1
|
Bai Q, Wang C, Ding N, Wang Z, Liu R, Li L, Piao H, Song Y, Yan G. Eupalinolide B targets DEK and PANoptosis through E3 ubiquitin ligases RNF149 and RNF170 to negatively regulate asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156657. [PMID: 40120540 DOI: 10.1016/j.phymed.2025.156657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
PURPOSE We investigated the mechanism by which eupalinolide B (EB) regulates DEK protein ubiquitination and degradation, and its impact on DEK-mediated receptor-interacting protein kinase 1 (RIPK)-PANoptosis pathway in allergic asthma. STUDY DESIGN AND METHODS In vitro studies were conducted on human bronchial epithelial cells (BEAS-2B) treated with EB and human-recombinant DEK. Mass spectrometry analysis, RNA sequencing, molecular docking, and functional assays were used to assess the interactions and effects of EB, DEK, and ring finger protein 149 and 170 (RNF149 and RNF170). In vivo experiments involved a house dust mite-induced asthma model in mice and evaluation of airway inflammation, DEK expression, and PANoptosis markers. RESULTS In vitro, EB could bind to DEK. RNF149 and RNF170 were identified as regulatory factors of DEK, polyubiquitinating the K349 site in the DEK coding DNA sequence region 270-350 through K48 linkages and leading to its degradation. RNA sequencing showed that DEK overexpression upregulated the expression of genes such as RIPK1, FADD, and Caspase 8. Treatment with DEK siRNA or EB reduced the activation of the RIPK1-PANoptosis pathway in BEAS-2B-DEK cells. In vivo, EB significantly reduced the levels of DEK in house dust mite-induced mice and alleviated pulmonary inflammatory cell infiltration, goblet cell hyperplasia, collagen fiber deposition, and eosinophil proportion in BALF. Knocking out the DEK gene reduced RIPK1-induced PANoptosis, and inhibited airway inflammation and cell apoptosis. CONCLUSION EB promotes the degradation of DEK by RNF149 and RNF170, inhibits the RIPK1-PANoptosis pathway, and may effectively suppress asthma. EB may become a potential drug for treating airway inflammation in asthma.
Collapse
Affiliation(s)
- Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Ningpo Ding
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China
| | - Ruobai Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, PR China.
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, PR China.
| |
Collapse
|
2
|
Zhu G, Yu H, Li X, Ye W, Chen X, Gu W. CD147 mitochondria translocation induced airway remodeling in asthmatic mouse models by regulating M2 macrophage polarization via ANT1-mediated mitophagy. Am J Physiol Cell Physiol 2025; 328:C604-C616. [PMID: 39740799 DOI: 10.1152/ajpcell.00735.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
CD147 has the potential to serve as a specific target with therapeutic characteristics in several respiratory diseases. Studies have demonstrated that CD147 regulates levels of oxidative phosphorylation (OXPHOS) through the process of mitochondrial translocations. However, there is still limited insight in the distinct mechanism of CD147 in asthmatic macrophages. Here, we found that CD147 expression levels increased significantly both in vivo and in vitro. CD147 undergoes mitochondrial translocation in M2 macrophages. Reducing the expression of CD147 resulted in a decline in M2 polarization levels within macrophages, as well as a decrease in the levels of mitochondrial respiratory chain complexes I, II, and IV proteins. This effect may be attained by interacting with adenine nucleotide translocase 1 (ANT1), subsequently impacting the levels of mitophagy. We also discovered that CD147 knockdown significantly reduced airway remodeling and inflammation in addition to lowering the polarization level of M2 in the lung tissues of chronic asthmatic model mice. The findings represent the first evidence of the distinct function of CD147 in the process of airway remodeling in asthma.NEW & NOTEWORTHY The interaction between CD147 and ANT1 in M2 macrophages occurs via mitochondrial translocation, resulting in alterations in ANT1 expression levels. This, in turn, triggers the activation of the mitophagy pathway, leading to modifications in OXPHOS levels. Ultimately, these changes contribute to the enhancement of M2 polarization, thereby exacerbating airway remodeling in asthma.
Collapse
Affiliation(s)
- Guiyin Zhu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Haiyang Yu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoming Li
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wenjing Ye
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xi Chen
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wen Gu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Fang R, Cheng Y, Chen P, Hu J, Yang L. PGC-1α agonist ZLN005 ameliorates OVA-induced asthma in BALB/c mice through modulating the NF-κB-p65/NLRP3 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:710-717. [PMID: 40343297 PMCID: PMC12057745 DOI: 10.22038/ijbms.2025.83166.17982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/25/2024] [Indexed: 05/11/2025]
Abstract
Objectives Asthma is a complex inflammatory disease of the lungs marked by increased infiltration of leukocytes into the airways, which restricts respiratory function. Proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) has been recognized as an essential immunomodulator and has the potential as a novel anti-inflammatory target in asthma. The current study aims to investigate the functions of PGC-1α in ovalbumin (OVA)-sensitized asthmatic mice and underlying mechanisms. Materials and Methods BALB/c mouse asthma model was induced by OVA in vivo. The therapeutic effects of PGC-1α agonist (ZLN005) on asthma were assessed by histological and biochemical analysis. In addition, we integrated real-time qPCR, western blotting, and immunofluorescence analysis to reveal the underlying mechanism. Results In the lung tissue of asthmatic mice, PGC-1α levels were down-regulated. Diff-Quik staining indicated that ZLN005 therapy on asthmatic mice reduced the number of inflammatory cells (eosinophilic granulocytes, neutrophils, lymphocytes, and mononuclear macrophages) in bronchoalveolar lavage fluid (BALF), ameliorated pathologic alterations in lung tissues. ZLN005 alleviated airway structure and inflammation, as well as down-regulating the serum immunoglobulin E (IgE), OVA-specific IgE, and T-helper 2 (Th2) cytokines (interleukin (IL)-4, IL-5, and IL-13) expression. Mechanistically, the results showed that ZLN005, through the NF-κB-p65 axis, prominently inhibited the activation of the NLRP3 inflammasome and reduced the levels of the NLRP3 downstream targets IL-1β and IL-18. Conclusion PGC-1α agonist (ZLN005) regulated lung inflammation in asthmatic mice by inhibiting the NF-κB-p65/NLRP3 signaling pathway, supporting that ZLN005 may be a candidate for future asthma treatment.
Collapse
Affiliation(s)
- Rui Fang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yan Cheng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Ping Chen
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Jing Hu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Liqi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| |
Collapse
|
4
|
Koranteng J, Chung KF, Michaeloudes C, Bhavsar P. The role of mitochondria in eosinophil function: implications for severe asthma pathogenesis. Front Cell Dev Biol 2024; 12:1360079. [PMID: 38495619 PMCID: PMC10940389 DOI: 10.3389/fcell.2024.1360079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Mitochondria are key metabolic hubs involved in cellular energy production and biosynthesis. ATP is generated primarily by glucose and fatty acid oxidation through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in the mitochondria. During OXPHOS there is also production of reactive oxygen species (ROS), which are involved in the regulation of cellular function. Mitochondria are also central in the regulating cell survival and death, particularly in the intrinsic apoptosis pathway. Severe asthma is a heterogeneous disease driven by various immune mechanisms. Severe eosinophilic asthma entails a type 2 inflammatory response and peripheral and lung eosinophilia, associated with severe airflow obstruction, frequent exacerbations and poor response to treatment. Mitochondrial dysfunction and altered metabolism have been observed in airway epithelial and smooth muscle cells from patients with asthma. However, the role of mitochondria in the development of eosinophilia and eosinophil-mediated inflammation in severe asthma is unknown. In this review, we discuss the currently limited literature on the role of mitochondria in eosinophil function and how it is regulated by asthma-relevant cytokines, including interleukin (IL)-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF), as well as by corticosteroid drugs. Moreover, we summarise the evidence on the role of mitochondria in the regulation of eosinophils apoptosis and eosinophil extracellular trap formation. Finally, we discuss the possible role of altered mitochondrial function in eosinophil dysfunction in severe asthma and suggest possible research avenues in order to better understand their role in disease pathogenesis, and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Janice Koranteng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | | | - Pankaj Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton & Harefield NHS Trust, London, United Kingdom
| |
Collapse
|
5
|
Yuan F, Yang Y, Liu L, Zhou P, Zhu Y, Chai Y, Chen K, Tang W, Huang Q, Zhang C. Research progress on the mechanism of astragaloside IV in the treatment of asthma. Heliyon 2023; 9:e22149. [PMID: 38045181 PMCID: PMC10692808 DOI: 10.1016/j.heliyon.2023.e22149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Asthma is a common chronic respiratory disease, and its treatment is a core problem and challenge in clinical practice. Glucocorticoids (GCs) are the first-line therapy for the treatment of asthma. Local and systemic adverse reactions caused by GCs create obstacles to the treatment of asthma. Therefore, the research target is to find a new, safe, and effective therapeutic medicine at present. Natural products are an important source for treating asthma with low cost and low toxicity. Astragaloside IV (AS-IV) is an active ingredient of traditional Chinese medicine Astragalus mongholicus Bunge. Previous studies have indicated that AS-IV plays a therapeutic role in the treatment of asthma by inhibiting airway inflammation and remodeling the airway, and by regulating immunity and neuroendocrine function (Fig. 1) . It has a variety of biological characteristics such as multi-target intervention, high safety, and good curative effect. This article reviews the specific mechanism of AS-IV for the treatment of asthma to provide references for subsequent research.
Collapse
Affiliation(s)
- Fanyi Yuan
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liu
- Department of Pharmacy, Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Pengcheng Zhou
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keling Chen
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Tang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Yan B, Ren Y, Liu C, Shu L, Wang C, Zhang L. Cystatin SN in type 2 inflammatory airway diseases. J Allergy Clin Immunol 2023; 151:1191-1203.e3. [PMID: 36958985 DOI: 10.1016/j.jaci.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
Cystatin SN, encoded by CST1, belongs to the type 2 (T2) cystatin protein superfamily. In the past decade, several publications have highlighted the association between cystatin SN and inflammatory airway diseases including chronic rhinosinusitis, rhinitis, asthma, chronic obstructive pulmonary disease, and chronic hypersensitivity pneumonitis. It is, therefore, crucial to understand the role of cystatin SN in the wider context of T2 inflammatory diseases. Here, we review the expression of cystatin SN in airway-related diseases with different endotypes. We also emphasize the physiological and pathological roles of cystatin SN. Physiologically, cystatin SN protects host tissues from destructive proteolysis by cysteine proteases present in the external environment or produced via internal dysregulated expression. Pathologically, the secretion of cystatin SN from airway epithelial cells initiates and amplifies T2 immunity and subsequently leads to disease. We further discuss the development of cystatin SN as a T2 immunity marker that can be monitored noninvasively and assist in airway disease management. The discovery, biology, and inhibition capability are also introduced to better understand the role of cystatin SN in airway diseases.
Collapse
Affiliation(s)
- Bing Yan
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yimin Ren
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Linping Shu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Qian L, Mehrabi Nasab E, Athari SM, Athari SS. Mitochondria signaling pathways in allergic asthma. J Investig Med 2022; 70:863-882. [PMID: 35168999 PMCID: PMC9016245 DOI: 10.1136/jim-2021-002098] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria, as the powerhouse organelle of cells, are greatly involved in regulating cell signaling pathways, including those related to the innate and acquired immune systems, cellular differentiation, growth, death, apoptosis, and autophagy as well as hypoxic stress responses in various diseases. Asthma is a chronic complicated airway disease characterized by airway hyperresponsiveness, eosinophilic inflammation, mucus hypersecretion, and remodeling of airway. The asthma mortality and morbidity rates have increased worldwide, so understanding the molecular mechanisms underlying asthma progression is necessary for new anti-asthma drug development. The lung is an oxygen-rich organ, and mitochondria, by sensing and processing O2, contribute to the generation of ROS and activation of pro-inflammatory signaling pathways. Asthma pathophysiology has been tightly associated with mitochondrial dysfunction leading to reduced ATP synthase activity, increased oxidative stress, apoptosis induction, and abnormal calcium homeostasis. Defects of the mitochondrial play an essential role in the pro-remodeling mechanisms of lung fibrosis and airway cells' apoptosis. Identification of mitochondrial therapeutic targets can help repair mitochondrial biogenesis and dysfunction and reverse related pathological changes and lung structural remodeling in asthma. Therefore, we here overviewed the relationship between mitochondrial signaling pathways and asthma pathogenic mechanisms.
Collapse
Affiliation(s)
- Ling Qian
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai, China
| | - Entezar Mehrabi Nasab
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | | | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| |
Collapse
|
8
|
Grisaru-Tal S, Dulberg S, Beck L, Zhang C, Itan M, Hediyeh-Zadeh S, Caldwell J, Rozenberg P, Dolitzky A, Avlas S, Hazut I, Gordon Y, Shani O, Tsuriel S, Gerlic M, Erez N, Jacquelot N, Belz GT, Rothenberg ME, Davis MJ, Yu H, Geiger T, Madi A, Munitz A. Metastasis-Entrained Eosinophils Enhance Lymphocyte-Mediated Antitumor Immunity. Cancer Res 2021; 81:5555-5571. [PMID: 34429328 DOI: 10.1158/0008-5472.can-21-0839] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
The recognition of the immune system as a key component of the tumor microenvironment (TME) led to promising therapeutics. Because such therapies benefit only subsets of patients, understanding the activities of immune cells in the TME is required. Eosinophils are an integral part of the TME especially in mucosal tumors. Nonetheless, their role in the TME and the environmental cues that direct their activities are largely unknown. We report that breast cancer lung metastases are characterized by resident and recruited eosinophils. Eosinophil recruitment to the metastatic sites in the lung was regulated by G protein-coupled receptor signaling but independent of CCR3. Functionally, eosinophils promoted lymphocyte-mediated antitumor immunity. Transcriptome and proteomic analyses identified the TME rather than intrinsic differences between eosinophil subsets as a key instructing factor directing antitumorigenic eosinophil activities. Specifically, TNFα/IFNγ-activated eosinophils facilitated CD4+ and CD8+ T-cell infiltration and promoted antitumor immunity. Collectively, we identify a mechanism by which the TME trains eosinophils to adopt antitumorigenic properties, which may lead to the development of eosinophil-targeted therapeutics. SIGNIFICANCE: These findings demonstrate antitumor activities of eosinophils in the metastatic tumor microenvironment, suggesting that harnessing eosinophil activity may be a viable clinical strategy in patients with cancer.
Collapse
Affiliation(s)
- Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Dulberg
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lir Beck
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chunyan Zhang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Soroor Hediyeh-Zadeh
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Julie Caldwell
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Perri Rozenberg
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishay Dolitzky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Avlas
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazut
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaara Gordon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ophir Shani
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomo Tsuriel
- Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicolas Jacquelot
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle T Belz
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia.,The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Hua Yu
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Odinius TO, Buschhorn L, Wagner C, Hauch RT, Dill V, Dechant M, Buck MC, Shoumariyeh K, Moog P, Schwaab J, Reiter A, Brockow K, Götze K, Bassermann F, Höckendorf U, Branca C, Jost PJ, Jilg S. Comprehensive characterization of central BCL-2 family members in aberrant eosinophils and their impact on therapeutic strategies. J Cancer Res Clin Oncol 2021; 148:331-340. [PMID: 34654952 PMCID: PMC8800915 DOI: 10.1007/s00432-021-03827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
Purpose Hypereosinophilia represents a heterogenous group of severe medical conditions characterized by elevated numbers of eosinophil granulocytes in peripheral blood, bone marrow or tissue. Treatment options for hypereosinophilia remain limited despite recent approaches including IL-5-targeted monoclonal antibodies and tyrosine kinase inhibitors. Methods To understand aberrant survival patterns and options for pharmacologic intervention, we characterized BCL-2-regulated apoptosis signaling by testing for BCL-2 family expression levels as well as pharmacologic inhibition using primary patient samples from diverse subtypes of hypereosinophilia (hypereosinophilic syndrome n = 18, chronic eosinophilic leukemia not otherwise specified n = 9, lymphocyte-variant hypereosinophilia n = 2, myeloproliferative neoplasm with eosinophilia n = 2, eosinophilic granulomatosis with polyangiitis n = 11, reactive eosinophilia n = 3). Results Contrary to published literature, we found no difference in the levels of the lncRNA Morrbid and its target BIM. Yet, we identified a near complete loss of expression of pro-apoptotic PUMA as well as a reduction in anti-apoptotic BCL-2. Accordingly, BCL-2 inhibition using venetoclax failed to achieve cell death induction in eosinophil granulocytes and bone marrow mononuclear cells from patients with hypereosinophilia. In contrast, MCL1 inhibition using S63845 specifically decreased the viability of bone marrow progenitor cells in patients with hypereosinophilia. In patients diagnosed with Chronic Eosinophilic Leukemia (CEL-NOS) or Myeloid and Lymphatic Neoplasia with hypereosinophilia (MLN-Eo) repression of survival was specifically powerful. Conclusion Our study shows that MCL1 inhibition might be a promising therapeutic option for hypereosinophilia patients specifically for CEL-NOS and MLN-Eo. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03827-9.
Collapse
Affiliation(s)
- Timo O Odinius
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Lars Buschhorn
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Celina Wagner
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Richard T Hauch
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Veronika Dill
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Marta Dechant
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Michele C Buck
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg Im Breisgau, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg im Breisgau, Germany
| | - Philipp Moog
- Department of Nephrology, Clinic and Policlinic for Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Knut Brockow
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katharina Götze
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Ulrike Höckendorf
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Caterina Branca
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp J Jost
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany.
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz, Austria.
| | - Stefanie Jilg
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
10
|
Gajewska KA, Lescesen H, Ramialison M, Wagstaff KM, Jans DA. Nuclear transporter Importin-13 plays a key role in the oxidative stress transcriptional response. Nat Commun 2021; 12:5904. [PMID: 34625540 PMCID: PMC8501021 DOI: 10.1038/s41467-021-26125-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The importin superfamily member Importin-13 is a bidirectional nuclear transporter. To delineate its functional roles, we performed transcriptomic analysis on wild-type and Importin-13-knockout mouse embryonic stem cells, revealing enrichment of differentially expressed genes involved in stress responses and apoptosis regulation. De novo promoter motif analysis on 277 Importin-13-dependent genes responsive to oxidative stress revealed an enrichment of motifs aligned to consensus sites for the transcription factors specificity protein 1, SP1, or Kruppel like factor 4, KLF4. Analysis of embryonic stem cells subjected to oxidative stress revealed that Importin-13-knockout cells were more resistant, with knockdown of SP1 or KLF4 helping protect wild-type embryonic stem cells against stress-induced death. Importin-13 was revealed to bind to SP1 and KLF4 in a cellular context, with a key role in oxidative stress-dependent nuclear export of both transcription factors. The results are integral to understanding stress biology, highlighting the importance of Importin-13 in the stress response.
Collapse
Affiliation(s)
- K. A. Gajewska
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - H. Lescesen
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - M. Ramialison
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute and Systems Biology Institute, Monash University, Clayton, VIC Australia
| | - K. M. Wagstaff
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - D. A. Jans
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| |
Collapse
|
11
|
Gehring M, Wieczorek D, Kapp A, Wedi B. Potent Anti-Inflammatory Effects of Tetracyclines on Human Eosinophils. FRONTIERS IN ALLERGY 2021; 2:754501. [PMID: 35386966 PMCID: PMC8974775 DOI: 10.3389/falgy.2021.754501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Eosinophils are potent pro-inflammatory cells. Not only in allergic diseases but also in other diseases there is a need for treatment strategies to induce resolution of eosinophil-mediated inflammation. During the last years beneficial non-antibiotic activities of tetracyclines (TCNs) have been shown in different diseases in which eosinophils play a role, for example, asthma and bullous pemphigoid. The working mechanism of these effects remains to be clarified. Aim of the present study was to investigate the effects of TCNs on eosinophils. Flow cytometry analysis of apoptosis, mitochondrial membrane potential, activation of caspases, intracellular H2O2 and calcium, surface expression of eosinophil activation markers was performed in highly purified peripheral blood eosinophils of non-atopic donors. Tetracycline hydrochloride, minocycline and doxycycline significantly induced eosinophil apoptosis. All TCNs were able to significantly overcome the strong survival enhancing effects of pro-eosinophilic cytokines and staphylococcus aureus enterotoxins. Tetracycline hydrochloride induced eosinophil apoptosis was accompanied by intracellular production of hydrogen peroxide, loss of mitochondrial membrane potential and activation of caspases. Moreover, tetracycline hydrochloride significantly down regulated eosinophil surface expression of CD9 and CD45, and of the activation markers CD11b and CD69, but not of CD54, CD63, or CD95. Our data, propably for the first time, point to a potent anti-inflammatory role of TCNs on eosinophils.
Collapse
|
12
|
Gough ME, Graviss EA, Chen TA, Obasi EM, May EE. Compounding effect of vitamin D 3 diet, supplementation, and alcohol exposure on macrophage response to mycobacterium infection. Tuberculosis (Edinb) 2019; 116S:S42-S58. [PMID: 31126718 DOI: 10.1016/j.tube.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
Vitamin D3 is known to be a key component in the defense against Mycobacterium tuberculosis (Mtb) infection through the regulation of cytokine and effector molecules. Conversely, alcohol exposure has been recognized as an immune dysregulator. Macrophages were extracted from D3 deficient and sufficient diet mice and supplemented with D3 or exposed to ethanol during ex vivo infection using M. bovis BCG, as a surrogate for Mtb. Results of our study indicate that while exogenous supplementation or alcohol exposure did alter immune response, in vivo diet was the greatest determinant of cytokine and effector molecule production. Alcohol exposure was found to profoundly dysregulate primary murine macrophages, with ethanol-exposed cells generally characterized as hyper- or hyporesponsive. Exogenous D3 supplementation had a normative effect for diet deficient host, however supplementation was not sufficient to compensate for the effects of diet deficiency. Vitamin D3 sufficient diet resulted in reduced cell cytotoxicity for the majority of time points. Results provide insight into the ramifications of both the individual and combined health risks of D3 deficiency or alcohol exposure. Given the clinical relevance of D3 deficiency and alcohol use comorbidities, outcomes of this study have implications in therapeutic approaches for the treatment of tuberculosis disease.
Collapse
Affiliation(s)
- Maya E Gough
- Biomedical Engineering Department, University of Houston, USA
| | - Edward A Graviss
- Pathology & Genomic Medicine, Houston Methodist Research Institute, USA
| | - Tzu-An Chen
- HEALTH Research Institute, University of Houston, USA
| | - Ezemenari M Obasi
- HEALTH Research Institute, University of Houston, USA; Psychological, Health, & Learning Sciences Department, University of Houston, USA
| | - Elebeoba E May
- Biomedical Engineering Department, University of Houston, USA; HEALTH Research Institute, University of Houston, USA.
| |
Collapse
|
13
|
Dy ABC, Tanyaratsrisakul S, Voelker DR, Ledford JG. The Emerging Roles of Surfactant Protein-A in Asthma. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2018; 9:553. [PMID: 30123671 PMCID: PMC6092951 DOI: 10.4172/2155-9899.1000553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Asthma remains one of the most common respiratory diseases in both children and adults affecting up to 10% of the US population. Asthma is characterized by persistent symptoms, airway inflammation, airflow limitation and frequent exacerbations. Eosinophils are a key immune cell present in a large majority of asthmatics and their presence and dysregulation are clinically associated with more severe asthma. Surfactant protein A (SP-A) provides a first-line of defense in pulmonary innate immunity by virtue of its role in pathogen opsonization. SP-A is known to specifically bind to Mycoplasma pneumoniae (Mp), a pathogen associated with asthma exacerbations, and functions to attenuate Mp pathogenicity and abrogate lung inflammation. In addition, SP-A has been shown to inhibit Mp-induced eosinophil peroxidase (EPO) release, a toxic product that can compromise the integrity of the delicate airway epithelia. We have determined that genetic variation in SP-A2 at position 223 that results in a glutamine (Q) to a lysine (K) substitution alters the ability of SP-A to inhibit EPO release and may offer a mechanistic explanation as to why some SP-A extracted from subjects with asthma is unable to carry out normal immune regulatory functions.
Collapse
Affiliation(s)
| | | | | | - Julie G Ledford
- Department of Medicine, University of Arizona, Tucson, USA
- Asthma and Airways Disease Research Center, Tucson, USA
| |
Collapse
|
14
|
Xiang M, Wu L, Su H, Han B, Liu H, Xiao X, Yin X, Fan Y, Zhang L, Huang Y, Zhao L, Yang G. Biyuanling suppresses the toluene-2, 4-diisocyanate induced allergic rhinitis in guinea pigs. Oncotarget 2017; 9:12620-12629. [PMID: 29560095 PMCID: PMC5849159 DOI: 10.18632/oncotarget.23039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Allergic rhinitis (AR), one of the common diseases of the upper respiratory system, is associated with high risk of nasopharyngeal carcinoma. Biyuanling Granules (BLG), a formulated preparation of traditional Chinese medicine, has been used in China for treatment of AR for more than a decade; however, its exact action against allergic rhinitis and the mechanism involved remain unclear. In this study, we studied the effects of BLG on allergic rhinitis induced by toluene-2, 4- diisocyanate (TDI) in guinea pigs. The anti-AR effects of BLG were evaluated by behavior observations, histological examinations of the nasal tissues stained with hematoxylin and eosin staining (H&E), immunohistochemical analyses of pulmonary surfactant associated protein (SP), Bcl-2 Associated X Protei (Bax), tumor necrosis factor (TNF-α) and vascular cell adhesion molecule-1 (VCAM-1) in the nasal mucosa, and serum tests of interleukin-4 (IL-4) and human SARS-specific immunoglobulin (SIgE) levels. We observed that in the AR-positive animals treated with BLG, the symptom scores were significantly higher (P < 0.01), the nasal mucosa edemas and inflammatory infiltrates were significantly alleviated (P < 0.01) and the serum IL-4 and SIgE levels were significantly decreased (P < 0.05) as compared with the control group. Immunohistochemical examinations of the nasal mucosa demonstrated that the expressions of TNF-α, SP and VCAM-1 were significantly decreased (P < 0.01), whereas Bax expression was increased in the BLG treatment groups (P < 0.05). These results indicate that BLG can effectively suppress the TDI-induced AR, and that the protective effects of BLG were associated with reductions of TNF-α, SP and VCAM-1, and an elevation of Bax, suggesting that BLG exerts its AR-suppressive effects through inhibition of inflammatory response.
Collapse
Affiliation(s)
- Meixian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074, Wuhan, PR China
| | - Li Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074, Wuhan, PR China
| | - Hanwen Su
- Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
| | - Bing Han
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Huanxiang Liu
- Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074, Wuhan, PR China
| | - Xian Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074, Wuhan, PR China
| | - Ya Fan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074, Wuhan, PR China
| | - Lang Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074, Wuhan, PR China
| | - Yuying Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074, Wuhan, PR China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong university of Science and Technology, Wuhan, China, 430022, PR China
| | - Guangzhong Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074, Wuhan, PR China
| |
Collapse
|
15
|
Weissler JC. Eosinophilic Lung Disease. Am J Med Sci 2017; 354:339-349. [PMID: 29078837 DOI: 10.1016/j.amjms.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/22/2017] [Accepted: 03/13/2017] [Indexed: 12/28/2022]
Abstract
Eosinophils are involved in the pathogenesis of a number of lung diseases. Recent advances in eosinophil biology have now produced clinically applicable therapies that seek to counter eosinophilia in blood and lungs. This article reviews the basic biology of eosinophils and their role in mediating T-helper 2 cell responses. The current status of anticytokine therapy for eosinophilic lung disease is discussed. A clinical approach to eosinophilic lung disease based on symptoms and radiography is generated. The clinical significance of persistent eosinophilia in lung transplant patients and patients with asthma will receive special emphasis.
Collapse
Affiliation(s)
- Jonathan C Weissler
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
16
|
Shen ZJ, Malter JS. Determinants of eosinophil survival and apoptotic cell death. Apoptosis 2015; 20:224-34. [PMID: 25563855 DOI: 10.1007/s10495-014-1072-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophils (Eos) are potent inflammatory cells and abundantly present in the sputum and lung of patients with allergic asthma. During both transit to and residence in the lung, Eos contact prosurvival cytokines, particularly IL-3, IL-5 and GM-CSF, that attenuate cell death. Cytokine signaling modulates the expression and function of a number of intracellular pro- and anti-apoptotic molecules. Both intrinsic mitochondrial and extrinsic receptor-mediated pathways are affected. This article discusses the fundamental role of the extracellular and intracellular molecules that initiate and control survival decisions by human Eos and highlights the role of the cis-trans isomerase, Pin1 in controlling these processes.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9072, USA,
| | | |
Collapse
|
17
|
Abstract
Lung disease associated with marked peripheral blood eosinophilia is unusual and nearly always clinically significant. Once recognized, it is generally easy to manage, albeit with long-term systemic corticosteroids. A failure to respond to oral steroids in the context of good compliance suggests a malignant cause for the eosinophilia. An important development is the introduction of antieosinophil therapies, particularly those directed against the interleukin 5 pathway, which is hoped to provide benefit in the full spectrum of eosinophilic lung disease as well as asthma, reducing the burden of side effects and resultant comorbidities.
Collapse
Affiliation(s)
- Kerry Woolnough
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Groby Road, Leicester LE3 9QP, UK; Department of Respiratory Medicine and Allergy, University Hospitals of Leicester NHS Trust, Groby Road, Leicester LE3 9QP, UK
| | - Andrew J Wardlaw
- Department of Infection Immunity and Inflammation, Institute for Lung Health, University of Leicester, Groby Road, Leicester LE3 9QP, UK; Department of Respiratory Medicine and Allergy, University Hospitals of Leicester NHS Trust, Groby Road, Leicester LE3 9QP, UK.
| |
Collapse
|
18
|
Gordy C, Liang J, Pua H, He YW. c-FLIP protects eosinophils from TNF-α-mediated cell death in vivo. PLoS One 2014; 9:e107724. [PMID: 25333625 PMCID: PMC4204828 DOI: 10.1371/journal.pone.0107724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/15/2014] [Indexed: 01/21/2023] Open
Abstract
Understanding the signals that regulate eosinophil survival and death is critical to developing new treatments for asthma, atopy, and gastrointestinal disease. Previous studies suggest that TNF-α stimulation protects eosinophils from apoptosis, and this TNF-α-mediated protection is mediated by the upregulation of an unknown protein by NF-κB. Here, we show for the first time that eosinophils express the caspase 8-inhibitory protein c-FLIP, and c-FLIP expression is upregulated upon TNF-α stimulation. Considering that c-FLIP expression is regulated by NF-κB, we hypothesized that c-FLIP might serve as the “molecular switch” that converts TNFRI activation to a pro-survival signal in eosinophils. Indeed, we found that one c-FLIP isoform, c-FLIPL, is required for mouse eosinophil survival in the presence of TNF-α both in vitro and in vivo. Importantly, our results suggest c-FLIP as a potential therapeutic target for the treatment of eosinophil-mediated disease.
Collapse
Affiliation(s)
- Claire Gordy
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - Jie Liang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Heather Pua
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
19
|
Tian BP, Zhou HB, Xia LX, Shen HH, Ying S. Balance of apoptotic cell death and survival in allergic diseases. Microbes Infect 2014; 16:811-21. [PMID: 25111826 DOI: 10.1016/j.micinf.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/28/2022]
Abstract
Allergic diseases result from over-reaction of the immune system in response to exogenous allergens, where inflammatory cells have constantly extended longevity and contribute to an on-going immune response in allergic tissues. Here, we review disequilibrium in the death and survival of epithelial cells and inflammatory cells in the pathological processes of asthma, atopic dermatitis, and other allergic diseases.
Collapse
Affiliation(s)
- Bao-Ping Tian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310058, China
| | - Hong-Bin Zhou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310058, China
| | - Li-Xia Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310058, China
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510120, China.
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310058, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
20
|
Expression and functional roles of G-protein-coupled estrogen receptor (GPER) in human eosinophils. Immunol Lett 2014; 160:72-78. [PMID: 24718279 DOI: 10.1016/j.imlet.2014.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/09/2014] [Accepted: 03/28/2014] [Indexed: 01/21/2023]
Abstract
Sexual dimorphism in asthma links the estrogen and allergic immune responses. The function of estrogen was classically believed to be mediated through its nuclear receptors, i.e., estrogen receptors (ERs). However, recent studies established the important roles of G-protein-coupled estrogen receptor (GPER/GPR30) as a novel membrane receptor for estrogen. To date, the role of GPER in allergic inflammation is poorly understood. The purpose of this study was to examine whether GPER might affect the functions of eosinophils, which play an important role in the pathogenesis of asthma. Here, we demonstrated that GPER was expressed in purified human peripheral blood eosinophils both at the mRNA and protein levels. Although GPER agonist G-1 did not induce eosinophil chemotaxis or chemokinesis, preincubation with G-1 enhanced eotaxin (CCL11)-directed eosinophil chemotaxis. G-1 inhibited eosinophil spontaneous apoptosis and caspase-3 activities. The anti-apoptotic effect was not affected by the cAMP-phospodiesterase inhibitor rolipram or phosphoinositide 3-kinase inhibitors. In contrast to resting eosinophils, G-1 induced apoptosis and increased caspase-3 activities when eosinophils were co-stimulated with IL-5. No effect of G-1 was observed on eosinophil degranulation in terms of release of eosinophil-derived neurotoxin (EDN). The current study indicates the functional capacities of GPER on human eosinophils and also provides the previously unrecognized mechanisms of interaction between estrogen and allergic inflammation.
Collapse
|
21
|
Mitochondria in the center of human eosinophil apoptosis and survival. Int J Mol Sci 2014; 15:3952-69. [PMID: 24603536 PMCID: PMC3975377 DOI: 10.3390/ijms15033952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022] Open
Abstract
Eosinophils are abundantly present in most phenotypes of asthma and they contribute to the maintenance and exacerbations of the disease. Regulators of eosinophil longevity play critical roles in determining whether eosinophils accumulate into the airways of asthmatics. Several cytokines enhance eosinophil survival promoting eosinophilic airway inflammation while for example glucocorticoids, the most important anti-inflammatory drugs used to treat asthma, promote the intrinsic pathway of eosinophil apoptosis and by this mechanism contribute to the resolution of eosinophilic airway inflammation. Mitochondria seem to play central roles in both intrinsic mitochondrion-centered and extrinsic receptor-mediated pathways of apoptosis in eosinophils. Mitochondria may also be important for survival signalling. In addition to glucocorticoids, another important agent that regulates human eosinophil longevity via mitochondrial route is nitric oxide, which is present in increased amounts in the airways of asthmatics. Nitric oxide seems to be able to trigger both survival and apoptosis in eosinophils. This review discusses the current evidence of the mechanisms of induced eosinophil apoptosis and survival focusing on the role of mitochondria and clinically relevant stimulants, such as glucocorticoids and nitric oxide.
Collapse
|
22
|
Ilmarinen P, Moilanen E, Kankaanranta H. Regulation of spontaneous eosinophil apoptosis-a neglected area of importance. J Cell Death 2014; 7:1-9. [PMID: 25278781 PMCID: PMC4167313 DOI: 10.4137/jcd.s13588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/12/2013] [Accepted: 01/05/2013] [Indexed: 12/30/2022] Open
Abstract
Asthma is characterized by the accumulation of eosinophils in the airways in most phenotypes. Eosinophils are inflammatory cells that require an external survival-prolonging stimulus such as granulocyte macrophage-colony-stimulating factor (GM-CSF), interleukin (IL)-5, or IL-3 for survival. In their absence, eosinophils are programmed to die by spontaneous apoptosis in a few days. Eosinophil apoptosis can be accelerated by Fas ligation or by pharmacological agents such as glucocorticoids. Evidence exists for the relevance of these survival-prolonging and pro-apoptotic agents in the regulation of eosinophilic inflammation in inflamed airways. Much less is known about the physiological significance and mechanisms of spontaneous eosinophil apoptosis even though it forms the basis of regulation of eosinophil longevity by pathophysiological factors and pharmacological agents. This review concentrates on discussing the mechanisms of spontaneous eosinophil apoptosis compared to those of glucocorticoid- and Fas-induced apoptosis. We aim to answer the question whether the external apoptotic stimuli only augment the ongoing pathway of spontaneous apoptosis or truly activate a specific pathway.
Collapse
Affiliation(s)
- Pinja Ilmarinen
- The Immunopharmacology Research Group, School of Medicine University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, School of Medicine University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Hannu Kankaanranta
- The Immunopharmacology Research Group, School of Medicine University of Tampere and Tampere University Hospital, Tampere, Finland. ; Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland and University of Tampere, Tampere, Finland
| |
Collapse
|
23
|
Abstract
Eosinophil apoptosis is considered critical for the resolution of eosinophilic inflammation in the airways of asthmatics. Apoptosis can be mediated by an extrinsic receptor-activated pathway or alternatively by an intrinsic pathway via distortion of mitochondrial function. Both of these pathways lead to activation of the caspase cascade resulting in degradation of cellular components. We describe here two methods to explore intracellular mechanisms mediating eosinophil apoptosis. Eosinophil staining by fluorescent probe JC-1 followed by flow cytometric analysis is a reliable method for determination of the state of mitochondrial membrane potential (∆Ψm). Lost ∆Ψm indicates distorted mitochondrial function and apoptosis. We also describe a method to explore the activation of effector caspase-6 by assessing degradation of its substrate lamin A/C by immunoblotting.
Collapse
Affiliation(s)
- Pinja Ilmarinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland,
| | | | | |
Collapse
|
24
|
Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacol Ther 2013; 139:189-212. [PMID: 23583354 DOI: 10.1016/j.pharmthera.2013.04.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/01/2013] [Indexed: 12/12/2022]
Abstract
Inflammation is a beneficial host reaction to tissue damage and has the essential primary purpose of restoring tissue homeostasis. Inflammation plays a major role in containing and resolving infection and may also occur under sterile conditions. The cardinal signs of inflammation dolor, calor, tumor and rubor are intrinsically associated with events including vasodilatation, edema and leukocyte trafficking into the site of inflammation. If uncontrolled or unresolved, inflammation itself can lead to further tissue damage and give rise to chronic inflammatory diseases and autoimmunity with eventual loss of organ function. It is now evident that the resolution of inflammation is an active continuous process that occurs during an acute inflammatory episode. Successful resolution requires activation of endogenous programs with switch from production of pro-inflammatory towards pro-resolving molecules, such as specific lipid mediators and annexin A1, and the non-phlogistic elimination of granulocytes by apoptosis with subsequent removal by surrounding macrophages. These processes ensure rapid restoration of tissue homeostasis. Here, we review recent advances in the understanding of resolution of inflammation, highlighting the pharmacological strategies that may interfere with the molecular pathways which control leukocyte survival and clearance. Such strategies have proved beneficial in several pre-clinical models of inflammatory diseases, suggesting that pharmacological modulation of the resolution process may be useful for the treatment of chronic inflammatory diseases in humans.
Collapse
|
25
|
Ramentol-Sintas M, Martínez-Valle F, Solans-Laqué R. Churg-Strauss Syndrome: an evolving paradigm. Autoimmun Rev 2012; 12:235-40. [PMID: 22796280 DOI: 10.1016/j.autrev.2012.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
The Churg-Strauss Syndrome is an ANCA-associated vasculitis, an inflammatory multisystem disease with preference to the respiratory tract. Peripheral and tissue eosinophilia are the pathological hallmarks of this condition. The etiopathogenesis is unknown but some cytokines appear to play a central role and could be targets for new therapies.
Collapse
Affiliation(s)
- Marc Ramentol-Sintas
- Research Unit in Systemic Autoimmune Diseases, Vall D'hebron Research Institute, Hospital Vall D'hebron, Barcelona, Spain
| | | | | |
Collapse
|
26
|
Chu X, Ci X, Wei M, Yang X, Cao Q, Guan M, Li H, Deng Y, Feng H, Deng X. Licochalcone a inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3947-54. [PMID: 22400806 DOI: 10.1021/jf2051587] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Licochalcone A (Lico A), a flavonoid found in licorice root (Glycyrrhiza glabra), is known for its antimicrobial activity and its reported ability to inhibit cancer cell proliferation. In the present study, we found that Lico A exerted potent anti-inflammatory effects in in vitro and in vivo models induced by lipopolysaccharide (LPS). The concentrations of TNF-α, interleukin (IL)-6, and IL-1β in the culture supernatants of RAW 264.7 cells were determined at different time points following LPS administration. LPS (0.5 mg/kg) was instilled intranasally (i.n.) in phosphate-buffered saline to induce acute lung injury, and 24 h after LPS was given, bronchoalveolar lavage fluid was obtained to measure pro-inflammatory mediator and total cell counts. The phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) p65 protein was analyzed by Western blotting. Our results showed that Lico A significantly reduced the amount of inflammatory cells, the lung wet-to-dry weight (W/D) ratio, protein leakage, and myeloperoxidase activity and enhances oxidase dimutase activity in mice with LPS-induced acute lung injury (ALI). Enzyme-linked immunosorbent assay results indicated that Lico A can significantly down-regulate TNF-α, IL-6, and IL-1β levels in vitro and in vivo, and treatment with Lico A significantly attenuated alveolar wall thickening, alveolar hemorrhage, interstitial edema, and inflammatory cells infiltration in mice with ALI. In addition, we further demonstrated that Lico A exerts an anti-inflammation effect in an in vivo model of acute lung injury through suppression of NF-κB activation and p38/ERK MAPK signaling in a dose-dependent manner.
Collapse
Affiliation(s)
- Xiao Chu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chu X, Ci X, He J, Wei M, Yang X, Cao Q, Li H, Guan S, Deng Y, Pang D, Deng X. A novel anti-inflammatory role for ginkgolide B in asthma via inhibition of the ERK/MAPK signaling pathway. Molecules 2011; 16:7634-48. [PMID: 21900866 PMCID: PMC6264276 DOI: 10.3390/molecules16097634] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 12/26/2022] Open
Abstract
Ginkgolide B is an anti-inflammatory extract of Ginkgo biloba and has been used therapeutically. It is a known inhibitor of platelet activating factor (PAF), which is important in the pathogenesis of asthma. Here, a non-infectious mouse model of asthma is used to evaluate the anti-inflammatory capacity of ginkgolide B (GKB) and characterize the interaction of GKB with the mitogen activated protein kinase (MAPK) pathway. BALB/c mice that were sensitized and challenged to ovalbumin (OVA) were treated with GKB (40 mg/kg) one hour before they were challenged with OVA. Our study demonstrated that GKB may effectively inhibit the increase of T-helper 2 cytokines, such as interleukin (IL)-5 and IL-13 in bronchoalveolar lavage fluid (BALF). Furthermore, the eosinophil count in BALF significantly decreased after treatment of GKB when compared with the OVA-challenged group. Histological studies demonstrated that GKB substantially inhibited OVA-induced eosinophilia in lung tissue and mucus hyper-secretion by goblet cells in the airway. These results suggest that ginkgolide B may be useful for the treatment of asthma and its efficacy is related to suppression of extracellular regulating kinase/MAPK pathway.
Collapse
Affiliation(s)
- Xiao Chu
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinxin Ci
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530005, Guangxi, China
| | - Miaomiao Wei
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaofeng Yang
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qingjun Cao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Li
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuang Guan
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanhong Deng
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daxin Pang
- Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
- Author to whom correspondence should be addressed; (D.X.P.); (X.M.D.); Tel.: +86-431-87836161; Fax: +86-431-87836160
| | - Xuming Deng
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
- Author to whom correspondence should be addressed; (D.X.P.); (X.M.D.); Tel.: +86-431-87836161; Fax: +86-431-87836160
| |
Collapse
|
28
|
Park KS, Sedlock DA, Navalta JW, Lee MG, Kim SH. Leukocyte apoptosis and pro-/anti-apoptotic proteins following downhill running. Eur J Appl Physiol 2011; 111:2349-57. [DOI: 10.1007/s00421-011-1907-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
29
|
Xie Q, Shen ZJ, Oh J, Chu H, Malter JS. Transforming Growth Factor- β1 Antagonizes Interleukin-5 Pro-Survival Signaling by Activating Calpain-1 in Primary Human Eosinophils. ACTA ACUST UNITED AC 2011; Suppl 1. [PMID: 24244891 DOI: 10.4172/2155-9899.s1-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Eosinophils rapidly undergo apoptosis unless exposed to prosurvival cytokines such as interleukin 5 (IL-5) or granulocyte-macrophage colony stimulating factor (GM-CSF). In vivo, eosinophils are exposed to TGF-β 1 which can induce apoptosis suggesting it may function to counteract the effects of IL-5 or GM-CSF and limit, in vivo tissue eosinophilia. OBJECTIVE The objective of this study was to investigate the proapoptotic effects of TGF-β alone and in combination with IL-5 on eosinophils. METHODS Peripheral blood eosinophil (PBEos) viability was assessed using flow cytometry after exposure to TGF-β1 and IL-5. Calpain-1 activation was determined in cell extracts by western blot analysis of endogenous substrates and with a fluorogenic α-spectrin substrate. Molecular interactions between calpain1 and calpastatin were assessed by immunoprecipitation and western blotting. RESULTS Physiologic concentrations of TGF-β1 significantly antagonized the prosurvival effects of IL-5. TGF-β1-induced apoptosis was suppressed by inhibitors of calpain, or its downstream target, caspase 3. TGF-β1 signaling through Smad3 was unaffected by IL-5 and was required for the pro-apoptotic effects of TGF-β1. However, IL-5 induced Akt phosphorylation was inhibited by TGF-β1 and was associated with accelerated calpain cleavage and eosinophil death. CONCLUSION TGF-β1 induces calpain-1 activation through antagonism of Akt which induces caspase activation and eosinophil apoptosis.
Collapse
Affiliation(s)
- Qifa Xie
- Department of Pathology, UT Southwestern Medical Center, Dallas, USA
| | | | | | | | | |
Collapse
|
30
|
Kim JM, Kim JS, Lee JY, Sim YS, Kim YJ, Oh YK, Yoon HJ, Kang JS, Youn J, Kim N, Jung HC, Kim S. Dual effects of Helicobacter pylori vacuolating cytotoxin on human eosinophil apoptosis in early and late periods of stimulation. Eur J Immunol 2010; 40:1651-62. [PMID: 20333629 DOI: 10.1002/eji.200939882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although Helicobacter pylori infections of the gastric mucosa are characterized by the infiltration of inflammatory cells such as eosinophils, the responses of eosinophils to H. pylori vacuolating cytotoxin (VacA) have not been fully elucidated. This study investigates the role of VacA in the apoptosis of human eosinophils. We treated human eosinophils with purified H. pylori VacA and observed that induction of apoptosis is a relatively late event. Expression of cellular inhibitor of apoptosis protein (c-IAP)-2 was upregulated during the early period of VacA stimulation, and transfection with c-IAP2 siRNA augmented apoptotic cell death. VacA caused the translocation of cytoplasmic Bax to the mitochondria and increased cytochrome c release from mitochondria in eosinophils. Transfection of an EoL-1 eosinophil cell line with Bax siRNA decreased the release of cytochrome c and DNA fragmentation. Furthermore, apoptosis facilitated by Bax and cytochrome c was primarily regulated by p38 MAPK in VacA-treated eosinophils. These results suggest that the exposure of human eosinophils to H. pylori VacA induces the early upregulation of c-IAP2 and a relatively late apoptotic response, with the apoptosis progressing through a sequential pathway that includes p38 MAPK activation, Bax translocation, and cytochrome c release.
Collapse
Affiliation(s)
- Jung Mogg Kim
- Department of Microbiology, Hanyang University College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kulkarni NS, Hollins F, Sutcliffe A, Saunders R, Shah S, Siddiqui S, Gupta S, Haldar P, Green R, Pavord I, Wardlaw A, Brightling CE. Eosinophil protein in airway macrophages: a novel biomarker of eosinophilic inflammation in patients with asthma. J Allergy Clin Immunol 2010; 126:61-9.e3. [PMID: 20639010 PMCID: PMC3992372 DOI: 10.1016/j.jaci.2010.03.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Noneosinophilic asthma is common across asthma severities. However, in patients with moderate-to-severe disease, the absence of sputum eosinophilia cannot distinguish between asthmatic subjects with eosinophilic inflammation controlled by corticosteroids versus those in whom eosinophilic inflammation is not a component of the disease. OBJECTIVES We sought to develop a method to quantify eosinophil proteins in airway macrophages as a novel biomarker of eosinophilic airway inflammation. METHODS Eosinophil proteins in airway macrophages were assessed by means of flow cytometry, immunofluorescence, and cytoplasmic hue change after ingestion of apoptotic eosinophils. Airway macrophage median percentage of red-hued area in stained sputum cytospin preparations was assessed by means of image analysis from (1) subjects with mild-to-severe asthma, subjects with nonasthmatic eosinophilic bronchitis, and healthy control subjects; (2) subjects with eosinophilic severe asthma after treatment with prednisolone; and (3) subject with noneosinophilic asthma before corticosteroid withdrawal. RESULTS Eosinophil proteins were detected in airway macrophages, and cytoplasmic red hue increased after ingestion of apoptotic eosinophils. Airway macrophage percentage redhued area was increased in subjects with moderate-to-severe asthma compared with that seen in subjects with mild asthma and healthy control subjects, was similar in those with or without a sputum eosinophilia, and was increased after corticosteroid therapy. In asthmatic subjects without sputum eosinophilia, the airway macrophage percentage red-hued area was increased in subjects who did versus those who did not have sputum eosinophilia after corticosteroid withdrawal. CONCLUSIONS Eosinophil proteins can be reliably measured in airway macrophages. In combination with sputum eosinophilia, the macrophage eosinophil protein content might further define the asthma phenotype and provide an additional tool to direct therapy.
Collapse
Affiliation(s)
- Neeta S. Kulkarni
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
- Children’s Community Health Service, Leicester City NHS Primary Care Trust
| | - Fay Hollins
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Amanda Sutcliffe
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Ruth Saunders
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Sachil Shah
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Salman Siddiqui
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Sumit Gupta
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Pranab Haldar
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Ruth Green
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Ian Pavord
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Andrew Wardlaw
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Christopher E. Brightling
- Institute for Lung Health, Glenfield Hospital, Leicester, and the Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| |
Collapse
|
32
|
Nitric oxide induces apoptosis in GM-CSF-treated eosinophils via caspase-6-dependent lamin and DNA fragmentation. Pulm Pharmacol Ther 2010; 23:365-71. [PMID: 20380887 DOI: 10.1016/j.pupt.2010.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/19/2010] [Accepted: 04/01/2010] [Indexed: 11/21/2022]
Abstract
Asthma is characterized by accumulation of eosinophils in the lungs and delayed apoptosis may be one mechanism leading to eosinophilia. Nitric oxide (NO), present in inflamed lungs, has been shown to possess both anti- and proeosinophilic properties. We previously showed that NO induces apoptosis in the presence of survival prolonging cytokine IL-5 in human eosinophils. In the present study, we examined the intracellular mechanisms of NO-induced apoptosis in granulocyte macrophage-colony stimulating factor (GM-CSF)-treated eosinophils concentrating on the role of caspases and calpains. Eosinophils were isolated from human blood and apoptosis was determined by relative DNA fragmentation assay, morphological analysis and/or Annexin-V FITC assay. We showed that NO-donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) induced apoptosis in GM-CSF-treated eosinophils. SNAP-induced DNA fragmentation was totally prevented by an inhibitor of caspase-6 (Z-VEID-FMK). Decreased levels of caspase-6 proenzyme and increased amounts of cleaved lamin A/C in SNAP-treated cells indicated activation of caspase-6. Furthermore, SNAP-induced lamin A/C and B fragmentation was totally abolished by an inhibitor of caspase-6. According to our results, caspase-6 mediates lamin and DNA fragmentation also in spontaneously dying eosinophils. Inhibitor of calpains prevented most of DNA fragmentation related to spontaneous apoptosis but had no effect in eosinophils undergoing NO-induced apoptosis. In the present study we showed that caspase-6 is essential for the executive phase involving lamin and DNA fragmentation in both NO-induced and spontaneous eosinophil apoptosis. However, differences in the involvement of calpains suggest that the intracellular signalling in NO-induced apoptosis has specific features at the level of proteases. This study demonstrates new mechanisms for NO-induced and spontaneous apoptosis in human eosinophils.
Collapse
|
33
|
Park YM, Bochner BS. Eosinophil survival and apoptosis in health and disease. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2010; 2:87-101. [PMID: 20358022 PMCID: PMC2846745 DOI: 10.4168/aair.2010.2.2.87] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 01/06/2023]
Abstract
Eosinophilia is common feature of many disorders, including allergic diseases. There are many factors that influence the production, migration, survival and death of the eosinophil. Apoptosis is the most common form of physiological cell death and a necessary process to maintain but limit cell numbers in humans and other species. It has been directly demonstrated that eosinophil apoptosis is delayed in allergic inflammatory sites, and that this mechanism contributes to the expansion of eosinophil numbers within tissues. Among the proteins known to influence hematopoiesis and survival, expression of the cytokine interleukin-5 appears to be uniquely important and specific for eosinophils. In contrast, eosinophil death can result from withdrawal of survival factors, but also by activation of pro-apoptotic pathways via death factors. Recent observations suggest a role for cell surface death receptors and mitochondria in facilitating eosinophil apoptosis, although the mechanisms that trigger each of these death pathways remain incompletely delineated. Ultimately, the control of eosinophil apoptosis may someday become another therapeutic strategy for treating allergic diseases and other eosinophil-associated disorders.
Collapse
Affiliation(s)
- Yong Mean Park
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
34
|
Jakiela B, Szczeklik W, Sokolowska B, Mastalerz L, Sanak M, Plutecka H, Szczeklik A. Intrinsic pathway of apoptosis in peripheral blood eosinophils of Churg-Strauss syndrome. Rheumatology (Oxford) 2009; 48:1202-7. [PMID: 19643727 DOI: 10.1093/rheumatology/kep209] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Churg-Strauss syndrome (CSS) is a rare necrotizing vasculitis associated with asthma, blood and tissue eosinophilia and granuloma formation. We wondered whether eosinophil accumulation in CSS results from the defect of intrinsic apoptosis pathway in blood eosinophils, leading to their prolonged survival. METHODS We analysed immunophenotype (flow cytometry), expression of apoptosis-related genes (real-time PCR) and spontaneous apoptosis in blood eosinophils isolated from nine patients in exacerbation (active CSS), seven patients in remission (inactive CSS) and 14 matched healthy subjects. Serum IL-5 levels were also measured. RESULTS In active CSS, blood eosinophils were characterized by small (<2-fold) decrease in expression of a few genes, primarily proapoptotic (e.g. BCL2L13, CASP2, CARD4) or involved in regulation of NF-kappaB (IKBKB, REL), but they did not differ in the rate of spontaneous apoptosis, when compared with other groups. Only selected genes were positively (BNIPL, PYCARD, CASP8, CRADD, BCAP31), or negatively (IKBKE) correlated with disease activity. In active CSS, eosinophils expressed activation markers (CD69, CD25), especially in subjects with most severe disease and elevated serum IL-5. CONCLUSIONS High susceptibility of peripheral blood eosinophils to spontaneous apoptosis in vitro, and minor changes in expression of apoptotic-related genes in transcriptome analysis, do not support the hypothesis on intrinsic defect in apoptosis, as the cause of eosinophil accumulation in CSS.
Collapse
Affiliation(s)
- Bogdan Jakiela
- Department of Medicine, Jagiellonian University Medical College, ul. Skawinska 8, 31-066 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
35
|
Petrovas C, Chaon B, Ambrozak DR, Price DA, Melenhorst JJ, Hill BJ, Geldmacher C, Casazza JP, Chattopadhyay PK, Roederer M, Douek DC, Mueller YM, Jacobson JM, Kulkarni V, Felber BK, Pavlakis GN, Katsikis PD, Koup RA. Differential association of programmed death-1 and CD57 with ex vivo survival of CD8+ T cells in HIV infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1120-32. [PMID: 19564339 PMCID: PMC2923541 DOI: 10.4049/jimmunol.0900182] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have revealed the critical role of programmed death-1 (PD-1) in exhaustion of HIV- and SIV-specific CD8(+) T cells. In this study, we show that high expression of PD-1 correlates with increased ex vivo spontaneous and CD95/Fas-induced apoptosis, particularly in the "effector-memory" CD8(+) T cell population from HIV(+) donors. High expression of PD-1 was linked to a proapoptotic phenotype characterized by low expression of Bcl-2 and IL7-R alpha, high expression of CD95/Fas and high mitochondrial mass. Expression of PD-1 and CD57 was differentially associated with the maturation status of CD8(+) T cells in HIV infection. CD57 was linked to higher apoptosis resistance, with cells expressing a PD-1(L)CD57(H) phenotype exhibiting lower levels of cell death. The majority of HIV-specific CD8(+) T cells were found to express a PD-1(H)CD57(L) or PD-1(H)CD57(H) phenotype. No correlation was found between PD-1 expression and ex vivo polyfunctionality of either HIV- or CMV-specific CD8(+) T cells. Contrary to CD57, high expression of PD-1 was characterized by translocation of PD-1 into the area of CD95/Fas-capping, an early necessary step of CD95/Fas-induced apoptosis. Thus, our data further support the role of PD-1 as a preapoptotic factor for CD8(+) T cells in HIV infection.
Collapse
Affiliation(s)
- Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Benjamin Chaon
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - David R. Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff, Wales, U.K
| | - J. Joseph Melenhorst
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814
| | - Brenna J. Hill
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Christof Geldmacher
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Joseph P. Casazza
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Pratip K. Chattopadhyay
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Yvonne M. Mueller
- Department of Microbiology and Immunology, and Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jeffrey M. Jacobson
- Department of Microbiology and Immunology, and Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21701
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21701
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21701
| | - Peter D. Katsikis
- Department of Microbiology and Immunology, and Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| |
Collapse
|
36
|
Seppet E, Gruno M, Peetsalu A, Gizatullina Z, Nguyen HP, Vielhaber S, Wussling MH, Trumbeckaite S, Arandarcikaite O, Jerzembeck D, Sonnabend M, Jegorov K, Zierz S, Striggow F, Gellerich FN. Mitochondria and energetic depression in cell pathophysiology. Int J Mol Sci 2009; 10:2252-2303. [PMID: 19564950 PMCID: PMC2695278 DOI: 10.3390/ijms10052252] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/25/2009] [Accepted: 05/14/2009] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of almost all diseases. Acquired or inherited mutations of the mitochondrial genome DNA may give rise to mitochondrial diseases. Another class of disorders, in which mitochondrial impairments are initiated by extramitochondrial factors, includes neurodegenerative diseases and syndromes resulting from typical pathological processes, such as hypoxia/ischemia, inflammation, intoxications, and carcinogenesis. Both classes of diseases lead to cellular energetic depression (CED), which is characterized by decreased cytosolic phosphorylation potential that suppresses the cell's ability to do work and control the intracellular Ca(2+) homeostasis and its redox state. If progressing, CED leads to cell death, whose type is linked to the functional status of the mitochondria. In the case of limited deterioration, when some amounts of ATP can still be generated due to oxidative phosphorylation (OXPHOS), mitochondria launch the apoptotic cell death program by release of cytochrome c. Following pronounced CED, cytoplasmic ATP levels fall below the thresholds required for processing the ATP-dependent apoptotic cascade and the cell dies from necrosis. Both types of death can be grouped together as a mitochondrial cell death (MCD). However, there exist multiple adaptive reactions aimed at protecting cells against CED. In this context, a metabolic shift characterized by suppression of OXPHOS combined with activation of aerobic glycolysis as the main pathway for ATP synthesis (Warburg effect) is of central importance. Whereas this type of adaptation is sufficiently effective to avoid CED and to control the cellular redox state, thereby ensuring the cell survival, it also favors the avoidance of apoptotic cell death. This scenario may underlie uncontrolled cellular proliferation and growth, eventually resulting in carcinogenesis.
Collapse
Affiliation(s)
- Enn Seppet
- Department of Pathophysiology, University of Tartu, Tartu, Estonia; E-Mail:
(M.G.)
| | - Marju Gruno
- Department of Pathophysiology, University of Tartu, Tartu, Estonia; E-Mail:
(M.G.)
| | - Ants Peetsalu
- Department of Surgery, University of Tartu, Tartu, Estonia; E-Mail:
(A.P.)
| | - Zemfira Gizatullina
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Huu Phuc Nguyen
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany; E-Mail:
(H.P.N.)
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany; E-Mail:
(S.V.)
| | - Manfred H.P. Wussling
- Bernstein Institute for Physiology, Martin-Luther-University Halle-Wittenberg, Germany; E-Mail:
(M.H.P.W.)
| | - Sonata Trumbeckaite
- Institute for Biomedical Research, Kaunas University of Medicine, Kaunas, Lithuania; E-Mails:
(S.T.);
(O.A.)
| | - Odeta Arandarcikaite
- Institute for Biomedical Research, Kaunas University of Medicine, Kaunas, Lithuania; E-Mails:
(S.T.);
(O.A.)
| | - Doreen Jerzembeck
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Maria Sonnabend
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Katharina Jegorov
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Germany; E-Mail:
(S.Z.)
| | - Frank Striggow
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Frank N. Gellerich
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| |
Collapse
|
37
|
Shen ZJ, Esnault S, Schinzel A, Borner C, Malter JS. The peptidyl-prolyl isomerase Pin1 facilitates cytokine-induced survival of eosinophils by suppressing Bax activation. Nat Immunol 2009; 10:257-65. [PMID: 19182807 PMCID: PMC2847832 DOI: 10.1038/ni.1697] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 12/12/2008] [Indexed: 01/03/2023]
Abstract
The mechanisms by which cytokine signals prevent the activation and mitochondrial targeting of the proapoptotic protein Bax are unclear. Here we show, using primary human eosinophils, that in the absence of the prosurvival cytokines granulocyte-macrophage colony-stimulating factor and interleukin 5, Bax spontaneously underwent activation and initiated mitochondrial disruption. Inhibition of Bax resulted in less eosinophil apoptosis, even in the absence of cytokines. Granulocyte-macrophage colony-stimulating factor induced activation of the kinase Erk1/2, which phosphorylated Thr167 of Bax; this facilitated new interaction of Bax with the prolyl isomerase Pin1. Blockade of Pin1 led to cleavage and mitochondrial translocation of Bax and caspase activation, regardless of the presence of cytokines. Our findings indicate that Pin1 is a key mediator of prosurvival signaling and is a regulator of Bax function.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Waisman Center for Developmental Disabilities, the Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Westlund BS, Cai B, Zhou J, Sparrow JR. Involvement of c-Abl, p53 and the MAP kinase JNK in the cell death program initiated in A2E-laden ARPE-19 cells by exposure to blue light. Apoptosis 2009; 14:31-41. [PMID: 19052872 PMCID: PMC3099593 DOI: 10.1007/s10495-008-0285-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The lipofuscin fluorophore A2E has been shown to mediate blue light-induced damage to retinal pigmented epithelial (RPE) cells. To understand the events that lead to RPE cell apoptosis under these conditions, we explored signaling pathways upstream of the cell death program. Human RPE cells (ARPE-19) that had accumulated A2E were exposed to blue light to induce apoptosis and the involvement of the transcription factors p53 and c-Abl and the mitogen activated protein kinases p38 and JNK were examined. We found that A2E/blue light caused upregulation and phosphorylation of c-Abl, and upregulation of p53. Pretreatment with the c-Abl inhibitor STI571 and transfection with siRNA specific to c-Abl and p53 prior to irradiation reduced A2E/blue light-induced cell death. Gene and protein expression of JNK and p38 was upregulated in response to A2E/blue light. Treatment with the JNK inhibitor SP600125 before irradiation resulted in increase in cell death whereas inhibition of p38 with SB203580 had no effect. This study indicates that c-Abl and p53 are important for execution of the cell death program initiated in A2E-laden RPE cells exposed to blue light, while JNK might play an anti-apoptotic role.
Collapse
Affiliation(s)
- Barbro S. Westlund
- Department of Ophthalmology, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | - Bolin Cai
- Department of Ophthalmology, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | - Jilin Zhou
- Department of Ophthalmology, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| |
Collapse
|
40
|
Ueki S, Mahemuti G, Oyamada H, Kato H, Kihara J, Tanabe M, Ito W, Chiba T, Takeda M, Kayaba H, Chihara J. Retinoic acids are potent inhibitors of spontaneous human eosinophil apoptosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:7689-98. [PMID: 19017957 DOI: 10.4049/jimmunol.181.11.7689] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinoic acids (RAs), which are active metabolites of vitamin A, are known to enhance Th2-type immune responses in vitro, but the role of RAs in allergic inflammatory cells remains unclear. In this study, we demonstrated that purified peripheral blood eosinophils expressed nuclear receptors for RAs at the mRNA and protein levels. Eosinophils cultured with all-trans RA (ATRA) and 9-cis-RA showed dramatically induced cell survival and nuclear hypersegmentation, and the efficacy of RAs (10(-6)M) was similar to that of IL-5 (1 ng/ml), the most critical cytokine for eosinophil activation. Pharmacological manipulation with receptor-specific agonists and antagonists indicated that the antiapoptotic effect of RAs was mediated through ligand-dependent activation of both retinoid acid receptors and retinoid X receptors (mainly retinoid acid receptors). Furthermore, using a gene microarray and a cytokine Ab array, we discovered that RAs induced vascular endothelial growth factor, M-CSF, and MCP-1 secretion, although they were not involved in eosinophil survival. RA-induced eosinophil survival appears to be associated with down-regulation of caspase 3 and inhibition of its enzymatic activity. These findings indicate an important role of RAs in homeostasis of granulocytes and provide further insight into the cellular and molecular pathogenesis of allergic reactions.
Collapse
Affiliation(s)
- Shigeharu Ueki
- Department of Clinical and Laboratory Medicine, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kankaanranta H, Zhang X, Tumelius R, Ruotsalainen M, Haikala H, Nissinen E, Moilanen E. Antieosinophilic activity of simendans. J Pharmacol Exp Ther 2007; 323:31-8. [PMID: 17620456 DOI: 10.1124/jpet.107.124057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Simendans are novel agents used in the treatment of decompensated heart failure. They sensitize troponin C to calcium and open ATP-sensitive potassium channels and have been shown to reduce cardiac myocyte apoptosis. The aim of the present study was to evaluate whether simendans reduce pulmonary eosinophilia and regulate eosinophil apoptosis. Bronchoalveolar lavage (BAL) eosinophilia was evaluated in ovalbumin-sensitized mice. Effects of simendans on apoptosis in isolated human eosinophils were assessed by relative DNA fragmentation assay, annexin V-binding, and morphological analysis. Dextrosimendan [(+)-[[4-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3-pyridazinyl)phenyl)hydrazono]propanedinitrile] reduced ovalbumin-induced BAL-eosinophilia in sensitized mice. Levosimendan [(-)-[[4-(1,4,5,6-tetrahydro-4-methyl-6-oxo-3-pyridazinyl)phenyl]hydrazono]propanedinitrile] and dextrosimendan reversed interleukin (IL)-5-afforded survival of human eosinophils by inducing apoptosis in vitro. Even high concentrations of IL-5 were not able to overcome the effect of dextrosimendan. Dextrosimendan further enhanced spontaneous apoptosis as well as that induced by CD95 ligation, without inducing primary necrosis. Dextrosimendan-induced DNA fragmentation was shown to be dependent on caspase and c-Jun NH2-terminal kinase activation, whereas extracellular signal-regulated kinase, p38 mitogen-activated kinase, and ATP-sensitive potassium channels seemed to play no role in its actions. Taken together, our results show that simendans possess antieosinophilic activity and may be useful for the treatment of eosinophilic inflammation.
Collapse
Affiliation(s)
- Hannu Kankaanranta
- The Immunopharmacology Research Group, Medical School, University of Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Seppet E, Gizatullina Z, Trumbeckaite S, Zierz S, Striggow F, Gellerich FN. Mitochondrial Medicine: The Central Role of Cellular Energetic Depression and Mitochondria in Cell Pathophysiology. MOLECULAR SYSTEM BIOENERGETICS 2007:479-520. [DOI: 10.1002/9783527621095.ch15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Nutku-Bilir E, Hudson SA, Bochner BS. Interleukin-5 priming of human eosinophils alters siglec-8 mediated apoptosis pathways. Am J Respir Cell Mol Biol 2007; 38:121-4. [PMID: 17690326 PMCID: PMC2176128 DOI: 10.1165/rcmb.2007-0154oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously, we have identified the sequential activation of reactive oxygen species (ROS), mitochondria, and caspase-3, -8, and -9, in Siglec-8-mediated eosinophil apoptosis. Cytokine priming, which normally prolongs eosinophil survival, paradoxically potentiated this proapoptotic effect. The mechanisms of Siglec-8-mediated apoptosis after priming were therefore explored. Using IL-5 as the priming stimulus, the rate of Siglec-8-induced eosinophil apoptosis was found to be enhanced compared with unprimed cells, and mechanisms differed after IL-5 priming in that neither a pan-caspase inhibitor, nor a specific caspase-3 inhibitor, could override apoptosis. IL-5 priming also accelerated Siglec-8-mediated dissipation of mitochondrial membrane potential. Finally, both the mitochondrial electron transport inhibitor rotenone, and the ROS inhibitors diphenyleneiodonium and antimycin, completely inhibited Siglec-8-mediated apoptosis, even after IL-5 priming. These data demonstrate that IL-5 priming enhances Siglec-8-mediated mitochondrial and ROS-dependent eosinophil apoptosis and eliminates caspase dependence. The potential clinical implication of these findings is that cytokine priming, as often occurs in vivo in asthma and other hypereosinophilic disorders, may render eosinophils from such patients especially susceptible to the proapoptotic effects of a Siglec-8-engaging therapeutic agent.
Collapse
Affiliation(s)
- Esra Nutku-Bilir
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
| | | | | |
Collapse
|
44
|
Segal M, Niazi S, Simons MP, Galati SA, Zangrilli JG. Bid activation during induction of extrinsic and intrinsic apoptosis in eosinophils. Immunol Cell Biol 2007; 85:518-24. [PMID: 17549073 DOI: 10.1038/sj.icb.7100075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eosinophils readily undergo apoptosis when removed from a physiological environment via activation of the intrinsic cell death pathway. This can be further enhanced by certain chemicals (for example, glucocorticoid), or by extrinsic means (that is, Fas receptor engagement). In this investigation, we examined the relative importance of these pathways in cultured human peripheral blood eosinophils in the context of expression and activation of the BH3-only Bcl2 homologue Bid. Bid activation was examined under conditions where programmed cell death was either stimulated (via Fas engagement or glucocorticoid treatment) or inhibited (interleukin-5 (IL-5)) relative to control. Full-length Bid was found to be highly expressed in eosinophils, and processed to a similar extent during either agonist anti-Fas or glucocorticoid treatment. IL-5 blocked intrinsic Bid activation during factor withdrawal or glucocorticoid treatment, and partially attenuated that caused by Fas activation. Caspase 8 (but not caspase 9) antagonism partly but significantly affected receptor-mediated Bid activation and cell death; these processes were not altered by either caspase inhibitor during simple factor withdrawal or glucocorticoid treatment. Bid processing appears to be central to both intrinsic and extrinsic pathways of cell death in eosinophils. The role of IL-5 in blocking the intrinsic pathway of eosinophil apoptosis is underscored. Results of specific inhibition support the existence of Bid activation pathways in eosinophils other than those mediated by the classic initiator caspases.
Collapse
Affiliation(s)
- Manav Segal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
45
|
Palmqvist C, Wardlaw AJ, Bradding P. Chemokines and their receptors as potential targets for the treatment of asthma. Br J Pharmacol 2007; 151:725-36. [PMID: 17471178 PMCID: PMC2014125 DOI: 10.1038/sj.bjp.0707263] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Asthma is a chronic and sometimes fatal disease, which affects people of all ages throughout the world. Important hallmarks of asthma are airway inflammation and remodelling, with associated bronchial hyperresponsiveness and variable airflow obstruction. These features are orchestrated by cells of both the innate (eosinophils, neutrophils and mast cells) and the adaptive (T(H)2 T cells) immune system, in concert with structural airway cells. Chemokines are important for the recruitment of both immune and structural cells to the lung, and also for their microlocalisation within the lung tissue. Specific blockade of the responses elicited by chemokines and chemokine receptors responsible for the pathological migration of airway cells could therefore be of great therapeutic interest for the treatment of asthma.
Collapse
Affiliation(s)
- C Palmqvist
- Department of Respiratory Medicine, Glenfield Hospital Leicester, UK
| | - A J Wardlaw
- Department of Respiratory Medicine, Glenfield Hospital Leicester, UK
| | - P Bradding
- Department of Respiratory Medicine, Glenfield Hospital Leicester, UK
- Author for correspondence:
| |
Collapse
|
46
|
Effect of recombinant interleukin-5, interleukin-3, and eotaxin on apoptosis in eosinophilic granulocytes. Bull Exp Biol Med 2007; 143:395-8. [DOI: 10.1007/s10517-007-0139-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Dolgachev V, Thomas M, Berlin A, Lukacs NW. Stem cell factor-mediated activation pathways promote murine eosinophil CCL6 production and survival. J Leukoc Biol 2007; 81:1111-9. [PMID: 17234680 DOI: 10.1189/jlb.0906595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophil activation during allergic diseases has a detrimental role in the generation of pathophysiologic responses. Stem cell factor (SCF) has recently shown an inflammatory, gene-activating role on eosinophils and contributes to the generation of pathophysiologic changes in the airways during allergic responses. The data in the present study outline the signal transduction events that are induced by SCF in eosinophils and further demonstrate that MEK-mediated signaling pathways are crucial for SCF-induced CCL6 chemokine activation and eosinophil survival. SCF-mediated eosinophil activation was demonstrated to include PI-3K activation as well as MEK/MAPK phosphorylation pathways. Subsequent analysis of CCL6 gene activation and production induced by SCF in the presence or absence of rather specific inhibitors for certain pathways demonstrated that the MEK/MAPK pathway but not the PI-3K pathway was crucial for the SCF-induced CCL6 gene activation. These same signaling pathways were shown to initiate antiapoptotic events and promote eosinophil survival, including up-regulation of BCL2 and BCL3. Altogether, SCF appears to be a potent eosinophil activation and survival factor.
Collapse
Affiliation(s)
- Vladislav Dolgachev
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 4618, Ann Arbor, MI 48109-2200, USA.
| | | | | | | |
Collapse
|
48
|
Vassina EM, Yousefi S, Simon D, Zwicky C, Conus S, Simon HU. cIAP-2 and survivin contribute to cytokine-mediated delayed eosinophil apoptosis. Eur J Immunol 2006; 36:1975-84. [PMID: 16761316 DOI: 10.1002/eji.200635943] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The exact molecular mechanisms leading to delayed apoptosis, a phenomenon frequently observed in eosinophil inflammatory responses, remain largely unknown. Here, we show that cultured eosinophils purified from blood of hypereosinophilic syndrome (HES) patients exhibit delayed spontaneous death and relative resistance towards ceramide- but not CD95-mediated death. The subsequent investigation of members of the inhibitor of apoptosis (IAP) family revealed that HES but not normal eosinophils expressed high levels of cellular IAP-2 (cIAP-2) and survivin. The eosinophil hematopoietins IL-3, IL-5, and GM-CSF increased the expression of cIAP-2 and survivin in normal eosinophils in vitro. In the blood of HES patients, we observed increased concentrations of IL-3 and/or IL-5, suggesting that these cytokines are, at least partially, responsible for the elevated levels of cIAP-2 and survivin in the eosinophils of these patients. Utilizing a cell-free system in which caspase-3 was activated in eosinophil cytosolic extracts by addition of cytochrome c and immunodepletion of cIAP-2 or survivin resulted in accelerated caspase activation. These data suggest that some members of the IAP family including survivin are regulated by survival cytokines and inhibit the caspase cascade in HES eosinophils. The cytokine-dependent mechanism of delayed eosinophil apoptosis described here may also apply to other eosinophilic diseases.
Collapse
|
49
|
Kankaanranta H, Ilmarinen P, Zhang X, Nissinen E, Moilanen E. Antieosinophilic activity of orazipone. Mol Pharmacol 2006; 69:1861-70. [PMID: 16540599 DOI: 10.1124/mol.105.021170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Orazipone is a novel sulfhydryl-reactive compound that has been previously shown to reduce lung eosinophilia in guinea pigs and rats and to inhibit degranulation in mast cells and cytokine production in monocytes and T-cells. However, the effects of orazipone on granulocyte longevity are unknown. Orazipone and its derivative 3-(4-chloro-3-nitro-benzylidene)-pentane-2,4-dione (OR-2370) reversed interleukin-5-afforded survival of human eosinophils by inducing apoptosis. In contrast, orazipone did not affect granulocyte macrophage-colony-stimulating factor-induced survival of human neutrophils. The effect of orazipone on eosinophil apoptosis is different from that of glucocorticoids in that even high con-centrations of interleukin-5 were not able to overcome the effect of orazipone. Orazipone further enhanced spontaneous apoptosis as well as that induced by CD95 ligation without inducing primary necrosis. OR-2370-induced DNA fragmentation was shown to be dependent on caspases 3 and 6 and c-jun-N-terminal kinase, whereas extracellular regulated kinase, p38 mitogen-activated protein kinase, and phosphatidylinositol 3-kinase as well as caspases 4, 8, and 9 seem not to mediate its actions. Our results suggest that orazipone and its derivative OR-2370 possess strong antieosinophilic activity and thus may have anti-inflammatory efficacy in the treatment of asthma and/or allergic conditions.
Collapse
Affiliation(s)
- Hannu Kankaanranta
- The Immunopharmacology Research Group, Medical School/B, FIN-33014 University of Tampere, Finland.
| | | | | | | | | |
Collapse
|
50
|
Nutku E, Hudson SA, Bochner BS. Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury. Biochem Biophys Res Commun 2005; 336:918-24. [PMID: 16157303 DOI: 10.1016/j.bbrc.2005.08.202] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 08/25/2005] [Indexed: 11/16/2022]
Abstract
Sialic acid binding immunoglobulin like lectin (Siglec)-8 crosslinking with specific antibodies causes human eosinophil apoptosis. Mechanisms by which Siglec-8 crosslinking induces apoptosis are not known. Peripheral blood eosinophils were examined for caspase, mitochondria and reactive oxygen species (ROS) involvement after incubating the cells with anti-Siglec-8 crosslinking Abs or control Abs, in the presence or absence of selective inhibitors. Siglec-8 crosslinking induced rapid cleavage of caspase-3, caspase-8, and caspase-9 in eosinophils. Selective caspase-8 and/or caspase-9 inhibitors inhibited this apoptosis. Siglec-8 crosslinking on eosinophils increased dissipation of mitochondrial membrane potential upstream of caspase activation. Rotenone and antimycin, inhibitors of mitochondrial respiratory chain components, completely inhibited apoptosis. Additional experiments with an inhibitor of ROS, diphenyleneiodonium, demonstrated that ROS was also essential for Siglec-8-mediated apoptosis and preceded Siglec-8-mediated mitochondrial dissipation. These experiments show that Siglec-8-induced apoptosis occurs through the sequential production of ROS, followed by induction of mitochondrial injury and caspase cleavage.
Collapse
Affiliation(s)
- Esra Nutku
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|