1
|
Kato M, Nakashone H, Matsuo K, Ito Y, Yanagisawa A, Ohbiki M, Tabuchi K, Ichinohe T, Hashii Y, Kanda J, Goto H, Kato K, Yoshimitsu M, Sato A, Hino M, Matsumoto K, Yakushijin K, Atsuta Y, Fukuda T. Impact of center volume on outcomes in allogeneic hematopoietic cell transplantation for children. Bone Marrow Transplant 2025:10.1038/s41409-025-02569-3. [PMID: 40211066 DOI: 10.1038/s41409-025-02569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025]
Abstract
The impact of center volume on outcomes in pediatric hematopoietic cell transplantation (HCT) is not well established. We retrospectively analyzed data from a nationwide registry, including 6966 pediatric patients who underwent their first allogeneic HCT at 123 centers in Japan between 2001 and 2020. Centers were categorized by transplant volume as low volume centers (C1, the smallest number of transplantation), medium-low volume centers (C2), medium-high volume centers (C3), and high volume centers (C4, the greatest number of transplantation), and outcomes were compared across these categories. The analysis revealed no statistically significant differences in HCT outcomes among center categories. The 5-year OS by center category was 66.8% (95% CI 64.4-69.0%) for C1, 66.8% (95% CI 64.5-69.0%) for C2, 67.9% (95% CI 65.6-70.2%) for C3, and 68.3% (95% CI 65.9-70.6%) for C4. These results were consistent even when analysis was restricted to malignant and nonmalignant diseases. Our findings suggest that, unlike in adult HCT, outcomes for pediatric HCT are not significantly affected by center volume. These results indicate the consistent quality of care across centers, supporting the accessibility of HCT at various institutions for pediatric patients.
Collapse
Affiliation(s)
- Motohiro Kato
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan.
| | - Hideki Nakashone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Division of Emerging Medicine for Integrated Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Keitaro Matsuo
- Division Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yuri Ito
- Department of Medical Statistics, Research & Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Atsumi Yanagisawa
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Marie Ohbiki
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Ken Tabuchi
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka International Cancer Institute, Osaka, Japan
| | - Junya Kanda
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Goto
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Koji Kato
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Moeko Hino
- Department of Pediatrics, School of Medicine, Chiba University, Chiba, Japan
| | | | - Kimikazu Yakushijin
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Takahashi T, Wachter F, Alvarez Calderon F, Kapadia M, Qayed M, Keating AK. Umbilical Cord Blood Reduced Relapse but Increased Nonrelapse Mortality Compared to Matched Unrelated Donor Transplantation in Pediatric Acute Myeloid Leukemia With Active Disease: A CIBMTR 2008 to 2017 Analysis of Donor Source and Residual Disease. Transplant Cell Ther 2025; 31:261.e1-261.e15. [PMID: 39938807 DOI: 10.1016/j.jtct.2025.01.889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Umbilical cord blood (UCB) and matched unrelated donors (MUD) are common alternative donor options in children with high-risk acute myeloid leukemia (AML). Emerging evidence suggests an augmented graft-versus-leukemia (GVL) effect of UCB, but uncertainties persist due to the heterogeneity of the hematopoietic cell transplantation (HCT) characteristics in the previous studies. We reviewed 1148 patients aged ≤18 years with AML, who underwent the first HCT between 2008 to 2017, using a publicly available dataset from the Center for International Blood and Marrow Transplantation Research (CIBMTR) registry data. Multivariable analyses evaluated predictors of DFS and other clinical outcomes, factoring in graft source, conditioning regimen, patient age, cytogenetic risk, and HCT year (significance at P < .01). Residual disease status was assessed both as a covariate and as a stratifying factor. Additionally, the differential effects of conditioning regimens were analyzed specifically within the UCB cohort. UCB was used most frequently (33.8%) followed by MUD (29.1%), both of which had comparable DFS and overall survival. In patients with minimal residual disease or not in remission prior to HCT, human-leukocyte antigen (HLA) ≤5/8 matched UCB was associated with lower relapse rates than MUD (hazard risk [HR]: 0.25 and 0.29, P = .005 and .006, respectively) but with increased nonrelapse mortality (HR: 32.8 and 7.5, P = .001 and .012, respectively). Conditioning regimens varies by graft type; total body irradiation (TBI)-based regimens, primarily combined with cyclophosphamide and fludarabine, were more common in the UCB cohort (45% in UCB versus 19% in the other grafts, P < .001). Within the 388 patients received UCB, multivariable analysis demonstrated comparable DFS and OS across variable busulfan- and TBI-based regimens, with no trend of superiority for either approach. In conclusion, highly HLA-mismatched UCB reduced relapse in pediatric AML with higher disease burden but increased nonrelapse mortality, resulting in similar DFS to MUD. Improved supportive care and toxicity mitigation may improve the outcomes of UCB transplant. Overall, UCB should be considered a viable alternative graft source with equally favorable outcomes to MUD. Further research is warranted to refine conditioning regimen, including TBI- and busulfan-based strategies, mitigate toxicity, and improve supportive care to optimize UCB HCT outcomes.
Collapse
Affiliation(s)
- Takuto Takahashi
- Stem Cell Transplant, Boston Children's Hospital, Boston, Massachusetts; Pediatric Stem Cell Transplant, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Franziska Wachter
- Stem Cell Transplant, Boston Children's Hospital, Boston, Massachusetts; Pediatric Stem Cell Transplant, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Francesca Alvarez Calderon
- Stem Cell Transplant, Boston Children's Hospital, Boston, Massachusetts; Pediatric Stem Cell Transplant, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Malika Kapadia
- Stem Cell Transplant, Boston Children's Hospital, Boston, Massachusetts; Pediatric Stem Cell Transplant, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Muna Qayed
- Division of Pediatric Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia; Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Amy K Keating
- Stem Cell Transplant, Boston Children's Hospital, Boston, Massachusetts; Pediatric Stem Cell Transplant, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
3
|
Fu Z, Li B, Chai Y, Guo X, Chen X, Zhang L, Chen J, Wang D. Clinical Outcome of UCBT for Children With CAEBV: A Retrospective Analysis of a Single Center. Transplant Cell Ther 2025:S2666-6367(25)01063-2. [PMID: 40057192 DOI: 10.1016/j.jtct.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Chronic active Epstein-Barr virus (CAEBV) infection is a severe, life-threatening condition characterized by persistent Epstein-Barr virus (EBV) infection and the clonal expansion of infected T or NK cells, leading to systemic inflammation, organ damage, and complications such as hemophagocytic lymphohistiocytosis and lymphoma. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only effective treatment for eradicating EBV-infected cells; however, donor availability is limited. Umbilical cord blood stem cell transplantation (UCBT) is a promising alternative owing to its rapid availability and lower complication risk. However, there are fewer existing reports on UCBT in pediatric patients with CAEBV. This study aimed to assess the feasibility and clinical efficacy of UCBT as a potential treatment for pediatric patients with CAEBV. We investigated children with CAEBV who did not have matched donors and underwent UCBT in the First Affiliated Hospital of Zhengzhou University and Zhengzhou People's Hospital, China, between 2016 and 2022. We retrospectively analyzed the clinical characteristics, pretreatment regimens, transplantation-related complications, and clinical outcomes of this group of cases to explore the efficacy of UCBT in CAEBV treatment in children. Eight patients, including four males and four females, with a diagnosis age of 4 (1 to 8) years and a transplantation age of 4 (2-8) years, were enrolled in this study. The mean time from diagnosis to transplantation was 5 (2 to 14) months. The mean follow-up period for surviving patients was 49.75±29.66 months, with a maximum follow-up of 101.0 months. All eight patients exhibited successful engraftment. Acute GVHD was observed in six patients, while chronic GVHD was observed in only one patient, with the case being relatively mild. 2 patients developed CMV reactivation. EBV reactivation and post-transplant lymphoproliferative disease (PTLD) were not observed. Case 4 experienced relapse 10 months post-UCBT and achieved survival following a subsequent haplo-identical HSCT from her father. Case 8 succumbed to thrombotic microangiopathy (TMA) on post-transplant day 50. By the end of the follow-up, the 3-year overall survival rate (OS) was estimated to be 87.5% (95% CI: 0.529 to 0.994). The 3-year EFS rate was estimated to be 75% (95% CI: 0.409 to 0.956). The estimated 3-year GRFS rate was also 75.0% (95% CI: 0.409-0.956). UCBT emerges as a safe and effective treatment for CAEBV in children, serving as a viable alternative for patients without matched donors or emergency transplantation.
Collapse
Affiliation(s)
- Zhiyu Fu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Biyun Li
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujie Chai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xifeng Guo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinghua Chen
- Department of Pediatrics, Zhengzhou People's Hospital, Zhengzhou, China
| | - Lei Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Curci D, Braidotti S, Maximova N. Febuxostat-induced agranulocytosis in a pediatric hematopoietic stem cell transplant recipient: Case Report and literature review. Front Pharmacol 2024; 15:1478381. [PMID: 39508043 PMCID: PMC11537990 DOI: 10.3389/fphar.2024.1478381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
This report describes a pediatric case of isolated agranulocytosis occurring months after hematopoietic stem cell transplantation (HSCT). Secondary cytopenia, or secondary transplant failure, affects 10%-25% of HSCT recipients, with potential triggers including viral infection, graft-versus-host disease (GVHD), sepsis, and certain medications. Viral reactivation was ruled out based on negative PCR results, while GVHD and sepsis were ruled out based on the patient's clinical presentation. The patient, who received an HLA 10/10 unrelated donor T-cell transplant, underwent standard myeloablative conditioning to minimize the risk of graft rejection. However, agranulocytosis persisted even after discontinuation of myelotoxic drugs such as valganciclovir and ruxolitinib. Further investigation revealed that the patient had been taking febuxostat, which was subsequently discontinued, leading to a recovery of the neutrophil count. The European Medicines Agency lists agranulocytosis as a rare side effect of febuxostat. The effect of candidate genes and variants involved in febuxostat pharmacokinetics and pharmacodynamics was done using the Pharmacogenomics Knowledge Base (PharmGKB) to accurately evaluate an individual's risk for neutropenia. This case suggests that genetic variants in renal transporters ABCG2 (exonic non-synonymous variant, rs2231137), SLC29A1 (rs747199 and rs628031), and ABCC4 (3'UTR SNP, rs3742106 and rs11568658) may contribute to drug-induced agranulocytosis. This finding underscores the importance of genetic profiling in the management of patients undergoing HSCT to prevent adverse drug reactions.
Collapse
Affiliation(s)
- Debora Curci
- Laboratory of Advanced Translational Diagnostics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Stefania Braidotti
- Department of Pediatrics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Natalia Maximova
- Department of Pediatrics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
5
|
Odutola PO, Olorunyomi PO, Olorunyomi I. Single vs double umbilical cord blood transplantation in acute leukemia: Systematic review and meta-analysis. Leuk Res 2024; 142:107517. [PMID: 38761563 DOI: 10.1016/j.leukres.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND AIMS Umbilical cord blood transplantation (UCBT) has emerged as a promising treatment option for patients with acute leukemia needing hematopoietic stem cell transplantation. Both single (sUCBT) and double cord blood units (dUCBT) demonstrate potential benefits, but studies comparing their effectiveness have shown mixed results. This meta-analysis aimed to determine the comparative safety and efficacy of sUCBT versus dUCBT in acute leukemia patients. METHODS Electronic databases were systematically examined to identify relevant studies comparing single vs double UCBT published until November 2023. Nine studies involving 3864 acute leukemia patients undergoing UCBT were included. Outcomes analyzed were acute graft-versus-host disease (GVHD), chronic GVHD, relapse, non-relapse mortality, leukemia-free survival and overall survival. Pooled risk ratios (RR) with 95% confidence intervals (CI) were calculated using a random effects model. RESULTS The risk of Grade II-IV acute GVHD (RR 1.55, 95% CI 1.19-2.03) and Grade III-IV acute GVHD (RR 1.25, 95% CI 1.07-1.46) were significantly higher with dUCBT. Relapse risk was lower with dUCBT (RR 0.57, 95% CI 0.38-0.88) while overall survival favored sUCBT (RR 1.25, 95% CI 1.06-1.46). No significant differences were observed for chronic GVHD, non-relapse mortality or leukemia-free survival. CONCLUSION Both single and double UCBT have potential as effective treatments for acute leukemia. The choice of treatment should consider various factors, including the risk of GVHD, relapse, and mortality. More research, especially randomized trials, is needed to provide definitive guidance on the optimal use of single and double unit UCBT in patients with acute leukemia.
Collapse
|
6
|
Borrill R, Poulton K, Wynn R. Immunology of cord blood T-cells favors augmented disease response during clinical pediatric stem cell transplantation for acute leukemia. Front Pediatr 2023; 11:1232281. [PMID: 37780051 PMCID: PMC10534014 DOI: 10.3389/fped.2023.1232281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has been an important and efficacious treatment for acute leukemia in children for over 60 years. It works primarily through the graft-vs.-leukemia (GVL) effect, in which donor T-cells and other immune cells act to eliminate residual leukemia. Cord blood is an alternative source of stem cells for transplantation, with distinct biological and immunological characteristics. Retrospective clinical studies report superior relapse rates with cord blood transplantation (CBT), when compared to other stem cell sources, particularly for patients with high-risk leukemia. Xenograft models also support the superiority of cord blood T-cells in eradicating malignancy, when compared to those derived from peripheral blood. Conversely, CBT has historically been associated with an increased risk of transplant-related mortality (TRM) and morbidity, particularly from infection. Here we discuss clinical aspects of CBT, the unique immunology of cord blood T-cells, their role in the GVL effect and future methods to maximize their utility in cellular therapies for leukemia, honing and harnessing their antitumor properties whilst managing the risks of TRM.
Collapse
Affiliation(s)
- Roisin Borrill
- Blood and Marrow Transplant Unit, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kay Poulton
- Transplantation Laboratory, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Robert Wynn
- Blood and Marrow Transplant Unit, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Cao Y, Gong X, Feng Y, Wang M, Hu Y, Liu H, Liu X, Qi S, Ji Y, Liu F, Zhu H, Guo W, Shen Q, Zhang R, Zhao N, Zhai W, Song X, Chen X, Geng L, Chen X, Zheng X, Ma Q, Tang B, Wei J, Huang Y, Ren Y, Song K, Yang D, Pang A, Yao W, He Y, Shang Y, Wan X, Zhang W, Zhang S, Sun G, Feng S, Zhu X, Han M, Song Z, Guo Y, Sun Z, Jiang E, Chen J. The Composite Immune Risk Score predicts overall survival after allogeneic hematopoietic stem cell transplantation: A retrospective analysis of 1838 cases. Am J Hematol 2023; 98:309-321. [PMID: 36591789 PMCID: PMC10108217 DOI: 10.1002/ajh.26792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 01/03/2023]
Abstract
There has been little consensus on how to quantitatively assess immune reconstitution after hematopoietic stem cell transplantation (HSCT) as part of the standard of care. We retrospectively analyzed 11 150 post-transplant immune profiles of 1945 patients who underwent HSCT between 2012 and 2020. 1838 (94.5%) of the cases were allogeneic HSCT. Using the training set of patients (n = 729), we identified a composite immune signature (integrating neutrophil, total lymphocyte, natural killer, total T, CD4+ T, and B cell counts in the peripheral blood) during days 91-180 after allogeneic HSCT that was predictive of early mortality and moreover simplified it into a formula for a Composite Immune Risk Score. When we verified the Composite Immune Risk Score in the validation (n = 284) and test (n = 391) sets of patients, a high score value was found to be associated with hazard ratios (HR) of 3.64 (95% C.I. 1.55-8.51; p = .0014) and 2.44 (95% C.I., 1.22-4.87; p = .0087), respectively, for early mortality. In multivariate analysis, a high Composite Immune Risk Score during days 91-180 remained an independent risk factor for early mortality after allogeneic HSCT (HR, 1.80; 95% C.I., 1.28-2.55; p = .00085). In conclusion, the Composite Immune Risk Score is easy to compute and could identify the high-risk patients of allogeneic HSCT who require targeted effort for prevention and control of infection.
Collapse
Affiliation(s)
- Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huilan Liu
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Xueou Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yanping Ji
- Anhui Medical UniversityHefeiChina
- Department of HematologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Fang Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huaiping Zhu
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ningning Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaoqiang Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Liangquan Geng
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Xia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xuetong Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Baolin Tang
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yong Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yuanyuan Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Kaidi Song
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Wen Yao
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yue Shang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiang Wan
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Song Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Guangyu Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zimin Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| |
Collapse
|
8
|
Gudauskaitė G, Kairienė I, Ivaškienė T, Rascon J, Mobasheri A. Therapeutic Perspectives for the Clinical Application of Umbilical Cord Hematopoietic and Mesenchymal Stem Cells: Overcoming Complications Arising After Allogeneic Hematopoietic Stem Cell Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:111-126. [PMID: 35995905 DOI: 10.1007/5584_2022_726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
This review focuses on the therapeutic features of umbilical cord blood (UCB) cells as a source for allogeneic hematopoietic stem cell transplantation (aHSCT) in adult and child populations to treat malignant and nonmalignant hematologic diseases, genetic disorders, or pathologies of the immune system, when standard treatment (e.g., chemotherapy) is not effective or clinically contraindicated. In this article, we summarize the immunological properties and the advantages and disadvantages of using UCB stem cells and discuss a variety of treatment outcomes using different sources of stem cells from different donors both in adults and pediatric population. We also highlight the critical properties (total nucleated cell dose depending on HLA compatibility) of UCB cells that reach better survival rates, reveal the advantages of double versus single cord blood unit transplantation, and present recommendations from the most recent studies. Moreover, we summarize the mechanism of action and potential benefit of mesenchymal umbilical cord cells and indicate the most common posttransplantation complications.
Collapse
Affiliation(s)
- Greta Gudauskaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ignė Kairienė
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tatjana Ivaškienė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jelena Rascon
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ali Mobasheri
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| |
Collapse
|
9
|
Watkins B, Williams KM. Controversies and expectations for the prevention of GVHD: A biological and clinical perspective. Front Immunol 2022; 13:1057694. [PMID: 36505500 PMCID: PMC9726707 DOI: 10.3389/fimmu.2022.1057694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Severe acute and chronic graft versus host disease (GVHD) remains a major cause of morbidity and mortality after allogeneic hematopoietic cell transplantation. Historically, cord blood and matched sibling transplantation has been associated with the lowest rates of GVHD. Newer methods have modified the lymphocyte components to minimize alloimmunity, including: anti-thymocyte globulin, post-transplant cyclophosphamide, alpha/beta T cell depletion, and abatacept. These agents have shown promise in reducing severe GVHD, however, can be associated with increased risks of relapse, graft failure, infections, and delayed immune reconstitution. Nonetheless, these GVHD prophylaxis strategies have permitted expansion of donor sources, especially critical for those of non-Caucasian decent who previously lacked transplant options. This review will focus on the biologic mechanisms driving GVHD, the method by which each agent impacts these activated pathways, and the clinical consequences of these modern prophylaxis approaches. In addition, emerging novel targeted strategies will be described. These GVHD prophylaxis approaches have revolutionized our ability to increase access to transplant and have provided important insights into the biology of GVHD and immune reconstitution.
Collapse
Affiliation(s)
- Benjamin Watkins
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
10
|
Achini-Gutzwiller FR, Snowden JA, Corbacioglu S, Greco R. Haematopoietic stem cell transplantation for severe autoimmune diseases in children: A review of current literature, registry activity and future directions on behalf of the autoimmune diseases and paediatric diseases working parties of the European Society for Blood and Marrow Transplantation. Br J Haematol 2022; 198:24-45. [PMID: 37655707 DOI: 10.1111/bjh.18176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/27/2022]
Abstract
Although modern clinical management strategies have improved the outcome of paediatric patients with severe autoimmune and inflammatory diseases over recent decades, a proportion will experience ongoing or recurrent/relapsing disease activity despite multiple therapies often leading to irreversible organ damage, and compromised quality of life, growth/development and long-term survival. Autologous and allogeneic haematopoietic stem cell transplantation (HSCT) have been used successfully to induce disease control and often apparent cure of severe treatment-refractory autoimmune diseases (ADs) in children. However, transplant-related outcomes are disease-dependent and long-term outcome data are limited in respect to efficacy and safety. Moreover, balancing risks of HSCT against AD prognosis with continually evolving non-transplant options is challenging. This review appraises published literature on HSCT strategies and outcomes in individual paediatric ADs. We also provide a summary of the European Society for Blood and Marrow Transplantation (EBMT) Registry, where 343 HSCT procedures (176 autologous and 167 allogeneic) have been reported in 326 children (<18 years) for a range of AD indications. HSCT is a promising treatment modality, with potential long-term disease control or cure, but therapy-related morbidity and mortality need to be reduced. Further research is warranted to establish the position of HSCT in paediatric ADs via registries and prospective clinical studies to support evidence-based interspeciality guidelines and recommendations.
Collapse
Affiliation(s)
- Federica R Achini-Gutzwiller
- Division of Paediatric Stem Cell Transplantation and Haematology, Children's Research Centre (CRC), University Children's Hospital of Zurich, Zurich, Switzerland
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Selim Corbacioglu
- Department of Paediatric Oncology, Haematology and Stem Cell Transplantation, University Children's Hospital Regensburg, Regensburg, Germany
| | - Raffaella Greco
- Unit of Haematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Chen DP, Jaing TH, Hour AL, Lin WT, Hsu FP. Single-Nucleotide Polymorphisms Within Non-HLA Regions Are Associated With Engraftment Effectiveness for Patients With Unrelated Cord Blood Transplantation. Front Immunol 2022; 13:888204. [PMID: 35769457 PMCID: PMC9234117 DOI: 10.3389/fimmu.2022.888204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Clinically, stem cells with matched human leukocyte antigens (HLAs) must be selected for allogeneic transplantation to avoid graft rejection. However, adverse reactions still occur after cord blood transplantation (CBT). It was inferred that the HLA system is not the only regulatory factor that may influence CBT outcomes. Therefore, we plan to investigate whether the single-nucleotide polymorphisms (SNPs) located in non-HLA genes are associated with the effectiveness of CBT. In this study, the samples of 65 donors from CBT cases were collected for testing. DNA sequencing was focused on the SNPs of non-HLA genes, cytotoxic T-lymphocyte-associated protein 4 (CTLA4), CD28, tumor necrosis factor ligand superfamily 4 (TNFSF4), and programmed cell death protein 1 (PDCD1), which were selected in regard to the literatures published in 2017 and 2018, which indicated that they were related to stem cell transplantation. Then, in combination with the detailed follow-up transplantation tracking database, these SNPs were analyzed with the risk of mortality, relapse, cytomegalovirus (CMV) infection, and graft-versus-host disease (GVHD). We found that there were 2 SNPs of CTLA4, 1 SNP of TNFSF4, and 2 SNPs of PDCD1 associated with the effectiveness of unrelated CBT. These statistically significant SNPs and haplotypes would be used in clinical to choose the best donor for the patient receiving CBT. Moreover, the polygenic risk scores (PRSs) with these SNPs could be used to predict the risk of CBT adverse reactions with an area under the receiver operating characteristic curve (AUC) of 0.7692. Furthermore, these SNPs were associated with several immune-related diseases or cancer susceptibility, which implied that SNPs play an important role in immune regulation.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Ding-Ping Chen,
| | - Tang-Her Jaing
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Children’s Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ai-Ling Hour
- Department of Life Science, Fu Jen Catholic University, Taipei, Taiwan
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fang-Ping Hsu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
12
|
Xu Q, Xue L, An F, Xu H, Wang L, Geng L, Zhang X, Song K, Yao W, Wan X, Tong J, Liu H, Liu X, Zhu X, Zhai Z, Sun Z, Wang X. Impact of Consolidative Unrelated Cord Blood Transplantation on Clinical Outcomes of Patients With Relapsed/Refractory Acute B Lymphoblastic Leukemia Entering Remission Following CD19 Chimeric Antigen Receptor T Cells. Front Immunol 2022; 13:879030. [PMID: 35558072 PMCID: PMC9086894 DOI: 10.3389/fimmu.2022.879030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background While chimeric antigen receptor (CAR)-T cell therapy is becoming widely used in hematological malignancies with remarkable remission rate, their high recurrence remains an obstacle to overcome. The role of consolidative transplantation following CAR-T cell-mediated remission remains controversial. We conducted a retrospective study to explore whether bridging to unrelated cord blood transplantation (UCBT) could improve the prognosis of patients entering remission after CAR-T therapy with different characteristics through subgroup analyses. Methods We reviewed 53 patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL) successfully infused with CD19 CAR-T cells and achieved complete remission (CR). In this study, 25 patients received consolidative UCBT (UCBT group) and 28 patients did not accept any intervention until relapse (non-UCBT group). Subgroup analysis on prognosis was then performed according to gender, age, number of previous relapses, tumor burden, presence of poor prognostic markers, and structure of CAR. Results Compared with the non-UCBT group, patients who underwent consolidative UCBT had better median event-free survival (EFS; 12.3 months vs. 6.2 months; P = 0.035) and relapse-free survival (RFS; 22.3 months vs. 7.2 months; P = 0.046), while no significant difference was found in overall survival (OS; 30.8 months vs. 15.3 months; P = 0.118). Subsequent multivariate analysis revealed that bridging to UCBT was a protective factor for RFS (P = 0.048) but had no significant effect on EFS (P = 0.205) or OS (P = 0.541). In the subgroup analysis, UCBT has an added benefit in patients with specific characteristics. Patients who experienced ≥2 relapses or with sustained non-remission (NR) showed better RFS (P = 0.025) after UCBT. Better EFS was seen in patients with poor prognostic markers (P = 0.027). In the subgroup with pre-infusion minimal residual disease (MRD) ≥5% or with extramedullary disease (EMD), UCBT significantly prolonged EFS (P = 0.009), RFS (P = 0.017), and OS (P = 0.026). Patients with occurrence of acute graft-versus-host disease (aGVHD) appeared to have a longer duration of remission (P = 0.007). Conclusion Consolidative UCBT can, to some extent, improve clinical outcomes of patients with R/R B-ALL entering remission following CD19 CAR-T therapy, especially in patients with more recurrences before treatment, patients with poor prognostic markers, and patients with a higher tumor burden. The occurrence of aGVHD after UCBT was associated with better RFS.
Collapse
Affiliation(s)
- Qianwen Xu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Xue
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Furun An
- Hematology Department, The Second Hospital of Anhui Medical University (SHAMU), Hefei, China
| | - Hui Xu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liangquan Geng
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuhan Zhang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaidi Song
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen Yao
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Wan
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Tong
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huilan Liu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Liu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhimin Zhai
- Hematology Department, The Second Hospital of Anhui Medical University (SHAMU), Hefei, China
| | - Zimin Sun
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xingbing Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USCT) (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
13
|
Okada Y, Nakasone H, Konuma T, Uchida N, Tanaka M, Sugio Y, Aotsuka N, Nishijima A, Katsuoka Y, Ara T, Ota S, Onizuka M, Sawa M, Kimura T, Fukuda T, Atsuta Y, Kanda J, Kimura F. Ideal body weight is useful for predicting neutrophil engraftment and platelet recovery for overweight and obese recipients in single-unit cord blood transplantation. Transplant Cell Ther 2022; 28:504.e1-504.e7. [PMID: 35577325 DOI: 10.1016/j.jtct.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Since cord blood (CB) units are usually selected based on the cell dose /kg, overweight (25 kg/m2 ≤ body mass index (BMI) < 30 kg/m2) and obese (30 kg/m2 ≤ BMI) recipients tend to have difficulty in getting appropriate CB units. In general, actual body weight (ABW) is used for CB unit selection. However, ideal body weight (IBW) has been reported to be more closely correlated with successful engraftment after autologous, allogeneic bone marrow, and peripheral blood stem cell transplantation than ABW. OBJECTIVES We conducted this analysis to clarify the threshold of CD34+ cell doses based on ideal body weight (CD34IBW) and to compare the outcomes among the groups stratified by the threshold according to actual body weight (CD34ABW) and CD34IBW for overweight and obese recipients in cord blood transplantation (CBT). STUDY DESIGN We retrospectively analyzed 650 overweight and obese recipients who received single-unit CBT. To focus on the recipients who received a low CD34+ cell dose /kg, those who received 1.5×105 CD34+ cells /ABW or more were excluded. Using a cut-off of 0.8×105 CD34+ cells/kg, we compared the outcomes in 3 groups with low CD34ABW and low CD34IBW (CD34Low/Low), low CD34ABW but high CD34IBW (CD34Low/High), and high CD34ABW and high CD34IBW (CD34High/High). RESULTS Hematopoietic recoveries were significantly delayed in the CD34Low/Low group compared with those in the CD34Low/High group (hazard ratio (HR) 0.67 for neutrophil, P < 0.001; HR 0.72 for platelet, P = 0.014), while those were comparable in the CD34Low/High and CD34High/High groups (HR 1.22 for neutrophil, P = 0.16; HR 1.29 for platelet, P = 0.088). Moreover, the CD34Low/High group demonstrated longer overall survival than the CD34Low/Low group (HR 1.48, P = 0.011) and comparable survival to the CD34High/High group (HR 0.93, P = 0.68). CONCLUSIONS This finding may address the lack of availability of CB units for some overweight and obese recipients for whom suitable donors are unavailable. Further investigations are warranted to evaluate the appropriateness of ABW and IBW.
Collapse
Affiliation(s)
- Yosuke Okada
- Department of Hematology, National Defense Medical College Hospital, Saitama, Japan; Department of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan.
| | - Hideki Nakasone
- Department of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations TORANOMON HOSPITAL, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Yasuhiro Sugio
- Department of Hematology, Kitakyushu City Hospital Organization, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Nobuyuki Aotsuka
- Division of Hematology-Oncology, Japanese Red Cross Society Narita Hospital, Chiba, Japan
| | - Akihiko Nishijima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuna Katsuoka
- Department of Hematology, National Hospital Organization Sendai Medical Center, Miyagi, Japan
| | - Takahide Ara
- Department of Hematology, Hokkaido University Hospital, Hokkaido, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Hokkaido, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Kanagawa, Japan
| | - Masashi Sawa
- Department of Hematology and Oncology, Anjo Kosei Hospital, Aichi, Japan
| | - Takafumi Kimura
- Preparation Department, Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation; Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Aichi, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Kimura
- Department of Hematology, National Defense Medical College Hospital, Saitama, Japan
| |
Collapse
|
14
|
The Role of Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Leukemia. J Clin Med 2021; 10:jcm10173790. [PMID: 34501237 PMCID: PMC8432223 DOI: 10.3390/jcm10173790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) offers potentially curative treatment for many children with high-risk or relapsed acute leukemia (AL), thanks to the combination of intense preparative radio/chemotherapy and the graft-versus-leukemia (GvL) effect. Over the years, progress in high-resolution donor typing, choice of conditioning regimen, graft-versus-host disease (GvHD) prophylaxis and supportive care measures have continuously improved overall transplant outcome, and recent successes using alternative donors have extended the potential application of allotransplantation to most patients. In addition, the importance of minimal residual disease (MRD) before and after transplantation is being increasingly clarified and MRD-directed interventions may be employed to further ameliorate leukemia-free survival after allogeneic HSCT. These advances have occurred in parallel with continuous refinements in chemotherapy protocols and the development of targeted therapies, which may redefine the indications for HSCT in the coming years. This review discusses the role of HSCT in childhood AL by analysing transplant indications in both acute lymphoblastic and acute myeloid leukemia, together with current and most promising strategies to further improve transplant outcome, including optimization of conditioning regimen and MRD-directed interventions.
Collapse
|
15
|
Beyron C, Ceraulo A, Bertrand Y, Bleyzac N, Philippe M. Impact of a Bayesian Individualization of Cyclosporine Dosage Regimen for Children Undergoing Allogeneic Hematopoietic Cell Transplantation: A Cost-Effectiveness Analysis. Ther Drug Monit 2021; 43:481-489. [PMID: 33814541 DOI: 10.1097/ftd.0000000000000886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cyclosporine A (CsA) is the main drug used to prevent graft-versus-host disease in patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). CsA therapeutic drug monitoring (TDM) has been performed for ages, with studies revealing clinical benefits, but failing to examine its economic impact. In this article, the main objective was to evaluate the economic impact of the CsA TDM strategy, based on a Bayesian approach, by assessing costs related to its clinical impact. Furthermore, TDM effectiveness was analyzed for pharmacokinetics and clinical outcomes. METHODS A cost-effective, nonrandomized, retrospective, single-center study compared 2 CsA monitoring and dose adaptation strategies in pediatric patients undergoing HSCT. From 2014 to 2016, CsA TDM was performed using a population pharmacokinetics model-coupled Bayesian approach by a pharmacist ["pharmacist-assisted individualization" (PAI)]. From 2017 to 2018, CsA TDM was performed by the clinician without a Bayesian approach (non-PAI group). HSCT costs were evaluated from the French National Insurance perspective. Economic and clinical outcomes were assessed by measuring incremental cost-effectiveness ratios. RESULTS The study included 144 patients: 90 and 54 patients in PAI and non-PAI groups, respectively. Both groups were comparable for sociodemographic and clinical characteristics. The mean total cost per patient was significantly lower (P < 0.01) in the PAI group (€85,947) than in the non-PAI group (€100,435). Multivariate analysis revealed that TDM based on the Bayesian approach was a protective factor (odds ratio = 0.86) for severe acute graft-versus-host disease. We noted that pharmacist-based TDM was the dominant strategy. Bayesian method-based TDM allowed an increase in the percentage of target attainment at any period post-HSCT. CONCLUSIONS CsA TDM with a Bayesian approach is a cost-effective procedure, and highlighted clinical benefits encourage the development of new TDM strategies for HSCT.
Collapse
Affiliation(s)
- C Beyron
- Oncology Pharmacy Department, Centre Léon Bérard
| | - A Ceraulo
- Institute of Pediatric Hematology and Oncology, Hospices Civils de Lyon
- Claude Bernard University-Lyon 1
| | - Y Bertrand
- Institute of Pediatric Hematology and Oncology, Hospices Civils de Lyon
- Claude Bernard University-Lyon 1
| | - N Bleyzac
- Pharmacy Department, Hôpital Pierre Garraud, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon; and
- EMR 3738, Team 2-PK/PD Modeling in Oncology, Lyon-Sud Faculty of Medicine, Oullins, France
| | - M Philippe
- Oncology Pharmacy Department, Centre Léon Bérard
- Institute of Pediatric Hematology and Oncology, Hospices Civils de Lyon
| |
Collapse
|
16
|
Inflammatory monocytes promote pre-engraftment syndrome and tocilizumab can therapeutically limit pathology in patients. Nat Commun 2021; 12:4137. [PMID: 34230468 PMCID: PMC8260612 DOI: 10.1038/s41467-021-24412-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/15/2021] [Indexed: 12/01/2022] Open
Abstract
Unrelated cord blood transplantation (UCBT) is an effective treatment for hematopoietic disorders. However, this attractive approach is frequently accompanied by pre-engraftment syndrome (PES), severe cases of PES are associated with enhanced mortality and morbidity, but the pathogenesis of PES remains unclear. Here we show that GM-CSF produced by cord blood-derived inflammatory monocytes drives PES pathology, and that monocytes are the main source of IL-6 during PES. Further, we report the outcome of a single arm, single-center clinical study of tocilizumab in the treatment of steroid-refractory severe PES patients (www.chictr.org.cn ChiCTR1800015472). The study met the primary outcome measure since none of the patients was nonrelapse death during the 100 days follow-up. The study also met key secondary outcomes measures of neutrophil engraftment and hematopoiesis. These findings offer a therapeutic strategy with which to tackle PES and improve nonrelapse mortality. Pre-engraftment syndrome is a major consideration during clinical application of unrelated cord blood transfusion and monocytes represent a critical cell type in immune-pathogenesis. Here the authors further establish the role of monocytes and GM-CSF in pre-engraftment syndrome and show clinical administration of tocilizumab limits pathology in pre-engraftment syndrome pathology in patients.
Collapse
|
17
|
Maharajan N, Cho GW, Choi JH, Jang CH. Regenerative Therapy Using Umbilical Cord Serum. In Vivo 2021; 35:699-705. [PMID: 33622862 DOI: 10.21873/invivo.12310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Regenerative medicine is a branch of medicine that incorporates tissue-engineering, biomaterials, and cell therapy approaches to replace or repair damaged cells and tissues. Umbilical cord serum (UCS) is an important liquid component of cord blood, which has a reliable source of innumerable growth factors and biologically active molecules. Usually, serum can be prepared from different sources of blood. In therapeutic application, cord serum can be prepared and used in the form of eye drops for the treatment of severe dry eye diseases, ocular burns, glaucoma, persistent corneal epithelial defects and neurotrophic keratitis. In addition, cord serum combined with synthetic bio scaffold materials is used to regenerate different types of tissues including tympanic membrane regeneration, bone regeneration and nerve regeneration. Absence of animal origin viruses and bacteria, lack of xenoproteins and cost-effective features make cord serum a feasible choice as replacement of fetal bovine serum in cell culture techniques. Thus, this review emphasizes the role of cord serum in regenerative therapy and clinical uses.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Republic of Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Republic of Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Ji Hyun Choi
- Department of Obstetrics and Gynecology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Khazal S, Kebriaei P. Hematopoietic cell transplantation for acute lymphoblastic leukemia: review of current indications and outcomes. Leuk Lymphoma 2021; 62:2831-2844. [PMID: 34080951 DOI: 10.1080/10428194.2021.1933475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The treatment landscape for patients with acute lymphoblastic leukemia (ALL) is changing. Continued investigation into the biology of ALL, and broader use and more precise methods of measuring residual disease allow for improved risk stratification of patients and identification of the subset of patients at greatest risk of disease relapse and who may benefit from hematopoietic cell transplantation (HCT) in first complete remission. Further, recent advances in HCT preparative regimens, donor selection, graft manipulation, and graft-versus-host disease prophylaxis and treatment have resulted in fewer transplant-related morbidities and mortality and better survival outcomes. Finally, the development of effective immunotherapeutic salvage agents, such as the chimeric antigen receptor T-cell therapy, tisagenlecleucel, have significantly changed the treatment landscape of this disease, allowing patients with advanced disease to be considered for HCT with curative intent. In this review, we will provide an update on the indications and outcome of pediatric and adult ALL.
Collapse
Affiliation(s)
- Sajad Khazal
- Division of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Llaurador G, Nicoletti E, Prockop SE, Hsu S, Fuller K, Mauguen A, O'Reilly RJ, Boelens JJ, Boulad F. Donor-Host Lineage-Specific Chimerism Monitoring and Analysis in Pediatric Patients Following Allogeneic Stem Cell Transplantation: Influence of Pretransplantation Variables and Correlation with Post-Transplantation Outcomes. Transplant Cell Ther 2021; 27:780.e1-780.e14. [PMID: 34082161 DOI: 10.1016/j.jtct.2021.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
The impact of donor-host chimerism in post-hematopoietic stem cell transplantation (HSCT) outcomes is poorly understood. We were interested in studying whether pre-HSCT variables influenced lineage-specific donor-host chimerism and how lineage-specific chimerism impacts post-HSCT outcomes. Our main objective was to study pre-HSCT variables as predictors of lineage-specific donor-host chimerism patterns and to better characterize the relationship between post-HSCT lineage-specific chimerism and adverse outcomes, including graft failure and disease relapse. We conducted a retrospective data analysis of all patients who underwent allogeneic HSCT at the Pediatric Transplantation and Cellular Therapy service at Memorial Sloan Kettering Cancer Center between January 2010 and June 2015 and had at least 2 measurements of split-lineage chimerism. The trend of lineage-specific donor-host chimerism post-HSCT and the impact of age, disease, graft type, and pretransplantation conditioning regimen on chimerism at 3 months and 12 months post-HSCT were studied. The Wilcoxon signed-rank test, Mann-Whitney-Wilcoxon test, and Cox proportional hazard models were used for statistical analyses. A total of 137 patients were included (median age, 11.3 years). Most patients had a hematologic malignancy (n = 95), and fewer had a nonmalignant disorder (n = 27) or primary immune deficiency (n = 15). Myeloablative conditioning regimens (n = 126) followed by T cell-depleted (TCD) peripheral blood stem cell or bone marrow grafts (n = 101) were most commonly used. Mixed chimerism (MC) of total peripheral blood leukocytes (PBLs) did not predict loss of donor chimerism in all lineages and when stable was not associated with graft failure or rejection in this analyses. Split chimerism with complete donor chimerism (CC) of myeloid, B, and natural killer cells, but not T cells, occurred early post-HSCT, but full donor T cell chimerism was achieved at 12 months post-HSCT by most patients. MC within the T cell lineage was the major contributor to PBL MC, with lower median donor T cell chimerism at 3 months than at 12 months (91%) post-HSCT (51% versus 91%; P < .0001). Predictors of MC at 3 and 12 months were (1) age <3 years (P = .01 for PBLs and P = .003 for myeloid lineage); (2) nonmalignant disorder (P = .007 for PBLs); and (3) the use of reduced-intensity conditioning regimens. TCD grafts produced lower donor T cell chimerism at 3 months post-HSCT compared with unmodified grafts (P < .0001), where T cell lineage CC was achieved early post-HSCT. The donor T cell chimerism was similar at 12 months in the 2 types of grafts. Umbilical cord blood grafts had CC in all lineages at all time points post-HSCT. Loss of donor B cell chimerism was associated with increased risk of relapse in hematologic malignancies (hazard ratio, 1.33; P = .05). Age, underlying disease, conditioning regimen, and graft manipulation can impact post-HSCT donor-host chimerism and be predictors for early MC. MC in total PBLs and T cells was not related to graft failure or disease relapse. Whole-blood PBL chimerism analysis is not sufficient to assess the significance of post-HSCT donor-host status; rather, lineage-specific chimerism, particularly for myeloid, T, and B cells, should be analyzed to guide interventions and inform outcomes.
Collapse
Affiliation(s)
- Gabriela Llaurador
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pediatrics, Weill Cornell Medical College, New York, New York
| | | | - Susan E Prockop
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pediatrics, Weill Cornell Medical College, New York, New York
| | - Susan Hsu
- Histocompatibility/Molecular Genetics Laboratory, American Red Cross Penn Jersey Region, Philadelphia, Pennsylvania
| | - Kirsten Fuller
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jaap J Boelens
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Farid Boulad
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
20
|
Cho HW, Ju HY, Hyun JK, Lee JW, Sung KW, Koo HH, Lim DH, Yoo KH. Conditioning with 10 Gy Total Body Irradiation, Cyclophosphamide, and Fludarabine without ATG Is Associated with Improved Outcome of Cord Blood Transplantation in Children with Acute Leukemia. J Korean Med Sci 2021; 36:e128. [PMID: 34002548 PMCID: PMC8129619 DOI: 10.3346/jkms.2021.36.e128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The optimal conditioning regimen in cord blood transplantation (CBT) needs to be determined. This study aimed to identify the impact of conditioning regimen on the outcome of CBT in children with acute leukemia. METHODS Medical records of patients with acute leukemia who received CBT were retrospectively reviewed. RESULTS A total of 71 patients were allocated into 2 groups; patients who received total body irradiation 10 Gy, cyclophosphamide 120 mg/kg, and fludarabine 75 mg/m² were named as TCF group (n = 18), while the non-TCF group (n = 53) included patients conditioned with regimens other than the TCF regimen. All patients in the TCF group were successfully engrafted, while 22.6% in the non-TCF group (n = 12) failed to achieve donor-origin hematopoiesis (P = 0.028). The incidence of cytomegalovirus diseases was 5.6% in the TCF group and 30.2% in the non-TCF group (P = 0.029). The 5-year overall survival rates of the TCF and non-TCF groups were 77.8% and 44.2%, respectively (P = 0.017). CONCLUSION Patients conditioned with the TCF regimen achieved better engraftment and survival rates, less suffering from cytomegalovirus disease. Our data suggest that the TCF regimen is a preferred option for CBT in children with acute leukemia.
Collapse
Affiliation(s)
- Hee Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju Kyung Hyun
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
21
|
Cord blood CD8+ T-cell expansion following granulocyte transfusions eradicates refractory leukemia. Blood Adv 2021; 4:4165-4174. [PMID: 32886752 DOI: 10.1182/bloodadvances.2020001737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
The action of hematopoietic cell transplantation in controlling leukemia is principally mediated by donor T cells directed against residual recipient malignant cells. However, its utility is limited by graft-versus-host disease (GVHD), where alloreactivity is extended beyond leukemic and marrow cells. In a human/murine chimeric model, we previously showed that the preferential infiltration of cord blood (CB) CD8+ T cells eradicates an Epstein-Barr virus-driven lymphoblastoid tumor without causing xenogeneic GVHD. In the clinic, however, cord blood CD8+ T-cell reconstitution is significantly delayed, and the observation of such a robust antileukemia effect mediated by cord blood CD8+ T cells has not been reported. We describe an observation of very early T-cell expansion in 4 high-risk pediatric leukemia patients receiving third-party, pooled granulocytes after T cell-replete CB transplantation (CBT). The T-cell expansion was transient but robust, including expansion of CD8+ T cells, in contrast to the delayed CD8+ T-cell expansion ordinarily observed after T cell-replete CBT. The CD8+ T cells were polyclonal, rapidly switched to memory phenotype, and had the ability to mediate cytotoxicity. This phenomenon is reproducible, and each patient remains in long-term remission without GVHD. The results suggest that fetal-derived CB CD8+ T cells can be exploited to generate robust antileukemia effects without GVHD.
Collapse
|
22
|
Bohannon L, Tang H, Page K, Ren Y, Jung SH, Artica A, Britt A, Islam P, Siamakpour-Reihani S, Giri V, Lew M, Kelly M, Choi T, Gasparetto C, Long G, Lopez R, Rizzieri D, Sarantopoulos S, Chao N, Horwitz M, Sung A. Decreased Mortality in 1-Year Survivors of Umbilical Cord Blood Transplant vs. Matched Related or Matched Unrelated Donor Transplant in Patients with Hematologic Malignancies. Transplant Cell Ther 2021; 27:669.e1-669.e8. [PMID: 33991725 DOI: 10.1016/j.jtct.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HCT) has the potential to cure hematologic malignancies but is associated with significant morbidity and mortality. Although deaths during the first year after transplantation are often attributable to treatment toxicities and complications, death after the first year may be due to sequelae of accelerated aging caused by cellular senescence. Cytotoxic therapies and radiation used in cancer treatments and conditioning regimens for HCT can induce aging at the molecular level; HCT patients experience time-dependent effects, such as frailty and aging-associated diseases, more rapidly than people who have not been exposed to these treatments. Consistent with this, recipients of younger cells tend to have decreased markers of aging and improved survival, decreased graft-versus-host disease, and lower relapse rates. Given that umbilical cord blood (UCB) is the youngest donor source available, we studied the outcomes after the first year of UCB transplantation versus matched related donor (MRD) and matched unrelated donor (MUD) transplantation in patients with hematologic malignancies over a 20-year period. In this single-center, retrospective study, we examined the outcomes of all adult patients who underwent their first allogeneic HCT through the Duke Adult Bone Marrow Transplant program from January 1, 1996, to December 31, 2015, to allow for at least 3 years of follow-up. Patients were excluded if they died or were lost to follow-up before day 365 after HCT, received an allogeneic HCT for a disease other than a hematologic malignancy, or received cells from a haploidentical or mismatched adult donor. UCB recipients experienced a better unadjusted overall survival than MRD/MUD recipients (log rank P = .03, median overall survival: UCB not reached, MRD/MUD 7.4 years). After adjusting for selected covariates, UCB recipients who survived at least 1 year after HCT had a hazard of death that was 31% lower than that of MRD/MUD recipients (hazard ratio, 0.69; 95% confidence interval, 0.47-0.99; P = .049). This trend held true in a subset analysis of subjects with acute leukemia. UCB recipients also experienced lower rates of moderate or severe chronic graft-versus-host disease (GVHD) and nonrelapse mortality, and slower time to relapse. UCB and MRD/MUD recipients experienced similar rates of grade 2-4 acute GVHD, chronic GHVD, secondary malignancy, and subsequent allogeneic HCT. UCB is already widely used as a donor source in pediatric HCT; however, adult outcomes and adoption have historically lagged behind in comparison. Recent advancements in UCB transplantation such as the implementation of lower-intensity conditioning regimens, double unit transplants, and ex vivo expansion have improved early mortality, making UCB an increasingly attractive donor source for adults; furthermore, our findings suggest that UCB may actually be a preferred donor source for mitigating late effects of HCT.
Collapse
Affiliation(s)
- Lauren Bohannon
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Helen Tang
- Duke University School of Medicine, Durham, North Carolina
| | - Kristin Page
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Yi Ren
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Sin-Ho Jung
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Alexandra Artica
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Anne Britt
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Prioty Islam
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Sharareh Siamakpour-Reihani
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Vinay Giri
- Duke University School of Medicine, Durham, North Carolina
| | - Meagan Lew
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Matthew Kelly
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Taewoong Choi
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Gwynn Long
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Richard Lopez
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - David Rizzieri
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Nelson Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Mitchell Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina
| | - Anthony Sung
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
23
|
John-Olabode SO, Okunade KS, Ajie IO, Olorunfemi G, Oyedeji OA. Awareness and practice of cord blood donation by pregnant women in Lagos Nigeria: Practice implication for future cord blood transplantation in Nigeria. Ann Afr Med 2021; 20:24-30. [PMID: 33727508 PMCID: PMC8102888 DOI: 10.4103/aam.aam_9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: Poor awareness remains a substantial limitation to harnessing the benefits of umbilical cord blood (UCB) in sub-Saharan Africa. The aim of this study was to determine the level of awareness and factors influencing intention to donate cord blood to blood bank among antenatal clinic attendees at a tertiary hospital in Nigeria. Methods: We conducted a questionnaire-based cross-sectional study of 400 women attending the antenatal clinic of a tertiary hospital in Lagos, Nigeria, between February and June 2018. The data were analyzed using Stata version 13; comparisons were conducted with Chi-square, Student's t-test, and Mann–Whitney U-test. Univariable and multivariable binary logistic regression was conducted with “willingness to donate” as the outcome variable. Results: Majority (n = 287/331 [86.2%, 95% confidence interval [CI]: 76.4–84.9]) of the participants had some knowledge of UCB, almost half intended future donation of UCB (n = 161/333, [48.3%, 95% CI: 42.9–53.6]). Based on our findings, factors such as religion (P = 0.001), education (P = 0.03), information from health-care provider (P < 0.001) appear to influence awareness, and the decision to donate UCB. Conclusion: Although the awareness of the clinical uses of UCB is very limited in Nigeria, the intent to participate in UCB donation is high. Factors such as religion, education, and prior information about UCB donation by health-care providers have been identified in this study to have an influence on the decision to donate UCB.
Collapse
Affiliation(s)
| | - Kehinde S Okunade
- Department of Obstetrics and Gynaecology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Iwuchukwu O Ajie
- Department of Chemical and Clinical Pathology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Gbenga Olorunfemi
- Division of Epidemiology and Biostatistics, School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | - Olufemi A Oyedeji
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
24
|
Intrabone infusion for allogeneic umbilical cord blood transplantation in children. Bone Marrow Transplant 2021; 56:1937-1943. [PMID: 33824433 DOI: 10.1038/s41409-021-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 11/09/2022]
Abstract
Umbilical cord blood transplantation (UCBT) has been used to treat malignant and non-malignant diseases. UCBT offers the advantages of easy procurement and acceptable partial HLA mismatches, but also shows delayed hematopoietic and immunological recoveries. We postulated that an intrabone (IB) infusion of cord blood could provide a faster short- and long-term engraftment in a pediatric population with malignant and non-malignant hematologic diseases. We conducted this phase I-II single arm, exploratory clinical trial (NCT01711788) from 2012 to 2016 in a single center. Fifteen patients aged from 1.9 to 16.4 years received an IB UCBT. Median time to neutrophils and platelet recoveries were 18 days (range: 13-36 days) and 42 days (range: 26-107 days), respectively. Rate of severe acute GVH grade was low, with only one patient with grade III aGVH. Relapse occurred in 5 patients (38.5%) and TRM occurred in 1 patient. This leads to 6 years EFS and OS of 66.7% and 80% respectively. In conclusion, IB UCBT is safe and well-tolerated in children and hematological recovery compared similarly to the results obtained with IV UCBT.
Collapse
|
25
|
Little AM, Akbarzad-Yousefi A, Anand A, Diaz Burlinson N, Dunn PPJ, Evseeva I, Latham K, Poulton K, Railton D, Vivers S, Wright PA. BSHI guideline: HLA matching and donor selection for haematopoietic progenitor cell transplantation. Int J Immunogenet 2021; 48:75-109. [PMID: 33565720 DOI: 10.1111/iji.12527] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/18/2023]
Abstract
A review of the British Society for Histocompatibility and Immunogenetics (BSHI) Guideline 'HLA matching and donor selection for haematopoietic progenitor cell transplantation' published in 2016 was undertaken by a BSHI appointed writing committee. Literature searches were performed and the data extracted were presented as recommendations according to the GRADE nomenclature.
Collapse
Affiliation(s)
- Ann-Margaret Little
- Histocompatibility and Immunogenetics Laboratory, Gartnavel General Hospital, Glasgow, UK.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Arash Akbarzad-Yousefi
- Histocompatibility and Immunogenetics Laboratory, NHS Blood and Transplant, Newcastle-Upon-Tyne, UK
| | - Arthi Anand
- Histocompatibility and Immunogenetics Laboratory, North West London Pathology, Hammersmith Hospital, London, UK
| | | | - Paul P J Dunn
- Transplant Laboratory University Hospitals of Leicester, Leicester General Hospital, Leicester, UK.,Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | | | - Katy Latham
- Cellular and Molecular Therapies, NHS Blood and Transplant, Bristol, UK
| | - Kay Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK
| | - Dawn Railton
- Tissue Typing Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Paul A Wright
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
26
|
Velardi E, Clave E, Arruda LCM, Benini F, Locatelli F, Toubert A. The role of the thymus in allogeneic bone marrow transplantation and the recovery of the peripheral T-cell compartment. Semin Immunopathol 2021; 43:101-117. [PMID: 33416938 DOI: 10.1007/s00281-020-00828-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
As the thymus represents the primary site of T-cell development, optimal thymic function is of paramount importance for the successful reconstitution of the adaptive immunity after allogeneic hematopoietic stem cell transplantation. Thymus involutes as part of the aging process and several factors, including previous chemotherapy treatments, conditioning regimen used in preparation to the allograft, occurrence of graft-versus-host disease, and steroid therapy that impair the integrity of the thymus, thus affecting its role in supporting T-cell neogenesis. Although the pathways governing its regeneration are still poorly understood, the thymus has a remarkable capacity to recover its function after damage. Measurement of both recent thymic emigrants and T-cell receptor excision circles is valuable tools to assess thymic output and gain insights on its function. In this review, we will extensively discuss available data on factors regulating thymic function after allogeneic hematopoietic stem cell transplantation, as well as the strategies and therapeutic approaches under investigation to promote thymic reconstitution and accelerate immune recovery in transplanted patients, including the use of cytokines, sex-steroid ablation, precursor T-cells, and thymus bioengineering. Although none of them is routinely used in the clinic, these approaches have the potential to enhance thymic function and immune recovery, not only in patients given an allograft but also in other conditions characterized by immune deficiencies related to a defective function of the thymus.
Collapse
Affiliation(s)
- Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| | - Emmanuel Clave
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, F-75010, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Benini
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.,Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, F-75010, Paris, France.,Laboratoire d'Immunologie et d'Histocompatibilité, AP-HP, Hopital Saint-Louis, F-75010, Paris, France
| |
Collapse
|
27
|
Wölfl M, Qayed M, Benitez Carabante MI, Sykora T, Bonig H, Lawitschka A, Diaz-de-Heredia C. Current Prophylaxis and Treatment Approaches for Acute Graft-Versus-Host Disease in Haematopoietic Stem Cell Transplantation for Children With Acute Lymphoblastic Leukaemia. Front Pediatr 2021; 9:784377. [PMID: 35071133 PMCID: PMC8771910 DOI: 10.3389/fped.2021.784377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Acute graft-versus-host disease (aGvHD) continues to be a leading cause of morbidity and mortality following allogeneic haematopoietic stem cell transplantation (HSCT). However, higher event-free survival (EFS) was observed in patients with acute lymphoblastic leukaemia (ALL) and grade II aGvHD vs. patients with no or grade I GvHD in the randomised, controlled, open-label, international, multicentre Phase III For Omitting Radiation Under Majority age (FORUM) trial. This finding suggests that moderate-severity aGvHD is associated with a graft-versus-leukaemia effect which protects against leukaemia recurrence. In order to optimise the benefits of HSCT for leukaemia patients, reduction of non-relapse mortality-which is predominantly caused by severe GvHD-is of utmost importance. Herein, we review contemporary prophylaxis and treatment options for aGvHD in children with ALL and the key challenges of aGvHD management, focusing on maintaining the graft-versus-leukaemia effect without increasing the severity of GvHD.
Collapse
Affiliation(s)
- Matthias Wölfl
- Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Würzburg University Hospital, Würzburg, Germany
| | - Muna Qayed
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Maria Isabel Benitez Carabante
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Tomas Sykora
- Haematopoietic Stem Cell Transplantation Unit, Department of Pediatric Haematology and Oncology, Comenius University Children's Hospital, Bratislava, Slovakia
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University Frankfurt/Main, Frankfurt, Germany.,German Red Cross Blood Service BaWüHe, Frankfurt, Germany
| | - Anita Lawitschka
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Cristina Diaz-de-Heredia
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| |
Collapse
|
28
|
Ferdjallah A, Young JAH, MacMillan ML. A Review of Infections After Hematopoietic Cell Transplantation Requiring PICU Care: Transplant Timeline Is Key. Front Pediatr 2021; 9:634449. [PMID: 34386464 PMCID: PMC8353083 DOI: 10.3389/fped.2021.634449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Despite major advances in antimicrobial prophylaxis and therapy, opportunistic infections remain a major cause of morbidity and mortality after pediatric hematopoietic cell transplant (HCT). Risk factors associated with the development of opportunistic infections include the patient's underlying disease, previous infection history, co-morbidities, source of the donor graft, preparative therapy prior to the graft infusion, immunosuppressive agents, early and late toxicities after transplant, and graft-vs.-host disease (GVHD). Additionally, the risk for and type of infection changes throughout the HCT course and is greatly influenced by the degree and duration of immunosuppression of the HCT recipient. Hematopoietic cell transplant recipients are at high risk for rapid clinical decompensation from infections. The pediatric intensivist must remain abreast of the status of the timeline from HCT to understand the risk for different infections. This review will serve to highlight the infection risks over the year-long course of the HCT process and to provide key clinical considerations for the pediatric intensivist by presenting a series of hypothetical HCT cases.
Collapse
Affiliation(s)
- Asmaa Ferdjallah
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Jo-Anne H Young
- Department of Medicine, Division of Infectious Disease and International Medicine, Program in Transplant Infectious Disease, University of Minnesota, Minneapolis, MN, United States
| | - Margaret L MacMillan
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
29
|
Zhang Y, Li P, Fang H, Wang G, Zeng X. Paving the Way Towards Universal Chimeric Antigen Receptor Therapy in Cancer Treatment: Current Landscape and Progress. Front Immunol 2020; 11:604915. [PMID: 33362790 PMCID: PMC7758418 DOI: 10.3389/fimmu.2020.604915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor (CAR) therapy has been proved effective in a stream of clinical trials, especially in hematologic malignancies. However, current CAR therapy is highly personalized as cells used are derived from patients themselves, which can be costly, time-consuming, and sometimes fails to achieve optimal therapeutic results due to poor quality/quantity of patient-derived cells. On the contrary, universal CAR therapy, which is based on healthy individuals’ cells, circumvents several limitations of current autologous CAR therapy. To achieve the universality of CAR therapy, the allogeneic cell transplantation related issues, such as graft-versus-host disease (GVHD) and host-versus-graft activities (HVGA), must be addressed. In this review, we focus on current progress regarding GVHD and HVGA in the universal CAR therapy, followed by a universal CAR design that may be applied to allogeneic cells and a summary of key clinical trials in this field. This review may provide valuable insights into the future design of universal CAR products.
Collapse
Affiliation(s)
- Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Branco A, Bucar S, Moura-Sampaio J, Lilaia C, Cabral JMS, Fernandes-Platzgummer A, Lobato da Silva C. Tailored Cytokine Optimization for ex vivo Culture Platforms Targeting the Expansion of Human Hematopoietic Stem/Progenitor Cells. Front Bioeng Biotechnol 2020; 8:573282. [PMID: 33330414 PMCID: PMC7729524 DOI: 10.3389/fbioe.2020.573282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 01/18/2023] Open
Abstract
Umbilical cord blood (UCB) has been established as an alternative source for hematopoietic stem/progenitor cells (HSPC) for cell and gene therapies. Limited cell yields of UCB units have been tackled with the development of cytokine-based ex vivo expansion platforms. To improve the effectiveness of these platforms, namely targeting clinical approval, in this study, we optimized the cytokine cocktails in two clinically relevant expansion platforms for HSPC, a liquid suspension culture system (CS_HSPC) and a co-culture system with bone marrow derived mesenchymal stromal cells (BM MSC) (CS_HSPC/MSC). Using a methodology based on experimental design, three different cytokines [stem cell factor (SCF), fms-like tyrosine kinase 3 ligand (Flt-3L), and thrombopoietin (TPO)] were studied in both systems during a 7-day culture under serum-free conditions. Proliferation and colony-forming unit assays, as well as immunophenotypic analysis were performed. Five experimental outputs [fold increase (FI) of total nucleated cells (FI TNC), FI of CD34+ cells, FI of erythroid burst-forming unit (BFU-E), FI of colony-forming unit granulocyte-monocyte (CFU-GM), and FI of multilineage colony-forming unit (CFU-Mix)] were followed as target outputs of the optimization model. The novel optimized cocktails determined herein comprised concentrations of 64, 61, and 80 ng/mL (CS_HSPC) and 90, 82, and 77 ng/mL (CS_HSPC/MSC) for SCF, Flt-3L, and TPO, respectively. After cytokine optimization, CS_HSPC and CS_HSPC/MSC were directly compared as platforms. CS_HSPC/MSC outperformed the feeder-free system in 6 of 8 tested experimental measures, displaying superior capability toward increasing the number of hematopoietic cells while maintaining the expression of HSPC markers (i.e., CD34+ and CD34+CD90+) and multilineage differentiation potential. A tailored approach toward optimization has made it possible to individually maximize cytokine contribution in both studied platforms. Consequently, cocktail optimization has successfully led to an increase in the expansion platform performance, while allowing a rational side-by-side comparison among different platforms and enhancing our knowledge on the impact of cytokine supplementation on the HSPC expansion process.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Moura-Sampaio
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Lilaia
- Hospital São Francisco Xavier, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
Kawahara Y, Morimoto A, Inagaki J, Koh K, Noguchi M, Goto H, Yoshida N, Cho Y, Hori T, Hiwatari M, Kato K, Ogawa A, Hashii Y, Inoue M, Kato K, Atsuta Y, Kimura F, Kato M. Unrelated cord blood transplantation with myeloablative conditioning for pediatric acute lymphoblastic leukemia in remission: prognostic factors. Bone Marrow Transplant 2020; 56:357-367. [PMID: 32782350 DOI: 10.1038/s41409-020-01019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
The number of individuals undergoing unrelated cord blood transplantation (UCBT) has increased in recent years; however, information on prognostic factors is limited. We retrospectively analyzed data from 475 children and adolescents receiving UCBT with myeloablative conditioning for acute lymphoblastic leukemia (ALL) in complete remission (CR), based on a nationwide registry. In the total patient cohort, 5-year leukemia-free survival (LFS) and overall survival (OS) rates after UCBT were 61.1% and 67.7%, respectively. UCBT at first CR and UCBT after 2007 were associated with good survival, while grade II-IV acute graft-versus-host disease (GVHD) was associated with low relapse rate but did not affect survival. Analysis according to human leukocyte antigen (HLA) disparity revealed that tacrolimus-based GVHD prophylaxis resulted in higher OS and lower relapse rate and nonrelapse mortality (NRM) than cyclosporine-based GVHD prophylaxis in patients transplanted with 6/6 and ≤4/6 HLA-matched umbilical cord blood. Furthermore, grade II-IV acute GVHD was associated with good LFS and low relapse rate, without high NRM, in patients receiving 5/6 HLA-matched UCBT. These data indicate that prognostic factors for ALL differ depending on HLA disparity in UCBT.
Collapse
Affiliation(s)
- Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Shimotsuke, Japan.
| | - Akira Morimoto
- Department of Pediatrics, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Jiro Inagaki
- Department of Pediatrics, Kitakyushu City Yahata Hospital, Kitakyushu, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Maiko Noguchi
- Department of Pediatrics, National Kyushu Cancer Center, Fukuoka, Japan
| | - Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Yuko Cho
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Tsukasa Hori
- Department of Pediatrics, Sapporo Medical University Hospital, Sapporo, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
| | - Keisuke Kato
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito, Japan
| | - Atsushi Ogawa
- Department of Pediatrics, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yoshiko Hashii
- Department of Cancer Immunotherapy/Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masami Inoue
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Koji Kato
- Central Japan Cord Blood Bank, Seto, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan.,Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiko Kimura
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
32
|
The influence of stem cell source on transplant outcomes for pediatric patients with acute myeloid leukemia. Blood Adv 2020; 3:1118-1128. [PMID: 30952678 DOI: 10.1182/bloodadvances.2018025908] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/14/2019] [Indexed: 12/18/2022] Open
Abstract
When hematopoietic stem cell transplant (HSCT) is necessary for children with acute myeloid leukemia (AML), there remains debate about the best stem cell source. Post-HSCT relapse is a common cause of mortality, and complications such as chronic graft versus host disease (cGVHD) are debilitating and life-threatening. To compare post-HSCT outcomes of different donor sources, we retrospectively analyzed consecutive transplants performed in several international centers from 2005 to 2015. A total of 317 patients were studied: 19% matched sibling donor (MSD), 23% matched unrelated donor (MUD), 39% umbilical cord blood (UCB), and 19% double UCB (dUCB) recipients. The median age at transplant was 10 years (range, 0.42-21 years), and median follow-up was 4.74 years (range, 4.02-5.39 years). Comparisons were made while controlling for patient, transplant, and disease characteristics. There were no differences in relapse, leukemia-free survival, or nonrelapse mortality. dUCB recipients had inferior survival compared with matched sibling recipients, but all other comparisons showed similar overall survival. Despite the majority of UCB transplants being HLA mismatched, the rates of cGVHD were low, especially compared with the well-matched MUD recipients (hazard ratio, 0.3; 95% confidence interval, 0.14-0.67; P = .02). The composite measure of cGVHD and leukemia-free survival (cGVHD-LFS), which represents both the quality of life and risk for mortality, was significantly better in the UCB compared with the MUD recipients (HR, 0.56; 95% confidence interval, 0.34-1; P = .03). In summary, the use of UCB is an excellent donor choice for pediatric patients with AML when a matched sibling cannot be identified.
Collapse
|
33
|
Merli P, Algeri M, Del Bufalo F, Locatelli F. Hematopoietic Stem Cell Transplantation in Pediatric Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 2020; 14:94-105. [PMID: 30806963 DOI: 10.1007/s11899-019-00502-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The remarkable improvement in the prognosis of children with acute lymphoblastic leukemia (ALL) has been mainly achieved through the administration of risk-adapted therapy, including allogeneic hematopoietic stem cell transplantation (HSCT). This paper reviews the current indications to HSCT in ALL children, as well as the type of donor and conditioning regimens commonly used. Finally, it will focus on future challenges in immunotherapy. RECENT FINDINGS As our comprehension of disease-specific risk factors improves, indications to HSCT continue to evolve. Future studies will answer the year-old question on the best conditioning regimen to be used in this setting, while a recent randomized controlled study fixed the optimal anti-thymocyte globulin dose in unrelated donor HSCT. HSCT, the oldest immunotherapy used in clinical practice, still represents the gold standard consolidation treatment for a number of pediatric patients with high-risk/relapsed ALL. New immunotherapies hold the promise of further improving outcomes in this setting.
Collapse
Affiliation(s)
- Pietro Merli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy. .,Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
34
|
Abstract
INTRODUCTION Umbilical cord blood transplantation (UCBT) is a suitable alternative for patients with acute leukemia (AL) in need of an allograft and who lack an HLA-matched donor. Single-institution and registry studies have shown that, in both children and adults with AL, the outcome of UCBT is comparable to that of matched unrelated donor. At the same time, these studies have highlighted some limitations of UCBT, such as increased early mortality and delayed recovery of both hematopoietic and immune compartment, which hamper a more widespread adoption of this approach. AREAS COVERED In this review, we will analyze the current results of UCBT in children and adults with AL, including comparisons with other hematopoietic stem cell sources and transplant strategies. We will also discuss important factors to be considered when selecting UCB units, as well as future strategies to further improve the outcome of UCBT recipients. EXPERT OPINION The utilization of UCBT for the treatment of AL patients has decreased in recent years. However, recent clinical data suggesting that UCBT might offer better results in patients with minimal residual disease, as well as innovative strategies to facilitate engraftment, reduce transplant-related mortality, and optimize anti-leukemic activity, may pave the way toward a second youth for use of UCB cells.
Collapse
Affiliation(s)
- Mattia Algeri
- Department of Pediatric Hematology and Oncology, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Children's Hospital , Rome, Italy
| | - Stefania Gaspari
- Department of Pediatric Hematology and Oncology, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Children's Hospital , Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Children's Hospital , Rome, Italy.,Sapienza University of Rome , Rome, Italy
| |
Collapse
|
35
|
Morales-Hernández A, Benaksas C, Chabot A, Caprio C, Ferdous M, Zhao X, Kang G, McKinney-Freeman S. GPRASP proteins are critical negative regulators of hematopoietic stem cell transplantation. Blood 2020; 135:1111-1123. [PMID: 32027737 PMCID: PMC7118811 DOI: 10.1182/blood.2019003435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation (HSCT) is often exploited to treat hematologic disease. Donor HSCs must survive, proliferate, and differentiate in the damaged environment of the reconstituting niche. Illuminating molecular mechanisms regulating the activity of transplanted HSCs will inform efforts to improve HSCT. Here, we report that G-protein-coupled receptor-associated sorting proteins (GPRASPs) function as negative regulators of HSCT. Silencing of Gprasp1 or Gprasp2 increased the survival, quiescence, migration, niche retention, and hematopoietic repopulating activity of hematopoietic stem and progenitor cells (HSPCs) posttransplant. We further show that GPRASP1 and GPRASP2 promote the degradation of CXCR4, a master regulator of HSC function during transplantation. CXCR4 accumulates in Gprasp-deficient HSPCs, boosting their function posttransplant. Thus, GPRASPs negatively regulate CXCR4 stability in HSCs. Our work reveals GPRASP proteins as negative regulators of HSCT and CXCR4 activity. Disruption of GPRASP/CXCR4 interactions could be exploited in the future to enhance the efficiency of HSCT.
Collapse
Affiliation(s)
| | - Chaïma Benaksas
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
- Paris Diderot University, Paris, France; and
| | - Ashley Chabot
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Claire Caprio
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Maheen Ferdous
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xiwen Zhao
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
36
|
Poonsombudlert K, Kewcharoen J, Prueksapraopong C, Limpruttidham N. Post transplant cyclophosphamide based haplo-identical transplant versus umbilical cord blood transplant; a meta-analysis. Jpn J Clin Oncol 2020; 49:924-931. [PMID: 31265729 DOI: 10.1093/jjco/hyz099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Both haplo-identical transplant (haplo) and umbilical cord transplant (UC) are valuable graft options for patients without available matched relative. Previous studies showed inconsistent outcomes comparing Post transplant Cyclophosphamide based haplo (PTCy-haplo) and UC; therefore, we attempt to compare the studies by mean of meta-analysis. METHODS We searched for titles of articles in MEDLINE (PubMed), Cochrane library, EMBASE database and Google scholar that compared transplantation with PTCy-haplo versus UC. We conducted a random-effect meta-analysis of seven studies involving a total of 3434 participants and reported the pooled odd ratios (OR) of acute graft-versus-host disease (aGVHD), chronic graft-versus-host disease (cGVHD), relapse and overall survival (OS) between PTCy-haplo and UC groups. RESULTS We found a significantly decreased risk of aGVHD and relapse in the PTCy-haplo group compared to the UC group with a pooled OR of 0.78, 95% Confidence Interval (CI) 0.67-0.92, I2=0%, and 0.74, 95% CI 0.57-0.97, I2=23.9% respectively. We also found a significantly increased rate of cGVHD and OS with a pooled OR of 1.41, 95% CI 1.02-1.95, I2=56.8%, and 1.77, 95% CI 1.1-2.87, I2=82.5%, respectively. CONCLUSION Our meta-analysis of clinical trials demonstrated superior outcome from PTCy-haplo group compared to the UC group in terms of decreased rate of aGVHD and relapse as well as the increased rate of OS but inferior in terms of increased cGVHD risk compared to UC transplant.
Collapse
Affiliation(s)
| | - Jakrin Kewcharoen
- University of Hawaii, internal Medicine Residency Program, Honolulu, HI, USA
| | | | - Nath Limpruttidham
- University of Hawaii, internal Medicine Residency Program, Honolulu, HI, USA
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Despite advances in therapy over the past decades, overall survival for children with acute myeloid leukemia (AML) has not exceeded 70%. In this review, we highlight recent insights into risk stratification for patients with pediatric AML and discuss data driving current and developing therapeutic approaches. RECENT FINDINGS Advances in cytogenetics and molecular profiling, as well as improvements in detection of minimal residual disease after induction therapy, have informed risk stratification, which now relies heavily on these elements. The treatment of childhood AML continues to be based primarily on intensive, conventional chemotherapy. However, recent trials focus on limiting treatment-related toxicity through the identification of low-risk subsets who can safely receive fewer cycles of chemotherapy, allocation of hematopoietic stem-cell transplant to only high-risk patients and optimization of infectious and cardioprotective supportive care. SUMMARY Further incorporation of genomic and molecular data in pediatric AML will allow for additional refinements in risk stratification to enable the tailoring of treatment intensity. These data will also dictate the incorporation of molecularly targeted therapeutics into frontline treatment in the hope of improving survival while decreasing treatment-related toxicity.
Collapse
|
38
|
Thekkudan SF, Lima M, Metheny L. Prevention of relapse after allogeneic stem cell transplantation in acute myeloid leukemia: Updates and challenges. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/acg2.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shinto F. Thekkudan
- Stem Cell Transplant Program University Hospitals Cleveland Medical Center Case Western Reserve University Cleveland OH USA
- Rajiv Gandhi Cancer Institute and Research Centre New Delhi India
| | - Marcos Lima
- Stem Cell Transplant Program University Hospitals Cleveland Medical Center Case Western Reserve University Cleveland OH USA
| | - Leland Metheny
- Stem Cell Transplant Program University Hospitals Cleveland Medical Center Case Western Reserve University Cleveland OH USA
| |
Collapse
|
39
|
Ronsley R, Kariminia A, Ng B, Mostafavi S, Reid G, Subrt P, Hijiya N, Schultz KR. The TLR9 agonist (GNKG168) induces a unique immune activation pattern in vivo in children with minimal residual disease positive acute leukemia: Results of the TACL T2009-008 phase I study. Pediatr Hematol Oncol 2019; 36:468-481. [PMID: 31530240 DOI: 10.1080/08880018.2019.1667461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Preclinical studies show that TLR9 agonists can eradicate leukemia by induction of immune responses in vivo against AML and ALL. These studies demonstrated that TLR9 agonists induce an immediate NK response followed by adaptive T and B cells responses resulting in long term anti-leukemia immunity. Methods: The Therapeutic Advances in Childhood Leukemia and Lymphoma Phase I consortium performed a pilot study on 3 patients with MRD positive acute leukemia after an initial remission on conventional chemotherapy (TACL T2009-008) with the TLR 9 agonist (GNKG168). To guide future trial development, we evaluated the impact of GNKG168 by Nanostring on the expression 608 genes before and 8 days after initiation of GNKG168 therapy. Results: Twenty-three out of 578 markers on the nanostring panel showed significant difference (p ≤ 0.05). We focused on 8 markers that had the greatest differences with p < 0.01. Two genes were increased, promyelocytic leukemia protein (PML) and H-RAS, and 6 were decreased, Single Ig and TIR Domain containing (SIGIRR, IL1R8), interleukin 1 receptor 1 (IL1RL1, ST2), C-C Motif chemokine receptor 8 (CCR8), interleukin 7 R (IL7R), cluster of differentiation 8B (CD8B), and cluster of differentiation 3 (CD3D). Tumor inhibitory pathways were downregulated including the SIGIRR (IL1R8), important in IL-37 signaling and NK cell inhibition. TLR9 can induce IL-33, which is known to downregulate ST2 (IL1RL1) a receptor for IL-33. Conclusion: GNKG168 therapy is associated with immunologic changes in pediatric leukemia patients. Further work with a larger sample size is required to assess the impact of these changes on disease treatment and persistence of leukemia remission.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Department of Pediatric Hematology, Oncology & BMT, University of British Columbia, Vancouver, USA
| | - Amina Kariminia
- Department of Pediatric Hematology, Oncology & BMT, University of British Columbia, Vancouver, USA.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Bernard Ng
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Sara Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Gregor Reid
- Department of Pediatric Hematology, Oncology & BMT, University of British Columbia, Vancouver, USA.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Peter Subrt
- Department of Pediatric Hematology, Oncology & BMT, University of British Columbia, Vancouver, USA.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Nobuko Hijiya
- Pediatric Hematology, Oncology and Stem Cell Transplant Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IIllinois, USA
| | - Kirk R Schultz
- Department of Pediatric Hematology, Oncology & BMT, University of British Columbia, Vancouver, USA.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
40
|
Gabelli M, Veys P, Chiesa R. Current status of umbilical cord blood transplantation in children. Br J Haematol 2019; 190:650-683. [PMID: 31410846 DOI: 10.1111/bjh.16107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
The first umbilical cord blood (UCB) transplantation was performed 30 years ago. UCB transplantation (UCBT) is now widely used in children with malignant and non-malignant disorders who lack a matched family donor. UCBT affords a lower incidence of graft-versus-host disease compared to alternative stem cell sources, but also presents a slower immune recovery and a high risk of infections if serotherapy is not omitted or targeted within the conditioning regimen. The selection of UCB units with high cell content and good human leucocyte antigen match is essential to improve the outcome. Techniques, such as double UCBT, ex vivo stem cell expansion and intra-bone injection of UCB, have improved cord blood engraftment, but clinical benefit remains to be demonstrated. Cell therapies derived from UCB are under evaluation as potential novel strategies to reduce relapse and viral infections following transplantation. In recent years, improvements within haploidentical transplantation have reduced the overall use of UCBT as an alternative stem cell source; however, each may have its relative merits and disadvantages and tailored use of these alternative stem cell sources may be the optimal approach.
Collapse
Affiliation(s)
- Maria Gabelli
- Bone Marrow Transplantation, Great Ormond Street Hospital, London, UK
| | - Paul Veys
- Bone Marrow Transplantation, Great Ormond Street Hospital, London, UK
| | - Robert Chiesa
- Bone Marrow Transplantation, Great Ormond Street Hospital, London, UK
| |
Collapse
|
41
|
Tang XF, Lu W, Jing YF, Huang YZ, Wu NH, Luan Z. [A clinical study of haploid hematopoietic stem cells combined with third-party umbilical cord blood transplantation in the treatment of chronic granulomatous disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:552-557. [PMID: 31208508 PMCID: PMC7389573 DOI: 10.7499/j.issn.1008-8830.2019.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To investigate the clinical efficacy of haploid hematopoietic stem cells (haplo-HSC) combined with third-party umbilical cord blood (tpCB) transplantation in the treatment of X-linked chronic granulomatous disease (X-CGD). METHODS The clinical data of 26 boys with X-CGD were retrospectively analyzed who were admitted to the Sixth Medical Center of PLA General Hospital between April 2014 and March 2018. All the patients were treated with haplo-HSC combined with tpCB transplantation. The median age of the patients was 3.5 years. The donor was the father in 25 cases and an aunt in 1 case. Transplantation was 5/6 HLA-matched in 9 cases, 4/6 in 12 cases, and 3/6 in 5 cases. The patients received busulfan, cyclophosphamide, fludarabine, or anti-thymocyte globulin for myeloablative preconditioning. Cyclosporine A and mycophenolate mofetil were used for prevention of acute graft-versus-host disease (aGVHD). Then the patients were treated with haploid bone marrow hematopoietic stem cells combined with tpCB transplantation on day 1 and haploid peripheral hematopoietic stem cells on day 2. The counts of median donor total nucleated cells, CD34+ cells, and CD3+ cells were 14.6×108/kg, 5.86×106/kg, and 2.13×108/kg respectively. RESULTS The median time to neutrophil and platelet engraftment was 12 and 23 days after transplantation respectively. Full donor hematopoietic chimerism was observed on day 30. Twenty-five cases were from haplo-HSC and 1 was from cord blood. No primary implant failure and implant dysfunction occurred, and secondary implant failure occurred in one case. The NADPH oxidase activity returned to normal one month after transplantation. The incidence of grade I-II aGVHD and grade III-IV aGVHD was 35% and 15% respectively. Chronic GVHD (cGVHD) of the skin occurred in one case, and no progression was observed after steroid administration. During the follow-up period of 6-51 months, 25 patients survived, of whom 24 were disease-free (23 patients without cGVHD and 1 with cGVHD of the skin) and NADPH oxidase activity returned to normal; one patient developed secondary implant failure but survived; one patient died of viral interstitial pneumonia 16 months after transplantation. The 5-year event-free survival rate and overall survival rate were 81%±12% and 89%±10% respectively. CONCLUSIONS Haplo-HSC combined with tpCB transplantation is one of the effective methods for the treatment of X-CGD in children.
Collapse
Affiliation(s)
- Xiang-Feng Tang
- Department of Pediatrics, Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| | | | | | | | | | | |
Collapse
|
42
|
Bougioukli S, Saitta B, Sugiyama O, Tang AH, Elphingstone J, Evseenko D, Lieberman JR. Lentiviral Gene Therapy for Bone Repair Using Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Hum Gene Ther 2019; 30:906-917. [PMID: 30773946 DOI: 10.1089/hum.2018.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Umbilical cord blood (UCB) has been increasingly explored as an alternative source of stem cells for use in regenerative medicine due to several advantages over other stem-cell sources, including the need for less stringent human leukocyte antigen matching. Combined with an osteoinductive signal, UCB-derived mesenchymal stem cells (MSCs) could revolutionize the treatment of challenging bone defects. This study aimed to develop an ex vivo regional gene-therapy strategy using BMP-2-transduced allogeneic UCB-MSCs to promote bone repair. To this end, human UCB-MSCs were transduced with a lentiviral vector carrying the cDNA for BMP-2 (LV-BMP-2). In vitro assays to determine the UCB-MSC osteogenic potential and BMP-2 production were followed by in vivo implantation of LV-BMP-2-transduced UCB-MSCs in a mouse hind-limb muscle pouch. Non-transduced and LV-GFP-transduced UCB-MSCs were used as controls. Transduction with LV-BMP-2 was associated with abundant BMP-2 production and induction of osteogenic differentiation in vitro. Implantation of BMP-2-transduced UCB-MSCs led to robust heterotopic bone formation 4 weeks postoperatively, as seen on radiographs and histology. These results, along with the fact that UCB-MSCs can be easily collected with no donor-site morbidity and low immunogenicity, suggest that UCB might be a preferable allogeneic source of MSCs to develop an ex vivo gene-therapy approach to treat difficult bone-repair scenarios.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Biagio Saitta
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joseph Elphingstone
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
43
|
Park M, Koh H, Lee YH. Repurposing the public cord blood bank inventory in Korea to enhance cord blood use. Transfus Apher Sci 2019; 58:332-336. [PMID: 31053332 DOI: 10.1016/j.transci.2019.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
Abstract
To enhance public cord blood (CB) use, we examined the current status of CB banking and tried to suggest revision of the banking standard. We retrospectively analyzed the use of stored public CB units between 2011 and 2016 using data from the CB information center in Korea. A total of 19,871 CB units were registered, and 363 units were selected for transplantation. The transplanted CB units contained significantly higher numbers of CD34+ cells than the average numbers in the stored CB units (5.5 × 10^6 vs. 3.2 × 10^6, p < 0.01). They also contained more total nucleated cells (TNCs) than the average of the stored CB units (13.7 × 10^8 vs. 10.7 × 10^8, p < 0.01). Only 49% of the stored CB units contained>10 × 10^8 TNCs, while 81% of the units transplanted contained >10 × 10^8 TNCs. The average length of cryopreservation of the transplanted CB units was 4.58 years and 95% of them had been stored for less than 10 years. During the study period, 18,763 CB units were requested for research, but only 5,888 were released. This discrepancy was mostly due to errors in regulatory and/or networking elements of the CB supply system. The data suggest that preserving CB units for less than 10 years and increasing the required minimum TNC count to 10 × 10^8 would produce an inventory containing units that were more useful for CBT. CB units that did not meet the requisite quality standards could be used for research, and systems for their fair distribution to researchers are needed.
Collapse
Affiliation(s)
- Meerim Park
- Center for Pediatric Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Hani Koh
- Department of Pediatrics, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Young-Ho Lee
- Department of Pediatrics, Hanyang University Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Zhu J, Tang BL, Song KD, Zhang XH, Zhu XY, Yao W, Wan X, Liu HL, Sun ZM. [Comparison of umbilical cord blood transplantation and hematopoietic stem cell transplantation from HLA-matched sibling donors in the treatment of myelodysplastic syndrome-EB or acute myeloid leukemia with myelodysplasia-related changes]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:294-300. [PMID: 31104440 PMCID: PMC7343011 DOI: 10.3760/cma.j.issn.0253-2727.2019.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Indexed: 11/19/2022]
Abstract
Objective: To compare the clinical efficacy of umbilical cord blood transplantation (UCBT) and hematopoietic stem cell transplantation from HLA-matched sibling donors (MSD-HSCT) in the treatment of myelodysplastic syndrome-EB (MDS-EB) or acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) . Methods: A cohort of 64 patients (including 38 cases of MDS-EB and 26 cases of AML-MRC) who received UCBT/MSD-HSCT from February 2011 to December 2017 were retrospectively analyzed. Results: ①Compared with MSD-HSCT group, UCBT group had a higher proportion of AML-MRC patients [52.8% (19/36) vs 25.0% (7/28) , P=0.025], and a lower median age [13 (1.5-52) years vs 32 (10-57) years, P=0.001]. ②The engraftment of neutrophils both in UCBT and MSD-HSCT groups on +42 d was 100%, and the median engraftment time was 17.5 (11-31) d and 11.5 (10-20) d, respectively. The engraftment of platelet at +100 d in UCBT group was 91.4%, the median engraftment time was 40 (15-96) d; The engraftment of platelet at +100 d in MSD-HSCT group was 100%, and the median engraftment time was 15 (11-43) d. ③There were no statistically significant differences in terms of the cumulative incidence of Ⅱ-Ⅳ and Ⅲ/Ⅳ aGVHD of 100 d and transplant related mortality (TRM) of 180 d, relapse rate, overall survival (OS) , disease-free survival (DFS) between UCBT and MSD-HSCT groups (P>0.05) . ④The 3-year cumulative incidence of chronic GVHD (cGVHD) and severe chronic GVHD in UCBT group were lower than of MSD-HSCT group [28.3% (95%CI 13.4%-45.3%) vs 67.9% (95%CI 46.1%-82.4%) , P=0.002; 10.3% (95%CI 2.5%-24.8%) vs 50.0% (95%CI 30.0%-67.1%) , respectively, P<0.001]. The cumulative 3-year incidence of GVHD-free and relapse-free survival (GRFS) of UCBT group was significantly higher than of MSD-HSCT group [55.0% (95%CI 36.0%-70.6%) vs 28.6% (95%CI 13.5%-45.6%) , P=0.038]. Conclusion: UCBT could obtain better quality of life after transplantation than MSD-HSCT in treatment of MDS-EB/AML-MRC.
Collapse
Affiliation(s)
- J Zhu
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Spees LP, Martin PL, Kurtzberg J, Stokhuyzen A, McGill L, Prasad VK, Driscoll TA, Parikh SH, Page KM, Vinesett R, Severyn C, Sung AD, Proia AD, Jenkins K, Arshad M, Steinbach WJ, Seed PC, Kelly MS. Reduction in Mortality after Umbilical Cord Blood Transplantation in Children Over a 20-Year Period (1995-2014). Biol Blood Marrow Transplant 2018; 25:756-763. [PMID: 30481599 DOI: 10.1016/j.bbmt.2018.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Infections and graft-versus-host disease (GVHD) have historically resulted in high mortality among children undergoing umbilical cord blood transplantation (UCBT). However, recent advances in clinical practice have likely improved outcomes of these patients. We conducted a retrospective cohort study of children (<18years of age) undergoing UCBT at Duke University between January 1, 1995 and December 31, 2014. We compared 2-year all-cause and cause-specific mortality during 3 time periods based on year of transplantation (1995 to 2001, 2002 to 2007, and 2008 to 2014). We used multivariable Cox regression to identify demographic and UCBT characteristics that were associated with all-cause mortality, transplantation-related mortality, and death from invasive aspergillosis after adjustment for time period. During the 20-year study period 824 children underwent UCBT. Two-year all-cause mortality declined from 48% in 1995 to 2001 to 30% in 2008 to 2014 (P = .0002). White race and nonmalignant UCBT indications were associated with lower mortality. Black children tended to have a higher risk of death for which GVHD (18% versus 11%; P = .06) or graft failure (9% versus 3%; P = .01) were contributory than white children. Comparing 2008 to 2014 with 1995 to 2001, more than half (59%) of the reduced mortality was attributable to a reduction in infectious mortality, with 45% specifically related to reduced mortality from invasive aspergillosis. Antifungal prophylaxis with voriconazole was associated with lower mortality from invasive aspergillosis than low-dose amphotericin B lipid complex (hazard ratio, .09; 95% confidence interval, .01 to .76). With the decline in mortality from invasive aspergillosis, adenovirus and cytomegalovirus have become the most frequentinfectious causes of death in children after UCBT. Advances in clinical practice over the past 20years improved survival of children after UCBT. Reduced mortality from infections, particularly invasive aspergillosis, accounted for the largest improvement in survival and was associated with use of voriconazole for antifungal prophylaxis.
Collapse
Affiliation(s)
- Lisa P Spees
- The Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Paul L Martin
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Joanne Kurtzberg
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Andre Stokhuyzen
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Lauren McGill
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Vinod K Prasad
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Timothy A Driscoll
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Suhag H Parikh
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Kristin M Page
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Richard Vinesett
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Christopher Severyn
- Division of Pediatric Hematology-Oncology, Lucille Packard Children's Hospital, Stanford University, Palo Alto, California
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Alan D Proia
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Kirsten Jenkins
- Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Mehreen Arshad
- Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - William J Steinbach
- Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Patrick C Seed
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Matthew S Kelly
- Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
46
|
Effects of HLA mismatch on cytomegalovirus reactivation in cord blood transplantation. Bone Marrow Transplant 2018; 54:1004-1012. [DOI: 10.1038/s41409-018-0369-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
|
47
|
Gkazi AS, Margetts BK, Attenborough T, Mhaldien L, Standing JF, Oakes T, Heather JM, Booth J, Pasquet M, Chiesa R, Veys P, Klein N, Chain B, Callard R, Adams SP. Clinical T Cell Receptor Repertoire Deep Sequencing and Analysis: An Application to Monitor Immune Reconstitution Following Cord Blood Transplantation. Front Immunol 2018; 9:2547. [PMID: 30455696 PMCID: PMC6231291 DOI: 10.3389/fimmu.2018.02547] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
Spectratyping assays are well recognized as the clinical gold standard for assessing the T cell receptor (TCR) repertoire in haematopoietic stem cell transplant (HSCT) recipients. These assays use length distributions of the hyper variable complementarity-determining region 3 (CDR3) to characterize a patient's T cell immune reconstitution post-transplant. However, whilst useful, TCR spectratyping is notably limited by its resolution, with the technique unable to provide data on the individual clonotypes present in a sample. High-resolution clonotype data are necessary to provide quantitative clinical TCR assessments and to better understand clonotype dynamics during clinically relevant events such as viral infections or GvHD. In this study we developed and applied a CDR3 Next Generation Sequencing (NGS) methodology to assess the TCR repertoire in cord blood transplant (CBT) recipients. Using this, we obtained comprehensive TCR data from 16 CBT patients and 5 control cord samples at Great Ormond Street Hospital (GOSH). These were analyzed to provide a quantitative measurement of the TCR repertoire and its constituents in patients post-CBT. We were able to both recreate and quantify inferences typically drawn from spectratyping data. Additionally, we demonstrate that an NGS approach to TCR assessment can provide novel insights into the recovery of the immune system in these patients. We show that NGS can be used to accurately quantify TCR repertoire diversity and to provide valuable inference on clonotypes detected in a sample. We serially assessed the progress of T cell immune reconstitution demonstrating that there is dramatic variation in TCR diversity immediately following transplantation and that the dynamics of T cell immune reconstitution is perturbed by the presence of GvHD. These findings provide a proof of concept for the adoption of NGS TCR sequencing in clinical practice.
Collapse
Affiliation(s)
- Athina Soragia Gkazi
- Infection, Immunity and Inflammation Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ben K Margetts
- Infection, Immunity and Inflammation Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Digital Research Environment, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- Centre for Computation, Mathematics, and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom
| | - Teresa Attenborough
- Infection, Immunity and Inflammation Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Centre for Computation, Mathematics, and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom
| | - Lana Mhaldien
- SIHMDS-Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Joseph F. Standing
- Infection, Immunity and Inflammation Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Theres Oakes
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - James M. Heather
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - John Booth
- Digital Research Environment, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Marlene Pasquet
- Le Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Robert Chiesa
- Department of Blood and Marrow Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Paul Veys
- Department of Blood and Marrow Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Nigel Klein
- Infection, Immunity and Inflammation Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Infectious Diseases Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Robin Callard
- Infection, Immunity and Inflammation Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Centre for Computation, Mathematics, and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom
| | - Stuart P. Adams
- Infection, Immunity and Inflammation Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- SIHMDS-Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
48
|
Chen DP, Chang SW, Jaing TH, Wang WT, Hus FP, Tseng CP. Single nucleotide polymorphisms within HLA region are associated with disease relapse for patients with unrelated cord blood transplantation. PeerJ 2018; 6:e5228. [PMID: 30083439 PMCID: PMC6076982 DOI: 10.7717/peerj.5228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Disease relapse occurs in unrelated cord blood transplantation (CBT) even when the alleles of human leukocyte antigen (HLA) are fully matched between donor and recipient. This is similar to that observed in other types of hematopoietic stem cell transplantation. Fourteen single nucleotide polymorphisms (SNPs) within the HLA region have been reported previously by Petersdorf et al. and Piras et al. as transplantation determinants in unrelated hematopoietic cell transplantation. In this study, the genomic sequences within 500 base pairs upstream and downstream of the fourteen transplantation-related SNPs from 53 patients and their HLA-matched unrelated donors were analyzed for determining whether or not genetic variants, conferred by either recipient or donor SNP genotype or by recipient-donor SNP mismatching, were associated with the risk of relapse. Seven SNPs were associated with the risk of relapse in unrelated CBT. These included the donor genotype with the SNPs of rs2523675 and rs2518028 at the telomeric end of HCP5 gene, rs2071479 in the intron of the HLA-DOB gene, and rs2523958 in the MICD gene; and the recipient genotype with SNPs of rs9276982 in the HLA-DOA gene, and rs435766 and rs380924 in the MICD gene. As measured by pair-wise linkage disequilibrium (LD) with D′ as the parameter for normalized standard measurement of LD which compares the observed and expected frequencies of one haplotype comprised by alleles at different loci, rs2523675 had high LD with rs4713466 (D′ = 0.86) and rs2523676 (D′ = 0.91) in the HCP5 gene. The rs2518028 had no LD with all other SNPs except rs2523675 (D′ = 0.76). This study provides the basis for developing a method or algorithm for selecting better unrelated CBT candidate donors.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Su-Wei Chang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Wei-Ting Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fang-Ping Hus
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Ping Tseng
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
49
|
Adachi Y, Ukai S, Sagou K, Fukushima N, Ozeki K, Kohno A. Promising Outcome of Umbilical Cord Blood Transplantation in Patients with Multiple Comorbidities. Biol Blood Marrow Transplant 2018; 24:1455-1462. [DOI: 10.1016/j.bbmt.2018.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/10/2018] [Indexed: 01/08/2023]
|
50
|
Shim YJ, Lee JM, Kim HS, Jung N, Lim YT, Yang EJ, Hah JO, Lee YH, Chueh HW, Lim JY, Park ES, Park JA, Park JK, Park SK. Comparison of survival outcome between donor types or stem cell sources for childhood acute myeloid leukemia after allogenic hematopoietic stem cell transplantation: A multicenter retrospective study of Study Alliance of Yeungnam Pediatric Hematology-oncology. Pediatr Transplant 2018; 22:e13249. [PMID: 29923253 DOI: 10.1111/petr.13249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2018] [Indexed: 12/28/2022]
Abstract
We compared transplant outcomes between donor types and stem cell sources for childhood acute myeloid leukemia (AML). The medical records of children with AML in the Yeungnam region of Korea from January 2000 to June 2017 were reviewed. In all, 76 children with AML (male-to-female ratio = 46:30) received allogenic hematopoietic stem cell transplantation (allo-HSCT). In total, 29 patients received HSCT from either a matched-related donor or a mismatched-related donor, 32 patients received an unrelated donor, and 15 patients received umbilical cord blood. In term of stem cell sources, bone marrow was used in 15 patients and peripheral blood in 46 patients. For all HSCT cases, the 5-year overall survival (OS) was 73.1% (95% CI: 62.7-83.5) and the 5-year event-free survival (EFS) was 66.1% (95% CI: 54.5-77.7). There was no statistical difference in 5-year OS according to the donor types or stem cell sources (P = .869 and P = .911). There was no statistical difference in 5-year EFS between donor types or stem cell sources (P = .526 and P = .478). For all HSCT cases, the 5-year relapse rate was 16.1% (95% CI: 7.3-24.9) and the 5-year non-relapse mortality (NRM) was 13.3% (95% CI: 5.1-21.5). There was no statistical difference in the 5-year relapse rate according to the donor types or stem cell sources (P = .971 and P = .965). There was no statistical difference in the 5-year NRM between donor types or stem cell sources (P = .461 and P = .470).
Collapse
Affiliation(s)
- Ye Jee Shim
- Department of Pediatrics, Keimyung University School of Medicine and Dongsan Medical Center, Daegu, Korea
| | - Jae Min Lee
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| | - Heung Sik Kim
- Department of Pediatrics, Keimyung University School of Medicine and Dongsan Medical Center, Daegu, Korea
| | - Nani Jung
- Department of Pediatrics, Keimyung University School of Medicine and Dongsan Medical Center, Daegu, Korea
| | - Young Tak Lim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Eu Jeen Yang
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Jeong Ok Hah
- Department of Pediatrics, Daegu Fatima Hospital, Daegu, Korea
| | - Young-Ho Lee
- Department of Pediatrics, Hanyang University Hospital, Seoul, Korea
| | - Hee Won Chueh
- Department of Pediatrics, Dong-A University College of Medicine, Busan, Korea
| | - Jae Young Lim
- Department of Pediatrics, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Eun Sil Park
- Department of Pediatrics, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Jeong A Park
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Ji Kyoung Park
- Department of Pediatrics, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Sang Kyu Park
- Department of Pediatrics, Ulsan University Hospital, Ulsan, Korea
| |
Collapse
|