1
|
The Importance of Nitric Oxide as the Molecular Basis of the Hydrogen Gas Fumigation-Induced Alleviation of Cd Stress on Ganoderma lucidum. J Fungi (Basel) 2021; 8:jof8010010. [PMID: 35049950 PMCID: PMC8780922 DOI: 10.3390/jof8010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Whether or not hydrogen gas (H2) can reduce cadmium (Cd) toxicity in Ganoderma lucidum has remained largely unknown. Here, we report that Cd-induced growth inhibition in G. lucidum was significantly alleviated by H2 fumigation or hydrogen-rich water (HRW), evaluated by lower oxidative damage and Cd accumulation. Moreover, the amelioration effects of H2 fumigation were better than of HRW in an optimum concentration of H2 under our experimental conditions. Further results showed that H2-alleviated growth inhibition in G. lucidum was accompanied by increased nitric oxide (NO) level and nitrate reductase (NR) activity under Cd stress. On the other hand, the mitigation effects were reversed after removing endogenous NO with its scavenger cPTIO or inhibiting H2-induced NR activity with sodium tungstate. The role of NO in H2-alleviated growth inhibition under Cd stress was proved to be achieved through a restoration of redox balance, an increase in cysteine and proline contents, and a reduction in Cd accumulation. In summary, these results clearly revealed that NR-dependent NO might be involved in the H2-alleviated Cd toxicity in G. lucidum through rebuilding redox homeostasis, increasing cysteine and proline levels, and reducing Cd accumulation. These findings may open a new window for H2 application in Cd-stressed economically important fungi.
Collapse
|
2
|
Zakiryanova GK, Kustova E, Urazalieva NT, Baimukhametov ET, Makarov VA, Turaly GM, Shurin GV, Biyasheva ZM, Nakisbekov NN, Shurin MR. Notch signaling defects in NK cells in patients with cancer. Cancer Immunol Immunother 2020; 70:981-988. [PMID: 33083905 DOI: 10.1007/s00262-020-02763-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Altered expressions of proto-oncogenes have been reported during normal lymphocytes mitogenesis and in T and B lymphocytes in patients with autoimmune diseases. We have recently demonstrated a significantly decreased expression of c-kit and c-Myc in NK cells isolated from patients with cancer, which might be related to the functional deficiency of NK cells in the tumor environment. Here, focusing on the regulatory mechanisms of this new clinical phenomenon, we determined expression of c-Myc, Notch1, Notch2, p-53, Cdk6, Rb and phosphorylated Rb in NK cells isolated from the healthy donors and cancer patients. The results of our study revealed a significant down-regulation of expression of Notch receptors and up-regulation of Cdk6 expression in NK cells in cancer, while no significant changes in the expression of p53 and Rb proteins were seen. These data revealed novel signaling pathways altered in NK cells in the tumor environment and support further investigation of the origin of deregulated expression of proto-oncogenes in NK cells patients with different types of cancer.
Collapse
Affiliation(s)
| | - Elena Kustova
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Nataliya T Urazalieva
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Emile T Baimukhametov
- Department of Oncology, Kazakh Medical University of Continuing Education, Almaty, Kazakhstan
| | - Valeriy A Makarov
- Department of Oncosurgery, Almaty Oncology Center, Almaty, Kazakhstan
| | - Gulmariya M Turaly
- Joint Use Center, Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Galina V Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Narymzhan N Nakisbekov
- Joint Use Center, Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Michael R Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Udhaya Kumar S, Thirumal Kumar D, Siva R, George Priya Doss C, Younes S, Younes N, Sidenna M, Zayed H. Dysregulation of Signaling Pathways Due to Differentially Expressed Genes From the B-Cell Transcriptomes of Systemic Lupus Erythematosus Patients - A Bioinformatics Approach. Front Bioeng Biotechnol 2020; 8:276. [PMID: 32426333 PMCID: PMC7203449 DOI: 10.3389/fbioe.2020.00276] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disorder that is clinically complex and has increased production of autoantibodies. Via emerging technologies, researchers have identified genetic variants, expression profiling of genes, animal models, and epigenetic findings that have paved the way for a better understanding of the molecular and genetic mechanisms of SLE. Our current study aimed to illustrate the essential genes and molecular pathways that are potentially involved in the pathogenesis of SLE. This study incorporates the gene expression profiling data of the microarray dataset GSE30153 from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between the B-cell transcriptomes of SLE patients and healthy controls were screened using the GEO2R web tool. The identified DEGs were subjected to STRING analysis and Cytoscape to explore the protein-protein interaction (PPI) networks between them. The MCODE (Molecular Complex Detection) plugin of Cytoscape was used to screen the cluster subnetworks that are highly interlinked between the DEGs. Subsequently, the clustered DEGs were subjected to functional annotation with ClueGO/CluePedia to identify the significant pathways that were enriched. For integrative analysis, we used GeneGo MetacoreTM, a Cortellis Solution software, to exhibit the Gene Ontology (GO) and enriched pathways between the datasets. Our study identified 4 upregulated and 13 downregulated genes. Analysis of GO and functional enrichment using ClueGO revealed the pathways that were statistically significant, including pathways involving T-cell costimulation, lymphocyte costimulation, negative regulation of vascular permeability, and B-cell receptor signaling. The DEGs were mainly enriched in metabolic networks such as the phosphatidylinositol-3,4,5-triphosphate pathway and the carnitine pathway. Additionally, potentially enriched pathways, such as the signaling pathways induced by oxidative stress and reactive oxygen species (ROS), chemotaxis and lysophosphatidic acid signaling induced via G protein-coupled receptors (GPCRs), and the androgen receptor activation pathway, were identified from the DEGs that were mainly associated with the immune system. Four genes (EGR1, CD38, CAV1, and AKT1) were identified to be strongly associated with SLE. Our integrative analysis using a multitude of bioinformatics tools might promote an understanding of the dysregulated pathways that are associated with SLE development and progression. The four DEGs in SLE patients might shed light on the pathogenesis of SLE and might serve as potential biomarkers in early diagnosis and as therapeutic targets for SLE.
Collapse
Affiliation(s)
- S. Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - D. Thirumal Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - R. Siva
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - C. George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Nadin Younes
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Mariem Sidenna
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Perturbation in cellular redox homeostasis: Decisive regulator of T cell mediated immune responses. Int Immunopharmacol 2019; 67:449-457. [DOI: 10.1016/j.intimp.2018.12.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
|
5
|
Martin FC, Ang CS, Gardner DK, Renfree MB, Shaw G. Uterine flushing proteome of the tammar wallaby after reactivation from diapause. Reproduction 2016; 152:491-505. [DOI: 10.1530/rep-16-0154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/01/2016] [Indexed: 01/15/2023]
Abstract
The marsupial tammar wallaby has the longest period of embryonic diapause of any mammal, up to 11 months, during which there is no cell division or blastocyst growth. Since the blastocyst in diapause is surrounded by acellular coats, the signals that maintain or terminate diapause involve factors that reside in uterine secretions. The nature of such factors remains to be resolved. In this study, uterine flushings (UFs) were used to assess changes in uterine secretions of tammars using liquid chromatography–mass spectrometry (LC–MS/MS) during diapause (day 0 and 3) and reactivation days (d) 4, 5, 6, 8, 9, 11 and 24 after removal of pouch young (RPY), which initiates embryonic development. This study supports earlier suggestions that the presence of specific factors stimulate reactivation, early embryonic growth and cell proliferation. A mitogen, hepatoma-derived growth factor and soluble epidermal growth factor receptors were observed from d3 until at least d11 RPY when these secreted proteins constituted 21% of the UF proteome. Binding of these factors to specific cellular receptors or growth factors may directly stimulate DNA synthesis and division in endometrial gland cells. Proteins involved in the p53/CDKN1A (p21) cell cycle inhibition pathway were also observed in the diapause samples. Progesterone and most of the oestrogen-regulated proteins were present in the UF after d3, which is concomitant with the start of blastocyst mitoses at d4. We propose that once the p21 inhibition of the cell cycle is lost, growth factors including HDGF and EGFR are responsible for reactivation of the diapausing blastocyst via the uterine secretions.
Collapse
|
6
|
Levring TB, Kongsbak M, Rode AKO, Woetmann A, Ødum N, Bonefeld CM, Geisler C. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis. Oncotarget 2016; 6:21853-64. [PMID: 26392411 PMCID: PMC4673131 DOI: 10.18632/oncotarget.5213] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/24/2015] [Indexed: 12/15/2022] Open
Abstract
Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.
Collapse
Affiliation(s)
- Trine B Levring
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kongsbak
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K O Rode
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Electrocatalytic determination of Reduced Glutathione using rutin as a mediator at acetylene black spiked carbon paste electrode. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.12.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Highly Selective Separation and Enrichment of Phosphopeptides by Uranyl-Salophen Immobilized Silica Gel Material. ACTA ACUST UNITED AC 2015. [DOI: 10.4028/www.scientific.net/amr.1095.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The characterization of phosphoproteins requires highly specific methods for the separation and enrichment of phosphopeptides. Here we report a novel metal ion-immobilized solid phase material for the separation and enrichment of phosphopeptides. The material is uranyl-salophen-silica gel (USSG) particles in which salophen is a tetradentate ligand of uranyl ion. In USSG salophen is connected on the surface of silica gel and uranyl is bound on the surface through its coordination with salophen. Phosphopeptides can be selectively retained by USSG because uranyl-salophen can bind phosphate moiety with strong affinity and high selectivity. The new material USSG has been successfully used for the separation of phosphopeptides from peptide mixtures with the separation efficiency of 97.0% to 97.4%.
Collapse
|
9
|
The Glutathione System: A New Drug Target in Neuroimmune Disorders. Mol Neurobiol 2014; 50:1059-84. [DOI: 10.1007/s12035-014-8705-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/31/2014] [Indexed: 01/17/2023]
|
10
|
Glutathione in cerebral microvascular endothelial biology and pathobiology: implications for brain homeostasis. Int J Cell Biol 2012; 2012:434971. [PMID: 22745639 PMCID: PMC3382959 DOI: 10.1155/2012/434971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 02/07/2023] Open
Abstract
The integrity of the vascular endothelium of the blood-brain barrier (BBB) is central to cerebrovascular homeostasis. Given the function of the BBB as a physical and metabolic barrier that buffers the systemic environment, oxidative damage to the endothelial monolayer will have significant deleterious impact on the metabolic, immunological, and neurological functions of the brain. Glutathione (GSH) is a ubiquitous major thiol within mammalian cells that plays important roles in antioxidant defense, oxidation-reduction reactions in metabolic pathways, and redox signaling. The existence of distinct GSH pools within the subcellular organelles supports an elegant mode for independent redox regulation of metabolic processes, including those that control cell fate. GSH-dependent homeostatic control of neurovascular function is relatively unexplored. Significantly, GSH regulation of two aspects of endothelial function is paramount to barrier preservation, namely, GSH protection against oxidative endothelial cell injury and GSH control of postdamage cell proliferation in endothelial repair and/or wound healing. This paper highlights our current insights and hypotheses into the role of GSH in cerebral microvascular biology and pathobiology with special focus on endothelial GSH and vascular integrity, oxidative disruption of endothelial barrier function, GSH regulation of endothelial cell proliferation, and the pathological implications of GSH disruption in oxidative stress-associated neurovascular disorders, such as diabetes and stroke.
Collapse
|
11
|
Vurusaner B, Poli G, Basaga H. Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 2012; 52:7-18. [PMID: 22019631 DOI: 10.1016/j.freeradbiomed.2011.09.035] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 12/24/2022]
Abstract
Tumor suppressor genes regulate diverse cellular activities including DNA damage repair, cell cycle arrest, mitogenic signaling, cell differentiation, migration, and programmed cell death. In this review the tumor suppressor genes p53, FoxO, retinoblastoma (RB), p21, p16, and breast cancer susceptibility genes 1 and 2 (BRCA1 and BRCA2) and their roles in oxidative stress are summarized with a focus on the links and interplay between their pathways and reactive oxygen species (ROS). The results of a number of studies have demonstrated an antioxidant role for tumor suppressor proteins, activating the expression of some well-known antioxidant genes in response to oxidative stress. On the other hand, recent studies have revealed a pro-oxidant role for p53 by which cellular ROS are increased by enhanced transcription of proapoptotic genes. A tightly regulated feedback loop between ROS and FoxO proteins, with ROS regulating FoxO activity through posttranslational modifications and protein interactions and FoxO controlling intracellular ROS levels, has been demonstrated. Furthermore, these studies have shown that FoxO transcription factors and p38 mitogen-activated protein kinases may interact with the RB pathway under stress conditions. In addition, cellular senescence studies established an unexpected role for ROS in inducing and maintaining senescence-induced tumor suppression that blocks cytokinesis to ensure senescent cells never divide again. p21 and p16 have been shown to act as tumor suppressor proteins and this function extends beyond cell cycle control and includes important roles in regulating oxidative stress. Consequently, these important interactions indicate a critical potential role for tumor suppressor genes in the cellular response against oxidative stress and emphasize links between ROS and tumor suppressor genes that might be therapeutic targets in oxidative damage-associated diseases.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Biological Sciences and Bioengineering Program, Faculty of Natural Sciences and Engineering, Sabanci University, Istanbul, Turkey
| | | | | |
Collapse
|
12
|
Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal 2009; 11:2985-3011. [PMID: 19505186 PMCID: PMC2783918 DOI: 10.1089/ars.2009.2513] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 01/11/2023]
Abstract
The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as ''second messengers'' regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G(0)) to proliferation (G(1), S, G(2), and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a hallmark of various human pathologies. This review discusses the literature that supports the concept of a redox cycle controlling the mammalian cell cycle, with an emphasis on how this control relates to proliferative disorders including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment could improve many aspects of the proliferative disorders.
Collapse
Affiliation(s)
- Ehab H Sarsour
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa , Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
13
|
Geyeregger R, Shehata M, Zeyda M, Kiefer FW, Stuhlmeier KM, Porpaczy E, Zlabinger GJ, Jäger U, Stulnig TM. Liver X receptors interfere with cytokine-induced proliferation and cell survival in normal and leukemic lymphocytes. J Leukoc Biol 2009; 86:1039-48. [PMID: 19671841 DOI: 10.1189/jlb.1008663] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Liver X receptors (LXRs) are nuclear receptors regulating lipid and cholesterol metabolism. Recent data indicate an additional role of LXR in immunity by controlling dendritic cell and T-cell function and in breast and prostate cancer cells. Here, we show that LXR activation interferes with IL-2 and IL-7-induced proliferation and cell cycle progression of human T-cell blasts mainly through inhibited phosphorylation of the retinoblastoma protein and decreased expression of the cell cycle protein cyclin B. Comparable results were obtained with IL-2-dependent chronic lymphoblastic leukemia (CLL) T cells. Furthermore, we show for B-CLL cells that LXR are functionally active and inhibit expression of survival genes bcl-2 and MMP-9, and significantly reduce cell viability, suggesting an interference of LXR with cytokine-dependent CLL cell survival. In conclusion, our data reveal LXR as a potent modulator of cytokine-dependent proliferation and survival of normal and malignant T and B lymphocytes. This novel LXR action could find clinical application in immunosuppressive and antileukemic therapies.
Collapse
Affiliation(s)
- René Geyeregger
- Department of Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Burn injury induces the expression of cystine/glutamate transporter (x(c)(-)) in mouse T cells. Immunol Lett 2009; 125:137-44. [PMID: 19576933 DOI: 10.1016/j.imlet.2009.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 06/12/2009] [Accepted: 06/23/2009] [Indexed: 01/18/2023]
Abstract
System x(c)(-) transporter, formed by the association of CD98 and xCT proteins, regulates the import of cystine into cells and is poorly expressed in T lymphocytes. Thermal injury is associated with high oxidative stress, decreased levels of glutathione (GSH) and protein deficiency, all described as promoters of xCT expression and system x(c)(-) activity. T cell dysfunction is a consequence of thermal injury and has been related to oxidative stress. In order to evaluate if thermal injury induced system x(c)(-) expression in splenic T lymphocytes, cells were isolated from sham- and burn-injured mice at day 10 post-burn and cultured in 2-mercaptoethanol (2-ME)-rich and -free media. Isolated splenic T cells were stimulated and cell proliferation, system x(c)(-) expression and cystine transport activity were measured. Our results demonstrate that only burn-injured T cells express xCT and proliferate in (2-ME)-free media. In these cells, viability and CD25 expression was higher than control T cells. x(c)(-) system expression was responsible for significantly higher (14)C-cystine uptake by burn-injured T cells and its inhibition by sulfasalazine (SASP) decreased significantly their proliferation. Overall, these results demonstrate that xCT expression is induced by thermal injury in T lymphocytes and that cystine import by x(c)(-) leads to T cell dysfunction.
Collapse
|
15
|
Macleod KF. The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system. Nat Rev Cancer 2008; 8:769-81. [PMID: 18800074 PMCID: PMC2989879 DOI: 10.1038/nrc2504] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exposure to pro-oxidants and defects in the repair of oxidative base damage are associated with disease and ageing and also contribute to the development of anaemia, bone marrow failure and haematopoietic malignancies. This Review assesses emerging data indicative of a specific role for the RB tumour suppressor pathway in the response of the haematopoietic system to oxidative stress. This is mediated through signalling pathways that involve DNA damage sensors, forkhead box O (Foxo) transcription factors and p38 mitogen-activated protein kinases and has downstream consequences for cell cycle progression, antioxidant capacity, mitochondrial mass and cellular metabolism.
Collapse
Affiliation(s)
- Kay F Macleod
- Ben May Department for Cancer Research, Committee on Cancer Biology, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
16
|
Ying L, Hofseth AB, Browning DD, Nagarkatti M, Nagarkatti PS, Hofseth LJ. Nitric oxide inactivates the retinoblastoma pathway in chronic inflammation. Cancer Res 2007; 67:9286-93. [PMID: 17909036 PMCID: PMC2752153 DOI: 10.1158/0008-5472.can-07-2238] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Patients with chronic inflammatory bowel disease have a high risk of colon cancer. The molecules that initiate and promote colon cancer and the cancer pathways altered remain undefined. Here, using in vitro models and a mouse model of colitis, we show that nitric oxide (NO) species induce retinoblastoma protein (pRb) hyperphosphorylation and inactivation, resulting in increased proliferation through the pRb-E2F1 pathway. NO-driven pRb hyperphosphorylation occurs through soluble guanylyl cyclase/guanosine 3',5'-cyclic monophosphate signaling and is dependent on the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase MEK/ERK and phosphatidylinositol 3-kinase/AKT pathways. Our results reveal a link between NO and pRb inactivation and provide insight into molecules that can be targeted in the prevention of the inflammation-to-cancer sequence.
Collapse
Affiliation(s)
- Lei Ying
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Anne B. Hofseth
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Mitzi Nagarkatti
- Department of Pathology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Prakash S. Nagarkatti
- Department of Pathology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Lorne J. Hofseth
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
17
|
Menon SG, Sarsour EH, Kalen AL, Venkataraman S, Hitchler MJ, Domann FE, Oberley LW, Goswami PC. Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase. Cancer Res 2007; 67:6392-9. [PMID: 17616699 DOI: 10.1158/0008-5472.can-07-0225] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thiol antioxidants, including N-acetyl-L-cysteine (NAC), are widely used as modulators of the intracellular redox state. We investigated the hypothesis that NAC-induced reactive oxygen species (ROS) signaling perturbs cellular proliferation by regulating the cell cycle regulatory protein cyclin D1 and the ROS scavenging enzyme Mn-superoxide dismutase (MnSOD). When cultured in media containing NAC, mouse fibroblasts showed G(1) arrest with decreased cyclin D1 protein levels. The absence of a NAC-induced G(1) arrest in fibroblasts overexpressing cyclin D1 (or a nondegradable mutant of cyclin D1-T286A) indicates that cyclin D1 regulates this G(1) arrest. A delayed response to NAC exposure was an increase in both MnSOD protein and activity. NAC-induced G(1) arrest is exacerbated in MnSOD heterozygous fibroblasts. Results from electron spin resonance spectroscopy and flow cytometry measurements of dihydroethidine fluorescence showed an approximately 2-fold to 3-fold increase in the steady-state levels of superoxide (O(2)(*-)) in NAC-treated cells compared with control. Scavenging of O(2)(*-) with Tiron reversed the NAC-induced G(1) arrest. These results show that an O(2)(*-) signaling pathway regulates NAC-induced G(1) arrest by decreasing cyclin D1 protein levels and increasing MnSOD activity.
Collapse
Affiliation(s)
- Sarita G Menon
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
In recent years, the intracellular oxidation-reduction (redox) state has gained increasing attention as a critical mediator of cell signaling, gene expression changes and proliferation. This review discusses the evidence for a redox cycle (i.e., fluctuation in the cellular redox state) regulating the cell cycle. The presence of redox-sensitive motifs (cysteine residues, metal co-factors in kinases and phosphatases) in several cell cycle regulatory proteins indicate periodic oscillations in intracellular redox state could play a central role in regulating progression from G0/G1 to S to G2 and M cell cycle phases. Fluctuations in the intracellular redox state during cell cycle progression could represent a fundamental mechanism linking oxidative metabolic processes to cell cycle regulatory processes. Proliferative disorders are central to a variety of human pathophysiological conditions thought to involve oxidative stress. Therefore, a more complete understanding of redox control of the cell cycle could provide a biochemical rationale for manipulating aberrant cell proliferation.
Collapse
Affiliation(s)
- S G Menon
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
19
|
Hoffman A, Greene JJ, Spetner LM, Burke M. Redox-mediated bypass of restriction point via skipping of G1pm. Theor Biol Med Model 2006; 3:26. [PMID: 16867189 PMCID: PMC1557840 DOI: 10.1186/1742-4682-3-26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Accepted: 07/25/2006] [Indexed: 12/27/2022] Open
Abstract
Background It is well known that cancer cells bypass the restriction point, R, and undergo uncontrolled cell proliferation. Hypothesis and evidence We suggest here that fibrosarcoma cells enter G1ps directly from M, skipping G1pm, hence bypassing R, in response to redox modulation. Evidence is presented from the published literature that demonstrate a shortening of the cycle period of transformed fibroblasts (SV-3T3) compared to the nontransformed 3T3 fibroblasts, corresponding to the duration of G1pm in the 3T3 fibroblasts. Evidence is also presented that demonstrate that redox modulation can induce the CUA-4 fibroblasts to bypass R, resulting in a cycle period closely corresponding to the cycle period of fibrosarcoma cells (HT1080). Conclusion The evidence supports our hypothesis that a low internal redox potential can cause fibrosarcoma cells to skip the G1pm phase of the cell cycle.
Collapse
Affiliation(s)
| | | | | | - Michael Burke
- Redoxia, Jerusalem, Israel
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
20
|
Martirosyan A, Leonard S, Shi X, Griffith B, Gannett P, Strobl J. Actions of a histone deacetylase inhibitor NSC3852 (5-nitroso-8-quinolinol) link reactive oxygen species to cell differentiation and apoptosis in MCF-7 human mammary tumor cells. J Pharmacol Exp Ther 2006; 317:546-52. [PMID: 16497787 DOI: 10.1124/jpet.105.096891] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NSC3852 (5-nitroso-8-quinolinol) has cell differentiation and antiproliferative activity in human breast cancer cells in tissue culture and antitumor activity in mice bearing P388 and L1210 leukemic cells. We investigated the mechanism of NSC3852 action in MCF-7 human breast cancer cells using electron spin resonance (ESR). Reactive oxygen species (ROS) were detected in MCF-7 cell suspensions incubated with NSC3852 using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Formation of the DMPO-OH adduct was quenched by the addition of superoxide dismutase but not by catalase, and we concluded that superoxide was generated in the NSC3852-treated cells. The flavoprotein inhibitor diphenylene iodonium suppressed ROS production, providing evidence for the involvement of a flavin-dependent enzyme system in the ROS response to NSC3852. A biologically significant oxidative response to NSC3852 occurred in MCF-7 cells. An early marker of oxidative stress was a decrease in the [glutathione]/[glutathione disulfide] ratio 1 h after NSC3852 addition. Oxidative DNA damage, marked by the presence of 8-oxoguanine, and DNA-strand breakage occurred in cells exposed to NSC3852 for 24 h. Apoptosis peaked 48 h after exposure to NSC3852. Pretreatment with the glutathione precursor N-acetyl-l-cysteine (NAC) prevented DNA-strand breakage and apoptosis. Pretreatment with NAC also reversed NSC3852 decreases in E2F1, Myc, and phosphorylated retinoblastoma protein, indicative of redox-sensitive pathway(s) in MCF-7 cells during G(1) phase of the cell cycle. We conclude that ROS formation is involved in the apoptotic and cell differentiation responses to NSC3852 in MCF-7 cells.
Collapse
Affiliation(s)
- Anna Martirosyan
- Department of Biochemistry and Molecular Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | | | | | | | | | | |
Collapse
|
21
|
Hadzic T, Li L, Cheng N, Walsh SA, Spitz DR, Knudson CM. The role of low molecular weight thiols in T lymphocyte proliferation and IL-2 secretion. THE JOURNAL OF IMMUNOLOGY 2006; 175:7965-72. [PMID: 16339532 DOI: 10.4049/jimmunol.175.12.7965] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glutathione (GSH) is an abundant intracellular tripeptide that has been implicated as an important regulator of T cell proliferation. The effect of pharmacological regulators of GSH and other thiols on murine T cell signaling, proliferation, and intracellular thiol levels was examined. l-Buthionine-S,R-sulfoximine (BSO), an inhibitor of GSH synthesis, markedly reduced GSH levels and blocked T cell proliferation without significant effect on cell viability. N-acetylcysteine markedly enhanced T cell proliferation without affecting GSH levels. Cotreatment of T cells with N-acetylcysteine and BSO failed to restore GSH levels, but completely restored the proliferative response. Both 2-ME and l-cysteine also reversed the BSO inhibition of T cell proliferation. Intracellular l-cysteine levels were reduced with BSO treatment and restored with cotreatment with NAC or l-cysteine. However, 2-ME completely reversed the BSO inhibition of proliferation without increasing intracellular cysteine levels. Therefore, neither GSH nor cysteine is singularly critical in limiting T cell proliferation. Reducing equivalents from free thiols were required because oxidation of the thiol moiety completely abolished the effect. Furthermore, BSO did not change the expression of surface activation markers, but effectively blocked IL-2 and IL-6 secretion. Importantly, exogenous IL-2 completely overcame BSO-induced block of T cell proliferation. These results demonstrate that T cell proliferation is regulated by thiol-sensitive pathway involving IL-2.
Collapse
Affiliation(s)
- Tanja Hadzic
- Department of Pathology, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | |
Collapse
|
22
|
Noda T, Iwakiri R, Fujimoto K, Rhoads CA, Aw TY. Exogenous cysteine and cystine promote cell proliferation in CaCo-2 cells. Cell Prolif 2002; 35:117-29. [PMID: 11952646 PMCID: PMC6495955 DOI: 10.1046/j.1365-2184.2002.00229.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2001] [Accepted: 09/05/2001] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that intracellular glutathione, a ubiquitous intracellular thiol, is related to cell proliferation and that cysteine or its disulphide form, cystine, also induces cell proliferation. Cysteine is a thiol containing amino acid and a rate-limiting precursor of glutathione. Therefore, it is still unresolved as to whether the proliferative effect of cysteine or cystine is entirely mediated by a change in the intracellular glutathione status. The objective of this study was to delineate the relationship among cysteine/cystine (thereafter referred to as cyst(e)ine), intracellular glutathione and cell proliferation in the human colon cancer CaCo-2 cell line. CaCo-2 cells were cultured in cyst(e)ine-free Dulbecco's Modified Eagle Medium without serum, and treated with 200 microm cysteine and/or 200-400 microm cystine for 24 h. In the presence of DL-buthionine-[S, R]-sulfoximine (BSO), a glutathione synthesis inhibitor, exogenously administered cyst(e)ine did not change the intracellular glutathione content, but increased the intracellular cysteine as well as cystine level. Addition of exogenous cyst(e)ine following 5 mm BSO treatment significantly increased cell proliferation as measured by 3H-thymidine incorporation and protein content. Cell cycle analyses revealed that cyst(e)ine promoted cell progression from the G1 phase to the S phase. Correspondingly, cyst(e)ine treatment induced expression of cyclin D1 and phosphorylation of retinoblastoma protein (Rb). In conclusion, these data indicate that both cysteine and cystine have proliferative effects in CaCo-2 cells independent of an increase in intracellular glutathione. Induction of cyclin D1, phosphorylation of Rb, and subsequent facilitation of G1-to-S phase transition were involved in the proliferative effect of exogenous cyst(e)ine.
Collapse
Affiliation(s)
- T Noda
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
23
|
Husain Z, Pinto C, Sofia RD, Yunis EJ. Felbamate-induced apoptosis of hematopoietic cells is mediated by redox-sensitive and redox-independent pathways. Epilepsy Res 2002; 48:57-69. [PMID: 11823110 DOI: 10.1016/s0920-1211(01)00320-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Felbamate (FBM; 2-phenyl-1,3-propanediol dicarbamate) is an approved antiepileptic drug shown to be effective in a variety of seizure disorders refractory to other treatments. However, its use has been restricted because of association with occurrence of rare cases of aplastic anemia and hepatic failure. Since it was shown that FBM metabolism requires glutathione (GSH), we used two experimental protocols to determine if the effects of specific metabolites were sensitive to redox pathways. FBM and its metabolite W873 (2-phenyl-1,3-propanediol monocarbamate), at 0.1 mg/ml, induced increased apoptosis of bone marrow cells from B10.AKM mice as compared with B10.BR mice. Study of the effects of the drug on human promonocytic cell line U937 cells showed that FBM and the metabolite W2986 [2-(4-hydroxyphenyl)-1,3 propanediol dicarbamate], at higher concentrations (0.5 mg/ml), induced apoptosis in this cell line. We also observed that while FBM and its metabolites induced increased apoptosis of B cells with reduced intracellular GSH levels, addition of exogenous GSH decreased apoptosis induced by W873 but did not significantly affect apoptosis induced by FBM or W2986. Our results suggest that, at concentrations used during the present investigations, FBM metabolites induce apoptosis via redox-sensitive and redox-independent pathways.
Collapse
Affiliation(s)
- Zaheed Husain
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
24
|
Hoffman A, Spetner LM, Burke M. Cessation of cell proliferation by adjustment of cell redox potential. J Theor Biol 2001; 211:403-7. [PMID: 11476623 DOI: 10.1006/jtbi.2001.2356] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A variety of chemical substances are known to stop cell proliferation, although the mechanisms are obscure. We suggest that many of these chemicals employ the braking power of the retinoblastoma (RB) protein to stop proliferation by raising the intracellular redox potential. The elevation of the redox potential above a threshold prevents the phosphorylation of RB protein, which in turn impedes the release of transcription factors necessary for the progression of the cell cycle. The redox potential of normal proliferating fibroblasts has been found to be below that of fibrosarcoma cells. The possibility thus exists that, for cells with this property, the dosage of a redox-raising agent can be adjusted to stop cancer-cell proliferation without affecting the proliferation of normal cells.
Collapse
Affiliation(s)
- A Hoffman
- Rehovot Research Associates, Rehovot, Israel
| | | | | |
Collapse
|
25
|
Tsuyuki S, Horvath-Arcidiacono JA, Bloom ET. Effect of redox modulation on xenogeneic target cells: the combination of nitric oxide and thiol deprivation protects porcine endothelial cells from lysis by IL-2-activated human NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4106-14. [PMID: 11238660 DOI: 10.4049/jimmunol.166.6.4106] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence suggests that NK cells contribute to the pathogenesis of delayed rejection of vascularized xenografts, and NK cells have been suggested to participate in hyperacute xenograft rejection. Endothelial cells have been shown to be the primary target of the recipient's immune responses that mediate both hyperacute and delayed xenograft rejection. Under conditions of oxidative stress induced by thiol deprivation, but not under normal conditions, pretreatment of porcine aortic endothelial cells (PAECs) with the NO donor, S-nitroso-N-acetyl-penicillamine, dramatically inhibited killing of PAEC target cells by IL-2-activated human NK cells. This same combined treatment reduced both surface expression and mRNA levels of E-selectin. Moreover, anti-E-selectin mAb, but not Ab to VCAM-1, protected PAEC from lysis by human IL-2-activated NK cells in a dose-dependent manner. These findings suggest that expression of porcine E-selectin is important for the cytotoxicity of PAEC mediated by activated human NK cells and may be involved in the redox-mediated modulation of that cytotoxicity. It is known that NF-kappa B activation is required for transcription of E-selectin, and the current data show that the suppression of E-selectin expression by S-nitroso-N-acetyl-penicillamine pretreatment and thiol deprivation was associated with reduced NF-kappa B DNA-binding activity in PAEC. These data suggest that the regulation of porcine E-selectin may be important for modulating delayed xenograft rejection and that manipulation of cellular redox systems may provide a means to protect xenogeneic endothelial cells from NK cell-mediated cytotoxicity.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/pharmacology
- Aorta
- Cell Membrane/drug effects
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cells, Cultured
- Culture Media/metabolism
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- DNA/antagonists & inhibitors
- DNA/metabolism
- Down-Regulation/drug effects
- Down-Regulation/immunology
- E-Selectin/biosynthesis
- E-Selectin/genetics
- E-Selectin/immunology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Glutathione/antagonists & inhibitors
- Glutathione/metabolism
- Humans
- Immunity, Innate/drug effects
- Interleukin-2/pharmacology
- Intracellular Fluid/metabolism
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/drug effects
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Nitric Oxide/physiology
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase Type II
- Oxidation-Reduction
- Penicillamine/analogs & derivatives
- Penicillamine/pharmacology
- Protein Binding/drug effects
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- S-Nitroso-N-Acetylpenicillamine
- Sulfhydryl Compounds/metabolism
- Swine
Collapse
Affiliation(s)
- S Tsuyuki
- Laboratory of Immunology and Virology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
26
|
Sen CK. Cellular thiols and redox-regulated signal transduction. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:1-30. [PMID: 10842745 DOI: 10.1016/s0070-2137(01)80001-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In contrast to the conventional notion that reactive oxygen is mostly a trigger for oxidative damage of biological structures, now we know that low physiologically relevant concentrations of ROS can regulate a variety of key molecular mechanisms that may be linked with important cell functions (Fig. 4). Redox-based regulation of gene expression has emerged as a fundamental regulatory mechanism in cell biology. Several proteins, with apparent redox-sensing activity, have been described. Electron flow through side-chain functional CH2-SH groups of conserved cysteinyl residues in these proteins account for the redox-sensing properties. Protein thiol groups with high thiol-disulfide oxidation potentials are likely to be redox-sensitive. The ubiquitous endogenous thiols thioredoxin and glutathione are of central importance in redox signaling. Signals are transduced from the cell surface to the nucleus through phosphorylation and dephosphorylation chain reactions of cellular proteins at tyrosine and serine/threonine. Protein phosphorylation, one of the most fundamental mediators of cell signaling, is redox-sensitive. DNA-binding proteins are involved in the regulation of cellular processes such as replication, recombination, viral integration and transcription. Several studies show that the interaction of certain transcription regulatory proteins with their respective cognate DNA sites is also redox-regulated. Changes in the concentration of Ca2+i control a wide variety of cellular functions, including transcription and gene expression; Ca(2+)-driven protein phosphorylation and proteolytic processing of proteins are two major intracellular events that are implicated in signal transduction from the cell surface to the nucleus. Intracellular calcium homeostasis is regulated by the redox state of cellular thiols, and it is evident that cell calcium may play a critical role in the activation of the redox-sensitive transcription factor NF-kappa B. Among the several thiol agents tested for their efficacy in modulating cellular redox status, N-acetyl-L-cysteine and alpha-lipoic acid hold most promise for human use. A strong therapeutic potential of strategies that would modulate the cellular thioredoxin system has been also evident.
Collapse
Affiliation(s)
- C K Sen
- Department of Molecular and Cell Biology, University of California Berkeley 94720, USA
| |
Collapse
|
27
|
Klatt P, Lamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4928-44. [PMID: 10931175 DOI: 10.1046/j.1432-1327.2000.01601.x] [Citation(s) in RCA: 558] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein S-glutathiolation, the reversible covalent addition of glutathione to cysteine residues on target proteins, is emerging as a candidate mechanism by which both changes in the intracellular redox state and the generation of reactive oxygen and nitrogen species may be transduced into a functional response. This review will provide an introduction to the concepts of oxidative and nitrosative stress and outline the molecular mechanisms of protein regulation by oxidative and nitrosative thiol-group modifications. Special attention will be paid to recently published work supporting a role for S-glutathiolation in stress signalling pathways and in the adaptive cellular response to oxidative and nitrosative stress. Finally, novel insights into the molecular mechanisms of S-glutathiolation as well as methodological problems related to the interpretation of the biological relevance of this post-translational protein modification will be discussed.
Collapse
Affiliation(s)
- P Klatt
- Department of Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, Instituto Reina Sofía de Investigaciones Nefrológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | |
Collapse
|
28
|
Furuke K, Burd PR, Horvath-Arcidiacono JA, Hori K, Mostowski H, Bloom ET. Human NK Cells Express Endothelial Nitric Oxide Synthase, and Nitric Oxide Protects Them from Activation-Induced Cell Death by Regulating Expression of TNF-α. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Although NO appears important in rodent immune responses, its involvement in the human immune system is unclear. We report that human NK cells express constitutive endothelial NO synthase mRNA and protein, but not detectable levels of inducible NO synthase. They produce NO following activation by coculture with target cells or cross-linking with anti-CD16 mAb, and production is increased in the presence of IL-2. N-monomethyl-l-arginine (l-NMA), a NOS inhibitor, partially inhibited NK cell lysis of four different target cells (<40% inhibition at 500 μM l-NMA), but not granule release following coculture with target cells, or Fas ligand induction following cross-linking with anti-CD16 mAb. However, l-NMA augmented apoptosis of NK cells induced by activation through CD16 ligation or coculture with K562. An NO donor, S-nitroso-N-acetylpenicillamine (SNAP), suppressed apoptosis of NK cells induced by CD16 cross-linking or coculture with target cells, suggesting that endogenous NO production is involved in protection of NK cells from activation-induced apoptosis, thereby maintaining NK activity. SNAP also suppressed, and l-NMA enhanced, expression of TNF-α, reported to be involved in activation-induced NK cell death, in response to CD16 cross-linking. Suppression of anti-CD16-induced apoptosis by SNAP was reversed by the addition of rTNF-α. DNA-binding activity of the transcription factor, NF-AT, which is involved in TNF-α induction upon ligation of CD16, was inhibited by SNAP and enhanced by l-NMA. Our results suggest that down-regulation of TNF-α expression, possibly due to suppression of NF-AT activation, is a mechanism by which endogenous NO protects NK cells from activation-induced apoptosis, and maintains lytic capacity.
Collapse
Affiliation(s)
- Keizo Furuke
- *Laboratory of Cellular Immunology, Division of Cellular and Gene Therapies, and
| | - Parris R. Burd
- *Laboratory of Cellular Immunology, Division of Cellular and Gene Therapies, and
| | | | - Kotaro Hori
- †Division of Cytokine Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Howard Mostowski
- *Laboratory of Cellular Immunology, Division of Cellular and Gene Therapies, and
| | - Eda T. Bloom
- *Laboratory of Cellular Immunology, Division of Cellular and Gene Therapies, and
| |
Collapse
|
29
|
Furuke K, Shiraishi M, Mostowski HS, Bloom ET. Fas Ligand Induction in Human NK Cells Is Regulated by Redox Through a Calcineurin-Nuclear Factors of Activated T Cell-Dependent Pathway. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Fas ligand (FasL) on cytotoxic lymphocytes is important for mediating apoptosis of activated lymphocytes and other target cells. We have reported that NK cell functions, such as proliferation, cell death, and killing activity, are subject to regulation by cellular redox status. Here, we report that expression of FasL protein and mRNA in activated NK cells is also regulated by redox. Ligation of CD16 on IL-2-preactivated NK cells resulted in reduction of intracellular peroxide level as well as induction of FasL expression. This CD16-induced FasL expression was suppressed by oxidative stress, including thiol deprivation or treatment with hydrogen peroxide (H2O2). Addition of thiol-reducing compounds, such as l-cystine, 2-ME, or N-acetyl cysteine, restored FasL expression. These data suggest that CD16 stimulation requires cellular reducing status for FasL induction in NK cells. Because FasL gene activation following CD16 cross-linking is regulated by the NF of activated T cells (NFAT), we examined the effect of oxidative stresses on NFAT activation. Electrophoretic mobility shift assays revealed that both thiol insufficiency and H2O2 treatment suppressed DNA-binding activity of NFAT and that addition of thiol-reducing compounds reversed or even enhanced it. Furthermore, these oxidative stresses inhibited activity of calcineurin, a serine/threonine phosphatase that regulates NFAT activation. These results suggest that suppression of calcineurin and NFAT activation is a mechanism by which oxidative stress inhibits FasL induction in activated NK cells and further support the hypothesis that thiol-reducing compounds might be required for maintenance of optimal NK functions under physiologic oxidative conditions.
Collapse
Affiliation(s)
- Keizo Furuke
- Laboratory of Cellular Immunology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Mitsuhiro Shiraishi
- Laboratory of Cellular Immunology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Howard S. Mostowski
- Laboratory of Cellular Immunology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Eda T. Bloom
- Laboratory of Cellular Immunology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| |
Collapse
|
30
|
Abstract
Redox processes have been implicated in various biologic processes, including signal transduction, gene expression, and cell proliferation, and several molecules have been identified as redox regulators in cell activation. Glutathione is the oldest and most investigated molecule among them. Although details of the mechanisms by which glutathione regulates various aspects of cell biology remains to be characterized, the relationship between immunodeficiency and cellular glutathione status is well established. Redox dysregulation contributes to the pathogenesis of acquired immunodeficiency syndrome (AIDS). Human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV)-infected rhesus macaques have, on the average, significantly decreased plasma cysteine and intracellular glutathione levels. Liver contains abundant levels of reducing factors. However, glutathione levels in serum and peripheral blood mononuclear cells of cirrhosis patients are lower compared to values detected in healthy individuals. In the present article, the significance of glutathione in regulating the functions of lymphocytes, especially those of liver-associated lymphocytes, has been described. A novel strategy for immune therapy of liver neoplasms with the use of redox-modulating agents has been proposed.
Collapse
Affiliation(s)
- A Yamauchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | | | | | | |
Collapse
|
31
|
Abstract
Recent structural information suggests that the HC(X)5R active-site motif defines three distinct evolutionary families of phosphatases that employ a common catalytic mechanism. In two instances, regulation of phosphatase activity employs autoinhibitory mechanisms involving either intermolecular or intramolecular interactions, whereby inhibition is mediated by sterically blocking the active-site cleft.
Collapse
Affiliation(s)
- J M Denu
- Oregon Health Sciences University, Department of Biochemistry and Molecular Biology, Portland 97201-3098, USA.
| | | |
Collapse
|
32
|
Abstract
Oxidation-reduction (redox) based regulation of signal transduction and gene expression is emerging as a fundamental regulatory mechanism in cell biology. Electron flow through side chain functional CH2-SH groups of conserved cysteinyl residues in proteins account for their redox-sensing properties. Because in most intracellular proteins thiol groups are strongly "buffered" against oxidation by the highly reduced environment inside the cell, only accessible protein thiol groups with high thiol-disulfide oxidation potentials are likely to be redox sensitive. The list of redox-sensitive signal transduction pathways is steadily growing, and current information suggests that manipulation of the cell redox state may prove to be an important strategy for the management of AIDS and some forms of cancer. The endogenous thioredoxin and glutathione systems are of central importance in redox signaling. Among the thiol agents tested for their efficacy to modulate cellular redox status, N-acetyl-L-cysteine (NAC) and alpha-lipoic acid hold promise for clinical use. A unique advantage of lipoate is that it is able to utilize cellular reducing equivalents, and thus it harnesses the metabolic power of the cell to continuously regenerate its reductive vicinal dithiol form. Because lipoate can be readily recycled in the cell, it has an advantage over N-acetyl-L-cysteine on a concentration:effect basis. Our current knowledge of redox regulated signal transduction has led to the unfolding of the remarkable therapeutic potential of cellular thiol modulating agents.
Collapse
Affiliation(s)
- C K Sen
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA.
| |
Collapse
|
33
|
Fauman EB, Cogswell JP, Lovejoy B, Rocque WJ, Holmes W, Montana VG, Piwnica-Worms H, Rink MJ, Saper MA. Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell 1998; 93:617-25. [PMID: 9604936 DOI: 10.1016/s0092-8674(00)81190-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cdc25 phosphatases activate the cell division kinases throughout the cell cycle. The 2.3 A structure of the human Cdc25A catalytic domain reveals a small alpha/beta domain with a fold unlike previously described phosphatase structures but identical to rhodanese, a sulfur-transfer protein. Only the active-site loop, containing the Cys-(X)5-Arg motif, shows similarity to the tyrosine phosphatases. In some crystals, the catalytic Cys-430 forms a disulfide bond with the invariant Cys-384, suggesting that Cdc25 may be self-inhibited during oxidative stress. Asp-383, previously proposed to be the general acid, instead serves a structural role, forming a conserved buried salt-bridge. We propose that Glu-431 may act as a general acid. Structure-based alignments suggest that the noncatalytic domain of the MAP kinase phosphatases will share this topology, as will ACR2, a eukaryotic arsenical resistance protein.
Collapse
Affiliation(s)
- E B Fauman
- Department of Biological Chemistry, The University of Michigan, Ann Arbor 48109-1055, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|