and expand the spectrum of AIOLOS-associated diseases.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Inga S. Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Julie E. Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Agustin A. Gil Silva
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Jennifer L. Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Ekaterina A. Polyakova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Ana Esteve Sole
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Svetlana N. Aleshkevich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Tatjana A. Uglova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Mikhail V. Belevtsev
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Vladislav R. Vertelko
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Tatsiana V. Shman
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Aleksandra N. Kupchinskaya
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
- Division of Pediatric Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Thomas A. Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy of Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Xiao P. Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy of Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Szewczyk SM, Verma I, Edwards JT, Weiss DR, Chekler ELP. Trends in Neosubstrate Degradation by Cereblon-Based Molecular Glues and the Development of Novel Multiparameter Optimization Scores. J Med Chem 2024; 67:1327-1335. [PMID: 38170610 DOI: 10.1021/acs.jmedchem.3c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Molecular glues enable the degradation of previously "undruggable" proteins via the recruitment of cereblon (CRBN) to the target. One major challenge in designing CRBN E3 ligase modulating compounds (CELMoDs) is the selectivity profile toward neosubstrates, proteins recruited by CRBN E3 ligase agents for degradation. Common neosubstrates include Aiolos, Ikaros, GSPT1, CK1α, and SALL4. Unlike achieving potency and selectivity for traditional small molecule inhibitors, reducing the degradation of these neosubstrates is complicated by the ternary nature of the complex formed between the protein, CRBN, and CELMoD. The standard guiding principles of medicinal chemistry, such as enforcing hydrogen bond formation, are less predictive of degradation efficiency and selectivity. Disclosed is an analysis of our glutarimide CELMoD library to identify interpretable chemical features correlated to selectivity profiles and general cytotoxicity. Included is a simple multiparameter optimization function using only three parameters to predict whether molecules will have undesired neosubstrate activity.
Collapse
Affiliation(s)
| | - Isha Verma
- Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Jacob T Edwards
- Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Dahlia R Weiss
- Bristol Myers Squibb, Redwood City, California 94063, United States
| | | |
Collapse
|
18
|
Barakat S, Ezen E, Devecioğlu İ, Gezen M, Piepoli S, Erman B. Dimerization choice and alternative functions of ZBTB transcription factors. FEBS J 2024; 291:237-255. [PMID: 37450366 DOI: 10.1111/febs.16905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Zinc Finger DNA-binding domain-containing proteins are the most populous family among eukaryotic transcription factors. Among these, members of the BTB domain-containing ZBTB sub-family are mostly known for their transcriptional repressive functions. In this Viewpoint article, we explore molecular mechanisms that potentially diversify the function of ZBTB proteins based on their homo and heterodimerization, alternative splicing and post-translational modifications. We describe how the BTB domain is as much a scaffold for the assembly of co-repressors, as a domain that regulates protein stability. We highlight another mechanism that regulates ZBTB protein stability: phosphorylation in the zinc finger domain. We explore the non-transcriptional, structural roles of ZBTB proteins and highlight novel findings that describe the ability of ZBTB proteins to associate with poly adenosine ribose in the nucleus during the DNA damage response. Herein, we discuss the contribution of BTB domain scaffolds to the formation of transcriptional repressive complexes, to chromosome compartmentalization and their non-transcriptional, purely structural functions in the nucleus.
Collapse
Affiliation(s)
- Sarah Barakat
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Ege Ezen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - İzem Devecioğlu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Melike Gezen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
19
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
20
|
Gachard N, Lafage-Pochitaloff M, Quessada J, Auger N, Collonge-Rame MA. Cytogenetics in the management of hematologic neoplasms with germline predisposition: guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103416. [PMID: 37865978 DOI: 10.1016/j.retram.2023.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
The number of predisposing genes is continuously growing with the widespread availability of DNA sequencing, increasing the prevalence of hematologic malignancies with germline predisposition. Cytogenetic analyses provide an effective approach for the recognition of these malignancies with germline predisposition, which is critical for proper diagnosis, optimal treatment and genetic counseling. Based on the World Health Organization and the international consensus classifications as well as the European LeukemiaNet recommendations, this review first presents an advanced classification of neoplasms with germline predisposition focused on the acquired cytogenetic alterations during leukemogenesis. The various genetic rescue mechanisms and the progression to transformation are then explained. The review also outlines the specific constitutional and somatic cytogenetic aberrations indicative of germline predisposition disorders in B-acute lymphoblastic leukemia (ALL), T-ALL, bone marrow failure syndrome and myeloid neoplasms. An emphasis is made on monosomy 7 in the predisposition field, its frequency and diagnosis impact as well as its various circumstances of occurrence. Lastly, we propose cytogenetic technical recommendations and guidelines for clinical reporting of these specific aberrations.
Collapse
Affiliation(s)
- Nathalie Gachard
- Laboratoire d'hématologie, Centre de Biologie et de Recherche en Santé, CHU de Limoges, Limoges 87042, France; UMR CNRS 7276, INSERM U1262 Université de Limoges, Limoges 87025, France.
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Nathalie Auger
- Laboratoire de Cytogénétique -Génétique des Tumeurs - Gustave Roussy - 144 rue Edouard Vaillant, Villejuif 94805, France
| | - Marie-Agnès Collonge-Rame
- Oncobiologie Génétique Bioinformatique, UF Cytogénétique et Génétique Moléculaire, CHU de Besançon, Besançon 25030, France
| |
Collapse
|
21
|
Bogush D, Schramm J, Ding Y, He B, Singh C, Sharma A, Tukaramrao DB, Iyer S, Desai D, Nalesnik G, Hengst J, Bhalodia R, Gowda C, Dovat S. Signaling pathways and regulation of gene expression in hematopoietic cells. Adv Biol Regul 2023; 88:100942. [PMID: 36621151 DOI: 10.1016/j.jbior.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Bing He
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chingakham Singh
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | | | - Soumya Iyer
- University of Chicago, Chicago, IL, 60637, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Gregory Nalesnik
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Jeremy Hengst
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Riya Bhalodia
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| |
Collapse
|
22
|
Kuehn HS, Boast B, Rosenzweig SD. Inborn errors of human IKAROS: LOF and GOF variants associated with primary immunodeficiency. Clin Exp Immunol 2023; 212:129-136. [PMID: 36433803 PMCID: PMC10128159 DOI: 10.1093/cei/uxac109] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022] Open
Abstract
IKAROS/IKZF1 plays a pivotal role in lymphocyte differentiation and development. Germline mutations in IKZF1, which have been shown to be associated with primary immunodeficiency, can be classified through four different mechanisms of action depending on the protein expression and its functional defects: haploinsufficiency, dimerization defective, dominant negative, and gain of function. These different mechanisms are associated with variable degrees of susceptibility to infectious diseases, autoimmune disorders, allergic diseases, and malignancies. To date, more than 30 heterozygous IKZF1 germline variants have been reported in patients with primary immunodeficiency. Here we review recent discoveries and clinical/immunological characterization of IKAROS-associated diseases that are linked to different mechanisms of action in IKAROS function.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Brigette Boast
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| |
Collapse
|
23
|
Functional damaging germline variants in ETV6, IKZF1, PAX5 and RUNX1 predisposing to B-cell precursor acute lymphoblastic leukemia. Eur J Med Genet 2023; 66:104725. [PMID: 36764385 DOI: 10.1016/j.ejmg.2023.104725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/29/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Recent genome-wide studies have demonstrated that a significant proportion of children with cancer carry predisposing germline variants, with varying incidence according to cancer type. In general, there is a lower incidence of underlying germline predisposing variants among patients with B-cell acute lymphoblastic leukemia (B-ALL) compared to other types of cancer, but higher rates may be found in patients with specific leukemia subtypes. Two categories of ALL-predisposing variants have been described: common polymorphisms, conferring low-penetrance ALL susceptibility, and rare variants, conferring high-penetrance ALL susceptibility. Variants in genes encoding hematopoietic transcription factors are an example of the latter, and include ETV6, IKZF1, PAX5 and RUNX1. Here, we present an overview of the germline variants detected in patients with B-ALL in these four genes and a summary of functional studies analyzing the impacts of these variants upon protein function, and hence their effects with regard to leukemia predisposition. Furthermore, we review specific clinical characteristics of patients with B-ALL, including specific features of the patient or family history and associated somatic genetic characteristics, which are suggestive of underlying germline alterations in one of these genes. This review may be of assistance in the interpretation of patient genetic germline findings, made even more challenging by the absence of a suggestive family history or by an unknown familial cancer history. Despite a low incidence of underlying germline alterations in ETV6, IKZF1, PAX5 and RUNX1 in patients with B-ALL, identification of an underlying ALL predisposition syndrome is relevant to the clinical management of patients and their relatives, as the latter are also at risk of developing cancer.
Collapse
|
24
|
Coiteux V, Fenwarth L, Duployez N, Ainaoui M, Borel C, Polomeni A, Yakoub-Agha I, Chalandon Y. [Management of genetic predisposition to hematologic malignancies in patients undergoing allogeneic hematopoietic cell transplantation (HCT): Guidelines from the SFGM-TC]. Bull Cancer 2023; 110:S13-S29. [PMID: 36307324 DOI: 10.1016/j.bulcan.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
The advent of new technologies has made it possible to identify genetic predispositions to myelodysplastic syndromes (MDS) and acute leukemias (AL) more frequently. The most frequent and best characterized at present are mutations in CEBPA, RUNX1, GATA2, ETV6 and DDX41 and, either in the presence of one of these mutations with a high allelic frequency, or in the case of a personal or family history suggestive of blood abnormalities such as non-immune thrombocytopenia, it is recommended to look for the possibility of a hereditary hematological malignancy (HHM). Indeed, early recognition of these HHMs allows better adaptation of the management of patients and their relatives, as allogeneic hematopoietic stem cell transplantation (HSCT) is very often proposed for these pathologies. According to current data, with the exception of the GATA2 mutation, the constitutional or somatic nature of the mutations does not seem to influence the prognosis of hematological diseases. Therefore, the indication for an allograft will be determined according to the usual criteria. However, when searching for a family donor, it is important to ensure that there is no hereditary disease in the donor. In order to guarantee the possibility of performing the HSC allograft within a short period of time, it may be necessary to initiate a parallel procedure to find an unrelated donor. Given the limited information on the modalities of HSC transplantation in this setting, it is important to assess the benefit/risk of the disease and the procedure to decide on the type of conditioning (myeloablative or reduced intensity). In view of the limited experience with the risk of secondary cancers in the medium and long-term, it may be appropriate to recommend reduced intensity conditioning, as in the case of better characterized syndromic hematological diseases such as Fanconi anemia or telomere diseases. In summary, it seems important to evoke HHM more frequently, particularly in the presence of a family history, certain mutations or persistent blood abnormalities, in order to discuss the specific modalities of HSC allografting, particularly with regard to the search for a donor and the evaluation of certain modalities of the procedure, such as conditioning. It should be noted that the discovery of HHM, especially if the indication of an allogeneic HSC transplant is retained, will raise ethical and psychological considerations not only for the patient, but also for his family. A multidisciplinary approach involving molecular biologists, geneticists, hematologists and psychologists is essential.
Collapse
Affiliation(s)
- Valérie Coiteux
- Hôpital Huriez, CHU de Lille, service de maladies du sang, 1, place de Verdun, 59037 Lille cedex, France.
| | - Laurène Fenwarth
- Université de Lille, CHU de Lille, CNRS, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Inserm, 59000 Lille, France
| | - Nicolas Duployez
- Université de Lille, CHU de Lille, CNRS, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Inserm, 59000 Lille, France
| | - Malika Ainaoui
- Hôpital Huriez, hôpital Fontan, CHU de Lille, service de maladies du sang, service de psychiatrie de liaison, 1, place de Verdun, 59037 Lille cedex, France
| | - Cécile Borel
- CHU de Toulouse, institut universitaire du cancer de Toulouse Oncopole, service d'hématologie, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Alice Polomeni
- AP-HP, hôpital Saint-Antoine, service d'hématologie clinique et thérapie cellulaire, 184, rue du faubourg Saint-Antoine, 75012 Paris, France
| | | | - Yves Chalandon
- Université de Genève, hôpitaux universitaires de Genève, faculté de médecine, service d'hématologie, 4, rue Gabrielle-Perret-Gentil, 1211 Genève, Suisse.
| |
Collapse
|
25
|
Ahmed A, Lippner E, Khanolkar A. Clinical Aspects of B Cell Immunodeficiencies: The Past, the Present and the Future. Cells 2022; 11:3353. [PMID: 36359748 PMCID: PMC9654110 DOI: 10.3390/cells11213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022] Open
Abstract
B cells and antibodies are indispensable for host immunity. Our understanding of the mechanistic processes that underpin how B cells operate has left an indelible mark on the field of clinical pathology, and recently has also dramatically reshaped the therapeutic landscape of diseases that were once considered incurable. Evaluating patients with primary immunodeficiency diseases (PID)/inborn errors of immunity (IEI) that primarily affect B cells, offers us an opportunity to further our understanding of how B cells develop, mature, function and, in certain instances, cause further disease. In this review we provide a brief compendium of IEI that principally affect B cells at defined stages of their developmental pathway, and also attempt to offer some educated viewpoints on how the management of these disorders could evolve over the years.
Collapse
Affiliation(s)
- Aisha Ahmed
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth Lippner
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Shahin T, Mayr D, Shoeb MR, Kuehn HS, Hoeger B, Giuliani S, Gawriyski LM, Petronczki ÖY, Hadjadj J, Bal SK, Zoghi S, Haimel M, Jimenez Heredia R, Boutboul D, Triebwasser MP, Rialland-Battisti F, Costedoat Chalumeau N, Quartier P, Tangye SG, Fleisher TA, Rezaei N, Romberg N, Latour S, Varjosalo M, Halbritter F, Rieux-Laucat F, Castanon I, Rosenzweig SD, Boztug K. Identification of germline monoallelic mutations in IKZF2 in patients with immune dysregulation. Blood Adv 2022; 6:2444-2451. [PMID: 34920454 PMCID: PMC9006292 DOI: 10.1182/bloodadvances.2021006367] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Helios, encoded by IKZF2, is a member of the Ikaros family of transcription factors with pivotal roles in T-follicular helper, NK- and T-regulatory cell physiology. Somatic IKZF2 mutations are frequently found in lymphoid malignancies. Although germline mutations in IKZF1 and IKZF3 encoding Ikaros and Aiolos have recently been identified in patients with phenotypically similar immunodeficiency syndromes, the effect of germline mutations in IKZF2 on human hematopoiesis and immunity remains enigmatic. We identified germline IKZF2 mutations (one nonsense (p.R291X)- and 4 distinct missense variants) in six patients with systemic lupus erythematosus, immune thrombocytopenia or EBV-associated hemophagocytic lymphohistiocytosis. Patients exhibited hypogammaglobulinemia, decreased number of T-follicular helper and NK cells. Single-cell RNA sequencing of PBMCs from the patient carrying the R291X variant revealed upregulation of proinflammatory genes associated with T-cell receptor activation and T-cell exhaustion. Functional assays revealed the inability of HeliosR291X to homodimerize and bind target DNA as dimers. Moreover, proteomic analysis by proximity-dependent Biotin Identification revealed aberrant interaction of 3/5 Helios mutants with core components of the NuRD complex conveying HELIOS-mediated epigenetic and transcriptional dysregulation.
Collapse
Affiliation(s)
- Tala Shahin
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniel Mayr
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sarah Giuliani
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Lisa M. Gawriyski
- Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Özlem Yüce Petronczki
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jérôme Hadjadj
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
| | - Sevgi Köstel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Michael P. Triebwasser
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Fanny Rialland-Battisti
- Pediatric Onco-Hematology Department, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Nathalie Costedoat Chalumeau
- Internal Medicine, Cochin Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) Centre, Université de Paris, Paris, France
| | - Pierre Quartier
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
- Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; and
| | - Thomas A. Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Neil Romberg
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Markku Varjosalo
- Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
| | - Irinka Castanon
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Kuijpers TW, Tromp SAM, van Leeuwen EMM, de Bree GJ. Case Report: A Highly Variable Clinical and Immunological Presentation of IKAROS Deficiency in a Single Family. Front Immunol 2022; 13:865838. [PMID: 35479066 PMCID: PMC9036438 DOI: 10.3389/fimmu.2022.865838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Here we describe a novel mutation in the IKZF gene encoding IKAROS, as the cause of common variable immunodeficiency (CVID). The identification of the same defect in the IKZF gene with manifestations of asymptomatic selective IgA deficiency and chronic ITP in the father and her younger brother, respectively, demonstrates the large variability of this genetic defect in one single family, while living in the same environment with a relatively similar genetic background. As discussed, clinical penetrance of the molecular defects identified by mutations in IKZF and other common gene defects in CVID in familial immune-related abnormalities makes genetic testing a necessary step for diagnosis, management, and counseling, as part of the routine immunological workup.
Collapse
Affiliation(s)
- Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Samantha A. M. Tromp
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Samantha A. M. Tromp,
| | - Ester M. M. van Leeuwen
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Hoshino A, Boutboul D, Zhang Y, Kuehn HS, Hadjadj J, Özdemir N, Celkan T, Walz C, Picard C, Lenoir C, Mahlaoui N, Klein C, Peng X, Azar A, Reigh E, Cheminant M, Fischer A, Rieux-Laucat F, Callebaut I, Hauck F, Milner J, Rosenzweig SD, Latour S. Gain-of-function IKZF1 variants in humans cause immune dysregulation associated with abnormal T/B cell late differentiation. Sci Immunol 2022; 7:eabi7160. [PMID: 35333544 DOI: 10.1126/sciimmunol.abi7160] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IKZF1/IKAROS is a key transcription factor of lymphocyte development expressed throughout hematopoiesis. Heterozygous germline IKZF1 haploinsufficient (IKZF1HI) and dominant-negative (IKZF1DN) variants in humans cause B cell immune deficiency and combined immunodeficiency. Here, we identified previously unidentified heterozygous IKZF1 variants (R183C/H) located in the DNA binding domain in eight individuals with inflammatory, autoimmune, allergic symptoms, and abnormal plasma cell (PC) proliferation. Leukocytes of patients exhibited specific defects including impaired IL-2 production by T cells, T helper (TH) skewing toward TH2, low numbers of regulatory T cells (Treg), eosinophilia, and abnormal PC proliferation. In contrast to IKZF1HI and IKZF1DN, IKZF1R183H/C proteins showed increased DNA binding associated with increased gene expression of TH2 and PC differentiation, thus demonstrating that IKZF1R183H/C behave as gain-of-function (GOF) alleles. In vitro treatment with lenalidomide, known to degrade IKZF1, corrected TH2 and PC abnormalities caused by IKZF1R183H/C. These data extend the spectrum of pathological mechanisms associated with IKZF1 deficiencies and highlight the role of IKZF1 in late lymphoid differentiation stages.
Collapse
Affiliation(s)
- Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Yuan Zhang
- Department of Pediatrics, Irving Medical Center, Columbia University, New York, NY, USA
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Jerôme Hadjadj
- Laboratory of Immunogenetics of Pediatric Autoimmunity, INSERM UMR 1163, Imagine Institute, Paris, France.,Université de Paris, Paris, France
| | - Nihal Özdemir
- Kanuni Sultan Süleyman Training and Research Hospital, Pediatric Hematology Oncology Department, Istanbul, Turkey
| | - Tiraje Celkan
- Cerrahpasa Medical University, Pediatric Hematology Oncology Department, Istanbul, Turkey
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France.,Université de Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Nizar Mahlaoui
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiao Peng
- Laboratory of Clinical Immunology and Microbiology and the Immune Deficiency Genetics Section, NIH, Bethesda, MD, USA
| | - Antoine Azar
- Laboratory of Clinical Immunology and Microbiology and the Immune Deficiency Genetics Section, NIH, Bethesda, MD, USA
| | - Erin Reigh
- Dartmouth-Hitchcock Medical Center, Boston, MA, USA
| | - Morgane Cheminant
- Department of Adult Hematology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Alain Fischer
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, APHP, Paris, France.,Imagine Institute, Paris, France.,Collège de France, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmunity, INSERM UMR 1163, Imagine Institute, Paris, France.,Université de Paris, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joshua Milner
- Department of Pediatrics, Irving Medical Center, Columbia University, New York, NY, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
29
|
Schiavo E, Martini B, Attardi E, Consonni F, Ciullini Mannurita S, Coniglio ML, Tellini M, Chiocca E, Fotzi I, Luti L, D'Alba I, Veltroni M, Favre C, Gambineri E. Autoimmune Cytopenias and Dysregulated Immunophenotype Act as Warning Signs of Inborn Errors of Immunity: Results From a Prospective Study. Front Immunol 2022; 12:790455. [PMID: 35058929 PMCID: PMC8765341 DOI: 10.3389/fimmu.2021.790455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Inborn errors of immunity (IEI) are genetic disorders characterized by a wide spectrum of clinical manifestations, ranging from increased susceptibility to infections to significant immune dysregulation. Among these, primary immune regulatory disorders (PIRDs) are mainly presenting with autoimmune manifestations, and autoimmune cytopenias (AICs) can be the first clinical sign. Significantly, AICs in patients with IEI often fail to respond to first-line therapy. In pediatric patients, autoimmune cytopenias can be red flags for IEI. However, for these cases precise indicators or parameters useful to suspect and screen for a hidden congenital immune defect are lacking. Therefore, we focused on chronic/refractory AIC patients to perform an extensive clinical evaluation and multiparametric flow cytometry analysis to select patients in whom PIRD was strongly suspected as candidates for genetic analysis. Key IEI-associated alterations causative of STAT3 GOF disease, IKAROS haploinsufficiency, activated PI3Kδ syndrome (APDS), Kabuki syndrome and autoimmune lymphoproliferative syndrome (ALPS) were identified. In this scenario, a dysregulated immunophenotype acted as a potential screening tool for an early IEI diagnosis, pivotal for appropriate clinical management and for the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Ebe Schiavo
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Beatrice Martini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Enrico Attardi
- Division of Hematology, Careggi University Hospital, Florence, Italy
| | - Filippo Consonni
- Meyer University Children's Hospital, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Maria Luisa Coniglio
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Marco Tellini
- Meyer University Children's Hospital, University of Florence, Florence, Italy
| | - Elena Chiocca
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Ilaria Fotzi
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Laura Luti
- Division of Pediatric Oncology/Hematology, University Hospital of Pisa, Pisa, Italy
| | - Irene D'Alba
- Division of Pediatric Oncology/Hematology, University Hospital of Ospedali Riuniti, Ancona, Italy
| | - Marinella Veltroni
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Claudio Favre
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Eleonora Gambineri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
30
|
Hoshino A, Toyofuku E, Mitsuiki N, Yamashita M, Okamoto K, Yamamoto M, Kanda K, Yamato G, Keino D, Yoshimoto-Suzuki Y, Kamizono J, Onoe Y, Ichimura T, Nagao M, Yoshimura M, Tsugawa K, Igarashi T, Mitsui-Sekinaka K, Sekinaka Y, Doi T, Yasumi T, Nakazawa Y, Takagi M, Imai K, Nonoyama S, Morio T, Latour S, Kanegane H. Clinical Courses of IKAROS and CTLA4 Deficiencies: A Systematic Literature Review and Retrospective Longitudinal Study. Front Immunol 2022; 12:784901. [PMID: 35087518 PMCID: PMC8787285 DOI: 10.3389/fimmu.2021.784901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
IKAROS and CTLA4 deficiencies are inborn errors of immunity and show similar clinical phenotypes, including hypogammaglobulinemia and autoimmune diseases (ADs). However, the differences in clinical features and pathogenesis of these are not fully understood. Therefore, we performed systematic literature reviews for IKAROS and CTLA4 deficiencies. The reviews suggested that patients with IKAROS deficiency develop AD earlier than hypogammaglobulinemia. However, no study assessed the detailed changes in clinical manifestations over time; this was likely due to the cross-sectional nature of the studies. Therefore, we conducted a retrospective longitudinal study on IKAROS and CTLA4 deficiencies in our cohort to evaluate the clinical course over time. In patients with IKAROS deficiency, AD and hypogammaglobulinemia often develop in that order, and AD often resolves before the onset of hypogammaglobulinemia; these observations were not found in patients with CTLA4 deficiency. Understanding this difference in the clinical course helps in the clinical management of both. Furthermore, our results suggest B- and T-cell-mediated ADs in patients with IKAROS and CTLA4 deficiencies, respectively.
Collapse
Affiliation(s)
- Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Etsushi Toyofuku
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Okamoto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michio Yamamoto
- Department of Pediatrics, Yokohama Municipal Citizen's Hospital, Yokohama, Japan
| | - Kenji Kanda
- Department of Pediatrics, Hikone Municipal Hospital, Hikone, Japan
| | - Genki Yamato
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yuri Yoshimoto-Suzuki
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Junji Kamizono
- Department of Pediatrics, Kitakyushu City Yahata Hospital, Kitakyushu, Japan
| | - Yasuhiro Onoe
- Department of Pediatrics, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Takuya Ichimura
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Mika Nagao
- Department of Pediatrics, Ohta Nishinouchi Hospital, Koriyama, Japan
| | - Masaru Yoshimura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Igarashi
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | | | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Takehiko Doi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France.,Université de Paris, Paris, France
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
31
|
Xia R, Cheng Y, Han X, Wei Y, Wei X. Ikaros Proteins in Tumor: Current Perspectives and New Developments. Front Mol Biosci 2021; 8:788440. [PMID: 34950704 PMCID: PMC8689071 DOI: 10.3389/fmolb.2021.788440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
Ikaros is a zinc finger transcription factor (TF) of the Krüppel family member, which significantly regulates normal lymphopoiesis and tumorigenesis. Ikaros can directly initiate or suppress tumor suppressors or oncogenes, consequently regulating the survival and proliferation of cancer cells. Over recent decades, a series of studies have been devoted to exploring and clarifying the relationship between Ikaros and associated tumors. Therapeutic strategies targeting Ikaros have shown promising therapeutic effects in both pre-clinical and clinical trials. Nevertheless, the increasingly prominent problem of drug resistance targeted to Ikaros and its analog is gradually appearing in our field of vision. This article reviews the role of Ikaros in tumorigenesis, the mechanism of drug resistance, the progress of targeting Ikaros in both pre-clinical and clinical trials, and the potential use of associated therapy in cancer therapy.
Collapse
Affiliation(s)
- Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Kuehn HS, Chang J, Yamashita M, Niemela JE, Zou C, Okuyama K, Harada J, Stoddard JL, Nunes-Santos CJ, Boast B, Baxter RM, Hsieh EW, Garofalo M, Fleisher TA, Morio T, Taniuchi I, Dutmer CM, Rosenzweig SD. T and B cell abnormalities, pneumocystis pneumonia, and chronic lymphocytic leukemia associated with an AIOLOS defect in patients. J Exp Med 2021; 218:e20211118. [PMID: 34694366 PMCID: PMC8548914 DOI: 10.1084/jem.20211118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
AIOLOS/IKZF3 is a member of the IKAROS family of transcription factors. IKAROS/IKZF1 mutations have been previously associated with different forms of primary immunodeficiency. Here we describe a novel combined immunodeficiency due to an IKZF3 mutation in a family presenting with T and B cell involvement, Pneumocystis jirovecii pneumonia, and/or chronic lymphocytic leukemia. Patients carrying the AIOLOS p.N160S heterozygous variant displayed impaired humoral responses, abnormal B cell development (high percentage of CD21low B cells and negative CD23 expression), and abrogated CD40 responses. Naive T cells were increased, T cell differentiation was abnormal, and CD40L expression was dysregulated. In vitro studies demonstrated that the mutant protein failed DNA binding and pericentromeric targeting. The mutant was fully penetrant and had a dominant-negative effect over WT AIOLOS but not WT IKAROS. The human immunophenotype was recapitulated in a murine model carrying the corresponding human mutation. As demonstrated here, AIOLOS plays a key role in T and B cell development in humans, and the particular gene variant described is strongly associated with immunodeficiency and likely malignancy.
Collapse
MESH Headings
- Adult
- Animals
- B-Lymphocytes/pathology
- Child
- Female
- Humans
- Ikaros Transcription Factor/genetics
- Ikaros Transcription Factor/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Middle Aged
- Mutation
- Pneumonia, Pneumocystis/blood
- Pneumonia, Pneumocystis/genetics
- T-Lymphocytes/pathology
- Exome Sequencing
- Mice
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jingjie Chang
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Julie E. Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Chengcheng Zou
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Junji Harada
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Jennifer L. Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Cristiane J. Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Brigette Boast
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Division of Allergy and Immunology, Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO
| | - Mary Garofalo
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Thomas A. Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Cullen M. Dutmer
- Division of Allergy and Immunology, Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
33
|
Hetemäki I, Kaustio M, Kinnunen M, Heikkilä N, Keskitalo S, Nowlan K, Miettinen S, Sarkkinen J, Glumoff V, Andersson N, Kettunen K, Vanhanen R, Nurmi K, Eklund KK, Dunkel J, Mäyränpää MI, Schlums H, Arstila TP, Kisand K, Bryceson YT, Peterson P, Otava U, Syrjänen J, Saarela J, Varjosalo M, Kekäläinen E. Loss-of-function mutation in IKZF2 leads to immunodeficiency with dysregulated germinal center reactions and reduction of MAIT cells. Sci Immunol 2021; 6:eabe3454. [PMID: 34826260 DOI: 10.1126/sciimmunol.abe3454] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Meri Kaustio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Matias Kinnunen
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Nelli Heikkilä
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kirsten Nowlan
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Simo Miettinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joona Sarkkinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Noora Andersson
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaisa Kettunen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Clinical Genetics and HUSLAB Laboratory of Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Reetta Vanhanen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katariina Nurmi
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari K Eklund
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Orton Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| | - Johannes Dunkel
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heinrich Schlums
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ulla Otava
- Infectious Disease Unit, Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Jaana Syrjänen
- Infectious Disease Unit, Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Clinical Genetics and HUSLAB Laboratory of Genetics, Helsinki University Hospital, Helsinki, Finland.,Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
34
|
Shahin T, Kuehn HS, Shoeb MR, Gawriyski L, Giuliani S, Repiscak P, Hoeger B, Yüce Petronczki Ö, Bal SK, Zoghi S, Dmytrus J, Seruggia D, Castanon I, Rezaei N, Varjosalo M, Halbritter F, Rosenzweig SD, Boztug K. Germline biallelic mutation affecting the transcription factor Helios causes pleiotropic defects of immunity. Sci Immunol 2021; 6:eabe3981. [PMID: 34826259 DOI: 10.1126/sciimmunol.abe3981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tala Shahin
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mohamed R Shoeb
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Lisa Gawriyski
- Institute of Biotechnology, Helsinki Institute of Life Science, Proteomics Unit, University of Helsinki, Helsinki, Finland
| | - Sarah Giuliani
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Peter Repiscak
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Birgit Hoeger
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Özlem Yüce Petronczki
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sevgi Köstel Bal
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Samaneh Zoghi
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Jasmin Dmytrus
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Davide Seruggia
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Irinka Castanon
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science, Proteomics Unit, University of Helsinki, Helsinki, Finland
| | | | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Kuehn HS, Gloude NJ, Dimmock D, Tokita M, Wright M, Rosenzweig SD, Collins C. Abnormal SCID Newborn Screening and Spontaneous Recovery Associated with a Novel Haploinsufficiency IKZF1 Mutation. J Clin Immunol 2021; 41:1241-1249. [PMID: 33855675 PMCID: PMC11002654 DOI: 10.1007/s10875-021-01035-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/05/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE IKAROS, encoded by IKZF1, is a member of the IKAROS family of zinc-finger transcription factors playing critical roles in lymphocyte development, differentiation, and tumor suppression. Several studies demonstrated that IKZF1 mutations affecting DNA binding or homo-/hetero-dimerization are mostly associated with common variable immunodeficiency, combined immunodeficiency, or hematologic manifestations. Herein we report a likely de novo, nonsense IKZF1 mutation (p.C182*) in a baby with low T cell receptor excision circles (TREC) identified by newborn screening testing for severe combined immunodeficiency. The patient also presented a profound B cell deficiency at birth. METHODS Genetic, functional, immunologic, and clinical outcome data associated with this patient and her mutation were evaluated. RESULTS Mutant p.C182* was detected in the cytoplasm of the patient's primary cells, in contrast to wild type (WT) IKAROS protein, only detected in the nucleus. Functional in vitro assessments revealed that p.C182* was less stable than WT IKAROS protein and failed to bind to its target DNA binding sequence and dimerize with WT IKAROS protein, resulting in impaired pericentromeric targeting and transcriptional repression by means of haploinsufficiency. During follow-up, while a spontaneous recovery of TREC and T cells was observed, B cells improved but not to sustained normal ranges. CONCLUSIONS Patients with IKAROS-associated diseases can present with SCID-like TREC values through newborn screening testing. IKZF1 mutations should be added to the low TREC differential, although spontaneous recovery has to be considered.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Building 10, Rm 2C306, 10 Center Drive, MSC1508, Bethesda, MD, USA
| | - Nicholas J Gloude
- Division of Hematology Oncology, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Rady Children's Hospital San Diego, San Diego, CA, USA
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Mari Tokita
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Meredith Wright
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Building 10, Rm 2C306, 10 Center Drive, MSC1508, Bethesda, MD, USA.
| | - Cathleen Collins
- Rady Children's Hospital San Diego, San Diego, CA, USA
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
36
|
Boast B, Nunes-Santos CDJ, Kuehn HS, Rosenzweig SD. Ikaros-Associated Diseases: From Mice to Humans and Back Again. Front Pediatr 2021; 9:705497. [PMID: 34354970 PMCID: PMC8330404 DOI: 10.3389/fped.2021.705497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
The normal expression of Ikaros (IKZF1) is important for the proper functioning of both the human and murine immune systems. Whilst our understanding of IKZF1 in the immune system has been greatly enhanced by the study of mice carrying mutations in Ikzf1, analyses of human patients carrying germline IKZF1 mutations have been instrumental in understanding its biological role within the human immune system and its effect on human disease. A myriad of different mutations in IKZF1 have been identified, spanning across the entire gene causing differential clinical outcomes in patients including immunodeficiency, immune dysregulation, and cancer. The majority of mutations in humans leading to IKAROS-associated diseases are single amino acid heterozygous substitutions that affect the overall function of the protein. The majority of mutations studied in mice however, affect the expression of the protein rather than its function. Murine studies would suggest that the complete absence of IKZF1 expression leads to severe and sometimes catastrophic outcomes, yet these extreme phenotypes are not commonly observed in patients carrying IKZF1 heterozygous mutations. It is unknown whether this discrepancy is simply due to differences in zygosity, the role and regulation of IKZF1 in the murine and human immune systems, or simply due to a lack of similar controls across both groups. This review will focus its analysis on the current literature surrounding what is known about germline IKZF1 defects in both the human and the murine immune systems, and whether existing mice models are indeed accurate tools to study the effects of IKZF1-associated diseases.
Collapse
Affiliation(s)
- Brigette Boast
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Cristiane de Jesus Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
37
|
Yamashita M, Morio T. Inborn errors of IKAROS and AIOLOS. Curr Opin Immunol 2021; 72:239-248. [PMID: 34265590 DOI: 10.1016/j.coi.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
IKAROS is a pioneer protein of the IKZF family of transcription factors that plays an essential role in lymphocyte development. Recently, inborn errors of IKAROS have been identified in patients with B cell deficiency and hypogammaglobulinemia, and these patients often present with recurrent sinopulmonary infection. Autoimmunity and hematologic malignancies are other characteristic complications seen in the patients with IKAROS deficiency. Missense mutation involving asparagine at the 159th position results in combined immunodeficiency, often presenting with Pneumocystis jirovecii pneumonia. Inborn errors of AIOLOS, HELIOS, and PEGASUS have also been reported in patients with B cell deficiency, Evans syndrome, and hereditary thrombocytopenia, respectively. Here, we briefly review the phenotype and genotype of IKZF mutations, especially IKAROS.
Collapse
Affiliation(s)
- Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| |
Collapse
|
38
|
A variant in human AIOLOS impairs adaptive immunity by interfering with IKAROS. Nat Immunol 2021; 22:893-903. [PMID: 34155405 PMCID: PMC8958960 DOI: 10.1038/s41590-021-00951-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 05/07/2021] [Indexed: 02/05/2023]
Abstract
In the present study, we report a human-inherited, impaired, adaptive immunity disorder, which predominantly manifested as a B cell differentiation defect, caused by a heterozygous IKZF3 missense variant, resulting in a glycine-to-arginine replacement within the DNA-binding domain of the encoded AIOLOS protein. Using mice that bear the corresponding variant and recapitulate the B and T cell phenotypes, we show that the mutant AIOLOS homodimers and AIOLOS-IKAROS heterodimers did not bind the canonical AIOLOS-IKAROS DNA sequence. In addition, homodimers and heterodimers containing one mutant AIOLOS bound to genomic regions lacking both canonical motifs. However, the removal of the dimerization capacity from mutant AIOLOS restored B cell development. Hence, the adaptive immunity defect is caused by the AIOLOS variant hijacking IKAROS function. Heterodimeric interference is a new mechanism of autosomal dominance that causes inborn errors of immunity by impairing protein function via the mutation of its heterodimeric partner.
Collapse
|
39
|
Ramirez NJ, Posadas-Cantera S, Caballero-Oteyza A, Camacho-Ordonez N, Grimbacher B. There is no gene for CVID - novel monogenetic causes for primary antibody deficiency. Curr Opin Immunol 2021; 72:176-185. [PMID: 34153571 DOI: 10.1016/j.coi.2021.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022]
Abstract
'There is no gene for fate' (citation from the movie 'GATTACA') - and there is no gene for CVID. Common Variable ImmunoDeficiency (CVID) is the most prevalent primary immunodeficiency in humans. CVID is characterized by an increased susceptibility to infections, hypogammaglobulinemia, reduced switched memory B cell numbers in peripheral blood and a defective response to vaccination, often complicated by autoimmune and autoinflammatory conditions. However, as soon as a genetic diagnosis has been made in a patient with CVID, the diagnosis must be changed to the respective genetic cause (www.esid.org). Therefore, there are genetic causes for primary antibody deficiencies, but not for CVID. Primary antibody deficiencies (PADs) are a heterogeneous group of disorders. Several attempts have been made to gain further insights into the pathogenesis of PAD, using unbiased approaches such as whole exome or genome sequencing. Today, in just about 35% of cases with PAD, monogenic mutations (including those in the gene TNFRSF13B) can be identified in a set of 68 genes [1•]. These mutations occur either sporadically or are inherited and do explain an often complex phenotype. In our review, we not only discuss gene defects identified in PAD patients previously diagnosed with CVID and/or CVID-like disorders such as IKZF1, CTNNBL1, TNFSF13 and BACH2, but also genetic defects which were initially described in non-CVID patients but have later also been observed in patients with PAD such as PLCG2, PIK3CG, PMS2, RNF31, KMT2D, STAT3. We also included interesting genetic defects in which the pathophysiology suggests a close relation to other known defects of the adaptive immune response, such as DEF6, SAMD9 and SAMD9L, and hence a CVID-like phenotype may be observed in the future. However, alternative mechanisms most likely add to the development of an antibody-deficient phenotype, such as polygenic origins, epigenetic changes, and/or environmental factors.
Collapse
Affiliation(s)
- Neftali J Ramirez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Integrated Research Training Group (IRTG) Medical Epigenetics, Collaborative Research Centre 992, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
40
|
Kuehn HS, Nunes-Santos CJ, Rosenzweig SD. Germline IKZF1 mutations and their impact on immunity: IKAROS-associated diseases and pathophysiology. Expert Rev Clin Immunol 2021; 17:407-416. [PMID: 33691560 PMCID: PMC8091572 DOI: 10.1080/1744666x.2021.1901582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Introduction: The transcription factor IKAROS and IKAROS family members are critical for the development of lymphocyte and other blood cell lineages. Germline heterozygous IKZF1 mutations have been described in primary immunodeficiency as well as in human hematologic malignancies, affecting both B and T cells. Depending on the allelic variants of IKZF1 mutations (haploinsufficiency and dominant negative) clinical phenotypes vary from bacterial, viral, or fungal infection to autoimmune disease and malignancy.Areas covered: In this review, the authors provide an overview of genotype-phenotype correlation and clinical manifestations in patients with IKZF1 mutations. The importance of accurate diagnosis and monitoring immunological changes is also discussed for the management of these complex and rare diseases. IKZF1/IKAROS, immunodeficiency, and CVID were used as the search terms in PubMed and Google Scholar.Expert opinion: Over the past 5 years both genetic and molecular studies have unveiled surprisingly diverse roles of IKZF1 mutations in primary immunodeficiency. While an increasing number of novel IKZF1 variants are being reported, limited, and complex laboratory testing is necessary to verify the mutation's pathogenicity. Therefore, the combination of understanding mechanistic concepts and clinical and immunological follow-up is necessary to increase our knowledge of IKAROS-associated diseases.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md
| | - Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md
| |
Collapse
|
41
|
Mohtashami M, Razavi A, Abolhassani H, Aghamohammadi A, Yazdani R. Primary Immunodeficiency and Thrombocytopenia. Int Rev Immunol 2021; 41:135-159. [PMID: 33464134 DOI: 10.1080/08830185.2020.1868454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Primary immunodeficiency (PID) or Inborn errors of immunity (IEI) refers to a heterogeneous group of disorders characterized by immune system impairment. Although patients with IEI manifest highly variable symptoms, the most common clinical manifestations are recurrent infections, autoimmunity and malignancies. Some patients present hematological abnormality including thrombocytopenia due to different pathogenic mechanisms. This review focuses on primary and secondary thrombocytopenia as a complication, which can occur in IEI. Based on the International Union of Immunological Societies phenotypic classification for IEI, the several innate and adaptive immunodeficiency disorders can lead to thrombocytopenia. This review, for the first time, describes manifestation, mechanism and therapeutic modalities for thrombocytopenia in different classes of IEI.
Collapse
Affiliation(s)
- Maryam Mohtashami
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biology Sciences, University of Kharazmi, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Kuehn HS, Nunes-Santos CJ, Rosenzweig SD. IKAROS-Associated Diseases in 2020: Genotypes, Phenotypes, and Outcomes in Primary Immune Deficiency/Inborn Errors of Immunity. J Clin Immunol 2021; 41:1-10. [PMID: 33392855 DOI: 10.1007/s10875-020-00936-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022]
Abstract
IKAROS, encoded by IKZF1, is a zinc finger transcription factor and a critical regulator of hematopoiesis. Mutations in IKZF1 have been implicated in immune deficiency, autoimmunity, and malignancy in humans. Somatic IKZF1 loss-of-function mutations and deletions have been shown to increase predisposition to the development of B cell acute lymphoblastic leukemia (B-ALL) and associated with poor prognosis. In the last 4 years, germline heterozygous IKZF1 mutations have been reported in primary immune deficiency/inborn errors of immunity. These allelic variants, acting by either haploinsufficiency or dominant negative mechanisms affecting particular functions of IKAROS, are associated with common variable immunodeficiency, combined immunodeficiency, or primarily hematologic phenotypes in affected patients. In this review, we provide an overview of genetic, clinical, and immunological manifestations in patients with IKZF1 mutations, and the molecular and cellular mechanisms that contribute to their disease as a consequence of IKAROS dysfunction.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, 10 Center Dr., Bldg 10, Rm. 2C410F, Bethesda, MD, 20892, USA
| | - Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, 10 Center Dr., Bldg 10, Rm. 2C410F, Bethesda, MD, 20892, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, 10 Center Dr., Bldg 10, Rm. 2C410F, Bethesda, MD, 20892, USA.
| |
Collapse
|