1
|
Vallese F, Kim K, Yen LY, Johnston JD, Noble AJ, Calì T, Clarke OB. Architecture of the human erythrocyte ankyrin-1 complex. Nat Struct Mol Biol 2022; 29:706-718. [PMID: 35835865 PMCID: PMC10373098 DOI: 10.1038/s41594-022-00792-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/24/2022] [Indexed: 12/28/2022]
Abstract
The stability and shape of the erythrocyte membrane is provided by the ankyrin-1 complex, but how it tethers the spectrin-actin cytoskeleton to the lipid bilayer and the nature of its association with the band 3 anion exchanger and the Rhesus glycoproteins remains unknown. Here we present structures of ankyrin-1 complexes purified from human erythrocytes. We reveal the architecture of a core complex of ankyrin-1, the Rhesus proteins RhAG and RhCE, the band 3 anion exchanger, protein 4.2, glycophorin A and glycophorin B. The distinct T-shaped conformation of membrane-bound ankyrin-1 facilitates recognition of RhCE and, unexpectedly, the water channel aquaporin-1. Together, our results uncover the molecular details of ankyrin-1 association with the erythrocyte membrane, and illustrate the mechanism of ankyrin-mediated membrane protein clustering.
Collapse
Affiliation(s)
- Francesca Vallese
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Kookjoo Kim
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Laura Y Yen
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Jake D Johnston
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Alex J Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Padua Neuroscience Center (PNC), University of Padua, Padua, Italy.,Study Center for Neurodegeneration (CESNE), University of Padua, Padua, Italy
| | - Oliver Biggs Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA. .,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Flegel WA, Srivastava K. When recombinant proteins can replace rare red cells in immunohematology workups. Transfusion 2021; 61:2204-2212. [PMID: 34060094 DOI: 10.1111/trf.16507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Willy A Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kshitij Srivastava
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
4
|
Molecular immunohaematology round table discussions at the AABB Annual Meeting, Orlando 2016. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018. [PMID: 29517973 DOI: 10.2450/2018.0260-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Mu S, Cui Y, Wang W, Wang L, Xu H, Zhu O, Zhu D. A RHAG point mutation selectively disrupts Rh antigen expression. Transfus Med 2018; 29:121-127. [PMID: 29508504 DOI: 10.1111/tme.12519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/29/2017] [Accepted: 02/11/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of this study was to characterise a novel mutation in the gene encoding RhAG in order to elucidate a molecular mechanism for Rh antigen expression and spherocytosis. BACKGROUND Rhesus-associated glycoprotein (RhAG) is critical for maintaining the structure and stability of erythrocytes. Single missense mutations in the gene encoding RhAG are sufficient to induce spherocytosis and deficiencies in Rh complex formation. We report a novel missense mutation that incompletely disrupts Rh antigen expression and selectively knocks out RhD antigen expression. METHODS Blood samples were taken from a 38-year-old male, his brother, his wife and his daughter in Xi'an, China. To detect the proband's RhAG and D antigen expression, the RBC were stained with anti-D and anti-RhAG and analysed by flow cytometry. Red blood cell morphology was detected with atomic force microscopy (AFM). Genomic DNA was isolated from whole blood samples, and the RHD, RHCE and RHAG alleles were sequenced and analysed. The mutation was mapped onto a predicted crystal structure of RhAG by the I-TASSER server and visualised using PyMOL. RESULTS Morphological testing by AFM found clear evidence of spherocytosis in the proband's erythrocytes. RHAG gene sequencing identified the mutation at sequence 236G > A, resulting in a serine to asparagine substitution at residue 79 (S79N). Family survey indicated that inheriting this allele is necessary and sufficient to cause the condition. Mapping the mutation onto a predicted crystal structure of RhAG revealed the proximity of the mutation to the critical structural elements of the protein. CONCLUSIONS A novel RHAG mutation significantly lowers RhAG antigen expression and antigen-mediated agglutination intensity.
Collapse
Affiliation(s)
- S Mu
- Department of Transfusion Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Y Cui
- Department of Transfusion Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - W Wang
- Department of Transfusion Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - L Wang
- Department of Transfusion Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - H Xu
- Shanxi Blood Center, Xi'an, China
| | - O Zhu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - D Zhu
- Department of Transfusion Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Hsu K, Kuo MS, Yao CC, Cheng HC, Lin HJ, Chan YS, Lin M. The MNS glycophorin variant GP.Mur affects differential erythroid expression of Rh/RhAG transcripts. Vox Sang 2017; 112:671-677. [PMID: 28836328 DOI: 10.1111/vox.12555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/10/2017] [Accepted: 06/26/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND The band 3 macrocomplex (also known as the ankyrin-associated complex) on the red cell membrane comprises two interacting subcomplexes: a band 3/glycophorin A subcomplex, and a Rh/RhAG subcomplex. Glycophorin B (GPB) is a component of the Rh/RhAG subcomplex that is also structurally associated with glycophorin A (GPA). Expression of glycophorin B-A-B hybrid GP.Mur enhances band 3 expression and is associated with lower levels of Rh-associated glycoprotein (RhAG) and Rh polypeptides. The goal of this study was to determine whether GP.Mur influenced erythroid Rh/RhAG expression at the transcript level. MATERIALS AND METHODS GP.Mur was serologically determined in healthy participants from Taitung County, Taiwan. RNA was extracted from the reticulocyte-enriched fraction of peripheral blood, followed by reverse transcription and quantitative PCR for RhAG, RhD and RhCcEe. RESULTS Quantification by real-time PCR revealed significantly fewer RhAG and RhCcEe transcripts in the reticulocytes from subjects with homozygous GYP*Mur. Independent from GYP.Mur, both RhAG and RhD transcript levels were threefold or higher than that of RhCcEe. Also, in GYP.Mur and the control samples alike, direct quantitative associations were observed between the transcript levels of RhAG and RhD, but not between that of RhAG and RhCcEe. CONCLUSION Erythroid RhD and RhCcEe were differentially expressed at the transcript levels, which could be related to their different degrees of interaction or sensitivity to RhAG. Further, the reduction or absence of glycophorin B in GYP.Mur erythroid cells affected transcript expressions of RhAG and RhCcEe. Thus, GPB and GP.Mur differentially influenced Rh/RhAG expressions prior to protein translation.
Collapse
Affiliation(s)
- K Hsu
- Transfusion Medicine Laboratory, Mackay Memorial Hospital, Tamsui, Taiwan
| | - M-S Kuo
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taitung, Taiwan
| | - C-C Yao
- Transfusion Medicine Laboratory, Mackay Memorial Hospital, Tamsui, Taiwan
| | - H-C Cheng
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taitung, Taiwan
| | - H-J Lin
- Transfusion Medicine Laboratory, Mackay Memorial Hospital, Tamsui, Taiwan
| | - Y-S Chan
- Mackay Memorial Hospital Blood Bank, Taipei, Taiwan
| | - M Lin
- Transfusion Medicine Laboratory, Mackay Memorial Hospital, Tamsui, Taiwan
| |
Collapse
|
7
|
Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3. Proc Natl Acad Sci U S A 2016; 113:13732-13737. [PMID: 27856737 DOI: 10.1073/pnas.1611904113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Src homology 2 (SH2) domains are composed of weakly conserved sequences of ∼100 aa that bind phosphotyrosines in signaling proteins and thereby mediate intra- and intermolecular protein-protein interactions. In exploring the mechanism whereby tyrosine phosphorylation of the erythrocyte anion transporter, band 3, triggers membrane destabilization, vesiculation, and fragmentation, we discovered a SH2 signature motif positioned between membrane-spanning helices 4 and 5. Evidence that this exposed cytoplasmic sequence contributes to a functional SH2-like domain is provided by observations that: (i) it contains the most conserved sequence of SH2 domains, GSFLVR; (ii) it binds the tyrosine phosphorylated cytoplasmic domain of band 3 (cdb3-PO4) with Kd = 14 nM; (iii) binding of cdb3-PO4 to erythrocyte membranes is inhibited both by antibodies against the SH2 signature sequence and dephosphorylation of cdb3-PO4; (iv) label transfer experiments demonstrate the covalent transfer of photoactivatable biotin from isolated cdb3-PO4 (but not cdb3) to band 3 in erythrocyte membranes; and (v) phosphorylation-induced binding of cdb3-PO4 to the membrane-spanning domain of band 3 in intact cells causes global changes in membrane properties, including (i) displacement of a glycolytic enzyme complex from the membrane, (ii) inhibition of anion transport, and (iii) rupture of the band 3-ankyrin bridge connecting the spectrin-based cytoskeleton to the membrane. Because SH2-like motifs are not retrieved by normal homology searches for SH2 domains, but can be found in many tyrosine kinase-regulated transport proteins using modified search programs, we suggest that related cases of membrane transport proteins containing similar motifs are widespread in nature where they participate in regulation of cell properties.
Collapse
|
8
|
Silencing and overexpression of human blood group antigens in transfusion: Paving the way for the next steps. Blood Rev 2015; 29:163-9. [DOI: 10.1016/j.blre.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/23/2014] [Indexed: 01/25/2023]
|
9
|
Goossens D, da Silva N, Metral S, Cortes U, Callebaut I, Picot J, Mouro-Chanteloup I, Cartron JP. Mice expressing RHAG and RHD human blood group genes. PLoS One 2013; 8:e80460. [PMID: 24260394 PMCID: PMC3832391 DOI: 10.1371/journal.pone.0080460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Anti-RhD prophylaxis of haemolytic disease of the fetus and newborn (HDFN) is highly effective, but as the suppressive mechanism remains uncertain, a mouse model would be of interest. Here we have generated transgenic mice expressing human RhAG and RhD erythrocyte membrane proteins in the presence and, for human RhAG, in the absence, of mouse Rhag. Human RhAG associates with mouse Rh but not mouse Rhag on red blood cells. In Rhag knockout mice transgenic for human RHAG, the mouse Rh protein is “rescued” (re-expressed), and co-immunoprecipitates with human RhAG, indicating the presence of hetero-complexes which associate mouse and human proteins. RhD antigen was expressed from a human RHD gene on a BAC or from RHD cDNA under control of β-globin regulatory elements. RhD was never observed alone, strongly indicative that its expression absolutely depends on the presence of transgenic human RhAG. This first expression of RhD in mice is an important step in the creation of a mouse model of RhD allo-immunisation and HDFN, in conjunction with the Rh-Rhag knockout mice we have developed previously.
Collapse
Affiliation(s)
- Dominique Goossens
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm UMR_S 665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- * E-mail:
| | - Nelly da Silva
- Institut National de la Transfusion Sanguine, Paris, France
| | - Sylvain Metral
- Institut National de la Transfusion Sanguine, Paris, France
| | - Ulrich Cortes
- Institut National de la Transfusion Sanguine, Paris, France
| | - Isabelle Callebaut
- IInstitut de Minéralogie et de Physique des milieux Condensés UMR 7590 CNRS, Université Pierre et Marie Curie, Paris, France
| | - Julien Picot
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm UMR_S 665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
| | - Isabelle Mouro-Chanteloup
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm UMR_S 665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
| | | |
Collapse
|
10
|
Flatt JF, Musa RH, Ayob Y, Hassan A, Asidin N, Yahya NM, Mathlouthi R, Thornton N, Anstee DJ, Bruce LJ. Study of the D-- phenotype reveals erythrocyte membrane alterations in the absence of RHCE. Br J Haematol 2012; 158:262-273. [PMID: 22571328 DOI: 10.1111/j.1365-2141.2012.09149.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/27/2012] [Indexed: 02/04/2023]
Abstract
Red cells with the D-- phenotype do not express the RHCE protein because of mutations in both alleles of the RHCE gene. At present, little is known of the effect this has on the normal function of erythrocytes. In this study a group of five families belonging to a nomadic tribe in Malaysia were identified as carriers of the D-- haplotype. Analysis of homozygous individuals' genomic DNA showed two separate novel mutations. In four of the families, RHCE exons 1, 9 and 10 were present, while the 5th family possessed RHCE exons 1-3 and 10. Analysis of cDNA revealed hybrid transcripts, suggesting a gene conversion event with RHD, consistent with previously reported D-- mutations. Immunoblotting analysis of D-- erythrocyte membrane proteins found that Rh-associated glycoprotein (RHAG) migrates with altered electrophoretic mobility on sodium dodecyl sulphate polyacrylamide gel electrophoresis, consistent with increased glycosylation. Total amounts of Rh polypeptide in D-- membranes were comparable with controls, indicating that the exalted D antigen displayed by D-- red cells may be associated with altered surface epitope presentation. The adhesion molecules CD44 and CD47 are significantly reduced in D--. Together these results suggest that absence of RHCE polypeptide alters the structure and packing of the band 3/Rh macrocomplex.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, N.H.S. Blood and Transplant, Filton, Bristol, UK
| | - Rozi H Musa
- Immunohaematology Division, National Blood Centre, Kuala Lumpur, Malaysia
| | - Yasmin Ayob
- Immunohaematology Division, National Blood Centre, Kuala Lumpur, Malaysia
| | - Afifah Hassan
- Immunohaematology Division, National Blood Centre, Kuala Lumpur, Malaysia
| | - Norhanim Asidin
- Immunohaematology Division, National Blood Centre, Kuala Lumpur, Malaysia
| | - Nurul M Yahya
- Immunohaematology Division, National Blood Centre, Kuala Lumpur, Malaysia
| | - Rosalind Mathlouthi
- International Blood Group Reference Laboratory, N.H.S. Blood and Transplant, Filton, Bristol, UK
| | - Nicole Thornton
- International Blood Group Reference Laboratory, N.H.S. Blood and Transplant, Filton, Bristol, UK
| | - David J Anstee
- Bristol Institute for Transfusion Sciences, N.H.S. Blood and Transplant, Filton, Bristol, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, N.H.S. Blood and Transplant, Filton, Bristol, UK
| |
Collapse
|
11
|
Stewart AK, Shmukler BE, Vandorpe DH, Rivera A, Heneghan JF, Li X, Hsu A, Karpatkin M, O'Neill AF, Bauer DE, Heeney MM, John K, Kuypers FA, Gallagher PG, Lux SE, Brugnara C, Westhoff CM, Alper SL. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S. Am J Physiol Cell Physiol 2011; 301:C1325-43. [PMID: 21849667 PMCID: PMC3233792 DOI: 10.1152/ajpcell.00054.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 08/11/2011] [Indexed: 11/22/2022]
Abstract
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li(+) and (86)Rb(+), with secondarily increased (86)Rb(+) influx sensitive to ouabain and to bumetanide. Increased RhAG-associated (14)C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li(+), (86)Rb(+), and (14)C-MA were pharmacologically distinct, and Li(+) uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH(4)(+) and Gd(3+). RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH(3)/NH(4)(+), but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA(+)). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH(4)Cl, but MA/MA(+) elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li(+) substitution or bath addition of 5 mM NH(4)Cl or MA/MA(+). These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH(3)/NH(4)(+) and MA/MA(+); 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA(+) transport, and decreased NH(3)/NH(4)(+)-associated depolarization; and 3) RhAG transports NH(3)/NH(4)(+) and MA/MA(+) by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms.
Collapse
Affiliation(s)
- Andrew K Stewart
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
van den Akker E, Satchwell TJ, Williamson RC, Toye AM. Band 3 multiprotein complexes in the red cell membrane; of mice and men. Blood Cells Mol Dis 2010; 45:1-8. [DOI: 10.1016/j.bcmd.2010.02.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 02/02/2023]
|
13
|
Recombinant blood group proteins for use in antibody screening and identification tests. Curr Opin Hematol 2009; 16:473-9. [DOI: 10.1097/moh.0b013e3283319a06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Interaction of anion exchanger 1 and glycophorin A in human erythroleukaemic K562 cells. Biochem J 2009; 421:345-56. [DOI: 10.1042/bj20090345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AE1 [anion exchanger 1, also known as SLC4A1 (solute carrier family 4, anion exchanger, member 1) and band 3 (erythrocyte membrane protein band 3)] is a major membrane glycoprotein expressed in human erythrocytes where it mediates the exchange of chloride and bicarbonate across the plasma membrane. Glycophorin A (GPA) is a sialoglycoprotein that associates with AE1 in erythrocytes forming the Wrb (Wright b) blood group antigen. These two integral proteins may also form a complex during biosynthesis, with GPA facilitating the cell surface expression of AE1. This study investigates the interaction of GPA with AE1 in K562 cells, a human erythroleukaemic cell line that expresses GPA, and the role of GPA in the cell surface expression of AE1. In K562 cells, GPA was dimeric and N- and O-glycosylated similar to erythroid GPA. GPA was localized at the cell surface, but also localized to the Golgi. AE1 expressed in K562 cells contained both complex and high-mannose oligosaccharides, and co-localized with GPA at the cell surface and in the endoplasmic reticulum (ER). The Wrb antigen was detected at the cell surface of AE1-transfected K562 cells, indicating the existence of an AE1–GPA complex. Immunofluorescence and co-immunoprecipitation studies using AE1 and an ER-localized hereditary spherocytosis mutant (R760Q AE1) showed that GPA and AE1 could interact in the ER. GPA knockdown by shRNAs (small-hairpin RNAs), however, had no effect on the level of cell surface expression of AE1. The results indicate that AE1 and GPA form a complex in the ER of human K562 cells, but that both proteins can also traffic to the cell surface independently of each other.
Collapse
|
15
|
Gupta N, Chelluri LK, Ratnakar KS, Ravindhranath K, Vasantha A. Rh antigen expression during erythropoeisis: Comparison of cord and adult derived CD34 cells. Asian J Transfus Sci 2008; 2:69-80. [PMID: 20041081 PMCID: PMC2798767 DOI: 10.4103/0973-6247.42694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objectives: Concentrations of O2 and CO2 in the fetal circulation differ to that in maternal blood. Previous studies done in algae demonstrate the functional role of Rh antigen as CO2 transporter. As a preliminary study, it was the aim of this project to compare the expression of Rh polypeptides on cord and adult red blood cell progenitors during ex vivo proliferation and differentiation of CD34+ cells during erythropoeisis. Materials and Methods: CD34 positive hematopoeitic progenitor cells were isolated from umbilical cord blood and adult peripheral blood using an immunomagnetic system and cultured in serum free medium containing erythropoietin in order to compel them along the erythroid lineage. Cultured cells were analyzed for cell surface marker expression by flow cytometry, using monoclonal antibodies to RhAG, Glycophorin A, Rh polypeptides, CD47 and Band 3. Cytospin analysis was also done to study the morphology of cultured cells. Results: The appearance of cell surface markers analyzed on different days of culture varied slightly between samples. There was no evidence to suggest that RhAG, GPA, CD47 and Band 3 expression was any different between adult and cord derived cells. Nevertheless, the results of Rh antigenic expression suggest a reasonable difference between the two groups with adult sample derived cells showing higher and earlier expression than cord blood derived cells. These preliminary findings require further investigation. Conclusion: Comparing the expression of cell surface markers especially Rh polypeptides between adult and cord blood derived erythroid progenitors might assist in discerning their functions and could be valuable in the study of erythropoeisis.
Collapse
Affiliation(s)
- Namita Gupta
- Transplant Immunology and Stem cell Laboratory, Global Hospitals, Hyderabad, India
| | | | | | | | | |
Collapse
|
16
|
Williamson RC, Toye AM. Glycophorin A: Band 3 aid. Blood Cells Mol Dis 2008; 41:35-43. [PMID: 18304844 DOI: 10.1016/j.bcmd.2008.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 11/24/2022]
Abstract
Band 3 (B3) is a major site of cytoskeletal attachment to the erythrocyte membrane and is important for gas exchange. A truncated isoform of B3 (kB3) is expressed in the alpha-intercalated cells of the kidney and its functional activity and basolateral localization are essential for acid secretion. B3 mutations generally lead to red blood cell (RBC) specific disease (hereditary spherocytosis (HS), Southeast Asian Ovalocytosis or hereditary stomatocytosis) or kidney disease (distal Renal Tubular Acidosis--dRTA). It is rare for both the RBC and kidney disease phenotypes to co-exist, but this does occur in knockout mice, and also in humans (B3 Coimbra and B3 Courcouronne) or cattle with homozygous HS mutations. This is because RBCs express a B3 chaperone-like molecule in the form of Glycophorin A that can rescue the majority of B3 mutations that cause dRTA but probably not the majority of HS mutations. The study of naturally occurring B3 variant blood and expression of B3 or kB3 mutants in heterologous expression systems has provided valuable information concerning B3 trafficking and interactions in the RBC and kidney. This article will review these studies and comment on our current understanding of the interaction between GPA with B3 and also on the proposed B3 centred macrocomplex.
Collapse
Affiliation(s)
- Rosalind C Williamson
- University of Bristol, Department of Biochemistry, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|
17
|
Nicolas V, Mouro-Chanteloup I, Lopez C, Gane P, Gimm A, Mohandas N, Cartron JP, Le Van Kim C, Colin Y. Functional interaction between Rh proteins and the spectrin-based skeleton in erythroid and epithelial cells. Transfus Clin Biol 2006; 13:23-8. [PMID: 16580865 DOI: 10.1016/j.tracli.2006.02.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We summarize the different experimental approaches which provide evidence that direct interaction of Rh and RhAG to ankyrin-R constitutes, together with the AE-1 (Band 3)-ankyrin-protein 4.2 and GPC-protein 4.1-p55 complexes, another major anchoring site between the red cell membrane bilayer and the underlying spectrin-based skeleton. The observations that some residues of the ankyrin binding site are mutated in Rh and RhAG proteins from some weak D and Rh(null) variants, respectively, suggest that the Rh-RhAG/ankyrin-R interaction plays a crucial role in the biosynthesis and/or the stability of the Rh complex in the red cell membrane. Similarly, binding to ankyrin G is required for cell surface expression of the non-erythroid member of the Rh protein family, RhBG, at the basolateral membrane domain of polarized epithelial cells. The next challenge will be to determine whether binding to the membrane skeleton may be critical for the emerging ammonium transport function of Rh proteins in erythroid and non-erythroid cells.
Collapse
|
18
|
Peng J, Huang CH. Rh proteins vs Amt proteins: an organismal and phylogenetic perspective on CO2 and NH3 gas channels. Transfus Clin Biol 2006; 13:85-94. [PMID: 16564193 DOI: 10.1016/j.tracli.2006.02.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rh (Rhesus) proteins are homologues of ammonium transport (Amt) proteins. Physiological and structural evidence shows that Amt proteins are gas channels for NH(3), but the substrate of Rh proteins, be it CO2 as shown in green alga, or NH3/NH4+ as shown in mammalian cells, remains disputed. We assembled a large dataset generated of Rh and Amt to explore how Rh originated from and evolved independently of Amt relatives. Analysis of this rich data implies that Rh was split from Amt first to emerge in archaeal species. The Rh ancestor underwent divergence and duplication along speciation, leading to neofunctionalization and subfunctionalization of the Rh family. The characteristic organismal distribution of Rh vs. Amt reflects their early separation and subsequent independent evolution: they coexist in microbes and invertebrates but do not in fungi, vascular plants or vertebrates. Rh gene-duplication was prominent in vertebrates: while epithelial RhBG/RhCG displayed strong purifying selection, erythroid Rh30 and RhAG experienced different episodes of positive selection in each of which adaptive evolution occurred at certain time points and in a few codon sites. Mammalian Rh30 and RhAG were subject to particularly strong positive selection in some codon sites in the lineage from rodents to human. The grounds of this adaptive evolution may be driven by the necessity to increase the surface/volume ratio of biconcave erythrocytes for facilitative gas diffusion. Altogether, these results are consistent with Rh proteins not being the orthologue of Amt proteins but having gained the function for CO2/HCO3- transport, with important roles in systemic pH regulation.
Collapse
Affiliation(s)
- J Peng
- Laboratory of Biochemistry and Molecular Genetics, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10021, USA
| | | |
Collapse
|
19
|
Cheung J, Cordat E, Reithmeier R. Trafficking defects of the Southeast Asian ovalocytosis deletion mutant of anion exchanger 1 membrane proteins. Biochem J 2006; 392:425-34. [PMID: 16107207 PMCID: PMC1316280 DOI: 10.1042/bj20051076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human AE1 (anion exchanger 1) is a membrane glycoprotein found in erythrocytes and as a truncated form (kAE1) in the BLM (basolateral membrane) of a-intercalated cells of the distal nephron, where they carry out electroneutral chloride/bicarbonate exchange. SAO (Southeast Asian ovalocytosis) is a dominant inherited haematological condition arising from deletion of Ala400-Ala408 in AE1, resulting in a misfolded and transport-inactive protein present in the ovalocyte membrane. Heterozygotes with SAO are able to acidify their urine, without symptoms of dRTA (distal renal tubular acidosis) that can be associated with mutations in kAE1. We examined the effect of the SAO deletion on stability and trafficking of AE1 and kAE1 in transfected HEK-293 (human embryonic kidney) cells and kAE1 in MDCK (Madin-Darby canine kidney) epithelial cells. In HEK-293 cells, expression levels and stabilities of SAO proteins were significantly reduced, and no mutant protein was detected at the cell surface. The intracellular retention of AE1 SAO in transfected HEK-293 cells suggests that erythroid-specific factors lacking in HEK-293 cells may be required for cell-surface expression. Although misfolded, SAO proteins could form heterodimers with the normal proteins, as well as homodimers. In MDCK cells, kAE1 was localized to the cell surface or the BLM after polarization, while kAE1 SAO was retained intracellularly. When kAE1 SAO was co-expressed with kAE1 in MDCK cells, kAE1 SAO was largely retained intracellularly; however, it also co-localized with kAE1 at the cell surface. We propose that, in the kidney of heterozygous SAO patients, dimers of kAE1 and heterodimers of kAE1 SAO and kAE1 traffic to the BLM of a-intercalated cells, while homodimers of kAE1 SAO are retained in the endoplasmic reticulum and are rapidly degraded. This results in sufficient cell-surface expression of kAE1 to maintain adequate bicarbonate reabsorption and proton secretion without dRTA.
Collapse
Affiliation(s)
- Joanne C. Cheung
- Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Emmanuelle Cordat
- Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Reinhart A. F. Reithmeier
- Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
- To whom correspondence should be addressed (email )
| |
Collapse
|
20
|
Kustu S, Inwood W. Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus) proteins are CO2 channels. Transfus Clin Biol 2006; 13:103-10. [PMID: 16563833 DOI: 10.1016/j.tracli.2006.03.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Physiological evidence from our laboratory indicates that Amt/Mep proteins are gas channels for NH3, the first biological gas channels to be described. This view has now been confirmed by structural evidence and is displacing the previous belief that Amt/Mep proteins were active transporters for the NH4+ ion. Still disputed is the physiological substrate for Rh proteins, the only known homologues of Amt/Mep proteins. Many think they are mammalian ammonium (NH4+ or NH3) transporters. Following Monod's famous dictum, "Anything found to be true of E. coli must also be true of elephants" [Perspect. Biol. Med. 47(1) (2004) 47], we explored the substrate for Rh proteins in the unicellular green alga Chlamydomonas reinhardtii. C. reinhardtii is one of the simplest organisms to have Rh proteins and it also has Amt proteins. Physiological studies in this microbe indicate that the substrate for Rh proteins is CO2 and confirm that the substrate for Amt proteins is NH3. Both are readily hydrated gases. Knowing that transport of CO2 is the ancestral function of Rh proteins supports the inference from hematological research that a newly evolving role of the human Rh30 proteins, RhCcEe and RhD, is to help maintain the flexible, flattened shape of the red cell.
Collapse
Affiliation(s)
- S Kustu
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
21
|
Fricke B, Parsons SF, Knöpfle G, von Düring M, Stewart GW. Stomatin is mis-trafficked in the erythrocytes of overhydrated hereditary stomatocytosis, and is absent from normal primitive yolk sac-derived erythrocytes. Br J Haematol 2005; 131:265-77. [PMID: 16197460 DOI: 10.1111/j.1365-2141.2005.05742.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 32 kD lipid-raft-associated membrane protein 'stomatin' is deficient from the erythrocyte membrane in the Na+-K+ leaky haemolytic anaemia, overhydrated hereditary stomatocytosis (OHSt). To date, no mutation in the gene coding for this protein has so far been found in OHSt. In this study, we have analysed the distribution of stomatin in both cultured erythroid cells from OHSt patients and in normal embryological and fetal erythroid development. In erythroid cell cultures from OHSt patients, stomatin-immunoreactivity (stomatin-IR) was present in progenitor cells but remained restricted to the area of the multivesicular complexes and the nucleus in the developing cells and was not seen in the plasma membrane. This could be consistent with the idea that stomatin is an innocent passenger in a more fundamental trafficking abnormality. In normal embryonic development, we found that, in extraembryonic (yolk sac) erythropoiesis, neither the nucleated red cells nor their enucleated mature derivatives displayed any stomatin-IR. In contrast, all haemangiopoietic progenitor cells of intraembryonic haematopoiesis, starting with the mesodermal precursors in the aorta-gonad-mesonephros region, exhibited strong stomatin-IR. The significance of this observation on these poorly understood cells is currently unclear.
Collapse
Affiliation(s)
- Britta Fricke
- Department of Neuroanatomy, Ruhr University, Bochum, Germany
| | | | | | | | | |
Collapse
|
22
|
Ability of Plasmodium falciparum to invade Southeast Asian ovalocytes varies between parasite lines. Blood 2004; 104:2961-6. [DOI: 10.1182/blood-2004-06-2136] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AbstractPlasmodium falciparum, the causative agent of the most lethal form of human malaria, uses multiple ligand-receptor interactions to invade host red blood cells (RBCs). We studied the invasion of P falciparum into abnormal RBCs from humans carrying the Southeast Asian ovalocytosis (SAO) trait. One particular parasite line, 3D7-A, invaded these cells efficiently, whereas all other lines studied invaded SAO RBCs to only about 20% of the extent of normal (non-SAO) cells. This result is consistent with the clinical observation that SAO individuals can experience high-density P falciparum infections and provides an explanation for previous discrepant results on invasion of SAO RBCs. Characterization of the invasion phenotype of 3D7-A revealed that efficient invasion of SAO RBCs was paralleled by relatively efficient invasion of normal RBCs treated with either neuraminidase, trypsin, or chymotrypsin and a novel capacity to invade normal RBCs treated sequentially with both neuraminidase and trypsin. Our results suggest that only parasites able to use some particular invasion pathways can invade SAO RBCs efficiently in culture. A similar situation might occur in the field.
Collapse
|
23
|
Soupene E, Inwood W, Kustu S. Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc Natl Acad Sci U S A 2004; 101:7787-92. [PMID: 15096599 PMCID: PMC419684 DOI: 10.1073/pnas.0401809101] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Rhesus (Rh) proteins are best known as antigens on human red blood cells, they are not restricted to red cells or to mammals, and hence their primary biochemical functions can be studied in more tractable organisms. We previously established that the Rh1 protein of the green alga Chlamydomonas reinhardtii is highly expressed in cultures bubbled with air containing high CO(2) (3%), conditions under which Chlamydomonas grows rapidly. By RNA interference, we have now obtained Chlamydomonas rh mutants (epigenetic), which are among the first in nonhuman cells. These mutants have essentially no mRNA or protein for RH1 and grow slowly at high CO(2), apparently because they fail to equilibrate this gas rapidly. They grow as well as their parental strain in air and on acetate plus air. However, during growth on acetate, rh1 mutants fail to express three proteins that are known to be down-regulated by high CO(2): periplasmic and mitochondrial carbonic anhydrases and a chloroplast envelope protein. This effect is parsimoniously rationalized if the small amounts of Rh1 protein present in acetate-grown cells of the parental strain facilitate leakage of CO(2) generated internally. Together, these results support our hypothesis that the Rh1 protein is a bidirectional channel for the gas CO(2). Our previous studies in a variety of organisms indicate that the only other members of the Rh superfamily, the ammonium/methylammonium transport proteins, are bidirectional channels for the gas NH(3). Physiologically, both types of gas channels can apparently function in acquisition of nutrients and/or waste disposal.
Collapse
Affiliation(s)
- Eric Soupene
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
24
|
Nicolas V, Le Van Kim C, Gane P, Birkenmeier C, Cartron JP, Colin Y, Mouro-Chanteloup I. Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J Biol Chem 2003; 278:25526-33. [PMID: 12719424 DOI: 10.1074/jbc.m302816200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies suggest that the Rh complex represents a major interaction site between the membrane lipid bilayer and the red cell skeleton, but little is known about the molecular basis of this interaction. We report here that ankyrin-R is capable of interacting directly with the C-terminal cytoplasmic domain of Rh and RhAG polypeptides. We first show that the primary defect of ankyrin-R in normoblastosis (nb/nb) spherocytosis mutant mice is associated with a sharp reduction of RhAG and Rh polypeptides. Secondly, our flow cytometric analysis of the Triton X-100 extractability of recombinant fusion proteins expressed in erythroleukemic cell lines suggests that the C-terminal cytoplasmic domains of Rh and RhAG are sufficient to mediate interaction with the erythroid membrane skeleton. Using the yeast two-hybrid system, we demonstrate a direct interaction between the cytoplasmic tails of Rh and RhAG and the second repeat domain (D2) of ankyrin-R. This finding is supported by the demonstration that the substitution of Asp-399 in the cytoplasmic tail of RhAG, a mutation associated with the deficiency of the Rh complex in one Rhnull patient, totally impaired interaction with domain D2 of ankyrin-R. These results identify the Rh/RhAG-ankyrin complex as a new interaction site between the red cell membrane and the spectrin-based skeleton, the disruption of which might result in the stomato-spherocytosis typical of Rhnull red cells.
Collapse
Affiliation(s)
- Virginie Nicolas
- INSERM U76, Institut National de la Transfusion Sanguine, 6 Rue Alexandre Cabanel, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Chernova MN, Stewart AK, Jiang L, Friedman DJ, Kunes YZ, Alper SL. Structure-function relationships of AE2 regulation by Ca(i)(2+)-sensitive stimulators NH(4+) and hypertonicity. Am J Physiol Cell Physiol 2003; 284:C1235-46. [PMID: 12529246 DOI: 10.1152/ajpcell.00522.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We showed previously that the nonerythroid anion exchanger AE2 and the erythroid anion exchanger AE1 differ greatly in their regulation by acute changes in intracellular pH (pH(i)) and extracellular pH (pH(o)). We have now examined how AE2, but not AE1, is activated by two stimuli with opposing effects on oocyte pH(i): an alkalinizing stimulus, hypertonicity, and an acidifying stimulus, NH(4)(+). We find that both NH(2)-terminal cytoplasmic and COOH-terminal transmembrane domains of AE2 are required for activation by either stimulus. Directed by initial deletion mutagenesis studies of the NH(2)-terminal cytoplasmic domain, an alanine scan of AE2 amino acids 336-347 identified residues whose individual mutation abolished or severely attenuated sensitivity to both or only one activating stimulus. Chelation of cytoplasmic Ca(2+) (Ca(i)(2+)) diminished or abolished AE2 stimulation by NH(4)(+) and by hypertonicity. Calmidazolium inhibited AE2 activity, but not that of AE1. AE2 was insensitive to many other modifiers of Ca(2+) signaling. Unlike AE2 stimulation by NH(4)(+) and by hypertonicity, AE2 inhibition by calmidazolium required only AE2's COOH-terminal transmembrane domain.
Collapse
Affiliation(s)
- Marina N Chernova
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
26
|
Cell-surface expression of RhD blood group polypeptide is posttranscriptionally regulated by the RhAG glycoprotein. Blood 2002. [DOI: 10.1182/blood.v100.3.1038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn most cases, the lack of Rh in Rhnull red cells is associated with RHAG gene mutations. We explored the role of RhAG in the surface expression of Rh. Nonerythroid HEK293 cells, which lack Rh and RhAG, or erythroid K562 cells, which endogenously express RhAG but not Rh, were transfected with RhD and/or RhAG cDNAs using cytomegalovirus (CMV) promoter–based expression vectors. In HEK293 cells, a low but significant expression of RhD was obtained only when RhAG was expressed at a high level. In K562 cells, as expected from the opposite effects of the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) on erythroid and CMV promoters, the levels of endogenous RhAG and recombinant RhD transcripts were substantially decreased and enhanced upon TPA treatment of RhD-transfected cells (K562/RhD), respectively. However, flow cytometry and fluorescence microscopy analysis revealed a decreased cell-surface expression of both RhAG and RhD proteins. Conversely, TPA treatment of RhAG-transfected cells increased both the transcript and surface expression levels of RhAG. When K562/RhD cells were cotransfected by the RhAG cDNA, the TPA-mediated induction of recombinant RhAG and RhD transcription was associated with an increased membrane expression of both RhAG and RhD proteins. These results demonstrate the role of RhAG as a strictly required posttranscriptional factor regulating Rh membrane expression. In addition, because the postulated 2:2 stoichiometry between Rh and RhAG observed in the native red cell membrane could not be obtained in cotransfected K562 cells, our study also suggests that as yet unidentified protein(s) might be involved for optimal membrane expression of Rh.
Collapse
|
27
|
Affiliation(s)
- Yves Colin
- INSERM U76/Institut National de la Transfusion Sanguine, Paris, France.
| |
Collapse
|
28
|
Abstract
In most cases, the lack of Rh in Rhnull red cells is associated with RHAG gene mutations. We explored the role of RhAG in the surface expression of Rh. Nonerythroid HEK293 cells, which lack Rh and RhAG, or erythroid K562 cells, which endogenously express RhAG but not Rh, were transfected with RhD and/or RhAG cDNAs using cytomegalovirus (CMV) promoter–based expression vectors. In HEK293 cells, a low but significant expression of RhD was obtained only when RhAG was expressed at a high level. In K562 cells, as expected from the opposite effects of the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) on erythroid and CMV promoters, the levels of endogenous RhAG and recombinant RhD transcripts were substantially decreased and enhanced upon TPA treatment of RhD-transfected cells (K562/RhD), respectively. However, flow cytometry and fluorescence microscopy analysis revealed a decreased cell-surface expression of both RhAG and RhD proteins. Conversely, TPA treatment of RhAG-transfected cells increased both the transcript and surface expression levels of RhAG. When K562/RhD cells were cotransfected by the RhAG cDNA, the TPA-mediated induction of recombinant RhAG and RhD transcription was associated with an increased membrane expression of both RhAG and RhD proteins. These results demonstrate the role of RhAG as a strictly required posttranscriptional factor regulating Rh membrane expression. In addition, because the postulated 2:2 stoichiometry between Rh and RhAG observed in the native red cell membrane could not be obtained in cotransfected K562 cells, our study also suggests that as yet unidentified protein(s) might be involved for optimal membrane expression of Rh.
Collapse
|
29
|
Abstract
Recent developments in the structure of erythrocyte band 3 and its role in hereditary spherocytosis and distal renal tubular acidosis are described. The crystal structure of the N-terminal cytoplasmic domain provides a basis for understanding the organization of ankyrin and other peripheral membrane proteins around band 3. Band 3 also binds integral membrane proteins, including the Rh protein complex and CD47. Band 4.2 is important in these associations, which link the Rh complex to the skeleton. It is suggested that band 3 forms the scaffold for a protein assembly that could transduce signals from the cell exterior and modulate the transport and mechanical properties of the erythrocyte. The involvement of band 3 in distal renal tubular acidosis is reviewed. The article discusses a likely mechanism for dominant distal renal tubular acidosis in which associations between the normal and mutant protein alter the plasma membrane targeting of the normal protein in the kidney.
Collapse
MESH Headings
- Acidosis, Renal Tubular/etiology
- Acidosis, Renal Tubular/pathology
- Anemia, Hemolytic, Congenital/etiology
- Anemia, Hemolytic, Congenital/pathology
- Anion Exchange Protein 1, Erythrocyte/chemistry
- Anion Exchange Protein 1, Erythrocyte/genetics
- Anion Exchange Protein 1, Erythrocyte/metabolism
- Erythrocyte Membrane/chemistry
- Erythrocyte Membrane/metabolism
- Humans
- Protein Binding
- Spherocytosis, Hereditary/etiology
- Spherocytosis, Hereditary/pathology
Collapse
Affiliation(s)
- Michael J A Tanner
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
30
|
Abstract
Rh molecular biology has made many advances since the first Rh cDNA was cloned in 1990. This review summarizes the current knowledge concerning the molecular basis of Rh antigenicity, D-epitope expression, and the structures of the Rh genes and proteins. Although many recent reviews have appeared regarding these subjects, advances in Rh protein function that have been published within the last 12 months have had a fundamental impact on the future direction of Rh research. In November 2000, an article described the role of Rh proteins in ammonium transport, which has remained undescribed in vertebrates, except for non-specific transport via K+ channels. The recent identification of nonerythroid Rh proteins, their expression in diverse tissues, and notably polarized epithelial and endothelial cells will be of broad functional significance and will greatly increase our understanding of the role of Rh in ammonium transport and the biology of ammonium metabolism as a whole. The advances in Rh molecular genetics have enabled the development of diagnostic tests in the clinic. At present, this is largely confined to the prenatal diagnosis of fetal blood group status in alloimmunized pregnancies, but could be extended to the noninvasive prenatal testing of all D-negative pregnant women and eventually, perhaps, to all patient and donor blood.
Collapse
Affiliation(s)
- N D Avent
- Centre for Research in Biomedicine, University of the West of England, Bristol, United Kingdom.
| |
Collapse
|
31
|
Abstract
Biochemical and molecular genetic studies have revealed that blood group antigens are present on cell surface molecules of wide structural diversity, including carbohydrate epitopes on glycoproteins and/or glycolipids, and peptide antigens on proteins inserted within the membrane via single or multi-pass transmembrane domains, or via glycosylphosphatidylinositol linkages. These studies have also shown that some blood group antigens are carried by complexes consisting of several membrane components which may be lacking or severely deficient in rare blood group 'null' phenotypes. In addition, although all blood group antigens are serologically detectable on red blood cells (RBCs), most of them are also expressed in non-erythroid tissues, raising further questions on their physiological function under normal and pathological conditions. In addition to their structural diversity, blood group antigens also possess wide functional diversity, and can be schematically subdivided into five classes: i) transporters and channels; ii) receptors for ligands, viruses, bacteria and parasites; iii) adhesion molecules; iv) enzymes; and v) structural proteins. The purpose of this review is to summarize recent findings on these molecules, and in particular to illustrate the existing structure-function relationships.
Collapse
MESH Headings
- Animals
- Anion Exchange Protein 1, Erythrocyte/chemistry
- Anion Exchange Protein 1, Erythrocyte/physiology
- Antigens, Protozoan
- Blood Group Antigens/chemistry
- Blood Group Antigens/classification
- Blood Group Antigens/genetics
- Blood Group Antigens/immunology
- Blood Group Antigens/physiology
- Blood Proteins/chemistry
- Blood Proteins/genetics
- Blood Proteins/immunology
- Blood Proteins/physiology
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/physiology
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/physiology
- Chromosomes, Human/genetics
- Enzymes/chemistry
- Enzymes/genetics
- Enzymes/immunology
- Enzymes/physiology
- Erythrocyte Membrane/chemistry
- Erythrocyte Membrane/immunology
- Erythrocytes/enzymology
- Erythrocytes/microbiology
- Erythrocytes/parasitology
- Erythrocytes/virology
- Genes
- Humans
- Integrins/chemistry
- Integrins/genetics
- Integrins/immunology
- Integrins/physiology
- Ion Channels/chemistry
- Ion Channels/genetics
- Ion Channels/immunology
- Ion Channels/physiology
- Models, Molecular
- Organ Specificity
- Protein Conformation
- Protozoan Proteins
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/physiology
- Receptors, HIV/physiology
- Rh-Hr Blood-Group System/chemistry
- Rh-Hr Blood-Group System/genetics
- Rh-Hr Blood-Group System/immunology
- Rh-Hr Blood-Group System/physiology
- Species Specificity
- Structure-Activity Relationship
Collapse
|