1
|
de Ligt LA, Gaartman AE, Konté K, Thakoerdin S, Fijnvandraat K, Kuijpers TW, van Bruggen R, Biemond BJ, Nur E. Plasma inflammatory and angiogenic protein profiling of patients with sickle cell disease. Br J Haematol 2025; 206:954-964. [PMID: 39743683 PMCID: PMC11886948 DOI: 10.1111/bjh.19970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
In this study, we aimed to explore the inflammatory and angiogenic pathways in sickle cell disease (SCD). We used proximity extension assay technology (Olink) to measure 92 plasma proteins involved in inflammation and angiogenesis. Plasma samples were collected from 57 SCD patients (sickle cell anaemia/HbS-β0 thalassaemia-thalassaemia) in steady-state and 13 healthy ethnicity-matched healthy controls (HCs). From 15 patients, paired samples were collected during both steady-state and vaso-occlusive episodes (VOEs) and from 23 SCD patients longitudinal samples were collected before and after treatment with either voxelotor (n = 10), hydroxyurea (n = 8) or allogeneic haematopoietic stem-cell transplantation (n = 5). Fifty plasma proteins were differentially expressed in steady-state SCD patients as compared to HC. These included proteins involved in angiogenesis (i.e. ANGPT1, ANGPT2 and VEGFA), the IL-18 signalling pathway (i.e. IL-6, IL-10, IL-18), T-cell activation (i.e. LAG3, PDCD1) and natural killer (NK)-cell activation (CD244, NCR1, GZMB). While proteins involved in angiogenesis and the IL-18 signalling pathway were further upregulated during VOE, levels of several proteins involved in the IL-18 pathway, T-cell and NK-cell activation and angiogenesis, restored towards levels detected in HCs after curative or disease-modifying treatment. These findings might contribute to a better understanding of SCD pathophysiology and identifying potential new targets for therapeutic interventions.
Collapse
Affiliation(s)
- L. A. de Ligt
- Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamthe Netherlands
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Pediatric HematologyEmma Children's Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - A. E. Gaartman
- Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamthe Netherlands
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - K. Konté
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - S. Thakoerdin
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - K. Fijnvandraat
- Department of Pediatric HematologyEmma Children's Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - T. W. Kuijpers
- Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamthe Netherlands
- Department of Pediatric ImmunologyEmma Children's Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - R. van Bruggen
- Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamthe Netherlands
| | - B. J. Biemond
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - E. Nur
- Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamthe Netherlands
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
Verma R, Kailashiya J, Mukherjee A, Chaurasia RN, Dash D. Prion protein fragment (106-126) activates NLRP3 inflammasome and promotes platelet-monocyte/neutrophil interactions, potentially contributing to an inflammatory state. Front Cell Dev Biol 2025; 13:1534235. [PMID: 40070881 PMCID: PMC11895701 DOI: 10.3389/fcell.2025.1534235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Prion diseases are neurodegenerative disorders where infectious prion proteins (PrP) featuring an amyloidogenic amino acid sequence, PrP (106-126), accumulate in the brain leading to neuroinflammation while it can also access circulation by breaching the blood-brain barrier. Platelets are highly sensitive cells in blood, which have been widely employed as "peripheral" model for neurons. In addition to their stellar roles in hemostasis and thrombosis, platelets are also known to function as immune cells and possess necessary components of functional inflammasome. This study demonstrates that prion proteins drive inflammasome assembly in platelets and upregulate activity of caspase-1, a critical readout of functional inflammasomes. Methods Flow cytometric analysis was performed to measure intracellular ROS levels, caspase-1 activity, and platelet-monocyte/neutrophil interactions. Microscopy was used to assess the co-localization of NLRP3 and ASC. Results Inflammasome activation is fuelled by reactive oxygen species (ROS) generated in prion-stimulated platelets that eventually leads to formation of platelet-monocyte/neutrophil aggregates, which was prohibited by small-molecule inhibitors of either caspase-1 or ROS. Discussion Thus, in addition to their neurotoxic effects on neuronal cells and stimulation of pro-coagulant activity in platelets, prions also unleash an inflammatory response in the organism.
Collapse
Affiliation(s)
- Rashmi Verma
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jyotsna Kailashiya
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Avijit Mukherjee
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Debabrata Dash
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Starikova EA, Mammedova JT, Rubinstein AA, Sokolov AV, Kudryavtsev IV. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr Issues Mol Biol 2025; 47:108. [PMID: 39996829 PMCID: PMC11854423 DOI: 10.3390/cimb47020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Hemostasis is a mechanism that stops bleeding from an injured vessel, involves multiple interlinked steps, culminating in the formation of a "clot" sealing the damaged area. Moreover, it has long been recognized that inflammation also provokes the activation of the coagulation system. However, there has been an increasing amount of evidence revealing the immune function of the hemostasis system. This review collects and analyzes the results of the experimental studies and data from clinical observations confirming the inflammatory function of hemostasis. Here, we summarize the latest knowledge of the pathways in immune system activation under the influence of coagulation factors. The data analyzed allow us to consider the components of hemostasis as receptors recognizing «foreign» or damaged «self» or/and as «self» damage signals that initiate and reinforce inflammation and affect the direction of the adaptive immune response. To sum up, the findings collected in the review allow us to classify the coagulation factors, such as Damage-Associated Molecular Patterns that break down the conventional concepts of the coagulation system.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Department of Microbiology and Virology, Institute of Medical Education Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 Saint Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Department of Molecular Biotechnology, Chemical and Biotechnology Faculty, Saint Petersburg State Institute of Technology, Moskovski Ave., 26, 190013 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
| | - Alexey V. Sokolov
- Laboratory of Systemic Virology, Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, 15/17, Prof. Popova Str., 197376 Saint Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| |
Collapse
|
4
|
Yan M, Wang Z, Qiu Z, Cui Y, Xiang Q. Platelet signaling in immune landscape: comprehensive mechanism and clinical therapy. Biomark Res 2024; 12:164. [PMID: 39736771 DOI: 10.1186/s40364-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Platelets are essential for blood clotting and maintaining normal hemostasis. In pathological conditions, platelets are increasingly recognized as crucial regulatory factors in various immune-mediated inflammatory diseases. Resting platelets are induced by various factors such as immune complexes through Fc receptors, platelet-targeting autoantibodies and other platelet-activating stimuli. Platelet activation in immunological processes involves the release of immune activation stimuli, antigen presentation and interaction with immune cells. Platelets participate in both the innate immune system (neutrophils, monocytes/macrophages, dendritic cells (DCs) and Natural Killer (NK) cells and the adaptive immune system (T and B cells). Clinical therapeutic strategies include targeting platelet activation, platelet-immune cell interaction and platelet-endothelial cell interaction, which display positive development prospects. Understanding the mechanisms of platelets in immunity is important, and developing targeted modulations of these mechanisms will pave the way for promising therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhe Wang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhiwei Qiu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
5
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
6
|
Vogel S. HMGB1 in platelets: a viable therapeutic target? J Thromb Haemost 2024; 22:3392-3394. [PMID: 39613347 DOI: 10.1016/j.jtha.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 12/01/2024]
Affiliation(s)
- Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
7
|
Pennings GJ. NLRP3: More than an Inflammasome? Thromb Haemost 2024; 124:1114-1116. [PMID: 39260395 DOI: 10.1055/a-2413-4672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Affiliation(s)
- Gabrielle J Pennings
- ANZAC Research Institute-Sydney Local Health District, The University of Sydney, Concord NSW, Australia
| |
Collapse
|
8
|
Mattè A, Federti E, Recchiuti A, Hamza M, Ferri G, Riccardi V, Ceolan J, Passarini A, Mazzi F, Siciliano A, Bhatt DL, Coughlan D, Climax J, Gremese E, Brugnara C, De Franceschi L. Epeleuton, a novel synthetic ω-3 fatty acid, reduces hypoxia/ reperfusion stress in a mouse model of sickle cell disease. Haematologica 2024; 109:1918-1932. [PMID: 38105727 PMCID: PMC11141675 DOI: 10.3324/haematol.2023.284028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Inflammatory vasculopathy is critical in sickle cell disease (SCD)-associated organ damage. An imbalance between pro-inflammatory and pro-resolving mechanisms in response to different triggers such as hypoxia/reoxygenation or infections has been proposed to contribute to the progression of SCD. Administration of specialized pro-resolving lipid mediators may provide an effective therapeutic strategy to target inflammatory vasculopathy and to modulate inflammatory response. Epeleuton (15 hydroxy eicosapentaenoic acid ethyl ester) is a novel, orally administered, second-generation ω-3 fatty acid with a favorable clinical safety profile. In this study we show that epeleuton re-programs the lipidomic pattern of target organs for SCD towards a pro-resolving pattern. This protects against systemic and local inflammatory responses and improves red cell features, resulting in reduced hemolysis and sickling compared with that in vehicle-treated SCD mice. In addition, epeleuton prevents hypoxia/reoxygenation-induced activation of nuclear factor-κB with downregulation of the NLRP3 inflammasome in lung, kidney, and liver. This was associated with downregulation of markers of vascular activation in epeleuton-treated SCD mice when compared to vehicle-treated animals. Collectively our data support the potential therapeutic utility of epeleuton and provide the rationale for the design of clinical trials to evaluate the efficacy of epeleuton in patients with SCD.
Collapse
Affiliation(s)
- Alessandro Mattè
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Enrica Federti
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Antonio Recchiuti
- Department of Medical, Oral, and Biotechnology Science, "G. d'Annunzio"University Chieti - Pescara
| | | | - Giulia Ferri
- Department of Medical, Oral, and Biotechnology Science, "G. d'Annunzio"University Chieti - Pescara
| | - Veronica Riccardi
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Jacopo Ceolan
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Alice Passarini
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Filippo Mazzi
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Angela Siciliano
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Elisa Gremese
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy; Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Department of Pathology, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
9
|
Vogel S, Kamimura S, Smith ML, Almeida LEF, Cui X, Combs CA, Quezado ZMN. Syk inhibition suppresses NLRP3 inflammasome activation in platelets from sickle cell mice leading to decreased platelet secretion, aggregation, spreading, and in vitro thrombus formation. Thromb Res 2024; 237:18-22. [PMID: 38547689 PMCID: PMC11614189 DOI: 10.1016/j.thromres.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Affiliation(s)
- Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, USA
| | - Xizhong Cui
- Critical Care Medicine Department, National Institutes of Health Clinical Center, USA
| | - Christian A Combs
- Light Microscopy Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, USA.
| |
Collapse
|
10
|
Wurtzel JGT, Lazar S, Askari S, Zhao X, Severa J, Ayombil F, Michael JV, Camire RM, McKenzie SE, Stalker TJ, Ma P, Goldfinger LE. Plasma growth factors maintain constitutive translation in platelets to regulate reactivity and thrombotic potential. Blood Adv 2024; 8:1550-1566. [PMID: 38163324 PMCID: PMC10982986 DOI: 10.1182/bloodadvances.2023011734] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
ABSTRACT Mechanisms of proteostasis in anucleate circulating platelets are unknown and may regulate platelet function. We investigated the hypothesis that plasma-borne growth factors/hormones (GFHs) maintain constitutive translation in circulating platelets to facilitate reactivity. Bio-orthogonal noncanonical amino acid tagging (BONCAT) coupled with liquid chromatography-tandem mass spectrometry analysis revealed constitutive translation of a broad-spectrum translatome in human platelets dependent upon plasma or GFH exposure, and in murine circulation. Freshly isolated platelets from plasma showed homeostatic activation of translation-initiation signaling pathways: phosphorylation of p38/ERK upstream kinases, essential intermediate MNK1/2, and effectors eIF4E/4E-BP1. Plasma starvation led to loss of pathway phosphorylation, but it was fully restored with 5-minute stimulation by plasma or GFHs. Cycloheximide or puromycin infusion suppressed ex vivo platelet GpIIb/IIIa activation and P-selectin exposure with low thrombin concentrations and low-to-saturating concentrations of adenosine 5'-diphosphate (ADP) or thromboxane analog but not convulxin. ADP-induced thromboxane generation was blunted by translation inhibition, and secondary-wave aggregation was inhibited in a thromboxane-dependent manner. Intravenously administered puromycin reduced injury-induced clot size in cremaster muscle arterioles, and delayed primary hemostasis after tail tip amputation but did not delay neither final hemostasis after subsequent rebleeds, nor final hemostasis after jugular vein puncture. In contrast, these mice were protected from injury-induced arterial thrombosis and thrombin-induced pulmonary thromboembolism (PE), and adoptive transfer of translation-inhibited platelets into untreated mice inhibited arterial thrombosis and PE. Thus, constitutive plasma GFH-driven translation regulates platelet G protein-coupled receptor reactivity to balance hemostasis and thrombotic potential.
Collapse
Affiliation(s)
- Jeremy G. T. Wurtzel
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Sophia Lazar
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Shayan Askari
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Xuefei Zhao
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Jenna Severa
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Francis Ayombil
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - James V. Michael
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Rodney M. Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Steven E. McKenzie
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Timothy J. Stalker
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Peisong Ma
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Lawrence E. Goldfinger
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
11
|
Rarick KR, Li K, Teng RJ, Jing X, Martin DP, Xu H, Jones DW, Hogg N, Hillery CA, Garcia G, Day BW, Naylor S, Pritchard KA. Sterile inflammation induces vasculopathy and chronic lung injury in murine sickle cell disease. Free Radic Biol Med 2024; 215:112-126. [PMID: 38336101 PMCID: PMC11290318 DOI: 10.1016/j.freeradbiomed.2024.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Murine sickle cell disease (SCD) results in damage to multiple organs, likely mediated first by vasculopathy. While the mechanisms inducing vascular damage remain to be determined, nitric oxide bioavailability and sterile inflammation are both considered to play major roles in vasculopathy. Here, we investigate the effects of high mobility group box-1 (HMGB1), a pro-inflammatory damage-associated molecular pattern (DAMP) molecule on endothelial-dependent vasodilation and lung morphometrics, a structural index of damage in sickle (SS) mice. SS mice were treated with either phosphate-buffered saline (PBS), hE-HMGB1-BP, an hE dual-domain peptide that binds and removes HMGB1 from the circulation via the liver, 1-[4-(aminocarbonyl)-2-methylphenyl]-5-[4-(1H-imidazol-1-yl)phenyl]-1H-pyrrole-2-propanoic acid (N6022) or N-acetyl-lysyltyrosylcysteine amide (KYC) for three weeks. Human umbilical vein endothelial cells (HUVEC) were treated with recombinant HMGB1 (r-HMGB1), which increases S-nitrosoglutathione reductase (GSNOR) expression by ∼80%, demonstrating a direct effect of HMGB1 to increase GSNOR. Treatment of SS mice with hE-HMGB1-BP reduced plasma HMGB1 in SS mice to control levels and reduced GSNOR expression in facialis arteries isolated from SS mice by ∼20%. These changes were associated with improved endothelial-dependent vasodilation. Treatment of SS mice with N6022 also improved vasodilation in SS mice suggesting that targeting GSNOR also improves vasodilation. SCD decreased protein nitrosothiols (SNOs) and radial alveolar counts (RAC) and increased GSNOR expression and mean linear intercepts (MLI) in lungs from SS mice. The marked changes in pulmonary morphometrics and GSNOR expression throughout the lung parenchyma in SS mice were improved by treating with either hE-HMGB1-BP or KYC. These data demonstrate that murine SCD induces vasculopathy and chronic lung disease by an HMGB1- and GSNOR-dependent mechanism and suggest that HMGB1 and GSNOR might be effective therapeutic targets for reducing vasculopathy and chronic lung disease in humans with SCD.
Collapse
Affiliation(s)
- Kevin R Rarick
- Department of Pediatrics, Division of Critical Care, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Childrens' Research Institute, Children's Wisconsin, Milwaukee, WI, 53226, USA
| | - Keguo Li
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ru-Jeng Teng
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Childrens' Research Institute, Children's Wisconsin, Milwaukee, WI, 53226, USA
| | - Xigang Jing
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Dustin P Martin
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Xu
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Deron W Jones
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cheryl A Hillery
- Department of Pediatrics, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Pediatrics, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Guilherme Garcia
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | | | - Kirkwood A Pritchard
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; ReNeuroGen LLC, Milwaukee, WI, 53122, USA; Childrens' Research Institute, Children's Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
12
|
Kamimura S, Smith M, Vogel S, Almeida LEF, Thein SL, Quezado ZMN. Mouse models of sickle cell disease: Imperfect and yet very informative. Blood Cells Mol Dis 2024; 104:102776. [PMID: 37391346 PMCID: PMC10725515 DOI: 10.1016/j.bcmd.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
The root cause of sickle cell disease (SCD) has been known for nearly a century, however, few therapies to treat the disease are available. Over several decades of work, with advances in gene editing technology and after several iterations of mice with differing genotype/phenotype relationships, researchers have developed humanized SCD mouse models. However, while a large body of preclinical studies has led to huge gains in basic science knowledge about SCD in mice, this knowledge has not led to the development of effective therapies to treat SCD-related complications in humans, thus leading to frustration with the paucity of translational progress in the SCD field. The use of mouse models to study human diseases is based on the genetic and phenotypic similarities between mouse and humans (face validity). The Berkeley and Townes SCD mice express only human globin chains and no mouse hemoglobin. With this genetic composition, these models present many phenotypic similarities, but also significant discrepancies that should be considered when interpreting preclinical studies results. Reviewing genetic and phenotypic similarities and discrepancies and examining studies that have translated to humans and those that have not, offer a better perspective of construct, face, and predictive validities of humanized SCD mouse models.
Collapse
Affiliation(s)
- Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Tang D, Kang R, Zeh HJ, Lotze MT. The multifunctional protein HMGB1: 50 years of discovery. Nat Rev Immunol 2023; 23:824-841. [PMID: 37322174 DOI: 10.1038/s41577-023-00894-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Fifty years since the initial discovery of HMGB1 in 1973 as a structural protein of chromatin, HMGB1 is now known to regulate diverse biological processes depending on its subcellular or extracellular localization. These functions include promoting DNA damage repair in the nucleus, sensing nucleic acids and inducing innate immune responses and autophagy in the cytosol and binding protein partners in the extracellular environment and stimulating immunoreceptors. In addition, HMGB1 is a broad sensor of cellular stress that balances cell death and survival responses essential for cellular homeostasis and tissue maintenance. HMGB1 is also an important mediator secreted by immune cells that is involved in a range of pathological conditions, including infectious diseases, ischaemia-reperfusion injury, autoimmunity, cardiovascular and neurodegenerative diseases, metabolic disorders and cancer. In this Review, we discuss the signalling mechanisms, cellular functions and clinical relevance of HMGB1 and describe strategies to modify its release and biological activities in the setting of various diseases.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael T Lotze
- Departments of Surgery, Immunology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Bourne JH, Campos J, Hopkin SJ, Whitworth K, Palis J, Senis YA, Rayes J, Iqbal AJ, Brill A. Megakaryocyte NLRP3 hyperactivation induces mild anemia and potentiates inflammatory response in mice. Front Immunol 2023; 14:1226196. [PMID: 37622117 PMCID: PMC10445124 DOI: 10.3389/fimmu.2023.1226196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Background The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome has been described in both immune cells and platelets, but its role in the megakaryocyte (MK) lineage remains elusive. Objective The aim of this study was to explore the role of NLRP3 inflammasome in megakaryocytes and platelets. Methods We generated Nlrp3 A350V/+/Gp1ba-CreKI/+ mice carrying a mutation genetically similar to the one observed in human Muckle-Wells syndrome, which leads to hyperactivity of NLRP3 specifically in MK and platelets. Results Platelets from the mutant mice expressed elevated levels of both precursor and active form of caspase-1, suggesting hyperactivity of NLRP3 inflammasome. Nlrp3 A350V/+/Gp1ba-CreKI/+ mice developed normally and had normal platelet counts. Expression of major platelet receptors, platelet aggregation, platelet deposition on collagen under shear, and deep vein thrombosis were unchanged. Nlrp3 A350V/+/Gp1ba-CreKI/+ mice had mild anemia, reduced Ter119+ cells in the bone marrow, and splenomegaly. A mild increase in MK TGF-β1 might be involved in the anemic phenotype. Intraperitoneal injection of zymosan in Nlrp3 A350V/+/Gp1ba-CreKI/+ mice induced increased neutrophil egression and elevated levels of a set of proinflammatory cytokines, alongside IL-10 and G-CSF, in the peritoneal fluid as compared with control animals. Conclusion MK/platelet NLRP3 inflammasome promotes the acute inflammatory response and its hyperactivation in mice leads to mild anemia and increased extramedullary erythropoiesis.
Collapse
Affiliation(s)
- Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Inflammatory Diseases, Department of Medicine at Monash Health, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Joana Campos
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sophie J. Hopkin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katharine Whitworth
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Yotis A. Senis
- Etablissement Français du Sang, Inserm Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)-S1255 Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asif J. Iqbal
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Scherlinger M, Richez C, Tsokos GC, Boilard E, Blanco P. The role of platelets in immune-mediated inflammatory diseases. Nat Rev Immunol 2023; 23:495-510. [PMID: 36707719 PMCID: PMC9882748 DOI: 10.1038/s41577-023-00834-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/28/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by excessive and uncontrolled inflammation and thrombosis, both of which are responsible for organ damage, morbidity and death. Platelets have long been known for their role in primary haemostasis, but they are now also considered to be components of the immune system and to have a central role in the pathogenesis of IMIDs. In patients with IMIDs, platelets are activated by disease-specific factors, and their activation often reflects disease activity. Here we summarize the evidence showing that activated platelets have an active role in the pathogenesis and the progression of IMIDs. Activated platelets produce soluble factors and directly interact with immune cells, thereby promoting an inflammatory phenotype. Furthermore, platelets participate in tissue injury and promote abnormal tissue healing, leading to fibrosis. Targeting platelet activation and targeting the interaction of platelets with the immune system are novel and promising therapeutic strategies in IMIDs.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Laboratoire d'ImmunoRhumatologie Moléculaire UMR_S 1109, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.
| | - Christophe Richez
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche ARThrite, Université Laval, Quebec City, Quebec, Canada
| | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France.
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France.
| |
Collapse
|
16
|
Su Y, Zhang T, Qiao R. Pyroptosis in platelets: Thrombocytopenia and inflammation. J Clin Lab Anal 2023; 37:e24852. [PMID: 36852778 PMCID: PMC10020847 DOI: 10.1002/jcla.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/28/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
OBJECTIVE The purpose of this manuscript was to conclude the role of platelets in immune inflammation and discuss the complex mechanisms of pyroptosis in platelets as well as their related diseases. METHODS This article reviewed the existing literature to see the development of pyroptosis in platelets. RESULTS Platelets have been shown to be capable of activating inflammasomes assembled from NOD-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1. Recently, they were also implicated in pyroptosis. Cleaved by caspase-1, N-terminal gasdermin D (N-GSDMD) could form pores in the cell membrane, inducing nonselective intracellular substance release. This programmed cell death induced thrombocytopenia and inflammatory cytokine release such as IL-1β and IL-18, promoting platelet aggregation, vaso-occlusion, endothelial permeability and cascaded inflammatory response. CONCLUSION Pyroptosis in platelets contributes to thrombocytopenia and inflammation.
Collapse
Affiliation(s)
- Yang Su
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Tiannan Zhang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Rui Qiao
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
17
|
The Role of NLRP3, a Star of Excellence in Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:ijms24054860. [PMID: 36902299 PMCID: PMC10003372 DOI: 10.3390/ijms24054860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) is the most widely investigated inflammasome member whose overactivation can be a driver of several carcinomas. It is activated in response to different signals and plays an important role in metabolic disorders and inflammatory and autoimmune diseases. NLRP3 belongs to the pattern recognition receptors (PRRs) family, expressed in numerous immune cells, and it plays its primary function in myeloid cells. NLRP3 has a crucial role in myeloproliferative neoplasms (MPNs), considered to be the diseases best studied in the inflammasome context. The investigation of the NLRP3 inflammasome complex is a new horizon to explore, and inhibiting IL-1β or NLRP3 could be a helpful cancer-related therapeutic strategy to improve the existing protocols.
Collapse
|
18
|
Gbotosho OT, Gollamudi J, Hyacinth HI. The Role of Inflammation in The Cellular and Molecular Mechanisms of Cardiopulmonary Complications of Sickle Cell Disease. Biomolecules 2023; 13:381. [PMID: 36830749 PMCID: PMC9953727 DOI: 10.3390/biom13020381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Cardiopulmonary complications remain the major cause of mortality despite newer therapies and improvements in the lifespan of patients with sickle cell disease (SCD). Inflammation has been identified as a major risk modifier in the pathogenesis of SCD-associated cardiopulmonary complications in recent mechanistic and observational studies. In this review, we discuss recent cellular and molecular mechanisms of cardiopulmonary complications in SCD and summarize the most recent evidence from clinical and laboratory studies. We emphasize the role of inflammation in the onset and progression of these complications to better understand the underlying pathobiological processes. We also discuss future basic and translational research in addressing questions about the complex role of inflammation in the development of SCD cardiopulmonary complications, which may lead to promising therapies and reduce morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267-0525, USA
| | - Jahnavi Gollamudi
- Division of Hematology & Oncology, Department of Internal Medicine, 3125 Eden Avenue, ML 0562, Cincinnati, OH 45219-0562, USA
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267-0525, USA
| |
Collapse
|
19
|
Salgar S, Bolívar BE, Flanagan JM, Anum SJ, Bouchier-Hayes L. The NLRP3 inflammasome fires up heme-induced inflammation in hemolytic conditions. Transl Res 2023; 252:34-44. [PMID: 36041706 DOI: 10.1016/j.trsl.2022.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/21/2022] [Indexed: 01/14/2023]
Abstract
Overactive inflammatory responses are central to the pathophysiology of many hemolytic conditions including sickle cell disease. Excessive hemolysis leads to elevated serum levels of heme due to saturation of heme scavenging mechanisms. Extracellular heme has been shown to activate the NLRP3 inflammasome, leading to activation of caspase-1 and release of pro-inflammatory cytokines IL-1β and IL-18. Heme also activates the non-canonical inflammasome pathway, which may contribute to NLRP3 inflammasome formation and leads to pyroptosis, a type of inflammatory cell death. Some clinical studies indicate there is a benefit to blocking the NLRP3 inflammasome pathway in patients with sickle cell disease and other hemolytic conditions. However, a thorough understanding of the mechanisms of heme-induced inflammasome activation is needed to fully leverage this pathway for clinical benefit. This review will explore the mechanisms of heme-induced NLRP3 inflammasome activation and the role of this pathway in hemolytic conditions including sickle cell disease.
Collapse
Affiliation(s)
- Suruchi Salgar
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Beatriz E Bolívar
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jonathan M Flanagan
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Shaniqua J Anum
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
20
|
Chiang KC, Gupta A, Sundd P, Krishnamurti L. Thrombo-Inflammation in COVID-19 and Sickle Cell Disease: Two Faces of the Same Coin. Biomedicines 2023; 11:338. [PMID: 36830874 PMCID: PMC9953430 DOI: 10.3390/biomedicines11020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
People with sickle cell disease (SCD) are at greater risk of severe illness and death from respiratory infections, including COVID-19, than people without SCD (Centers for Disease Control and Prevention, USA). Vaso-occlusive crises (VOC) in SCD and severe SARS-CoV-2 infection are both characterized by thrombo-inflammation mediated by endothelial injury, complement activation, inflammatory lipid storm, platelet activation, platelet-leukocyte adhesion, and activation of the coagulation cascade. Notably, lipid mediators, including thromboxane A2, significantly increase in severe COVID-19 and SCD. In addition, the release of thromboxane A2 from endothelial cells and macrophages stimulates platelets to release microvesicles, which are harbingers of multicellular adhesion and thrombo-inflammation. Currently, there are limited therapeutic strategies targeting platelet-neutrophil activation and thrombo-inflammation in either SCD or COVID-19 during acute crisis. However, due to many similarities between the pathobiology of thrombo-inflammation in SCD and COVID-19, therapies targeting one disease may likely be effective in the other. Therefore, the preclinical and clinical research spurred by the COVID-19 pandemic, including clinical trials of anti-thrombotic agents, are potentially applicable to VOC. Here, we first outline the parallels between SCD and COVID-19; second, review the role of lipid mediators in the pathogenesis of these diseases; and lastly, examine the therapeutic targets and potential treatments for the two diseases.
Collapse
Affiliation(s)
| | - Ajay Gupta
- KARE Biosciences, Orange, CA 89128, USA
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Irvine, CA 92868, USA
| | - Prithu Sundd
- Vascular Medicine Institute and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lakshmanan Krishnamurti
- Division of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
21
|
Dufour-Gaume F, Frescaline N, Cardona V, Prat NJ. Danger signals in traumatic hemorrhagic shock and new lines for clinical applications. Front Physiol 2023; 13:999011. [PMID: 36726379 PMCID: PMC9884701 DOI: 10.3389/fphys.2022.999011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
Hemorrhage is the leading cause of death in severe trauma injuries. When organs or tissues are subjected to prolonged hypoxia, danger signals-known as damage-associated molecular patterns (DAMPs)-are released into the intercellular environment. The endothelium is both the target and a major provider of damage-associated molecular patterns, which are directly involved in immuno-inflammatory dysregulation and the associated tissue suffering. Although damage-associated molecular patterns release begins very early after trauma, this release and its consequences continue beyond the initial treatment. Here we review a few examples of damage-associated molecular patterns to illustrate their pathophysiological roles, with emphasis on emerging therapeutic interventions in the context of severe trauma. Therapeutic intervention administered at precise points during damage-associated molecular patterns release may have beneficial effects by calming the inflammatory storm triggered by traumatic hemorrhagic shock.
Collapse
Affiliation(s)
- Frédérique Dufour-Gaume
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France,*Correspondence: Frédérique Dufour-Gaume,
| | | | - Venetia Cardona
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France
| | - Nicolas J. Prat
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny surOrge, France
| |
Collapse
|
22
|
Kour D, Ali M, Khajuria P, Sharma K, Ghosh P, Kaur S, Mahajan S, Ramajayan P, Bharate SS, Bhardwaj S, Sawant SD, Reddy DS, Kumar A. Flurbiprofen inhibits heme induced NLRP3 inflammasome in Berkeley sickle cell disease mice. Front Pharmacol 2023; 14:1123734. [PMID: 37180702 PMCID: PMC10171431 DOI: 10.3389/fphar.2023.1123734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Sickle cell disease (SCD) is accompanied by several complications, which emanate from the sickling of erythrocytes due to a point mutation in the β-globin chain of hemoglobin. Sickled erythrocytes are unable to move smoothly through small blood capillaries and therefore, cause vaso occlusion and severe pain. Apart from pain, continuous lysis of fragile sickled erythrocytes leads to the release of heme, which is a strong activator of the NLRP3 inflammasome, thus producing chronic inflammation in sickle cell disease. In this study, we identified flurbiprofen among other COX-2 inhibitors to be a potent inhibitor of heme-induced NLRP3 inflammasome. We found that apart from being a nociceptive agent, flurbiprofen exerts a strong anti-inflammatory effect by suppressing NF-κB signaling, which was evidenced by reduced levels of TNF-α and IL-6 in wild-type and sickle cell disease Berkeley mice models. Our data further demonstrated the protective effect of flurbiprofen on liver, lungs, and spleen in Berkeley mice. The current sickle cell disease pain management regime relies mainly on opiate drugs, which is accompanied by several side effects without modifying the sickle cell disease-related pathology. Considering the potent role of flurbiprofen in inhibiting NLRP3 inflammasome and other inflammatory cytokines in sickle cell disease, our data suggests that it can be explored further for better sickle cell disease pain management along with the possibility of disease modification.
Collapse
Affiliation(s)
- Dilpreet Kour
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabaad, India
| | - Mehboob Ali
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabaad, India
| | - Parul Khajuria
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabaad, India
| | - Kuhu Sharma
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabaad, India
| | - Palash Ghosh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sukhleen Kaur
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabaad, India
| | - Surbhi Mahajan
- Department of Pathology, Government Medical College, Jammu, India
| | - P. Ramajayan
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabaad, India
| | - Sonali S. Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, India
| | - Subhash Bhardwaj
- Department of Pathology, Government Medical College, Jammu, India
| | - Sanghapal D. Sawant
- Academy of Scientific and Innovative Research, Ghaziabaad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - D. Srinivasa Reddy
- Academy of Scientific and Innovative Research, Ghaziabaad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- *Correspondence: D. Srinivasa Reddy, ; Ajay Kumar,
| | - Ajay Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabaad, India
- *Correspondence: D. Srinivasa Reddy, ; Ajay Kumar,
| |
Collapse
|
23
|
Cheng H, Chen L, Huang M, Hou J, Chen Z, Yang X. Hunting down NLRP3 inflammasome: An executioner of radiation-induced injury. Front Immunol 2022; 13:967989. [PMID: 36353625 PMCID: PMC9637992 DOI: 10.3389/fimmu.2022.967989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the mainstream treatment modalities for several malignancies. However, radiation-induced injury to surrounding normal tissues limits its efficacy. The NLRP3 inflammasome is an essential mechanism of innate immunity that reacts to challenges from endogenous danger signals and pathological microbes. A growing body of evidence has demonstrated a key role of NLRP3 inflammasome in the pathogenesis of radiation-induced tissue injury. Despite accumulating evidence, the potential value of the NLRP3 inflammasome in the management of radiation-induced tissue injury is not adequately recognized. We conducted a literature review to characterize the relationship between NLRP3 inflammasome and radiation injury. By analyzing recent evidence, we identify NLRP3 inflammasome as one of the executioners of radiation-induced injury, since it responds to the challenges of radiation, induces cell pyroptosis and tissue dysfunction, and initiates non-resolving inflammation and fibrosis. Based on these concepts, we propose early intervention/prevention strategies targeting NLRP3 inflammasome in a radiation context, which may help resolve imperative clinical problems.
Collapse
Affiliation(s)
- Han Cheng
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingling Chen
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhifeng Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| |
Collapse
|
24
|
de Freitas Dutra V, Leal VNC, Pontillo A. The inflammasomes: crosstalk between innate immunity and hematology. Inflamm Res 2022; 71:1403-1416. [PMID: 36266587 DOI: 10.1007/s00011-022-01646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The inflammasome is a cytosolic multi-protein complex responsible for the proteolytic maturation of pro-inflammatory cytokines IL-1ß and IL-18 and of gasdermin-D, which mediates membrane pore formation and the cytokines release, or eventually a lytic cell death known as pyroptosis. Inflammation has long been accepted as a key component of hematologic conditions, either oncological or benign diseases. OBJECTIVES This study aims to review the current knowledge about the contribution of inflammasome in hematologic diseases. We attempted to depict the participation of specific inflammasome receptors, and the possible cell-specific consequence of complex activation, as well as the use of anti-inflammasome therapies. METHODS We performed a keyword-based search in public databases (Pubmed.gov, ClinicalTrials.gov.). CONCLUSION Different blood cells variably express inflammasome components. Considering the immunosuppression associated with both the disease and the treatment of some hematologic diseases, and a microenvironment that allows neoplastic cell proliferation, inflammasomes could be a link between innate immunity and disease progression, as well as an interesting therapeutic target.
Collapse
Affiliation(s)
- Valéria de Freitas Dutra
- Hematology and Blood Transfusion Division, Clinical and Experimental Oncology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), R. Dr. Diogo de Farias, 824, Vila Clementino, São Paulo, SP, 04037-002, Brazil.
| | - Vinicius Nunes Cordeiro Leal
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, Av. Prof. Lineu Prestes, 1730-Butantã, São Paulo, 05508-000, Brazil
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, Av. Prof. Lineu Prestes, 1730-Butantã, São Paulo, 05508-000, Brazil
| |
Collapse
|
25
|
Inflammasomes—New Contributors to Blood Diseases. Int J Mol Sci 2022; 23:ijms23158129. [PMID: 35897704 PMCID: PMC9331764 DOI: 10.3390/ijms23158129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammasomes are intracellular multimeric complexes that cleave the precursors of the IL-1 family of cytokines and various proteins, found predominantly in cells of hematopoietic origin. They consist of pattern-recognition receptors, adaptor domains, and the enzymatic caspase-1 domain. Inflammasomes become activated upon stimulation by various exogenous and endogenous agents, subsequently promoting and enhancing inflammatory responses. To date, their function has been associated with numerous pathologies. Most recently, many studies have focused on inflammasomes’ contribution to hematological diseases. Due to aberrant expression levels, NLRP3, NLRP1, and NLRC4 inflammasomes were indicated as predominantly involved. The NLRP3 inflammasome correlated with the pathogenesis of non-Hodgkin lymphomas, multiple myeloma, acute myeloid leukemia, lymphoid leukemias, myelodysplastic neoplasms, graft-versus-host-disease, and sickle cell anemia. The NLRP1 inflammasome was associated with myeloma and chronic myeloid leukemia, whereas NLRC4 was associated with hemophagocytic lymphohistiocytosis. Moreover, specific gene variants of the inflammasomes were linked to disease susceptibility. Despite the incomplete understanding of these correlations and the lack of definite conclusions regarding the therapeutic utility of inflammasome inhibitors, the available results provide a valuable basis for clinical applications and precede upcoming breakthroughs in the field of innovative treatments. This review summarizes the latest knowledge on inflammasomes in hematological diseases, indicates the potential limitations of the current research approaches, and presents future perspectives.
Collapse
|
26
|
Walker AL, Crosby D, Miller V, Weidert F, Ofori-Acquah S. Hydroxyurea Decouples Persistent F-Cell Elevation and Induction of γ-Globin. Exp Hematol 2022; 112-113:15-23.e1. [PMID: 35843392 DOI: 10.1016/j.exphem.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022]
Abstract
Mechanisms that control the fetal-to-adult hemoglobin switch are attractive therapeutic targets in sickle cell disease. In this study, we investigated developmental γ-globin silencing in the Townes humanized knock-in mouse model, which harbors a construct containing the human γ-, βA-, and βS-globin genes, and examined the utility of this model in evaluation of pharmacologic induction of fetal hemoglobin (HbF). We studied mouse pups on the day of delivery (P0) to 28 days after birth (P28). Regardless of the hemoglobin genotype (SS, AS, or AA), the proportion of F cells in peripheral blood was 100% at P0, declined sharply to 20% at P2, and was virtually undetectable at P14. Developmental γ-globin silencing in Townes mice was complete at P4 in association with significantly increased BCL11A expression in the primary erythropoietic organs of the mouse. Hydroxyurea given at P2 significantly sustained elevated percentages of F cells in mice at P14. However, the percentage of F cells declined at P14 for treatment begun at P4. A lack of augmentation of γ-globin mRNA in erythroid tissues suggests that the apparent increase in HbF in red cells caused by hydroxyurea was not due to sustained or re-activation of γ-globin transcription, but was instead a function of erythropoiesis suppression. Thus, we provide new details of the hemoglobin switch in the Townes murine model that recapitulates postnatal γ- to β-globin switch in humans and identify the myelosuppressive toxicity of hydroxyurea as a superseding factor in interpreting pharmacologic induction of HbF.
Collapse
Affiliation(s)
- Aisha L Walker
- Pittsburgh Heart Blood and Lung Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Department of Pediatrics, Emory University, Atlanta, GA.
| | - Danielle Crosby
- Pittsburgh Heart Blood and Lung Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Valerie Miller
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| | - Frances Weidert
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Solomon Ofori-Acquah
- Pittsburgh Heart Blood and Lung Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; School of Biomedical and Allied Health Sciences, Accra, Ghana
| |
Collapse
|
27
|
Carreño M, Pires MF, Woodcock SR, Brzoska T, Ghosh S, Salvatore SR, Chang F, Khoo NKH, Dunn M, Connors N, Yuan S, Straub AC, Wendell SG, Kato GJ, Freeman BA, Ofori-Acquah SF, Sundd P, Schopfer FJ, Vitturi DA. Immunomodulatory actions of a kynurenine-derived endogenous electrophile. SCIENCE ADVANCES 2022; 8:eabm9138. [PMID: 35767602 PMCID: PMC9242454 DOI: 10.1126/sciadv.abm9138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The up-regulation of kynurenine metabolism induces immunomodulatory responses via incompletely understood mechanisms. We report that increases in cellular and systemic kynurenine levels yield the electrophilic derivative kynurenine-carboxyketoalkene (Kyn-CKA), as evidenced by the accumulation of thiol conjugates and saturated metabolites. Kyn-CKA induces NFE2 like bZIP transcription factor 2- and aryl hydrocarbon receptor-regulated genes and inhibits nuclear factor κB- and NLR family pyrin domain containing 3-dependent proinflammatory signaling. Sickle cell disease (SCD) is a hereditary hemolytic condition characterized by basal inflammation and recurrent vaso-occlusive crises. Both transgenic SCD mice and patients with SCD exhibit increased kynurenine and Kyn-CKA metabolite levels. Plasma hemin and kynurenine concentrations are positively correlated, indicating that Kyn-CKA synthesis in SCD is up-regulated during pathogenic vascular stress. Administration of Kyn-CKA abrogated pulmonary microvasculature occlusion in SCD mice, an important factor in lung injury development. These findings demonstrate that the up-regulation of kynurenine synthesis and its metabolism to Kyn-CKA is an adaptive response that attenuates inflammation and protects tissues.
Collapse
Affiliation(s)
- Mara Carreño
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria F. Pires
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R. Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tomasz Brzoska
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samit Ghosh
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sonia R. Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fei Chang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas K. H. Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Dunn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora Connors
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shuai Yuan
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Microvascular Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Solomon F. Ofori-Acquah
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francisco J. Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dario A. Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Ye J, Li L, Wang M, Ma Q, Tian Y, Zhang Q, Liu J, Li B, Zhang B, Liu H, Sun G. Diabetes Mellitus Promotes the Development of Atherosclerosis: The Role of NLRP3. Front Immunol 2022; 13:900254. [PMID: 35844498 PMCID: PMC9277049 DOI: 10.3389/fimmu.2022.900254] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis is one of the main complications of diabetes mellitus, involving a variety of pathogenic factors. Endothelial dysfunction, inflammation, and oxidative stress are hallmarks of diabetes mellitus and atherosclerosis. Although the ability of diabetes to promote atherosclerosis has been demonstrated, a deeper understanding of the underlying biological mechanisms is critical to identifying new targets. NLRP3 plays an important role in both diabetes and atherosclerosis. While the diversity of its activation modes is one of the underlying causes of complex effects in the progression of diabetes and atherosclerosis, it also provides many new insights for targeted interventions in metabolic diseases.
Collapse
Affiliation(s)
- Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanfang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| |
Collapse
|
29
|
Stolarz AJ, Mu S, Zhang H, Fouda AY, Rusch NJ, Ding Z. Opinion: Endothelial Cells - Macrophage-Like Gatekeepers? Front Immunol 2022; 13:902945. [PMID: 35619719 PMCID: PMC9127206 DOI: 10.3389/fimmu.2022.902945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Affiliation(s)
- Amanda J Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Huiliang Zhang
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Zufeng Ding
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
30
|
Ryder CB, Kondolf HC, O’Keefe ME, Zhou B, Abbott DW. Chemical Modulation of Gasdermin-Mediated Pyroptosis and Therapeutic Potential. J Mol Biol 2022; 434:167183. [PMID: 34358546 PMCID: PMC8810912 DOI: 10.1016/j.jmb.2021.167183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Pyroptosis, a lytic form of programmed cell death, both stimulates effective immune responses and causes tissue damage. Gasdermin (GSDM) proteins are a family of pore-forming executors of pyroptosis. While the most-studied member, GSDMD, exerts critical functions in inflammasome biology, emerging evidence demonstrates potential broad relevance for GSDM-mediated pyroptosis across diverse pathologies. In this review, we describe GSDM biology, outline conditions where inflammasomes and GSDM-mediated pyroptosis represent rational therapeutic targets, and delineate strategies to manipulate these central immunologic processes for the treatment of human disease.
Collapse
Affiliation(s)
- Christopher B. Ryder
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 44106,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA 44106
| | - Hannah C. Kondolf
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 44106
| | - Meghan E. O’Keefe
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 44106
| | - Bowen Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 44106
| | - Derek W. Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA 44106,Corresponding author: ()
| |
Collapse
|
31
|
Venugopal J, Wang J, Guo C, Eitzman DT. Interleukin-1 receptor antagonism leads to improved anaemia in a murine model of sickle cell disease and is associated with reduced ex vivo platelet-mediated erythrocyte sickling. Br J Haematol 2021; 196:1040-1051. [PMID: 34786709 DOI: 10.1111/bjh.17941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Sickle cell disease (SCD) is associated with haemolytic anaemia and secondary activation of leucocytes and platelets, which in turn may further exacerbate haemolysis. As cytokine signalling pathways may participate in this cycle, the present study investigated whether pharmacological blockade of the interleukin-1 receptor (IL-1R) would mitigate anaemia in a murine model of SCD. Within 2 weeks of treatment, reduced markers of haemolysis were observed in anakinra-treated mice compared to vehicle-treated mice. After 4 weeks of anakinra treatment, mice showed increased numbers of erythrocytes, haemoglobin, and haematocrit, along with reduced reticulocytes. Blood from anakinra-treated mice was less susceptible to ex vivo erythrocyte sickling and was resistant to exogenous IL-1β-mediated sickling. Supernatant generated from IL-1β-treated platelets was sufficient to promote erythrocyte sickling, an effect not observed with platelet supernatant generated from IL-1R-/- mice. The sickling effect of IL-1β-treated platelet supernatant was inhibited by a transforming growth factor-β (TGF-β) neutralising antibody, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, and superoxide scavengers, but replicated by recombinant TGF-β. In conclusion, pharmacological IL-1R antagonism leads to improved anaemia in a murine SCD model. IL-1β stimulation of platelets promotes erythrocyte sickling. This effect may be mediated by platelet-derived TGF-β-induced reactive oxygen species generation though erythrocyte NADPH oxidase.
Collapse
Affiliation(s)
- Jessica Venugopal
- University of Michigan Internal Medicine - Cardiology Division, Ann Arbor, MI, USA
| | - Jintao Wang
- University of Michigan Internal Medicine - Cardiology Division, Ann Arbor, MI, USA
| | - Chiao Guo
- University of Michigan Internal Medicine - Cardiology Division, Ann Arbor, MI, USA
| | - Daniel T Eitzman
- University of Michigan Internal Medicine - Cardiology Division, Ann Arbor, MI, USA
| |
Collapse
|
32
|
de Freitas Dutra V, Leal VNC, Fernandes FP, Souza CRL, Figueiredo MS, Pontillo A. Genetic contribution and functional impairment of inflammasome in sickle cell disease. Cytokine 2021; 149:155717. [PMID: 34627079 DOI: 10.1016/j.cyto.2021.155717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/16/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Sickle cell disease (SCD), one of the most common single-gene disorders, is caused by mutations in the hemoglobin ß-chain gene. Clinical presentation is heterogeneous, and inflammation is a common condition. Thereby, we hypothesized that inflammasome and related cytokine IL-1ß could represent significant SCD pathogenesis contributors. MATERIAL AND METHODS 161 SCD (SS/Sβ) patients were enrolled for the study. Seven single nucleotide polymorphisms (SNPs) in 5 inflammasome genes (NLRP1, NLRP3, NLRC4, CARD8, IL1B) were selected based on minor allele frequency. Total peripheral blood mononuclear cells (PBMC) and monocytes were isolated from 10 out of 161 SCD patients (HbSS) and 10 healthy donors (control group, Ctrl) for inflammasome analysis. RESULTS SCD patients presented a functional impairment of inflammasome, with monocytes and peripheral blood mononuclear cells (PBMC) exhibiting a different NLRP3 inflammasome activation rate. Gain-of-function variants in NLRP1 and IL1B genes resulted associated with a mild SCD clinical presentation. DISCUSSION Our results can contribute to the understanding of SCD inflammation. SCD patients showed possible exhaustion of monocytes due to chronic inflammation, moreover others cells in PBMC can contribute to the NLRP3 inflammasome activation. NLRP1 gain-of-function was associated with mild clinical presentation, suggesting that other inflammasome receptors can be involved in SCD. This is the first study reporting a significant contribution of inflammasome SNPs in SCD.
Collapse
Affiliation(s)
- Valéria de Freitas Dutra
- Hematology and Blood Transfusion Division, Clinical and Experimetnal Oncology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), R Dr. Diogo de Farias, 824, 04037-002 Vila Clementino, São Paulo, SP, Brazil.
| | - Vinícius Nunes Cordeiro Leal
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, Av. Prof. Lineu Prestes, 1730, 05508-000 Butantã, São Paulo, SP, Brazil.
| | - Fernanda Pereira Fernandes
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, Av. Prof. Lineu Prestes, 1730, 05508-000 Butantã, São Paulo, SP, Brazil.
| | - Cláudia Regina Lustosa Souza
- Hematology and Blood Transfusion Division, Clinical and Experimetnal Oncology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), R Dr. Diogo de Farias, 824, 04037-002 Vila Clementino, São Paulo, SP, Brazil
| | - Maria Stella Figueiredo
- Hematology and Blood Transfusion Division, Clinical and Experimetnal Oncology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), R Dr. Diogo de Farias, 824, 04037-002 Vila Clementino, São Paulo, SP, Brazil.
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, Av. Prof. Lineu Prestes, 1730, 05508-000 Butantã, São Paulo, SP, Brazil
| |
Collapse
|
33
|
Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword. Int J Mol Sci 2021; 22:ijms22157894. [PMID: 34360659 PMCID: PMC8347377 DOI: 10.3390/ijms22157894] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Théo Ebermeyer
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Fabrice Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 25 bd Pasteur, F-42100 Saint-Étienne, France
| | - Philippe Berthelot
- Team GIMAP, CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, U1111, UMR5308, F-69007 Lyon, France;
- Infectious Diseases Department, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Patrick Mismetti
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Department of Vascular Medicine and Therapeutics, INNOVTE, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Olivier Garraud
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Hind Hamzeh-Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Correspondence:
| |
Collapse
|
34
|
Corcoran SE, Halai R, Cooper MA. Pharmacological Inhibition of the Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome with MCC950. Pharmacol Rev 2021; 73:968-1000. [PMID: 34117094 DOI: 10.1124/pharmrev.120.000171] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome drives release of the proinflammatory cytokines interleukin (IL)-1β and IL-18 and induces pyroptosis (lytic cell death). These events drive chronic inflammation, and as such, NLRP3 has been implicated in a large number of human diseases. These range from autoimmune conditions, the simplest of which is NLRP3 gain-of-function mutations leading to an orphan disease, cryopyrin-associated period syndrome, to large disease burden indications, such as atherosclerosis, heart failure, stroke, neurodegeneration, asthma, ulcerative colitis, and arthritis. The potential clinical utility of NLRP3 inhibitors is substantiated by an expanding list of indications in which NLRP3 activation has been shown to play a detrimental role. Studies of pharmacological inhibition of NLRP3 in nonclinical models of disease using MCC950 in combination with human genetics, epigenetics, and analyses of the efficacy of biologic inhibitors of IL-1β, such as anakinra and canakinumab, can help to prioritize clinical trials of NLRP3-directed therapeutics. Although MCC950 shows excellent (nanomolar) potency and high target selectivity, its pharmacokinetic and toxicokinetic properties limited its therapeutic development in the clinic. Several improved, next-generation inhibitors are now in clinical trials. Hence the body of research in a plethora of conditions reviewed herein may inform analysis of the potential translational value of NLRP3 inhibition in diseases with significant unmet medical need. SIGNIFICANCE STATEMENT: The nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is one of the most widely studied and best validated biological targets in innate immunity. Activation of NLRP3 can be inhibited with MCC950, resulting in efficacy in more than 100 nonclinical models of inflammatory diseases. As several next-generation NLRP3 inhibitors are entering proof-of-concept clinical trials in 2020, a review of the pharmacology of MCC950 is timely and significant.
Collapse
Affiliation(s)
- Sarah E Corcoran
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Reena Halai
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Matthew A Cooper
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| |
Collapse
|
35
|
Abstract
The association between inflammation, infection, and venous thrombosis has long been recognized; yet, only in the last decades have we begun to understand the mechanisms through which the immune and coagulation systems interact and reciprocally regulate one another. These interconnected networks mount an effective response to injury and pathogen invasion, but if unregulated can result in pathological thrombosis and organ damage. Neutrophils, monocytes, and platelets interact with each other and the endothelium in host defense and also play critical roles in the formation of venous thromboembolism. This knowledge has advanced our understanding of both human physiology and pathophysiology, as well as identified mechanisms of anticoagulant resistance and novel therapeutic targets for the prevention and treatment of thrombosis. In this review, we discuss the contributions of inflammation and infection to venous thromboembolism.
Collapse
Affiliation(s)
- Meaghan E. Colling
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Benjamin E. Tourdot
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
|
37
|
Rolfes V, Ribeiro LS, Hawwari I, Böttcher L, Rosero N, Maasewerd S, Santos MLS, Próchnicki T, Silva CMDS, Wanderley CWDS, Rothe M, Schmidt SV, Stunden HJ, Bertheloot D, Rivas MN, Fontes CJ, Carvalho LH, Cunha FQ, Latz E, Arditi M, Franklin BS. Platelets Fuel the Inflammasome Activation of Innate Immune Cells. Cell Rep 2021; 31:107615. [PMID: 32402278 PMCID: PMC7225754 DOI: 10.1016/j.celrep.2020.107615] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/12/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The inflammasomes control the bioactivity of pro-inflammatory cytokines of the interleukin (IL)-1 family. The inflammasome assembled by NLRP3 has been predominantly studied in homogeneous cell populations in vitro, neglecting the influence of cellular interactions that occur in vivo. Here, we show that platelets boost the inflammasome capacity of human macrophages and neutrophils and are critical for IL-1 production by monocytes. Platelets license NLRP3 transcription, thereby enhancing ASC oligomerization, caspase-1 activity, and IL-1β secretion. Platelets influence IL-1β production in vivo, and blood platelet counts correlate with plasmatic IL-1β levels in malaria. Furthermore, we reveal an enriched platelet gene signature among the highest-expressed transcripts in IL-1β-driven autoinflammatory diseases. The platelet effect is independent of cell-to-cell contact, platelet-derived lipid mediators, purines, nucleic acids, and a host of platelet cytokines, and it involves the triggering of calcium-sensing receptors on macrophages. Hence, platelets provide an additional layer of regulation of inflammasomes and IL-1-driven inflammation. Platelets license NLRP3 for inflammasome activattion in innate immune cells Platelets are required for optimal monocyte inflammasome activation Platelets shape IL-1β in vivo, and platelet counts correlate with IL-1β in plasma A constitutive, heat-sensitive soluble platelet-factor boost IL-1β in macrophages
Collapse
Affiliation(s)
- Verena Rolfes
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany
| | - Lucas Secchim Ribeiro
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany.
| | - Ibrahim Hawwari
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany
| | - Lisa Böttcher
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany
| | - Nathalia Rosero
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany
| | - Salie Maasewerd
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany
| | - Marina Lima Silva Santos
- Laboratório de Malária, Instituto René Rachou, Fundação Oswaldo Cruz, 30190-002 Belo Horizonte, MG, Brazil
| | - Tomasz Próchnicki
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany
| | - Camila Meirelles de Souza Silva
- Center for Research in Inflammatory Diseases, School of Medicine of Ribeirão Preto, University of Sao Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Carlos Wagner de Souza Wanderley
- Center for Research in Inflammatory Diseases, School of Medicine of Ribeirão Preto, University of Sao Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Maximilian Rothe
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany
| | - Susanne V Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany
| | - H James Stunden
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany
| | - Damien Bertheloot
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany
| | - Magali Noval Rivas
- Departments of Pediatrics, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Cor Jesus Fontes
- Departamento de Clínica Médica, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, MT, Brazil
| | - Luzia Helena Carvalho
- Laboratório de Malária, Instituto René Rachou, Fundação Oswaldo Cruz, 30190-002 Belo Horizonte, MG, Brazil
| | - Fernando Queiroz Cunha
- Center for Research in Inflammatory Diseases, School of Medicine of Ribeirão Preto, University of Sao Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Eicke Latz
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, NRW, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA; German Center for Neurodegenerative Diseases, 53127 Bonn, NRW, Germany
| | - Moshe Arditi
- Departments of Pediatrics, Division of Infectious Diseases and Immunology, and Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA.
| | | |
Collapse
|
38
|
Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Adv 2021; 4:2018-2031. [PMID: 32396616 DOI: 10.1182/bloodadvances.2019001169] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence identifies major contributions of platelets to inflammatory amplification in dengue, but the mechanisms of infection-driven platelet activation are not completely understood. Dengue virus nonstructural protein-1 (DENV NS1) is a viral protein secreted by infected cells with recognized roles in dengue pathogenesis, but it remains unknown whether NS1 contributes to the inflammatory phenotype of infected platelets. This study shows that recombinant DENV NS1 activated platelets toward an inflammatory phenotype that partially reproduced DENV infection. NS1 stimulation induced translocation of α-granules and release of stored factors, but not of newly synthesized interleukin-1β (IL-1β). Even though both NS1 and DENV were able to induce pro-IL-1β synthesis, only DENV infection triggered caspase-1 activation and IL-1β release by platelets. A more complete thromboinflammatory phenotype was achieved by synergistic activation of NS1 with classic platelet agonists, enhancing α-granule translocation and inducing thromboxane A2 synthesis (thrombin and platelet-activating factor), or activating caspase-1 for IL-1β processing and secretion (adenosine triphosphate). Also, platelet activation by NS1 partially depended on toll-like receptor-4 (TLR-4), but not TLR-2/6. Finally, the platelets sustained viral genome translation and replication, but did not support the release of viral progeny to the extracellular milieu, characterizing an abortive viral infection. Although DENV infection was not productive, translation of the DENV genome led to NS1 expression and release by platelets, contributing to the activation of infected platelets through an autocrine loop. These data reveal distinct, new mechanisms for platelet activation in dengue, involving DENV genome translation and NS1-induced platelet activation via platelet TLR4.
Collapse
|
39
|
Vogel S, Kamimura S, Arora T, Smith ML, Almeida LEF, Combs CA, Thein SL, Quezado ZMN. NLRP3 inflammasome and bruton tyrosine kinase inhibition interferes with upregulated platelet aggregation and in vitro thrombus formation in sickle cell mice. Biochem Biophys Res Commun 2021; 555:196-201. [PMID: 33831782 DOI: 10.1016/j.bbrc.2021.03.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022]
Abstract
The nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) inflammasome is a critical inflammatory mechanism identified in platelets, which controls platelet activation and aggregation. We have recently shown that the platelet NLRP3 inflammasome is upregulated in sickle cell disease (SCD), which is mediated by Bruton tyrosine kinase (BTK). Here, we investigated the effect of pharmacological inhibition of NLRP3 and BTK on platelet aggregation and the formation of in vitro thrombi in Townes SCD mice. Mice were injected for 4 weeks with the NLRP3 inhibitor MCC950, the BTK inhibitor ibrutinib or vehicle control. NLRP3 activity, as monitored by caspase-1 activation, was upregulated in platelets from SCD mice, which was dependent on BTK. Large areas of platelet aggregates detected in the liver of SCD mice were decreased when mice were treated with MCC950 or ibrutinib. Moreover, platelet aggregation and in vitro thrombus formation were upregulated in SCD mice and were inhibited when mice were subjected to pharmacological inhibition of NLRP3 and BTK. Targeting the NLRP3 inflammasome might be a novel approach for antiplatelet therapy in SCD.
Collapse
Affiliation(s)
- Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Taruna Arora
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Christian A Combs
- Light Microscopy Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA; Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Xue Y, Chen H, Zhang S, Bao L, Chen B, Gong H, Zhao Y, Qi R. Resveratrol Confers Vascular Protection by Suppressing TLR4/Syk/NLRP3 Signaling in Oxidized Low-Density Lipoprotein-Activated Platelets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8819231. [PMID: 33728029 PMCID: PMC7935581 DOI: 10.1155/2021/8819231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
This study investigated the effect of resveratrol on Toll-like receptor 4- (TLR4-) mediated matrix metalloproteinase 3 (MMP3) and MMP9 expression in oxidized low-density lipoprotein- (ox-LDL-) activated platelets and the potential molecule mechanism. Human platelets were used in the present study. The results showed that resveratrol suppressed TLR4, MMP3, and MMP9 expression in ox-LDL-activated platelets. The TLR4 inhibitor CLI-095 also inhibited MMP3 and MMP9 expression and secretion in ox-LDL- and lipopolysaccharide- (LPS-) activated platelets. The combination of resveratrol and CLI-095 synergistically suppressed MMP3 and MMP9 expression in ox-LDL- and LPS-activated platelets. These findings suggest that the resveratrol-induced inhibition of MMP3 and MMP9 expression is linked to the suppression of TLR4 activation. Resveratrol also suppressed spleen tyrosine kinase (Syk) phosphorylation and nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) expression and IL-1β secretion in ox-LDL- and LPS-treated platelets. The coimmunoprecipitation results showed that resveratrol inhibited the binding of Syk and NLRP3. Finally, resveratrol reduced vascular senescence cells and the expression of TLR4, MMP3, and MMP9 and prevented alterations of vascular structure in 52-week-old mice. Our findings demonstrated that resveratrol decreased inflammatory protein expression and improved vascular structure in aged mice. Resveratrol inhibited the expression of TLR4 and secretion of MMP3, MMP9, and IL-1β. The mechanism of action of resveratrol appears to be associated with the inhibition of TLR4/Syk/NLRP3 activation in ox-LDL-activated platelets.
Collapse
Affiliation(s)
- Yun Xue
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Huilian Chen
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Shenghao Zhang
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Li Bao
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Beidong Chen
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Huan Gong
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yanyang Zhao
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ruomei Qi
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Wang JD, Wang YY, Lin SY, Chang CY, Li JR, Huang SW, Chen WY, Liao SL, Chen CJ. Exosomal HMGB1 Promoted Cancer Malignancy. Cancers (Basel) 2021; 13:877. [PMID: 33669632 PMCID: PMC7921955 DOI: 10.3390/cancers13040877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Reciprocal crosstalk between platelets and malignancies underscores the potential of antiplatelet therapy in cancer treatment. In this study, we found that human chronic myeloid leukemia K562 cell-differentiated megakaryocytes and murine platelets produced bioactive substances and these are released into the extracellular space, partly in their exosomal form. High-mobility group box 1 (HMGB1) is a type of exosomal cargo, and the antiplatelet drugs aspirin and dipyridamole interfered with its incorporation into the exosomes. Those released substances and exosomes, along with exogenous HMGB1, promoted cancer cell survival and protected cells from doxorubicin cytotoxicity. In a tumor-bearing model established using murine Lewis lung carcinoma (LLC) cells and C57BL/6 mice, the tumor suppressive effect of dipyridamole correlated well with decreased circulating white blood cells, soluble P-selectin, TGF-β1 (Transforming Growth Factor-β1), exosomes, and exosomal HMGB1, as well as tumor platelet infiltration. Exosome release inhibitor GW4869 exhibited suppressive effects as well. The suppressive effect of dipyridamole on cancer cell survival was paralleled by a reduction of HMGB1/receptor for advanced glycation end-products axis, and proliferation- and migration-related β-catenin, Yes-associated protein 1, Runt-related transcription factor 2, and TGF- β1/Smad signals. Therefore, exosomes and exosomal HMGB1 appear to have roles in platelet-driven cancer malignancy and represent targets of antiplatelet drugs in anticancer treatment.
Collapse
Affiliation(s)
- Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 407, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shi-Wei Huang
- Translational Cell Therapy Center, China Medical University Hospital, Taichung City 404, Taiwan;
- Institute of New Drug Development, China Medical University, Taichung City 404, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
42
|
Khaibullina A, Almeida LEF, Kamimura S, Zerfas PM, Smith ML, Vogel S, Wakim P, Vasconcelos OM, Quezado MM, Horkayne-Szakaly I, Quezado ZMN. Sickle cell disease mice have cerebral oxidative stress and vascular and white matter abnormalities. Blood Cells Mol Dis 2021; 86:102493. [PMID: 32927249 PMCID: PMC7686096 DOI: 10.1016/j.bcmd.2020.102493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Strokes are feared complications of sickle cell disease (SCD) and yield significant neurologic and neurocognitive deficits. However, even without detectable strokes, SCD patients have significant neurocognitive deficits in domains of learning and memory, processing speed and executive function. In these cases, mechanisms unrelated to major cerebrovascular abnormalities likely underlie these deficits. While oxidative stress and stress-related signaling pathways play a role in SCD pathophysiology, their role in cerebral injury remains unknown. We have shown that Townes and BERK SCD mice, while not having strokes, recapitulate neurocognitive deficits reported in humans. We hypothesized that cognitive deficits in SCD mice are associated with cerebral oxidative stress. We showed that SCD mice have increased levels of reactive oxygen species, protein carbonylation, and lipid peroxidation in hippocampus and cortex, thus suggesting increased cerebral oxidative stress. Further, cerebral oxidative stress was associated with caspase-3 activity alterations and vascular endothelial abnormalities, white matter changes, and disruption of the blood brain barrier, similar to those reported after ischemic/oxidative injury. Additionally, after repeated hypoxia/reoxygenation exposure, homozygous Townes had enhanced microglia activation. Our findings indicate that oxidative stress and stress-induced tissue damage is increased in susceptible brain regions, which may, in turn, contribute to neurocognitive deficits in SCD mice.
Collapse
Affiliation(s)
- Alfia Khaibullina
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Olavo M Vasconcelos
- Neuromuscular Clinic, Electromyography Laboratory, Intraoperative Neurophysiology Monitoring Sections, Veterans Health Administration Medical Center, Virginia Commonwealth University, Richmond, VA 23249, United States of America
| | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Iren Horkayne-Szakaly
- Neuropathology and Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, United States of America
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America.
| |
Collapse
|
43
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
44
|
Wang S, Liu Y, Li G, Feng Q, Hou M, Peng J. Reduced intracellular antioxidant capacity in platelets contributes to primary immune thrombocytopenia via ROS-NLRP3-caspase-1 pathway. Thromb Res 2020; 199:1-9. [PMID: 33383234 DOI: 10.1016/j.thromres.2020.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Primary immune thrombocytopenia (ITP) is a common acquired autoimmune hemorrhagic disease characterized by a low platelet count and increased risk of bleeding. However, some patients do not respond well to current therapeutic approaches. Further studies on pathogenesis and pathophysiology of ITP are needed to discover new therapeutic targets. We explored the role of enhanced intracellular oxidative stress and NLRP3 inflammasome activation of platelets in ITP. The expression of NLRP3 inflammasome was assessed in platelets from active ITP patients and healthy donors. Both the mRNA and protein expression level of platelet NLRP3 inflammasome was upregulated in ITP patients compared with healthy donors. Besides, the elevated caspase-1 activity and increased co-localization of NLRP3 and its adaptor molecule ASC indicated activation of NLRP3 inflammasome in ITP platelets. Significantly decreased intracellular antioxidant capacity was observed in ITP platelets. H2O2 supplementation elevated the expression of NLRP3 inflammasome and increased IL-1β secretion in ITP platelets. Preincubating ITP platelets with NAC down-regulated the expression of NLRP3 inflammasome. Pretreating ITP platelets with NLRP3 inhibitor MCC950 or caspase-1 inhibitor Z-YVAD-FMK significantly reduced the proportion of pyroptotic cells in H2O2-treated ITP platelets and suppressed IL-1β secretion in supernatants. Hence, platelet NLRP3 inflammasome activation resulted from reduced intracellular antioxidant capacity plays a critical role in ITP and might have potential diagnostic or therapeutic implications.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Jinan, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
45
|
Hebbel RP, Belcher JD, Vercellotti GM. The multifaceted role of ischemia/reperfusion in sickle cell anemia. J Clin Invest 2020; 130:1062-1072. [PMID: 32118586 DOI: 10.1172/jci133639] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sickle cell anemia is a unique disease dominated by hemolytic anemia and vaso-occlusive events. The latter trigger a version of ischemia/reperfusion (I/R) pathobiology that is singular in its origin, cyclicity, complexity, instability, perpetuity, and breadth of clinical consequences. Specific clinical features are probably attributable to local I/R injury (e.g., stroke syndromes) or remote organ injury (e.g., acute chest syndrome) or the systematization of inflammation (e.g., multifocal arteriopathy). Indeed, by fashioning an underlying template of endothelial dysfunction and vulnerability, the robust inflammatory systematization no doubt contributes to all sickle pathology. In this Review, we highlight I/R-targeting therapeutics shown to improve microvascular blood flow in sickle transgenic mice undergoing I/R, and we suggest how such insights might be translated into human therapeutic strategies.
Collapse
|
46
|
Conran N, De Paula EV. Thromboinflammatory mechanisms in sickle cell disease - challenging the hemostatic balance. Haematologica 2020; 105:2380-2390. [PMID: 33054078 PMCID: PMC7556678 DOI: 10.3324/haematol.2019.239343] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/19/2020] [Indexed: 11/11/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy that is caused by the presence of abnormal hemoglobin S (HbS) in red blood cells, leading to alterations in red cell properties and shape, as the result of HbS dexoygenation and subsequent polymerization. SCD pathophysiology is characterized by chronic inflammatory processes, triggered by hemolytic and vaso-occlusive events, which lead to the varied complications, organ damage and elevated mortality seen in individuals with the disease. In association with activation of the endothelium and leukocytes, hemostatic alterations and thrombotic events are well-documented in SCD. Here we discuss the role for inflammatory pathways in modulating coagulation and inducing platelet activation in SCD, due to tissue factor activation, adhesion molecule expression, inflammatory mediator production and the induction of innate immune responses, amongst other mechanisms. Thromboinflammatory pathways may play a significant role in some of the major complications of SCD, such as stroke, venous thromboembolism and possibly acute chest syndrome, besides exacerbating the chronic inflammation and cellular interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and eventually organ damage.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas, UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - Erich V. De Paula
- Hematology Center, University of Campinas, UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| |
Collapse
|
47
|
Shet AS, Lizarralde-Iragorri MA, Naik RP. The molecular basis for the prothrombotic state in sickle cell disease. Haematologica 2020; 105:2368-2379. [PMID: 33054077 PMCID: PMC7556662 DOI: 10.3324/haematol.2019.239350] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The genetic and molecular basis of sickle cell disease (SCD) has long since been characterized but the pathophysiological basis is not entirely defined. How a red cell hemolytic disorder initiates inflammation, endothelial dysfunction, coagulation activation and eventually leads to vascular thrombosis, is yet to be elucidated. Recent evidence has demonstrated a high frequency of unprovoked/recurrent venous thromboembolism (VTE) in SCD, with an increased risk of mortality among patients with a history of VTE. Here, we thoroughly review the molecular basis for the prothrombotic state in SCD, specifically highlighting emerging evidence for activation of overlapping inflammation and coagulation pathways, that predispose to venous thromboembolism. We share perspectives in managing venous thrombosis in SCD, highlighting innovative therapies with the potential to influence the clinical course of disease and reduce thrombotic risk, while maintaining an acceptable safety profile.
Collapse
Affiliation(s)
- Arun S. Shet
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda
| | | | - Rakhi P. Naik
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
48
|
Greaney AJ, Portley MK, O’Mard D, Crown D, Maier NK, Mendenhall MA, Mayer-Barber KD, Leppla SH, Moayeri M. Frontline Science: Anthrax lethal toxin-induced, NLRP1-mediated IL-1β release is a neutrophil and PAD4-dependent event. J Leukoc Biol 2020; 108:773-786. [PMID: 32421904 PMCID: PMC11062252 DOI: 10.1002/jlb.4hi0320-028r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/17/2020] [Accepted: 03/28/2020] [Indexed: 12/21/2022] Open
Abstract
Anthrax lethal toxin (LT) is a protease that activates the NLRP1b inflammasome sensor in certain rodent strains. Unlike better-studied sensors, relatively little is known about the priming requirements for NLRP1b. In this study, we investigate the rapid and striking priming-independent LT-induced release of IL-1β in mice within hours of toxin challenge. We find IL-1β release to be a NLRP1b- and caspase-1-dependent, NLRP3 and caspase-11-independent event that requires both neutrophils and peptidyl arginine deiminiase-4 (PAD4) activity. The simultaneous LT-induced IL-18 response is neutrophil-independent. Bone marrow reconstitution experiments in mice show toxin-induced IL-1β originates from hematopoietic cells. LT treatment of neutrophils in vitro did not induce IL-1β, neutrophil extracellular traps (NETs), or pyroptosis. Although platelets interact closely with neutrophils and are also a potential source of IL-1β, they were unable to bind or endocytose LT and did not secrete IL-1β in response to the toxin. LT-treated mice had higher levels of cell-free DNA and HMGB1 in circulation than PBS-treated controls, and treatment of mice with recombinant DNase reduced the neutrophil- and NLRP1-dependent IL-1β release. DNA sensor AIM2 deficiency, however, did not impact IL-1β release. These data, in combination with the findings on PAD4, suggest a possible role for in vivo NETs or cell-free DNA in cytokine induction in response to LT challenge. Our findings suggest a complex interaction of events and/or mediators in LT-treated mice with the neutrophil as a central player in induction of a profound and rapid inflammatory response to toxin.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Anthrax/immunology
- Antigens, Bacterial/pharmacology
- Antigens, Bacterial/toxicity
- Apoptosis Regulatory Proteins/deficiency
- Apoptosis Regulatory Proteins/physiology
- Bacillus anthracis/pathogenicity
- Bacillus anthracis/physiology
- Bacterial Toxins/pharmacology
- Bacterial Toxins/toxicity
- Extracellular Traps/physiology
- Inflammasomes/physiology
- Interleukin-1beta/metabolism
- Mice
- Mice, 129 Strain
- Mice, Congenic
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Monocytes/drug effects
- Monocytes/physiology
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- Neutrophils/drug effects
- Neutrophils/metabolism
- Protein-Arginine Deiminase Type 4/deficiency
- Protein-Arginine Deiminase Type 4/physiology
- Pyroptosis/drug effects
- Radiation Chimera
- Species Specificity
- Spores, Bacterial
Collapse
Affiliation(s)
- Allison J. Greaney
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Makayla K. Portley
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Danielle O’Mard
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Devorah Crown
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nolan K. Maier
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Megan A. Mendenhall
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen H. Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Revisiting Platelets and Toll-Like Receptors (TLRs): At the Interface of Vascular Immunity and Thrombosis. Int J Mol Sci 2020; 21:ijms21176150. [PMID: 32858930 PMCID: PMC7504402 DOI: 10.3390/ijms21176150] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
While platelet function has traditionally been described in the context of maintaining vascular integrity, recent evidence suggests that platelets can modulate inflammation in a much more sophisticated and nuanced manner than previously thought. Some aspects of this expanded repertoire of platelet function are mediated via expression of Toll-like receptors (TLRs). TLRs are a family of pattern recognition receptors that recognize pathogen-associated and damage-associated molecular patterns. Activation of these receptors is crucial for orchestrating and sustaining the inflammatory response to both types of danger signals. The TLR family consists of 10 known receptors, and there is at least some evidence that each of these are expressed on or within human platelets. This review presents the literature on TLR-mediated platelet activation for each of these receptors, and the existing understanding of platelet-TLR immune modulation. This review also highlights unresolved methodological issues that potentially contribute to some of the discrepancies within the literature, and we also suggest several recommendations to overcome these issues. Current understanding of TLR-mediated platelet responses in influenza, sepsis, transfusion-related injury and cardiovascular disease are discussed, and key outstanding research questions are highlighted. In summary, we provide a resource—a “researcher’s toolkit”—for undertaking further research in the field of platelet-TLR biology.
Collapse
|
50
|
Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 2020; 108:1157-1182. [PMID: 32779243 DOI: 10.1002/jlb.4mr0620-701r] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are chief cells in hemostasis. Apart from their hemostatic roles, platelets are major inflammatory effector cells that can influence both innate and adaptive immune responses. Activated platelets have thromboinflammatory functions linking hemostatic and immune responses in several physiological and pathological conditions. Among many ways in which platelets exert these functions, platelet expression of pattern recognition receptors (PRRs), including TLR, Nod-like receptor, and C-type lectin receptor families, plays major roles in sensing and responding to pathogen-associated or damage-associated molecular patterns (PAMPs and DAMPs, respectively). In this review, an increasing body of evidence is compiled showing the participation of platelet innate immune receptors, including PRRs, in infectious diseases, sterile inflammation, and cancer. How platelet recognition of endogenous DAMPs participates in sterile inflammatory diseases and thrombosis is discussed. In addition, platelet recognition of both PAMPs and DAMPs initiates platelet-mediated inflammation and vascular thrombosis in infectious diseases, including viral, bacterial, and parasite infections. The study also focuses on the involvement of innate immune receptors in platelet activation during cancer, and their contribution to tumor microenvironment development and metastasis. Finally, how innate immune receptors participate in platelet communication with leukocytes, modulating leukocyte-mediated inflammation and immune functions, is highlighted. These cell communication processes, including platelet-induced release of neutrophil extracellular traps, platelet Ag presentation to T-cells and platelet modulation of monocyte cytokine secretion are discussed in the context of infectious and sterile diseases of major concern in human health, including cardiovascular diseases, dengue, HIV infection, sepsis, and cancer.
Collapse
Affiliation(s)
- Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Laboratory of Immunology, Infectious Diseases and Obesity, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|