1
|
Hagen MW, Setiawan NJ, Dexter S, Woodruff KA, Gaerlan FK, Orozco JJ, Termini CM. The bone marrow niche and hematopoietic system are distinctly remodeled by CD45-targeted astatine-211 radioimmunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.645037. [PMID: 40236126 PMCID: PMC11996527 DOI: 10.1101/2025.04.04.645037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Radioimmunotherapy (RIT) is used to treat patients with hematological malignancies known to infiltrate the bone marrow (BM) microenvironment. RIT uses target-specific monoclonal antibodies stably conjugated to radionuclides to deliver cytotoxic radiation to cells of interest. While RIT is effective at delivering radiation to cancer cells, normal tissue is also exposed to radiation upon RIT, the consequences of which are largely unknown. Here, we studied the cellular and molecular effects of CD45-targeted astatine-211 ( 211 At) RIT, IgG non-targeted 211 At RIT, and Cesium-137 total-body irradiation (TBI) on hematopoietic cells and their BM niche in wild-type immunocompetent mice. Relative to non-targeted RIT or TBI, CD45-targeted RIT significantly delayed hematopoietic regeneration overall in the peripheral blood and BM and reduced hematopoietic stem/progenitor cell recovery and colony-forming ability. While BM endothelial cells (ECs) do not express the CD45 antigen, CD45-targeted RIT significantly depleted BM ECs compared to non-targeted RIT or TBI. RNA sequence analysis revealed significantly different transcriptomic profiles of BM ECs from CD45-RIT-treated mice compared to non- targeted RIT or TBI. ECs from CD45-RIT-treated mice, but not TBI or IgG-RIT-treated mice, were transcriptionally enriched for TGFβ, NOTCH, and IFNα signaling pathways compared to untreated mice. Collectively, our study indicates that CD45-targeted RIT severely impacts hematopoietic and EC niche recovery compared to non- targeted approaches. Future studies are required to determine the long-term consequences of such RIT-driven effects on BM niche physiology and how BM niche reprogramming by RIT affects cancer cells. KEY POINTS CD45-targeted radioimmunotherapy more effectively suppresses the hematopoietic system than non- targeted radiation delivery.The bone marrow vascular niche is differentially reprogrammed by CD45-targeted radioimmunotherapy compared to non-targeted radiation delivery.
Collapse
|
2
|
Karbon G, Schuler F, Braun VZ, Eichin F, Haschka M, Drach M, Sotillo R, Geley S, Spierings DC, Tijhuis AE, Foijer F, Villunger A. Chronic spindle assembly checkpoint activation causes myelosuppression and gastrointestinal atrophy. EMBO Rep 2024; 25:2743-2772. [PMID: 38806674 PMCID: PMC11169569 DOI: 10.1038/s44319-024-00160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.
Collapse
Affiliation(s)
- Gerlinde Karbon
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Vincent Z Braun
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Eichin
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel Haschka
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mathias Drach
- Dermatology, General Hospital, University Hospital Vienna, Vienna, Austria
| | - Rocio Sotillo
- German Cancer Research Center (DKFZ), Division of Molecular Thoracic Oncology, Heidelberg, Germany
| | - Stephan Geley
- Institute for Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Diana Cj Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| | - Andrea E Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Kasbekar M, Mitchell CA, Proven MA, Passegué E. Hematopoietic stem cells through the ages: A lifetime of adaptation to organismal demands. Cell Stem Cell 2023; 30:1403-1420. [PMID: 37865087 PMCID: PMC10842631 DOI: 10.1016/j.stem.2023.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Hematopoietic stem cells (HSCs), which govern the production of all blood lineages, transition through a series of functional states characterized by expansion during fetal development, functional quiescence in adulthood, and decline upon aging. We describe central features of HSC regulation during ontogeny to contextualize how adaptive responses over the life of the organism ultimately form the basis for HSC functional degradation with age. We particularly focus on the role of cell cycle regulation, inflammatory response pathways, epigenetic changes, and metabolic regulation. We then explore how the knowledge of age-related changes in HSC regulation can inform strategies for the rejuvenation of old HSCs.
Collapse
Affiliation(s)
- Monica Kasbekar
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA; Division of Hematology and Medical Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Melissa A Proven
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Gour A, Kour D, Pandian R, Bhardwaj M, Sawant SD, Kumar A, Nandi U. Ellagic Acid Exerts Dual Action to Curb the Pathophysiological Manifestations of Sickle Cell Disease and Attenuate the Hydroxyurea-Induced Myelosuppression in Berkeley Mice. ACS Pharmacol Transl Sci 2023; 6:868-877. [PMID: 37325443 PMCID: PMC10262317 DOI: 10.1021/acsptsci.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/17/2023]
Abstract
The use of adjuvant therapy is an attractive approach to manage sickle cell disease (SCD) symptomatically. The present study aimed to investigate the potential of ellagic acid as an adjuvant therapy with hydroxyurea (HU), a key drug for SCD with myelosuppressive toxic effects. A panel of experiments was performed using SCD patient's blood (ex vivo) and transgenic mice model of SCD (in vivo). Ellagic acid exhibited the following beneficial pharmacological actions: (a) potent anti-sickling, polymerization inhibitory, and inherent non-hemolytic activity; (b) pronounced action to abrogate HU-induced neutropenia and to improve key hematological parameters during SCD (RBC, Hb, platelet levels); (c) considerable action to foster vascular tone (L-proline); (d) marked attenuating effect against oxidative stress (nitrotyrosine, hypoxanthine, MDA, GSH); (e) substantial inhibitory role against inflammation (analgesic activity and regulation of hemin, TNF-α, IL-1β, NF-κB/IκBα); (f) remarkable outcome of declining vaso-occlusive crisis (P-selectin, ERK1/2); (g) notable shielding deed against elevated biochemical marker for organ toxicity (creatinine); (h) noticeably prevented histopathological alterations of the spleen. Additionally, the pharmacokinetic study results of HU in the presence and absence of ellagic acid using a mouse model demonstrate that ellagic acid could be safely co-administered with HU. Overall findings suggest that ellagic acid is a promising candidate for adjuvant therapy in SCD based on its own significant ability against SCD and potentiating capability of HU action via targeting improvement at the various stages of pathophysiological complications during SCD and minimizing HU-induced toxicological manifestations.
Collapse
Affiliation(s)
- Abhishek Gour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilpreet Kour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramajayan Pandian
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahir Bhardwaj
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanghapal D. Sawant
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Yang L, Lu Y, Zhang Z, Chen Y, Chen N, Chen F, Qi Y, Han C, Xu Y, Chen M, Shen M, Wang S, Zeng H, Su Y, Hu M, Wang J. Oxymatrine boosts hematopoietic regeneration by modulating MAPK/ERK phosphorylation after irradiation-induced hematopoietic injury. Exp Cell Res 2023; 427:113603. [PMID: 37075826 DOI: 10.1016/j.yexcr.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Hematopoietic toxicity due to ionizing radiation (IR) is a leading cause of death in nuclear incidents, occupational hazards, and cancer therapy. Oxymatrine (OM), an extract originating from the root of Sophora flavescens (Kushen), possesses extensive pharmacological properties. In this study, we demonstrate that OM treatment accelerates hematological recovery and increases the survival rate of mice subjected to irradiation. This outcome is accompanied by an increase in functional hematopoietic stem cells (HSCs), resulting in an enhanced hematopoietic reconstitution ability. Mechanistically, we observed significant activation of the MAPK signaling pathway, accelerated cellular proliferation, and decreased cell apoptosis. Notably, we identified marked increases in the cell cycle transcriptional regulator Cyclin D1 (Ccnd1) and the anti-apoptotic protein BCL2 in HSC after OM treatment. Further investigation revealed that the expression of Ccnd1 transcript and BCL2 levels were reversed upon specific inhibition of ERK1/2 phosphorylation, effectively negating the rescuing effect of OM. Moreover, we determined that targeted inhibition of ERK1/2 activation significantly counteracted the regenerative effect of OM on human HSCs. Taken together, our results suggest a crucial role for OM in hematopoietic reconstitution following IR via MAPK signaling pathway-mediated mechanisms, providing theoretical support for innovative therapeutic applications of OM in addressing IR-induced injuries in humans.
Collapse
Affiliation(s)
- Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yin Chen
- Department of Gynaecology and Obstetrics, 958 Hospital of PLA Army, Chongqing, 400038, China.
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Chinese PLA Center for Disease Control and Prevention, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Ripk3 signaling regulates HSCs during stress and represses radiation-induced leukemia in mice. Stem Cell Reports 2022; 17:1428-1441. [PMID: 35561683 PMCID: PMC9213819 DOI: 10.1016/j.stemcr.2022.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 01/03/2023] Open
Abstract
Receptor-interacting protein kinase 3 (Ripk3) is one of the critical mediators of inflammatory cytokine-stimulated signaling. Here we show that Ripk3 signaling selectively regulates both the number and the function of hematopoietic stem cells (HSCs) during stress conditions. Ripk3 signaling is not required for normal homeostatic hematopoiesis. However, in response to serial transplantation, inactivation of Ripk3 signaling prevents stress-induced HSC exhaustion and functional HSC attenuation, while in response to fractionated low doses of ionizing radiation (IR), inactivation of Ripk3 signaling accelerates leukemia/lymphoma development. In both situations, Ripk3 signaling is primarily stimulated by tumor necrosis factor-α. Activated Ripk3 signaling promotes the elimination of HSCs during serial transplantation and pre-leukemia stem cells (pre-LSCs) during fractionated IR by inducing Mlkl-dependent necroptosis. Activated Ripk3 signaling also attenuates HSC functioning and represses a pre-LSC-to-LSC transformation by promoting Mlkl-independent senescence. Furthermore, we demonstrate that Ripk3 signaling induces senescence in HSCs and pre-LSCs by attenuating ISR-mediated mitochondrial quality control. Ripk3-Mlkl signaling is not required for normal homeostatic hematopoiesis Ripk3-Mlkl signaling promotes HSC loss during serial transplantation or low-dose IR Tnf-α-Ripk3 signaling prevents leukemia development after exposure to low-dose IR Ripk3 represses pre-LSCs by inducing Mlkl necroptosis and PDC-OXPHOS-ROS senescence
Collapse
|
7
|
Rodriguez Y Baena A, Rajendiran S, Manso BA, Krietsch J, Boyer SW, Kirschmann J, Forsberg EC. New transgenic mouse models enabling pan-hematopoietic or selective hematopoietic stem cell depletion in vivo. Sci Rep 2022; 12:3156. [PMID: 35210475 PMCID: PMC8873235 DOI: 10.1038/s41598-022-07041-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell (HSC) multipotency and self-renewal are typically defined through serial transplantation experiments. Host conditioning is necessary for robust HSC engraftment, likely by reducing immune-mediated rejection and by clearing limited HSC niche space. Because irradiation of the recipient mouse is non-specific and broadly damaging, there is a need to develop alternative models to study HSC performance at steady-state and in the absence of radiation-induced stress. We have generated and characterized two new mouse models where either all hematopoietic cells or only HSCs can be specifically induced to die in vivo or in vitro. Hematopoietic-specific Vav1-mediated expression of a loxP-flanked diphtheria-toxin receptor (DTR) renders all hematopoietic cells sensitive to diphtheria toxin (DT) in “Vav-DTR” mice. Crossing these mice to Flk2-Cre mice results in “HSC-DTR” mice which exhibit HSC-selective DT sensitivity. We demonstrate robust, rapid, and highly selective cell ablation in these models. These new mouse models provide a platform to test whether HSCs are required for long-term hematopoiesis in vivo, for understanding the mechanisms regulating HSC engraftment, and interrogating in vivo hematopoietic differentiation pathways and mechanisms regulating hematopoietic homeostasis.
Collapse
Affiliation(s)
- Alessandra Rodriguez Y Baena
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Smrithi Rajendiran
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Bryce A Manso
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jana Krietsch
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Scott W Boyer
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jessica Kirschmann
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA. .,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
8
|
Hohsfield LA, Najafi AR, Ghorbanian Y, Soni N, Crapser J, Figueroa Velez DX, Jiang S, Royer SE, Kim SJ, Henningfield CM, Anderson A, Gandhi SP, Mortazavi A, Inlay MA, Green KN. Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave. eLife 2021; 10:66738. [PMID: 34423781 PMCID: PMC8425950 DOI: 10.7554/elife.66738] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/22/2021] [Indexed: 02/06/2023] Open
Abstract
Microglia, the brain’s resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas. Following CSF1Ri, these amoeboid cells migrate radially and tangentially in a dynamic wave filling the brain in a distinct pattern, to replace the microglial-depleted brain. These repopulating cells are enriched in disease-associated microglia genes and exhibit similar phenotypic and transcriptional profiles to white-matter-associated microglia. Our findings shed light on the overlapping and distinct functional complexity and diversity of myeloid cells of the CNS and provide new insight into repopulating microglia function and dynamics in the mouse brain.
Collapse
Affiliation(s)
- Lindsay A Hohsfield
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Allison R Najafi
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Yasamine Ghorbanian
- Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Molecular Biology and Biochemistry, Irvine, United States
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Joshua Crapser
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | | | - Shan Jiang
- Department of Developmental and Cell Biology, Irvine, United States
| | - Sarah E Royer
- Department of Neurobiology and Behavior, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Anatomy and Neurobiology, Irvine, United States
| | - Sung Jin Kim
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Aileen Anderson
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Anatomy and Neurobiology, Irvine, United States.,Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, United States
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, Irvine, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Irvine, United States
| | - Matthew A Inlay
- Department of Neurobiology and Behavior, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Molecular Biology and Biochemistry, Irvine, United States
| | - Kim N Green
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| |
Collapse
|
9
|
Wagle S, Sim HJ, Bhattarai G, Choi KC, Kook SH, Lee JC, Jeon YM. Supplemental Ferulic Acid Inhibits Total Body Irradiation-Mediated Bone Marrow Damage, Bone Mass Loss, Stem Cell Senescence, and Hematopoietic Defect in Mice by Enhancing Antioxidant Defense Systems. Antioxidants (Basel) 2021; 10:antiox10081209. [PMID: 34439457 PMCID: PMC8388974 DOI: 10.3390/antiox10081209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
While total body irradiation (TBI) is an everlasting curative therapy, the irradiation can cause long-term bone marrow (BM) injuries, along with senescence of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) via reactive oxygen species (ROS)-induced oxidative damages. Thus, ameliorating or preventing ROS accumulation and oxidative stress is necessary for TBI-requiring clinical treatments. Here, we explored whether administration of ferulic acid, a dietary antioxidant, protects against TBI-mediated systemic damages, and examined the possible mechanisms therein. Sublethal TBI (5 Gy) decreased body growth, lifespan, and production of circulating blood cells in mice, together with ROS accumulation, and senescence induction of BM-conserved HSCs and MSCs. TBI also impaired BM microenvironment and bone mass accrual, which was accompanied by downregulated osteogenesis and by osteoclastogenic and adipogenic activation in BM. Long-term intraperitoneal injection of ferulic acid (50 mg/kg body weight, once per day for 37 consecutive days) protected mice from TBI-mediated mortality, stem cell senescence, and bone mass loss by restoring TBI-stimulated disorders in osteogenic, osteoclastic, and adipogenic activation in BM. In vitro experiments using BM stromal cells supported radioprotective effects of ferulic acid on TBI-mediated defects in proliferation and osteogenic differentiation. Overall, treatment with ferulic acid prevented TBI-mediated liver damage and enhanced endogenous antioxidant defense systems in the liver and BM. Collectively, these results support an efficient protection of TBI-mediated systemic defects by supplemental ferulic acid, indicating its clinical usefulness for TBI-required patients.
Collapse
Affiliation(s)
- Sajeev Wagle
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
| | - Hyun-Jaung Sim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Govinda Bhattarai
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
| | - Ki-Choon Choi
- Grassland and Forages Research Center, National Institute of Animal Science, Cheonan 31002, Korea;
| | - Sung-Ho Kook
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (S.-H.K.); (J.-C.L.); (Y.-M.J.); Tel.: +82-63-270-3327 (S.-H.K.); +82-63-270-4049 (J.-C.L.); +82-63-250-2130 (Y.-M.J.); Fax: +82-63-270-4312 (S.-H.K.); +82-63-270-4004 (J.-C.L.); +82-63-270-4312 (Y.-M.J.)
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (S.-H.K.); (J.-C.L.); (Y.-M.J.); Tel.: +82-63-270-3327 (S.-H.K.); +82-63-270-4049 (J.-C.L.); +82-63-250-2130 (Y.-M.J.); Fax: +82-63-270-4312 (S.-H.K.); +82-63-270-4004 (J.-C.L.); +82-63-270-4312 (Y.-M.J.)
| | - Young-Mi Jeon
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Correspondence: (S.-H.K.); (J.-C.L.); (Y.-M.J.); Tel.: +82-63-270-3327 (S.-H.K.); +82-63-270-4049 (J.-C.L.); +82-63-250-2130 (Y.-M.J.); Fax: +82-63-270-4312 (S.-H.K.); +82-63-270-4004 (J.-C.L.); +82-63-270-4312 (Y.-M.J.)
| |
Collapse
|
10
|
Miharada N, Rydström A, Rak J, Larsson J. Uncoupling key determinants of hematopoietic stem cell engraftment through cell-specific and temporally controlled recipient conditioning. Stem Cell Reports 2021; 16:1705-1717. [PMID: 34171287 PMCID: PMC8282468 DOI: 10.1016/j.stemcr.2021.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/03/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are typically characterized by transplantation into irradiated hosts in a highly perturbed microenvironment. Here, we show that selective and temporally controlled depletion of resident HSCs through genetic deletion of Gata2 constitutes efficient recipient conditioning for transplantation without irradiation. Strikingly, we achieved robust engraftment of donor HSCs even when delaying Gata2 deletion until 4 weeks after transplantation, allowing homing and early localization to occur in a completely non-perturbed environment. When HSCs from the congenic strains Ly5.1 and Ly5.2 were competitively transplanted, we found that the more proliferative state of Ly5.2 HSCs was associated with superior long-term engraftment when using conditioning by standard irradiation, while higher CXCR4 expression and a better homing ability of Ly5.1 HSCs strongly favored the outcome in our inducible HSC depletion model. Thus, the mode and timing of recipient conditioning challenges distinct functional features of transplanted HSCs. Inducible gene deletion of Gata2 rapidly and selectively depletes the HSC pool Gata2 deletion constitutes efficient recipient conditioning for HSC transplantation The model enables detection of HSC engraftment in a non-perturbed microenvironment Transplantation without irradiation uniquely challenges homing properties of HSCs
Collapse
Affiliation(s)
- Natsumi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Justyna Rak
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden.
| |
Collapse
|
11
|
de Vasconcelos NM, Van Opdenbosch N, Van Gorp H, Martín-Pérez R, Zecchin A, Vandenabeele P, Lamkanfi M. An Apoptotic Caspase Network Safeguards Cell Death Induction in Pyroptotic Macrophages. Cell Rep 2021; 32:107959. [PMID: 32726624 PMCID: PMC7408007 DOI: 10.1016/j.celrep.2020.107959] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/02/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Pyroptosis has emerged as a key mechanism by which inflammasomes promote host defense against microbial pathogens and sterile inflammation. Gasdermin D (GSDMD)-mediated cell lysis is a hallmark of pyroptosis, but our understanding of cell death signaling during pyroptosis is fragmented. Here, we show that independently of GSDMD-mediated plasma membrane permeabilization, inflammasome receptors engage caspase-1 and caspase-8, both of which redundantly promote activation of apoptotic executioner caspase-3 and caspase-7 in pyroptotic macrophages. Impaired GSDMD pore formation downstream of caspase-1 and caspase-8 activation suffices to unmask the apoptotic phenotype of pyroptotic macrophages. Combined inactivation of initiator caspase-1 and caspase-8, or executioner caspase-3 and caspase-7, is required to abolish inflammasome-induced DEVDase activity during pyroptosis and in apoptotic Gsdmd-/- cells. Collectively, these results unveil a robust apoptotic caspase network that is activated in parallel to GSDMD-mediated plasma membrane permeabilization and safeguards cell death induction in pyroptotic macrophages.
Collapse
Affiliation(s)
- Nathalia Moraes de Vasconcelos
- Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Nina Van Opdenbosch
- Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium; Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse 2340, Belgium
| | - Hanne Van Gorp
- Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Rosa Martín-Pérez
- Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse 2340, Belgium
| | - Annalisa Zecchin
- Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse 2340, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium; Methusalem program, Ghent University, Ghent 9052, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium; Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse 2340, Belgium.
| |
Collapse
|
12
|
Yang X, Cong T, He H, Wang J. GSDME maintains hematopoietic stem cells by balancing pyroptosis and apoptosis. BLOOD SCIENCE 2021; 3:40-47. [PMID: 35402833 PMCID: PMC8975053 DOI: 10.1097/bs9.0000000000000064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
GSDME contains a pore-forming domain at its N-terminal region to execute pyroptosis. Our previous study has reported that forced expression of Gsdme impairs the reconstitution capacity of hematopoietic stem cells (HSCs). While, how GSDME-mediated pyroptosis regulates HSCs remains unknown. Here, we show that hematopoietic stem and progenitor cells are capable to undergo pyroptosis in response to cisplatin treatment and GSDME is one of the genes mediating such process. Gsdme -/- mice revealed no difference in the steady state of blood system while Gsdme -/- HSCs exhibited compromised reconstitution capacity due to increased apoptosis. Briefly, this study reveals that GSDME modulates HSC function by coordinating pyroptosis and apoptosis.
Collapse
|
13
|
Wang X, Wang J, Tsui YM, Shi C, Wang Y, Zhang X, Yan Q, Chen M, Jiang C, Yuan YF, Wong CM, Liu M, Feng ZY, Chen H, Ng IOL, Jiang L, Guan XY. RALYL increases hepatocellular carcinoma stemness by sustaining the mRNA stability of TGF-β2. Nat Commun 2021; 12:1518. [PMID: 33750796 PMCID: PMC7943813 DOI: 10.1038/s41467-021-21828-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Growing evidences suggest that cancer stem cells exhibit many molecular characteristics and phenotypes similar to their ancestral progenitor cells. In the present study, human embryonic stem cells are induced to differentiate into hepatocytes along hepatic lineages to mimic liver development in vitro. A liver progenitor specific gene, RALY RNA binding protein like (RALYL), is identified. RALYL expression is associated with poor prognosis, poor differentiation, and metastasis in clinical HCC patients. Functional studies reveal that RALYL could promote HCC tumorigenicity, self-renewal, chemoresistance, and metastasis. Moreover, molecular mechanism studies show that RALYL could upregulate TGF-β2 mRNA stability by decreasing N6-methyladenosine (m6A) modification. TGF-β signaling and the subsequent PI3K/AKT and STAT3 pathways, upregulated by RALYL, contribute to the enhancement of HCC stemness. Collectively, RALYL is a liver progenitor specific gene and regulates HCC stemness by sustaining TGF-β2 mRNA stability. These findings may inspire precise therapeutic strategies for HCC. RALYL is a liver progenitor cell-specific gene but its role in hepatocellular carcinoma (HCC) remains unknown. Here, the authors demonstrate that RALYL regulates HCC stemness through upregulation of TGF-β2 mRNA stability by decreasing N6-methyladenosine modification.
Collapse
Affiliation(s)
- Xia Wang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu-Man Tsui
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Chaoran Shi
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Ying Wang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin Zhang
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Qian Yan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Miao Chen
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chen Jiang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chun-Ming Wong
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zeng-Yu Feng
- Department of General Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Honglin Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Irene Oi Lin Ng
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Lingxi Jiang
- State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China. .,Department of General Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China. .,State key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Zhu Y, Cui G, Miyauchi E, Nakanishi Y, Mukohira H, Shimba A, Abe S, Tani-Ichi S, Hara T, Nakase H, Chiba T, Sehara-Fujisawa A, Seno H, Ohno H, Ikuta K. Intestinal epithelial cell-derived IL-15 determines local maintenance and maturation of intra-epithelial lymphocytes in the intestine. Int Immunol 2020; 32:307-319. [PMID: 31875880 DOI: 10.1093/intimm/dxz082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Interleukin-15 (IL-15) is a cytokine critical for maintenance of intestinal intra-epithelial lymphocytes (IELs), especially CD8αα + IELs (CD8αα IELs). In the intestine, IL-15 is produced by intestinal epithelial cells (IECs), blood vascular endothelial cells (BECs) and hematopoietic cells. However, the precise role of intestinal IL-15 on IELs is still unknown. To address the question, we generated two kinds of IL-15 conditional knockout (IL-15cKO) mice: villin-Cre (Vil-Cre) and Tie2-Cre IL-15cKO mice. IEC-derived IL-15 was specifically deleted in Vil-Cre IL-15cKO mice, whereas IL-15 produced by BECs and hematopoietic cells was deleted in Tie2-Cre IL-15cKO mice. The cell number and frequency of CD8αα IELs and NK IELs were significantly reduced in Vil-Cre IL-15cKO mice. By contrast, CD8αα IELs were unchanged in Tie2-Cre IL-15cKO mice, indicating that IL-15 produced by BECs and hematopoietic cells is dispensable for CD8αα IELs. Expression of an anti-apoptotic factor, Bcl-2, was decreased, whereas Fas expression was increased in CD8αα IELs of Vil-Cre IL-15cKO mice. Forced expression of Bcl-2 by a Bcl-2 transgene partially restored CD8αα IELs in Vil-Cre IL-15cKO mice, suggesting that some IL-15 signal other than Bcl-2 is required for maintenance of CD8αα IELs. Furthermore, granzyme B production was reduced, whereas PD-1 expression was increased in CD8αα IELs of Vil-Cre IL-15cKO mice. These results collectively suggested that IEC-derived IL-15 is essential for homeostasis of IELs by promoting their survival and functional maturation.
Collapse
Affiliation(s)
- Yuanbo Zhu
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Hisa Mukohira
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | | | - Atsuko Sehara-Fujisawa
- Laboratory of Tissue Stem Cell Biology, Department of Regeneration Science and Engineering, Institute of Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Ha TC, Stahlhut M, Rothe M, Paul G, Dziadek V, Morgan M, Brugman M, Fehse B, Kustikova O, Schambach A, Baum C. Multiple Genes Surrounding Bcl-xL, a Common Retroviral Insertion Site, Can Influence Hematopoiesis Individually or in Concert. Hum Gene Ther 2020; 32:458-472. [PMID: 33012194 DOI: 10.1089/hum.2019.344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retroviral insertional mutagenesis (RIM) is both a relevant risk in gene therapy and a powerful tool for identifying genes that enhance the competitiveness of repopulating hematopoietic stem and progenitor cells (HSPCs). However, focusing only on the gene closest to the retroviral vector insertion site (RVIS) may underestimate the effects of RIM, as dysregulation of distal and/or multiple genes by a single insertion event was reported in several studies. As a proof of concept, we examined the common insertion site (CIS) Bcl-xL, which revealed seven genes located within ±150 kb from the RVIS for our study. We confirmed that Bcl-xL enhanced the competitiveness of HSPCs, whereas the Bcl-xL neighbor Id1 hindered HSPC long-term repopulation. This negative influence of Id1 could be counteracted by co-expressing Bcl-xL. Interestingly, >90% of early reconstituted myeloid cells were found to originate from transduced HSPCs upon simultaneous overexpression of Bcl-xL and Id1, which implies that Bcl-xL and Id1 can collaborate to rapidly replenish the myeloid compartment under stress conditions. To directly compare the competitiveness of HSPCs conveyed by multiple transgenes, we developed a multiple competitor competitive repopulation (MCCR) assay to simultaneously screen effects on HSPC repopulating capacity in a single mouse. The MCCR assay revealed that multiple genes within a CIS can have positive or negative impact on hematopoiesis. Furthermore, these data highlight the importance of studying multiple genes located within the proximity of an insertion site to understand complex biological effects, especially as the number of gene therapy patients increases.
Collapse
Affiliation(s)
- Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Hannover Biomedical Research School, Hannover, Germany
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Gabi Paul
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martijn Brugman
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UKE) Hamburg-Eppendorf, Hamburg, Germany
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
|
17
|
Cellular senescence contributes to radiation-induced hyposalivation by affecting the stem/progenitor cell niche. Cell Death Dis 2020; 11:854. [PMID: 33056980 PMCID: PMC7566836 DOI: 10.1038/s41419-020-03074-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Radiotherapy for head and neck cancer is associated with impairment of salivary gland function and consequent xerostomia, which has a devastating effect on the quality of life of the patients. The mechanism of radiation-induced salivary gland damage is not completely understood. Cellular senescence is a permanent state of cell cycle arrest accompanied by a secretory phenotype which contributes to inflammation and tissue deterioration. Genotoxic stresses, including radiation-induced DNA damage, are known to induce a senescence response. Here, we show that radiation induces cellular senescence preferentially in the salivary gland stem/progenitor cell niche of mouse models and patients. Similarly, salivary gland-derived organoids show increased expression of senescence markers and pro-inflammatory senescence-associated secretory phenotype (SASP) factors after radiation exposure. Clearance of senescent cells by selective removal of p16Ink4a-positive cells by the drug ganciclovir or the senolytic drug ABT263 lead to increased stem cell self-renewal capacity as measured by organoid formation efficiency. Additionally, pharmacological treatment with ABT263 in mice irradiated to the salivary glands mitigates tissue degeneration, thus preserving salivation. Our data suggest that senescence in the salivary gland stem/progenitor cell niche contributes to radiation-induced hyposalivation. Pharmacological targeting of senescent cells may represent a therapeutic strategy to prevent radiotherapy-induced xerostomia.
Collapse
|
18
|
Musa AE, Shabeeb D, Okoro NOE, Agbele AT. Radiation protection by Ex-RAD: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33592-33600. [PMID: 32583118 DOI: 10.1007/s11356-020-09618-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Protection of normal tissues against ionizing radiation-induced damages is a critical issue in clinical and environmental radiobiology. One of the ways of accomplishing radiation protection is through the use of radioprotectors. In the search for the most effective radioprotective agent, factors such as toxicity, effect on tumors, number of tissues protected, ease of administration, long-term stability, and compatibility with other drugs need to be assessed. Thus, in the present study, we systematically review existing studies on a chemical radioprotector, Ex-RAD, with the aim of examining its efficacy of radiation protection as well as underlying mechanisms. To this end, a systematic search of the electronic databases including Pubmed, Scopus, Embase, and Google Scholar was conducted to retrieve articles investigating the radioprotective effect of Ex-RAD. From an initial search of 268 articles, and after removal of duplicates as well as applying the predetermined inclusion and exclusion criteria, 10 articles were finally included for this systematic review. Findings from the reviewed studies indicated that Ex-RAD showed potentials for effective radioprotection of the studied organs with no side effect. Furthermore, the inhibition of apoptosis through p53 signaling pathway was the main mechanism of radioprotection by Ex-RAD. However, its radioprotective effect would need to be investigated for more organs in future studies.
Collapse
Affiliation(s)
- Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Dheyauldeen Shabeeb
- Department of Physiology, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan Health Directorate, Ministry of Health/Environment, Misan, Iraq
| | - Nnamdi O E Okoro
- Department of Radiology, Obijackson Women & Children's Hospital, Okija, Anambra State, Nigeria
| | - Alaba Tolulope Agbele
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
- Department of Basic Medical Sciences, College of Health Sciences and Technology, Ijero-Ekiti, Nigeria
| |
Collapse
|
19
|
Lu Y, Hu M, Zhang Z, Qi Y, Wang J. The regulation of hematopoietic stem cell fate in the context of radiation. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
20
|
Shide K. The role of driver mutations in myeloproliferative neoplasms: insights from mouse models. Int J Hematol 2019; 111:206-216. [PMID: 31865539 DOI: 10.1007/s12185-019-02803-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023]
Abstract
High frequency of JAK2V617F or CALR exon 9 mutations is a main molecular feature of myeloproliferative neoplasms (MPNs). Analysis of mouse models driven by these mutations suggests that they are a direct cause of MPNs and that the expression levels of the mutated genes define the disease phenotype. The function of MPN-initiating cells has also been elucidated by these mouse models. Such mouse models also play an important role in modeling disease to investigate the effects and action mechanisms of therapeutic drugs, such as JAK2 inhibitors and interferon α, against MPNs. The mutation landscape of hematological tumors has already been clarified by next-generation sequencing technology, and the importance of functional analysis of mutant genes in vivo should increase further in the future.
Collapse
Affiliation(s)
- Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
21
|
Vetters J, van Helden MJ, Wahlen S, Tavernier SJ, Martens A, Fayazpour F, Vergote K, Vanheerswynghels M, Deswarte K, Van Moorleghem J, De Prijck S, Takahashi N, Vandenabeele P, Boon L, van Loo G, Vivier E, Lambrecht BN, Janssens S. The ubiquitin-editing enzyme A20 controls NK cell homeostasis through regulation of mTOR activity and TNF. J Exp Med 2019; 216:2010-2023. [PMID: 31296735 PMCID: PMC6719426 DOI: 10.1084/jem.20182164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 01/20/2023] Open
Abstract
The study of Vetters et al. identifies the ubiquitin-modifying enzyme A20 as a critical regulator of mTOR. Loss of A20 unleashes mTOR activity and induces NK cell death, underscoring the need for a tightly controlled mTOR pathway for proper NK cell homeostasis. The ubiquitin-editing enzyme A20 is a well-known regulator of immune cell function and homeostasis. In addition, A20 protects cells from death in an ill-defined manner. While most studies focus on its role in the TNF-receptor complex, we here identify a novel component in the A20-mediated decision between life and death. Loss of A20 in NK cells led to spontaneous NK cell death and severe NK cell lymphopenia. The few remaining NK cells showed an immature, hyperactivated phenotype, hallmarked by the basal release of cytokines and cytotoxic molecules. NK-A20−/− cells were hypersensitive to TNF-induced cell death and could be rescued, at least partially, by a combined deficiency with TNF. Unexpectedly, rapamycin, a well-established inhibitor of mTOR, also strongly protected NK-A20−/− cells from death, and further studies revealed that A20 restricts mTOR activation in NK cells. This study therefore maps A20 as a crucial regulator of mTOR signaling and underscores the need for a tightly balanced mTOR pathway in NK cell homeostasis.
Collapse
Affiliation(s)
- Jessica Vetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.,GROUP-ID Consortium, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Mary J van Helden
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sigrid Wahlen
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Simon J Tavernier
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Arne Martens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cellular and Molecular (Patho)physiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Farzaneh Fayazpour
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.,GROUP-ID Consortium, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nozomi Takahashi
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death, VIB Center for Inflammation Research, Ghent, Belgium
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death, VIB Center for Inflammation Research, Ghent, Belgium
| | | | - Geert van Loo
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cellular and Molecular (Patho)physiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.,Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille, Centre d'Immunologie de Marseille-Luminy, Hôpital de la Timone, Marseille Immunopôle, Marseille, France
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium .,GROUP-ID Consortium, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sophie Janssens
- Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium .,GROUP-ID Consortium, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Klein F, Mitrovic M, Roux J, Engdahl C, von Muenchow L, Alberti-Servera L, Fehling HJ, Pelczar P, Rolink A, Tsapogas P. The transcription factor Duxbl mediates elimination of pre-T cells that fail β-selection. J Exp Med 2019; 216:638-655. [PMID: 30765463 PMCID: PMC6400535 DOI: 10.1084/jem.20181444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/13/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
During β-selection, T cells without productive TCRβ rearrangements are eliminated. Klein et al. show that the transcription factor Duxbl regulates this process by inducing apoptosis through activation of the Oas/RNaseL pathway. Successful TCRβ rearrangement rescues cells by pre-TCR–mediated Duxbl suppression. T cell development is critically dependent on successful rearrangement of antigen-receptor chains. At the β-selection checkpoint, only cells with a functional rearrangement continue in development. However, how nonselected T cells proceed in their dead-end fate is not clear. We identified low CD27 expression to mark pre-T cells that have failed to rearrange their β-chain. Expression profiling and single-cell transcriptome clustering identified a developmental trajectory through β-selection and revealed specific expression of the transcription factor Duxbl at a stage of high recombination activity before β-selection. Conditional transgenic expression of Duxbl resulted in a developmental block at the DN3-to-DN4 transition due to reduced proliferation and enhanced apoptosis, whereas RNA silencing of Duxbl led to a decrease in apoptosis. Transcriptome analysis linked Duxbl to elevated expression of the apoptosis-inducing Oas/RNaseL pathway. RNaseL deficiency or sustained Bcl2 expression led to a partial rescue of cells in Duxbl transgenic mice. These findings identify Duxbl as a regulator of β-selection by inducing apoptosis in cells with a nonfunctional rearrangement.
Collapse
Affiliation(s)
- Fabian Klein
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mladen Mitrovic
- Immune Regulation, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Corinne Engdahl
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Llucia Alberti-Servera
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Protective Effect of JXT Ethanol Extract on Radiation-Induced Hematopoietic Alteration and Oxidative Stress in the Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9017835. [PMID: 30510630 PMCID: PMC6230390 DOI: 10.1155/2018/9017835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/01/2018] [Accepted: 09/04/2018] [Indexed: 01/22/2023]
Abstract
This study aims at investigating the radioprotective effect of ethanol extract from Ji-Xue-Teng (JXT, Spatholobus suberectus) on radiation-induced hematopoietic alteration and oxidative stress in the liver. Mice were exposed to a single acute γ-radiation for the whole body at the dose of 6.0 Gy, then subjected to administration of amifostine (45 mg/kg) or JXT (40 g crude drug/kg) once a day for 28 consecutive days, respectively. Bone marrow cells and hemogram including white cells, red cells, platelet counts, and hemoglobin level were examined. The protein expression levels of pJAK2/JAK2, pSTAT5a/STAT5a, pSTAT5b/STAT5b, and Bcl-2 in bone marrow tissue; levels of reactive oxygen species (ROS); and the activity of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in serum and liver tissue were determined. At the end of the experiment, the effect of JXT on cell viability and G-CSF and G-CSFR levels in NFS-60 cells were tested by CCK-8 assay, ELISA, and flow cytometry. The results showed that the mice exposed to γ-radiation alone exhibited a typical hematopoietic syndrome. In contrast, at the end of the 28-day experiment, irradiated mice subjected to oral administration of JXT showed an obvious improvement on blood profile with reduced leucopenia, thrombocytopenia (platelet counts), RBC, and hemoglobin levels, as well as bone marrow cells. The expression of pJAK2/JAK2, pSTAT5a/STAT5a, and Bcl-2 in bone marrow tissue was increased after JXT treatment. The elevation of ROS was due to radiation-induced toxicity, but JXT significantly reduced the ROS level in serum and liver tissue, elevated endogenous SOD and GSH-PX levels, and reduced the MDA level in the liver. JXT could also increase cell viability and G-CSFR level in NFS-60 cells, which was similar to exogenous G-CSF. Our findings suggested that oral administration of JXT effectively facilitated the recovery of hematopoietic bone marrow damage and oxidative stress of the mice induced by γ-radiation.
Collapse
|
24
|
Hematopoietic reconstitution of neonatal immunocompetent mice to study conditions with a perinatal window of susceptibility. Sci Rep 2018; 8:12254. [PMID: 30115970 PMCID: PMC6095844 DOI: 10.1038/s41598-018-30767-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/18/2018] [Indexed: 11/30/2022] Open
Abstract
Efficient hematopoietic reconstitution of wild type mice requires preconditioning. Established experimental protocols exist to transplant hematopoietic stem cells into lethally irradiated or chemically myeloablated adult mice or unirradiated immunodeficient mice. We sought to develop a protocol to reconstitute immuno-replete neonatal mice. We describe irradiation and injection procedures for two-day old mice that lead to efficient long-term reconstitution of primary and secondary lymphoid organs. We demonstrate that the frequencies of lymphoid and myeloid cells in primary and secondary lymphoid organs are indistinguishable from unirradiated uninjected sex- and age-matched control animals by 5 weeks post-reconstitution. Thus, this system will facilitate studies aimed at understanding the developmental and environmental mechanisms that contribute to conditions that have a window of susceptibility during the perinatal period.
Collapse
|
25
|
Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture. Cell Death Differ 2018; 26:146-161. [PMID: 29666477 PMCID: PMC6294780 DOI: 10.1038/s41418-018-0106-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/19/2018] [Accepted: 03/14/2018] [Indexed: 12/04/2022] Open
Abstract
Pyroptosis is rapidly emerging as a mechanism of anti-microbial host defense, and of extracellular release of the inflammasome-dependent cytokines interleukin (IL)-1β and IL-18, which contributes to autoinflammatory pathology. Caspases 1, 4, 5 and 11 trigger this regulated form of necrosis by cleaving the pyroptosis effector gasdermin D (GSDMD), causing its pore-forming amino-terminal domain to oligomerize and perforate the plasma membrane. However, the subcellular events that precede pyroptotic cell lysis are ill defined. In this study, we triggered primary macrophages to undergo pyroptosis from three inflammasome types and recorded their dynamics and morphology using high-resolution live-cell spinning disk confocal laser microscopy. Based on quantitative analysis of single-cell subcellular events, we propose a model of pyroptotic cell disintegration that is initiated by opening of GSDMD-dependent ion channels or pores that are more restrictive than recently proposed GSDMD pores, followed by osmotic cell swelling, commitment of mitochondria and other membrane-bound organelles prior to sudden rupture of the plasma membrane and full permeability to intracellular proteins. This study provides a dynamic framework for understanding cellular changes that occur during pyroptosis, and charts a chronological sequence of GSDMD-mediated subcellular events that define pyroptotic cell death at the single-cell level.
Collapse
|
26
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK. Pharmacological targets of breast cancer stem cells: a review. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:463-479. [PMID: 29476201 DOI: 10.1007/s00210-018-1479-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India.
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| |
Collapse
|
27
|
Programming of Cell Resistance to Genotoxic and Oxidative Stress. Biomedicines 2018; 6:biomedicines6010005. [PMID: 29301323 PMCID: PMC5874662 DOI: 10.3390/biomedicines6010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022] Open
Abstract
Different organisms, cell types, and even similar cell lines can dramatically differ in resistance to genotoxic stress. This testifies to the wide opportunities for genetic and epigenetic regulation of stress resistance. These opportunities could be used to increase the effectiveness of cancer therapy, develop new varieties of plants and animals, and search for new pharmacological targets to enhance human radioresistance, which can be used for manned deep space expeditions. Based on the comparison of transcriptomic studies in cancer cells, in this review, we propose that there is a high diversity of genetic mechanisms of development of genotoxic stress resistance. This review focused on possibilities and limitations of the regulation of the resistance of normal cells and whole organisms to genotoxic and oxidative stress by the overexpressing of stress-response genes. Moreover, the existing experimental data on the effect of such overexpression on the resistance of cells and organisms to various genotoxic agents has been analyzed and systematized. We suggest that the recent advances in the development of multiplex and highly customizable gene overexpression technology that utilizes the mutant Cas9 protein and the abundance of available data on gene functions and their signal networks open new opportunities for research in this field.
Collapse
|
28
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Anti-apoptotic BCL-2 family members in development. Cell Death Differ 2017; 25:37-45. [PMID: 29099482 PMCID: PMC5729530 DOI: 10.1038/cdd.2017.170] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 01/17/2023] Open
Abstract
Almost 30 years ago it was first appreciated that anti-apoptotic B-cell lymphoma-2 (BCL-2) prevents the induction of apoptosis not only in malignant cells, but also in normal cellular lineages. This critical observation has rapidly evolved from merely identifying new BCL-2 family members to understanding how their biochemical interactions trigger the cell death process, and, more recently, to pharmacological inhibition of anti-apoptotic BCL-2 function in disease. Indeed, the proper regulation of apoptosis is important in many aspects of life including development, homeostasis, and disease biology. To better understand these processes, scientists have used many tools to assess the contribution of individual anti-apoptotic BCL-2 family members. This review will focus on the prominent roles for BCL-2 and other pro-survival family members in promoting the development of mammals during early embryogenesis, neurogenesis, and hematopoiesis.
Collapse
|
30
|
Abstract
I started research in high school, experimenting on immunological tolerance to transplantation antigens. This led to studies of the thymus as the site of maturation of T cells, which led to the discovery, isolation, and clinical transplantation of purified hematopoietic stem cells (HSCs). The induction of immune tolerance with HSCs has led to isolation of other tissue-specific stem cells for regenerative medicine. Our studies of circulating competing germline stem cells in colonial protochordates led us to document competing HSCs. In human acute myelogenous leukemia we showed that all preleukemic mutations occur in HSCs, and determined their order; the final mutations occur in a multipotent progenitor derived from the preleukemic HSC clone. With these, we discovered that CD47 is an upregulated gene in all human cancers and is a "don't eat me" signal; blocking it with antibodies leads to cancer cell phagocytosis. CD47 is the first known gene common to all cancers and is a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, and Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford, CA 94305
| |
Collapse
|
31
|
Xiao S, Shterev ID, Zhang W, Young L, Shieh JH, Moore M, van den Brink M, Sempowski GD, Manley NR. Sublethal Total Body Irradiation Causes Long-Term Deficits in Thymus Function by Reducing Lymphoid Progenitors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2701-2712. [PMID: 28931604 PMCID: PMC5659725 DOI: 10.4049/jimmunol.1600934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/08/2017] [Indexed: 12/17/2022]
Abstract
Total body irradiation (TBI) damages hematopoietic cells in the bone marrow and thymus; however, the long-term effects of irradiation with aging remain unclear. In this study, we found that the impact of radiation on thymopoiesis in mice varied by sex and dose but, overall, thymopoiesis remained suppressed for ≥12 mo after a single exposure. Male and female mice showed a long-term dose-dependent reduction in thymic cKit+ lymphoid progenitors that was maintained throughout life. Damage to hematopoietic stem cells (HSCs) in the bone marrow was dose dependent, with as little as 0.5 Gy causing a significant long-term reduction. In addition, the potential for T lineage commitment was radiation sensitive with aging. Overall, the impact of irradiation on the hematopoietic lineage was more severe in females. In contrast, the rate of decline in thymic epithelial cell numbers with age was radiation-sensitive only in males, and other characteristics including Ccl25 transcription were unaffected. Taken together, these data suggest that long-term suppression of thymopoiesis after sublethal irradiation was primarily due to fewer progenitors in the BM combined with reduced potential for T lineage commitment. A single irradiation dose also caused synchronization of thymopoiesis, with a periodic thymocyte differentiation profile persisting for at least 12 mo postirradiation. This study suggests that the number and capability of HSCs for T cell production can be dramatically and permanently damaged after a single relatively low TBI dose, accelerating aging-associated thymic involution. Our findings may impact evaluation and therapeutic intervention of human TBI events.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602;
| | - Ivo D Shterev
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Wen Zhang
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602
| | - Lauren Young
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jae-Hung Shieh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
| | - Malcolm Moore
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Marcel van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Nancy R Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602;
| |
Collapse
|
32
|
How Will the Hematopoietic System Deal with Space Radiation on the Way to Mars? CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0104-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death Dis 2017; 8:e2943. [PMID: 28726781 PMCID: PMC5550872 DOI: 10.1038/cddis.2017.327] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the most malignant gynecological tumors with a high mortality rate owing to tumor relapse after anticancer therapies. It is widely accepted that a rare tumor cell population, known as cancer stem cells (CSC), is responsible for tumor progression and relapse; intriguingly, these cells are able to survive nutrient starvation (such as in vitro culture in the absence of glucose) and chemotherapy treatment. Recent data also indicated that chemotherapy resistance is associated with autophagy activation. We thus decided to investigate both in vitro and in vivo the autophagic activity and the effects of the perturbation of this pathway in CSC isolated from EOC ascitic effusions. Ovarian CSC, identified according to their CD44/CD117 co-expression, presented a higher basal autophagy compared with the non-stem counterpart. Inhibition of this pathway, by in vitro chloroquine treatment or CRISPR/Cas9 ATG5 knockout, impaired canonical CSC properties, such as viability, the ability to form spheroidal structures in vitro, and in vivo tumorigenic potential. In addition, autophagy inhibition showed a synergistic effect with carboplatin administration on both in vitro CSC properties and in vivo tumorigenic activity. On the whole, these results indicate that the autophagy process has a key role in CSC maintenance; inhibition of this pathway in combination with other chemotherapeutic approaches could represent a novel effective strategy to overcome drug resistance and tumor recurrence.
Collapse
|
34
|
How gene polymorphisms can influence clinical response and toxicity following R-CHOP therapy in patients with diffuse large B cell lymphoma. Blood Rev 2017; 31:235-249. [DOI: 10.1016/j.blre.2017.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
|
35
|
Mondal S, Hazra I, Datta A, Sk Md OF, Moitra S, Tripathi SK, Chaudhuri S. T11TS repress gliomagenic apoptosis of bone marrow hematopoietic stem cells. J Cell Physiol 2017; 233:269-290. [PMID: 28233371 DOI: 10.1002/jcp.25874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022]
Abstract
Combating gliomagenic global immunosuppression is one of the emerging key for improving prognosis in malignant glioma. Apoptosis plays a pivotal role within the adult hematopoietic system particularly in regulating the cells of immune system. Gliomagenic regulation of apoptotic mediators within bone marrow milieu has not been elucidated. We previously demonstrated that administration of membrane glycopeptides T11 target structure (T11TS) not only rejuvenate bone marrow hematopoietic stem cells (BMHSCs) from glioma mediated hibernation by inhibiting gliomagenic overexpression of Ang-1/Tie-2 but also stimulate glioma mediated diminution of expression CD34, c-kit, and Sca-1 markers. In the present study, we investigated the impact of glioma on apoptotic signaling cascades of BMHSCs and consequences following T11TS therapy. Bone marrow smear and Annexin V staining confirm gliomagenic acceleration of apoptotic fate of BMHSCs whereas T11TS treatment in glioma-bearing rats disrupted apoptosis of BMHSCs. Flowcytometry, immunoblotting, and immunofluorescence imagining results revealed multi potent T11TS not only significantly downregulates gliomagenic overexpression of Fas, Fas L, Bid, and caspase-8, the pro-apoptotic extrinsic mediators but also strongly inhibits cytosolic release of cytochrome-c, Apf-1, and Bax to deactivate gliomagenic caspase-9, 3 the key intrinsic apoptotic mediators followed by up modulation of anti-apoptotic Bcl-2 in glioma associated HSCs. T11TS is also able to diminish the perforin-granzyme B mediated apoptotic verdict of BMHSCs during gliomagenesis. The anti-apoptotic action of T11TS on glioma associated BMHSCs provide a crucial insight into how T11TS exerts its immunomodulatory action against glioma mediated immune devastation.
Collapse
Affiliation(s)
- Somnath Mondal
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Iman Hazra
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Ankur Datta
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Omar Faruk Sk Md
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Saibal Moitra
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Santanu Kumar Tripathi
- Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata, West Bengal, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
36
|
von Muenchow L, Tsapogas P, Albertí-Servera L, Capoferri G, Doelz M, Rolink H, Bosco N, Ceredig R, Rolink AG. Pro-B cells propagated in stromal cell-free cultures reconstitute functional B-cell compartments in immunodeficient mice. Eur J Immunol 2016; 47:394-405. [PMID: 27925658 DOI: 10.1002/eji.201646638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/20/2016] [Accepted: 12/02/2016] [Indexed: 01/04/2023]
Abstract
Up to now long-term in vitro growth of pro-B cells was thought to require stromal cells. However, here we show that fetal liver (FL) and bone marrow (BM) derived pro-B cells can be propagated long-term in stromal cell-free cultures supplemented with IL-7, stem cell factor and FLT3 ligand. Within a week, most cells expressed surface CD19, CD79A, λ5, and VpreB antigens and had rearranged immunoglobulin D-J heavy chain genes. Both FL and BM pro-B cells reconstituted the B-cell compartments of immuno-incompetent Rag2-deficient mice, with FL pro-B cells generating follicular, marginal zone (MZB) and B1a B cells, and BM pro-B cells giving rise mainly to MZB cells. Reconstituted Rag2-deficient mice generated significant levels of IgM and IgG antibodies to a type II T-independent antigen; mice reconstituted with FL pro-B cells generated surprisingly high IgG1 titers. Finally, we show for the first time that mice reconstituted with mixtures of pro-B and pro-T cells propagated in stromal cell-free in vitro cultures mounted a T-cell-dependent antibody response. This novel stromal cell-free culture system facilitates our understanding of B-cell development and might be applied clinically.
Collapse
Affiliation(s)
- Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Llucia Albertí-Servera
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Giuseppina Capoferri
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Doelz
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Molecular Immune Regulation, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Hannie Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nabil Bosco
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Rhodri Ceredig
- Discipline of Physiology, National University of Ireland, Galway
| | - Antonius G Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
37
|
Venkateswaran K, Shrivastava A, Agrawala PK, Prasad A, Kalra N, Pandey PR, Manda K, Raj HG, Parmar VS, Dwarakanath BS. Mitigation of radiation-induced hematopoietic injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice. Sci Rep 2016; 6:37305. [PMID: 27849061 PMCID: PMC5110976 DOI: 10.1038/srep37305] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/27/2016] [Indexed: 11/09/2022] Open
Abstract
Protection of the hematopoietic system from radiation damage, and/or mitigation of hematopoietic injury are the two major strategies for developing medical countermeasure agents (MCM) to combat radiation-induced lethality. In the present study, we investigated the potential of 7, 8-diacetoxy-4-methylthiocoumarin (DAMTC) to ameliorate radiation-induced hematopoietic damage and the associated mortality following total body irradiation (TBI) in C57BL/6 mice. Administration of DAMTC 24 hours post TBI alleviated TBI-induced myelo-suppression and pancytopenia, by augmenting lymphocytes and WBCs in the peripheral blood of mice, while bone marrow (BM) cellularity was restored through enhanced proliferation of the stem cells. It stimulated multi-lineage expansion and differentiation of myeloid progenitors in the BM and induced proliferation of splenic progenitors thereby, facilitating hematopoietic re-population. DAMTC reduced the radiation-induced apoptotic and mitotic death in the hematopoietic compartment. Recruitment of pro-inflammatory M1 macrophages in spleen contributed to the immune-protection linked to the mitigation of hematopoietic injury. Recovery of the hematopoietic compartment correlated well with mitigation of mortality at a lethal dose of 9 Gy, leading to 80% animal survival. Present study establishes the potential of DAMTC to mitigate radiation-induced injury to the hematopoietic system by stimulating the re-population of stem cells from multiple lineages.
Collapse
Affiliation(s)
- Kavya Venkateswaran
- Division of Metabolic Cell Signalling Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, Lucknow Road, Delhi 110054, India.,Department of Zoology, University of Delhi, Delhi 110007, India
| | | | - Paban K Agrawala
- Division of Metabolic Cell Signalling Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, Lucknow Road, Delhi 110054, India
| | - Ashok Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Namita Kalra
- Division of Metabolic Cell Signalling Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, Lucknow Road, Delhi 110054, India
| | - Parvat R Pandey
- Division of Metabolic Cell Signalling Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, Lucknow Road, Delhi 110054, India
| | - Kailash Manda
- Division of Metabolic Cell Signalling Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, Lucknow Road, Delhi 110054, India
| | - Hanumantharao G Raj
- Department of Biochemistry, VP Chest Institute, University of Delhi, Delhi 110007, India
| | - Virinder S Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Bilikere S Dwarakanath
- Division of Metabolic Cell Signalling Research, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Marg, Lucknow Road, Delhi 110054, India.,Central Research Facility, Sri Ramachandra University, Porur, Chennai 600116, India
| |
Collapse
|
38
|
Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib. Leukemia 2016; 31:1136-1144. [PMID: 27807369 PMCID: PMC5420793 DOI: 10.1038/leu.2016.308] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
Mutations of calreticulin (CALR) are detected in 25–30% of patients with essential thrombocythemia (ET) or primary myelofibrosis and cause frameshifts that result in proteins with a novel C-terminal. We demonstrate that CALR mutations activated signal transducer and activator of transcription 5 (STAT5) in 293T cells in the presence of thrombopoietin receptor (MPL). Human megakaryocytic CMK11-5 cells and erythroleukemic F-36P-MPL cells with knocked-in CALR mutations showed increased growth and acquisition of cytokine-independent growth, respectively, accompanied by STAT5 phosphorylation. Transgenic mice expressing a human CALR mutation with a 52 bp deletion (CALRdel52-transgenic mice (TG)) developed ET, with an increase in platelet count, but not hemoglobin level or white blood cell count, in association with an increase in bone marrow (BM) mature megakaryocytes. CALRdel52 BM cells did not drive away wild-type (WT) BM cells in in vivo competitive serial transplantation assays, suggesting that the self-renewal capacity of CALRdel52 hematopoietic stem cells (HSCs) was comparable to that of WT HSCs. Therapy with the Janus kinase (JAK) inhibitor ruxolitinib ameliorated the thrombocytosis in TG mice and attenuated the increase in number of BM megakaryocytes and HSCs. Taken together, our study provides a model showing that the C-terminal of mutant CALR activated JAK-STAT signaling specifically downstream of MPL and may have a central role in CALR-induced myeloproliferative neoplasms.
Collapse
|
39
|
An oral Hemokine TM, α-methylhydrocinnamate, enhances myeloid and neutrophil recovery following irradiation in vivo. Blood Cells Mol Dis 2016; 63:1-8. [PMID: 27888688 DOI: 10.1016/j.bcmd.2016.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/29/2016] [Indexed: 01/12/2023]
Abstract
An oral therapeutic which reduces duration of cytopenias and is active following accidental radiation exposures is an unmet need in radiation countermeasures. Alpha methylhydrocinnamate (ST7) prolongs STAT-5 phosphorylation, reduces growth-factor dependency of multi-lineage cell lines, and stimulates erythropoiesis. Here, ST7 and its isomers were studied for their effects on myeloid progenitors and hematopoietic stem cells (HSCs) following radiation, in nonhuman primates, and murine irradiation models. Addition of ST7 or ST7-S increased CFU-GM production by 1.7-fold (p<0.001), reduced neutrophil apoptosis comparable to G-CSF, and enhanced HSC survival post-radiation by 2-fold, (p=0.028). ST7 and ST7-S administered in normal baboons increased ANC and platelet counts by 50-400%. In sub-lethally-irradiated mice, ANC nadir remained >200/mm3 and neutropenia recovered in 6days with ST7 treatment and 18days in controls (p<0.05). In lethally-irradiated mice, marrow pathology at 15days was hypocellular (10% cellularity) in controls, but normal (55-75% cellularity) with complete neutrophil maturation with ST7-S treatment. Following lethal irradiation, ST7, given orally for 4days, reduced mortality, with 30% survival in ST7-animals vs 8% in controls, (p<0.05). Collectively, the studies indicate that ST7 and ST7-S enhance myeloid recovery post-radiation and merit further evaluation to accelerate hematologic recovery in conditions of radiation-related and other marrow hypoplasias.
Collapse
|
40
|
Xiong L, Tang Y, Liu Z, Dai J, Wang X. BCL-2 inhibition impairs mitochondrial function and targets oral tongue squamous cell carcinoma. SPRINGERPLUS 2016; 5:1626. [PMID: 27722045 PMCID: PMC5031576 DOI: 10.1186/s40064-016-3310-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/12/2016] [Indexed: 01/07/2023]
Abstract
Purpose To understand the role of Bcl-2 overexpression in oral tongue squamous cell carcinoma (OTSCC) patients and investigate the efficacy of targeting Bcl-2 in OTSCC. Methods The expression level of Bcl-2 on normal tongue cells and OTSCC cells were measured by real-time PCR and western blotting. The functional roles of Bcl-2 were examined by MTS, flow cytometry and xenograft cancer mouse model. Mechanism studies were performed by analyzing mitochondrial functions in a panel of OTSCC cell lines. Results Bcl-2 is up-regulated at mRNA and protein levels in a panel of OTSCC cell lines compared to normal tongue epithelial cells (NTEC). Importantly, overexpression of Bcl-2 confers resistance of OTSCC cells to chemotherapeutic drug cisplatin treatment. Overexpression of Bcl-2 in NTEC significantly increased cell growth. In contrast, inhibition of Bcl-2 by genetic and pharmacological approaches inhibits proliferation and induces apoptosis in OTSCC cells. Mechanistically, Bcl-2 inhibitor ABT-199 impairs mitochondrial functions as shown by the decreased levels of mitochondrial membrane potential, mitochondrial respiration and ATP, and the increased levels of ROS in OTSCC cells. In addition, ABT-199 inhibits proliferation and induces apoptosis and mitochondrial dysfunctions in NTEC cells, but to a less extent than in OTSCC cells. We further show that ABT-199 augments the effects of cisplatin in eliminating OTSCC cells in in vitro tongue cancer cellular system and in vivo tongue cancer xenograft mouse model. Conclusions Inhibition of Bcl-2 effectively targets OTSCC cells through inhibiting proliferation and inducing apoptosis. Inhibition of Bcl-2 also augments the inhibitory effects of cisplatin in vitro and in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s40064-016-3310-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Oral Medicine, The Second Clinical Medical College, Yangtze University, Jingzhou Central Hospital, Jingzhou, People's Republic of China
| | - Yi Tang
- Department of Oral Medicine, The Second Clinical Medical College, Yangtze University, Jingzhou Central Hospital, Jingzhou, People's Republic of China
| | - Zhaoyang Liu
- Department of Oral Medicine, The Second Clinical Medical College, Yangtze University, Jingzhou Central Hospital, Jingzhou, People's Republic of China
| | - Jing Dai
- Department of Oral Medicine, The Second Clinical Medical College, Yangtze University, Jingzhou Central Hospital, Jingzhou, People's Republic of China
| | - Xiaozhou Wang
- Department of Clinical Medicine, Hubei College of Chinese Medicine, Academy Road 87, Jingzhou, 434020 People's Republic of China
| |
Collapse
|
41
|
Wang Z, Medrzycki M, Bunting ST, Bunting KD. Stat5-deficient hematopoiesis is permissive for Myc-induced B-cell leukemogenesis. Oncotarget 2016; 6:28961-72. [PMID: 26338970 PMCID: PMC4745704 DOI: 10.18632/oncotarget.5009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022] Open
Abstract
Despite being an attractive molecular target for both lymphoid and myeloid leukemias characterized by activated tyrosine kinases, the molecular and physiological consequences of reduced signal transducer and activator of transcription-5 (Stat5) during leukemogenesis are not well known. Stat5 is a critical regulator of mouse hematopoietic stem cell (HSC) self-renewal and is essential for normal lymphocyte development. We report that pan-hematopoietic deletion in viable adult Vav1-Cre conditional knockout mice as well as Stat5abnull/null fetal liver transplant chimeras generated HSCs with reduced expression of quiescence regulating genes (Tie2, Mpl, Slamf1, Spi1, Cited2) and increased expression of B-cell development genes (Satb1, Dntt, Btla, Flk2). Using a classical murine B-cell acute lymphoblastic leukemia (B-ALL) model, we demonstrate that these HSCs were also poised to produce a burst of B-cell precursors upon expression of Bcl-2 combined with oncogenic Myc. This strong selective advantage for leukemic transformation in the background of Stat5 deficient hematopoiesis was permissive for faster initiation of Myc-induced transformation to B-ALL. However, once established, the B-ALL progression in secondary transplant recipients was Stat5-independent. Overall, these studies suggest that Stat5 can play multiple important roles that not only preserve the HSC compartment but can limit accumulation of potential pre-leukemic lymphoid populations.
Collapse
Affiliation(s)
- Zhengqi Wang
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| | - Magdalena Medrzycki
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta GA, USA
| | - Kevin D Bunting
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| |
Collapse
|
42
|
Lynch JR, Wang JY. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer. Int J Mol Sci 2016; 17:ijms17050707. [PMID: 27187360 PMCID: PMC4881529 DOI: 10.3390/ijms17050707] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Jennifer R Lynch
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jenny Yingzi Wang
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
- Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
43
|
Kollek M, Müller A, Egle A, Erlacher M. Bcl-2 proteins in development, health, and disease of the hematopoietic system. FEBS J 2016; 283:2779-810. [DOI: 10.1111/febs.13683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Matthias Kollek
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
- Faculty of Biology; University of Freiburg; Germany
| | - Alexandra Müller
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer Research; 3rd Medical Department for Hematology; Paracelsus Private Medical University Hospital; Salzburg Austria
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| |
Collapse
|
44
|
Zbtb16 (PLZF) is stably suppressed and not inducible in non-innate T cells via T cell receptor-mediated signaling. Sci Rep 2015; 5:12113. [PMID: 26178856 PMCID: PMC4503983 DOI: 10.1038/srep12113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022] Open
Abstract
The transcription factor PLZF (promyelocytic leukemia zinc finger; zbtb16) is essential for nearly all of the unique characteristics of NKT cells including their rapid and potent response to antigen. In the immune system, zbtb16 expression is only found in innate cells. Conventional T cells that ectopically express PLZF spontaneously acquire an activated, effector phenotype. Activation induced expression of lineage defining transcription factors such as T-bet, FoxP3, RORγt, GATA3 and others is essential for naïve T cell differentiation into effector T cells. In this study, we used sensitive genetic-based approaches to assess the induction of PLZF expression in non-innate T cells by T cell receptor (TCR)-mediated activation. Surprisingly, we found that PLZF was stably repressed in non-innate T cells and that TCR-mediated signaling was not sufficient to induce PLZF in conventional T cells. The inactivated state of PLZF was stably maintained in mature T cells, even under inflammatory conditions imposed by bacterial infection. Collectively, our data show that, in contrast to multiple recent reports, PLZF expression is highly specific to innate T cells and cannot be induced in conventional T cells via TCR-mediated activation or inflammatory challenge.
Collapse
|
45
|
Hao B, Naik AK, Watanabe A, Tanaka H, Chen L, Richards HW, Kondo M, Taniuchi I, Kohwi Y, Kohwi-Shigematsu T, Krangel MS. An anti-silencer- and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development. ACTA ACUST UNITED AC 2015; 212:809-24. [PMID: 25847946 PMCID: PMC4419350 DOI: 10.1084/jem.20142207] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/12/2015] [Indexed: 12/12/2022]
Abstract
Rag1 and Rag2 gene expression in CD4(+)CD8(+) double-positive (DP) thymocytes depends on the activity of a distant anti-silencer element (ASE) that counteracts the activity of an intergenic silencer. However, the mechanistic basis for ASE activity is unknown. Here, we show that the ASE physically interacts with the distant Rag1 and Rag2 gene promoters in DP thymocytes, bringing the two promoters together to form an active chromatin hub. Moreover, we show that the ASE functions as a classical enhancer that can potently activate these promoters in the absence of the silencer or other locus elements. In thymocytes lacking the chromatin organizer SATB1, we identified a partial defect in Tcra gene rearrangement that was associated with reduced expression of Rag1 and Rag2 at the DP stage. SATB1 binds to the ASE and Rag promoters, facilitating inclusion of Rag2 in the chromatin hub and the loading of RNA polymerase II to both the Rag1 and Rag2 promoters. Our results provide a novel framework for understanding ASE function and demonstrate a novel role for SATB1 as a regulator of Rag locus organization and gene expression in DP thymocytes.
Collapse
Affiliation(s)
- Bingtao Hao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Abani Kanta Naik
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Akiko Watanabe
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Hirokazu Tanaka
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Liang Chen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Hunter W Richards
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Motonari Kondo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Ichiro Taniuchi
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinori Kohwi
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Terumi Kohwi-Shigematsu
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
46
|
Malhi S, Gu X. Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach. Expert Opin Drug Deliv 2015; 12:1177-201. [PMID: 25601619 DOI: 10.1517/17425247.2015.998648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cancer stem cells (CSCs) play an important role in the development of drug resistance, metastasis and recurrence. Current conventional therapies do not commonly target CSCs. Nanocarrier-based delivery systems targeting cancer cells have entered a new era of treatment, where specific targeting to CSCs may offer superior outcomes to efficient cancer therapies. AREAS COVERED This review discusses the involvement of CSCs in tumor progression and relevant mechanisms associated with CSCs resistance to conventional chemo- and radio-therapies. It highlights CSCs-targeted strategies that are either under evaluation or could be explored in the near future, with a focus on various nanocarrier-based delivery systems of drugs and nucleic acids to CSCs. Novel nanocarriers targeting CSCs are presented in a cancer-specific way to provide a current perspective on anti-CSCs therapeutics. EXPERT OPINION The field of CSCs-targeted therapeutics is still emerging with a few small molecules and macromolecules currently proving efficacy in clinical trials. However considering the complexities of CSCs and existing delivery difficulties in conventional anticancer therapies, CSC-specific delivery systems would face tremendous technical and clinical challenges. Nanocarrier-based approaches have demonstrated significant potential in specific drug delivery and targeting; their success in CSCs-targeted drug delivery would not only significantly enhance anticancer treatment but also address current difficulties associated with cancer resistance, metastasis and recurrence.
Collapse
Affiliation(s)
- Sarandeep Malhi
- University of Manitoba, College of Pharmacy, Faculty of Health Sciences , 750 McDermot Avenue Winnipeg, MB R3E 0H5 , Canada
| | | |
Collapse
|
47
|
Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 2014; 15:37-50. [PMID: 24813857 DOI: 10.1016/j.stem.2014.04.016] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 03/18/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) maintain homeostasis and regenerate the blood system throughout life. It has been postulated that HSCs may be uniquely capable of preserving their genomic integrity in order to ensure lifelong function. To directly test this, we quantified DNA damage in HSCs and downstream progenitors from young and old mice, revealing that strand breaks significantly accrue in HSCs during aging. DNA damage accumulation in HSCs was associated with broad attenuation of DNA repair and response pathways that was dependent upon HSC quiescence. Accordingly, cycling fetal HSCs and adult HSCs driven into cycle upregulated these pathways leading to repair of strand breaks. Our results demonstrate that HSCs are not comprehensively geno-protected during aging. Rather, HSC quiescence and concomitant attenuation of DNA repair and response pathways underlies DNA damage accumulation in HSCs during aging. These results provide a potential mechanism through which premalignant mutations accrue in HSCs.
Collapse
Affiliation(s)
- Isabel Beerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, MA 02116, USA
| | - Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Matthew A Inlay
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA 94305, USA.,Sue and Bill Gross Stem Cell Research Center, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, MA 02116, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
48
|
Abstract
SIGNIFICANCE Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. RECENT ADVANCES Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. CRITICAL ISSUES Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. FUTURE DIRECTIONS In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid.
Collapse
Affiliation(s)
- Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | | | | |
Collapse
|
49
|
Bcl2 overexpression rescues the hematopoietic stem cell defects in Ku70-deficient mice by restoration of quiescence. Blood 2014; 123:1002-11. [PMID: 24394664 DOI: 10.1182/blood-2013-08-521716] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNA repair is essential for hematopoietic stem cell (HSC) maintenance. Ku70 is a key component of the nonhomologous end-joining pathway, which is the major pathway for DNA double-strand break repair. We find that HSCs from Ku70-deficient mice are severely defective in self-renewal, competitive repopulation, and bone marrow (BM) hematopoietic niche occupancy and that loss of quiescence results in a dramatic defect in the maintenance of Ku70-deficient HSCs. Interestingly, although overexpression of Bcl2 does not rescue the severe combined immunodeficiency phenotype in Ku70-deficient mice, overexpression of Bcl2 in Ku70-deficient HSCs almost completely rescued the impaired HSC quiescence, repopulation, and BM hematopoietic niche occupancy capacities. Together, our data indicate that the HSC maintenance defect of Ku70-deficient mice is due to the loss of HSC quiescent populations, whereas overexpression of Bcl2 rescues the HSC defect in Ku70-deficient mice by restoration of quiescence. Our study uncovers a novel role of Bcl2 in HSC quiescence regulation.
Collapse
|
50
|
Abstract
Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed.
Collapse
Affiliation(s)
- Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|