1
|
Dacoba TG, Nabar N, Hammond PT. Modular Layer-by-Layer Nanoparticle Platform for Hematopoietic Progenitor and Stem Cell Targeting. ACS NANO 2025; 19:11333-11347. [PMID: 40080677 DOI: 10.1021/acsnano.5c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Effective delivery of drug and gene cargos to hematopoietic stem and progenitor cells (HSPCs) is a major challenge. Current therapeutic strategies in genetic disorders or hematological malignancies are hindered by high costs, low accessibility, and high off-target toxicities. Layer-by-layer nanoparticles (LbL NPs) are modular systems with tunable surface properties to enable highly specific targeting. In this work, we developed LbL NPs that target HSPCs via antibody functionalization with reduced off-target uptake by circulating myeloid cells. NPs layered with poly(acrylic acid), a bioinert polymer, provided more stealth properties in vivo than other tested bioactive polyanions. The additional conjugation of anti-cKit and anti-CD90 antibodies improved NP uptake by 2- to 3-fold in nondifferentiated bone marrow cells in vitro. By contrast, anti-CD105 functionalized NPs showed the highest association to HSPCs in vivo, ranging from 3.0 to 8.5% in progenitor subpopulations. This LbL NP platform was then adapted to target human HSPC receptors, with similar targeting trends in healthy CD34+ human cells. By contrast, anti-CXCR4 functionalization demonstrated the greatest targeting to human B-cell lymphoma and leukemia cells. Taken together, these results underscore the therapeutic potential of this modular LbL NP platform with the capacity to target HSPCs in a disease-dependent context.
Collapse
Affiliation(s)
- Tamara G Dacoba
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Namita Nabar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Quaranta P, Basso-Ricci L, Jofra Hernandez R, Pacini G, Naldini MM, Barcella M, Seffin L, Pais G, Spinozzi G, Benedicenti F, Pietrasanta C, Cheong JG, Ronchi A, Pugni L, Dionisio F, Monti I, Giannelli S, Darin S, Fraschetta F, Barera G, Ferrua F, Calbi V, Ometti M, Di Micco R, Mosca F, Josefowicz SZ, Montini E, Calabria A, Bernardo ME, Cicalese MP, Gentner B, Merelli I, Aiuti A, Scala S. Circulating hematopoietic stem/progenitor cell subsets contribute to human hematopoietic homeostasis. Blood 2024; 143:1937-1952. [PMID: 38446574 PMCID: PMC11106755 DOI: 10.1182/blood.2023022666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT In physiological conditions, few circulating hematopoietic stem/progenitor cells (cHSPCs) are present in the peripheral blood, but their contribution to human hematopoiesis remain unsolved. By integrating advanced immunophenotyping, single-cell transcriptional and functional profiling, and integration site (IS) clonal tracking, we unveiled the biological properties and the transcriptional features of human cHSPC subpopulations in relationship to their bone marrow (BM) counterpart. We found that cHSPCs reduced in cell count over aging and are enriched for primitive, lymphoid, and erythroid subpopulations, showing preactivated transcriptional and functional state. Moreover, cHSPCs have low expression of multiple BM-retention molecules but maintain their homing potential after xenotransplantation. By generating a comprehensive human organ-resident HSPC data set based on single-cell RNA sequencing data, we detected organ-specific seeding properties of the distinct trafficking HSPC subpopulations. Notably, circulating multi-lymphoid progenitors are primed for seeding the thymus and actively contribute to T-cell production. Human clonal tracking data from patients receiving gene therapy (GT) also showed that cHSPCs connect distant BM niches and participate in steady-state hematopoietic production, with primitive cHSPCs having the highest recirculation capability to travel in and out of the BM. Finally, in case of hematopoietic impairment, cHSPCs composition reflects the BM-HSPC content and might represent a biomarker of the BM state for clinical and research purposes. Overall, our comprehensive work unveiled fundamental insights into the in vivo dynamics of human HSPC trafficking and its role in sustaining hematopoietic homeostasis. GT patients' clinical trials were registered at ClinicalTrials.gov (NCT01515462 and NCT03837483) and EudraCT (2009-017346-32 and 2018-003842-18).
Collapse
Affiliation(s)
- Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Pacini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Maria Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Seffin
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Pais
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Pietrasanta
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jin Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Andrea Ronchi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Pugni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Graziano Barera
- Pediatric Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Ometti
- Department of Orthopedics and Traumatology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Steven Zvi Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Borsi E, Vigliotta I, Poletti A, Mazzocchetti G, Solli V, Zazzeroni L, Martello M, Armuzzi S, Taurisano B, Kanapari A, Pistis I, Zamagni E, Pantani L, Rocchi S, Mancuso K, Tacchetti P, Rizzello I, Rizzi S, Dan E, Sinigaglia B, Cavo M, Terragna C. Single-Cell DNA Sequencing Reveals an Evolutionary Pattern of CHIP in Transplant Eligible Multiple Myeloma Patients. Cells 2024; 13:657. [PMID: 38667272 PMCID: PMC11049155 DOI: 10.3390/cells13080657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) refers to the phenomenon where a hematopoietic stem cell acquires fitness-increasing mutation(s), resulting in its clonal expansion. CHIP is frequently observed in multiple myeloma (MM) patients, and it is associated with a worse outcome. High-throughput amplicon-based single-cell DNA sequencing was performed on circulating CD34+ cells collected from twelve MM patients before autologous stem cell transplantation (ASCT). Moreover, in four MM patients, longitudinal samples either before or post-ASCT were collected. Single-cell sequencing and data analysis were assessed using the MissionBio Tapestri® platform, with a targeted panel of 20 leukemia-associated genes. We detected CHIP pathogenic mutations in 6/12 patients (50%) at the time of transplant. The most frequently mutated genes were TET2, EZH2, KIT, DNMT3A, and ASXL1. In two patients, we observed co-occurring mutations involving an epigenetic modifier (i.e., DNMT3A) and/or a gene involved in splicing machinery (i.e., SF3B1) and/or a tyrosine kinase receptor (i.e., KIT) in the same clone. Longitudinal analysis of paired samples revealed a positive selection of mutant high-fitness clones over time, regardless of their affinity with a major or minor sub-clone. Copy number analysis of the panel of all genes did not show any numerical alterations present in stem cell compartment. Moreover, we observed a tendency of CHIP-positive patients to achieve a suboptimal response to therapy compared to those without. A sub-clone dynamic of high-fitness mutations over time was confirmed.
Collapse
Affiliation(s)
- Enrica Borsi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Ilaria Vigliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Andrea Poletti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Gaia Mazzocchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Vincenza Solli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Luca Zazzeroni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Marina Martello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Silvia Armuzzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Barbara Taurisano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ajsi Kanapari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ignazia Pistis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Lucia Pantani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Serena Rocchi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Katia Mancuso
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Paola Tacchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Rizzello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Simonetta Rizzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Elisa Dan
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Barbara Sinigaglia
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Carolina Terragna
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| |
Collapse
|
4
|
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024; 14:1308709. [PMID: 38440231 PMCID: PMC10910019 DOI: 10.3389/fonc.2024.1308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.
Collapse
Affiliation(s)
- Jadwiga Filipek-Gorzała
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Kwiecińska
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
5
|
Scala S, Ferrua F, Basso-Ricci L, Dionisio F, Omrani M, Quaranta P, Jofra Hernandez R, Del Core L, Benedicenti F, Monti I, Giannelli S, Fraschetta F, Darin S, Albertazzi E, Galimberti S, Montini E, Calabria A, Cicalese MP, Aiuti A. Hematopoietic reconstitution dynamics of mobilized- and bone marrow-derived human hematopoietic stem cells after gene therapy. Nat Commun 2023; 14:3068. [PMID: 37244942 DOI: 10.1038/s41467-023-38448-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/28/2023] [Indexed: 05/29/2023] Open
Abstract
Mobilized peripheral blood is increasingly used instead of bone marrow as a source of autologous hematopoietic stem/progenitor cells for ex vivo gene therapy. Here, we present an unplanned exploratory analysis evaluating the hematopoietic reconstitution kinetics, engraftment and clonality in 13 pediatric Wiskott-Aldrich syndrome patients treated with autologous lentiviral-vector transduced hematopoietic stem/progenitor cells derived from mobilized peripheral blood (n = 7), bone marrow (n = 5) or the combination of the two sources (n = 1). 8 out of 13 gene therapy patients were enrolled in an open-label, non-randomized, phase 1/2 clinical study (NCT01515462) and the remaining 5 patients were treated under expanded access programs. Although mobilized peripheral blood- and bone marrow- hematopoietic stem/progenitor cells display similar capability of being gene-corrected, maintaining the engineered grafts up to 3 years after gene therapy, mobilized peripheral blood-gene therapy group shows faster neutrophil and platelet recovery, higher number of engrafted clones and increased gene correction in the myeloid lineage which correlate with higher amount of primitive and myeloid progenitors contained in hematopoietic stem/progenitor cells derived from mobilized peripheral blood. In vitro differentiation and transplantation studies in mice confirm that primitive hematopoietic stem/progenitor cells from both sources have comparable engraftment and multilineage differentiation potential. Altogether, our analyses reveal that the differential behavior after gene therapy of hematopoietic stem/progenitor cells derived from either bone marrow or mobilized peripheral blood is mainly due to the distinct cell composition rather than functional differences of the infused cell products, providing new frames of references for clinical interpretation of hematopoietic stem/progenitor cell transplantation outcome.
Collapse
Affiliation(s)
- Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Department of Computer Science, Systems and Communication, University of Milano Bicocca, Milan, 20126, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Luca Del Core
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- University of Groningen - Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Groningen, 9747, Netherlands
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Elena Albertazzi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, 20900, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.
| |
Collapse
|
6
|
Ferrari S, Valeri E, Conti A, Scala S, Aprile A, Di Micco R, Kajaste-Rudnitski A, Montini E, Ferrari G, Aiuti A, Naldini L. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell 2023; 30:549-570. [PMID: 37146580 DOI: 10.1016/j.stem.2023.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
The growing clinical success of hematopoietic stem/progenitor cell (HSPC) gene therapy (GT) relies on the development of viral vectors as portable "Trojan horses" for safe and efficient gene transfer. The recent advent of novel technologies enabling site-specific gene editing is broadening the scope and means of GT, paving the way to more precise genetic engineering and expanding the spectrum of diseases amenable to HSPC-GT. Here, we provide an overview of state-of-the-art and prospective developments of the HSPC-GT field, highlighting how advances in biological characterization and manipulation of HSPCs will enable the design of the next generation of these transforming therapeutics.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Annamaria Aprile
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
7
|
Lin DS, Trumpp A. Differential expression of endothelial protein C receptor (EPCR) in hematopoietic stem and multipotent progenitor cells in young and old mice. Cells Dev 2023; 174:203843. [PMID: 37080459 DOI: 10.1016/j.cdev.2023.203843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Endothelial protein C receptor (EPCR) has emerged as one of the most conserved and reliable surface markers for the prospective identification and isolation of hematopoietic stem cells (HSCs). Prior studies have consistently demonstrated that EPCR expression enriches HSCs capable of long-term multilineage repopulation in both mouse and human across different hematopoietic tissues, including bone marrow (BM), fetal liver and ex vivo HSC expansion cultures. However, little is known about the expression profiles of EPCR in multipotent progenitor (MPP) populations located immediately downstream of HSCs in the hematopoietic hierarchy and which play a major role in sustaining lifelong blood cell production. Here, we incorporate EPCR antibody detection into a multi-parameter flow cytometric panel, which allows accurate identification of HSCs and five MPP subsets (MPP1-5) in mouse BM. Our data reveal that all MPP populations contain EPCR-expressing cells. Multipotent MPP1 and MPP5 contain higher proportion of EPCR+ cells compared to the more lineage-biased MPP2-4. Notably, high expression of EPCR enriches phenotypic HSC and MPP5, but not MPP1. Comparison of EPCR expression profiles between young and old BM reveals ageing mediated expansion of EPCR-expressing cells only in HSCs, but not in any of the MPP populations. Collectively, our study provides a comprehensive characterization of the surface expression pattern of EPCR in mouse HSC and MPP1-5 cells during normal and aged hematopoiesis.
Collapse
Affiliation(s)
- Dawn S Lin
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
| |
Collapse
|
8
|
Ziemann F, Metzeler KH. Klonale Hämatopoese (CHIP) und klonale Zytopenie unbestimmter Signifikanz (CCUS). Dtsch Med Wochenschr 2023; 148:441-450. [PMID: 36990116 DOI: 10.1055/a-1873-4250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) refers to the outgrowth of blood cells from a hematopoietic stem cell (HSC) clone that acquired one or more somatic mutations, leading to a growth advantage compared to wild type HSCs. In the last years this age-associated phenomenon has been extensively studied, and several cohort studies found association between CH and age-related diseases, esp. leukaemia and cardiovascular disease. For patients with CH present with abnormal blood counts, the term 'clonal cytopenia of unknown significance' is used, which carries a higher risk for developing myeloid neoplasms. In this year, CHIP and CCUS have been included in the updated WHO classification of hematolymphoid tumours. We review the current understanding of the emergence of CHIP, diagnostics, association with other diseases, and potential therapeutic interventions.
Collapse
|
9
|
Xie Z, Zeidan AM. CHIPing away the progression potential of CHIP: A new reality in the making. Blood Rev 2023; 58:101001. [PMID: 35989137 DOI: 10.1016/j.blre.2022.101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Abstract
Over the past few years, we have gained a deeper understanding of clonal hematopoiesis of indeterminate potential (CHIP), especially with regard to the epidemiology, clinical sequelae, and mechanical aspects. However, interventional strategies to prevent or delay the potential negative consequences of CHIP remain underdeveloped. In this review, we highlight the latest updates on clonal hematopoiesis research, including molecular mechanisms and clinical implications, with a particular focus on the evolving strategies for the interventions that are being evaluated in ongoing observational and interventional trials. There remains an urgent need to formulate standardized and evidence-based recommendations and guidelines for evaluating and managing individuals with clonal hematopoiesis. In addition, patient-centric endpoints must be defined for clinical trials, which will enable us to continue the robust development of effective preventive strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhuoer Xie
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, United States.
| |
Collapse
|
10
|
Burchert A. [Clonal hematopoiesis: causes and clinical implications]. Z Gerontol Geriatr 2023; 56:65-72. [PMID: 36662242 DOI: 10.1007/s00391-023-02162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) refers to hematopoiesis from stem cells with mutations in leukemia-associated driver genes. These confer increased stress tolerance and expansive potential to stem cell clones. Patients with CHIP are hematologically healthy. The main risk factor for the development of CHIP is age or chronic inflammatory processes associated with aging, so-called "inflammaging". Therefore, the correlation of age-associated comorbidities with the detection of CHIP is not coincidental. CHIP is associated with, among other things, a significantly increased risk of cardiovascular disease and increased all-cause mortality. From a pathomechanistic perspective, CHIP leads to increased secretion of proinflammatory cytokines. It is also associated with a significantly increased risk of developing hematologic neoplasms. Thus, the treatment of CHIP could suppress the occurrence of hematologic neoplasms and prevent age-associated diseases.
Collapse
Affiliation(s)
- Andreas Burchert
- Universitätsklinikum Gießen und Marburg, Campus Marburg, Klinik für Hämatologie, Onkologie und Immunologie, Carreras Leukemia Center, Philipps-Universität Marburg, Baldingerstr., 35043, Marburg, Deutschland.
| |
Collapse
|
11
|
Crippa S, Conti A, Vavassori V, Ferrari S, Beretta S, Rivis S, Bosotti R, Scala S, Pirroni S, Jofra-Hernandez R, Santi L, Basso-Ricci L, Merelli I, Genovese P, Aiuti A, Naldini L, Di Micco R, Bernardo ME. Mesenchymal stromal cells improve the transplantation outcome of CRISPR-Cas9 gene-edited human HSPCs. Mol Ther 2023; 31:230-248. [PMID: 35982622 PMCID: PMC9840125 DOI: 10.1016/j.ymthe.2022.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been employed in vitro to support hematopoietic stem and progenitor cell (HSPC) expansion and in vivo to promote HSPC engraftment. Based on these studies, we developed an MSC-based co-culture system to optimize the transplantation outcome of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene-edited (GE) human HSPCs. We show that bone marrow (BM)-MSCs produce several hematopoietic supportive and anti-inflammatory factors capable of alleviating the proliferation arrest and mitigating the apoptotic and inflammatory programs activated in GE-HSPCs, improving their expansion and clonogenic potential in vitro. The use of BM-MSCs resulted in superior human engraftment and increased clonal output of GE-HSPCs contributing to the early phase of hematological reconstitution in the peripheral blood of transplanted mice. In conclusion, our work poses the biological bases for a novel clinical use of BM-MSCs to promote engraftment of GE-HSPCs and improve their transplantation outcome.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Rivis
- Laboratory of Tumor Inflammation and Angiogenesis, VIB-KULeuven, 3000 Leuven, Belgium
| | - Roberto Bosotti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Raisa Jofra-Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council, Institute for Biomedical Technologies, 20132 Milan, Italy
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
12
|
Asare-Bediako B, Adu-Agyeiwaah Y, Abad A, Li Calzi S, Floyd JL, Prasad R, DuPont M, Asare-Bediako R, Bustelo XR, Grant MB. Hematopoietic Cells Influence Vascular Development in the Retina. Cells 2022; 11:3207. [PMID: 36291075 PMCID: PMC9601270 DOI: 10.3390/cells11203207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic cells play a crucial role in the adult retina in health and disease. Monocytes, macrophages, microglia and myeloid angiogenic cells (MACs) have all been implicated in retinal pathology. However, the role that hematopoietic cells play in retinal development is understudied. The temporal changes in recruitment of hematopoietic cells into the developing retina and the phenotype of the recruited cells are not well understood. In this study, we used the hematopoietic cell-specific protein Vav1 to track and investigate hematopoietic cells in the developing retina. By flow cytometry and immunohistochemistry, we show that hematopoietic cells are present in the retina as early as P0, and include microglia, monocytes and MACs. Even before the formation of retinal blood vessels, hematopoietic cells localize to the inner retina where they eventually form networks that intimately associate with the developing vasculature. Loss of Vav1 lead to a reduction in the density of medium-sized vessels and an increased inflammatory response in retinal astrocytes. When pups were subjected to oxygen-induced retinopathy, hematopoietic cells maintained a close association with the vasculature and occasionally formed 'frameworks' for the generation of new vessels. Our study provides further evidence for the underappreciated role of hematopoietic cells in retinal vasculogenesis and the formation of a healthy retina.
Collapse
Affiliation(s)
- Bright Asare-Bediako
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Yvonne Adu-Agyeiwaah
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Antonio Abad
- Centro de Investigación del Cáncer de Salamanca, CSIC and University of Salamanca, 37007 Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Jason L. Floyd
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Mariana DuPont
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Richmond Asare-Bediako
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Xose R. Bustelo
- Centro de Investigación del Cáncer de Salamanca, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Burchert A. [Clonal hematopoiesis: causes and clinical implications]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:1051-1058. [PMID: 35969263 DOI: 10.1007/s00108-022-01388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) refers to hematopoiesis from stem cells with mutations in leukemia-associated driver genes. These confer increased stress tolerance and expansive potential to stem cell clones. Patients with CHIP are hematologically healthy. The main risk factor for the development of CHIP is age or chronic inflammatory processes associated with aging, so-called "inflammaging". Therefore, the correlation of age-associated comorbidities with the detection of CHIP is not coincidental. CHIP is associated with, among other things, a significantly increased risk of cardiovascular disease and increased all-cause mortality. From a pathomechanistic perspective, CHIP leads to increased secretion of proinflammatory cytokines. It is also associated with a significantly increased risk of developing hematologic neoplasms. Thus, the treatment of CHIP could suppress the occurrence of hematologic neoplasms and prevent age-associated diseases.
Collapse
Affiliation(s)
- Andreas Burchert
- Universitätsklinikum Gießen und Marburg, Campus Marburg, Klinik für Hämatologie, Onkologie und Immunologie, Carreras Leukemia Center, Philipps-Universität Marburg, Baldingerstr., 35043, Marburg, Deutschland.
| |
Collapse
|
14
|
Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov 2022; 21:799-820. [PMID: 35974096 PMCID: PMC9380983 DOI: 10.1038/s41573-022-00520-5] [Citation(s) in RCA: 939] [Impact Index Per Article: 313.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/11/2022]
Abstract
Tumour-associated macrophages are an essential component of the tumour microenvironment and have a role in the orchestration of angiogenesis, extracellular matrix remodelling, cancer cell proliferation, metastasis and immunosuppression, as well as in resistance to chemotherapeutic agents and checkpoint blockade immunotherapy. Conversely, when appropriately activated, macrophages can mediate phagocytosis of cancer cells and cytotoxic tumour killing, and engage in effective bidirectional interactions with components of the innate and adaptive immune system. Therefore, they have emerged as therapeutic targets in cancer therapy. Macrophage-targeting strategies include inhibitors of cytokines and chemokines involved in the recruitment and polarization of tumour-promoting myeloid cells as well as activators of their antitumorigenic and immunostimulating functions. Early clinical trials suggest that targeting negative regulators (checkpoints) of myeloid cell function indeed has antitumor potential. Finally, given the continuous recruitment of myelomonocytic cells into tumour tissues, macrophages are candidates for cell therapy with the development of chimeric antigen receptor effector cells. Macrophage-centred therapeutic strategies have the potential to complement, and synergize with, currently available tools in the oncology armamentarium. Macrophages can promote tumorigenesis and enhance the antitumour response. This Review discusses the molecular mechanisms underlying the reprogramming of macrophages in the tumour microenvironment and provides an overview of macrophage-targeted therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy. .,IRCCS- Humanitas Research Hospital, Milan, Italy. .,The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Paola Allavena
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS- Humanitas Research Hospital, Milan, Italy
| | - Federica Marchesi
- IRCCS- Humanitas Research Hospital, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS- Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
15
|
A Synopsis Clonal Hematopoiesis of Indeterminate Potential in Hematology. Cancers (Basel) 2022; 14:cancers14153663. [PMID: 35954328 PMCID: PMC9367563 DOI: 10.3390/cancers14153663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Mutations are not the norm, yet they exist. Having some mutations can infer information about a precancerous state. Clonal hematopoiesis of indeterminate potential is a condition of recurrent somatic mutations in the blood of otherwise healthy adults. In this review, we unravel the role of these mutations in multiple myeloma. Abstract Clonal hematopoiesis of indeterminate potential can be defined as genetic mutations that correlate in hematologic neoplasia such as myelodysplastic syndrome. Patients with cytopenia increasingly undergo molecular genetic tests of peripheral blood or bone marrow for diagnostic purposes. Recently, a new entity has been demarcated to lessen the risk of incorrect diagnoses of hematologic malignancies. This new entity is a potential precursor of myeloid diseases, analogous to monoclonal gammopathy of undetermined significance as a potential precursor of multiple myeloma.
Collapse
|
16
|
Clonal reconstruction from co-occurrence of vector integration sites accurately quantifies expanding clones in vivo. Nat Commun 2022; 13:3712. [PMID: 35764632 PMCID: PMC9240075 DOI: 10.1038/s41467-022-31292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022] Open
Abstract
High transduction rates of viral vectors in gene therapies (GT) and experimental hematopoiesis ensure a high frequency of gene delivery, although multiple integration events can occur in the same cell. Therefore, tracing of integration sites (IS) leads to mis-quantification of the true clonal spectrum and limits safety considerations in GT. Hence, we use correlations between repeated measurements of IS abundances to estimate their mutual similarity and identify clusters of co-occurring IS, for which we assume a clonal origin. We evaluate the performance, robustness and specificity of our methodology using clonal simulations. The reconstruction methods, implemented and provided as an R-package, are further applied to experimental clonal mixes and preclinical models of hematopoietic GT. Our results demonstrate that clonal reconstruction from IS data allows to overcome systematic biases in the clonal quantification as an essential prerequisite for the assessment of safety and long-term efficacy of GT involving integrative vectors. High transduction rates of viral vectors ensure good gene delivery; however multiple integration events can occur in the same cell. Here the authors use correlations between repeated measurements of integration site abundances to estimate their mutual similarity and identify clusters of co-occurring sites.
Collapse
|
17
|
Luo B, Dong F, Qin T, Zhang Q, Bai H, Wang J, Jia Y, Ma S, Jiang E, Cheng T, Xiao Z, Ema H. Myelodysplastic syndromes are multiclonal diseases derived from hematopoietic stem and progenitor cells. Exp Hematol Oncol 2022; 11:28. [PMID: 35578364 PMCID: PMC9109331 DOI: 10.1186/s40164-022-00280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/16/2022] [Indexed: 11/25/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are generally considered as a group of clonal diseases derived from hematopoietic stem cells, but a number of studies have suggested that they are derived from myeloid progenitor cells. We aimed to identify the cell of origin in MDS by single-cell analyses. Targeted single-cell RNA sequencing, covering six frequently mutated genes (U2AF1, SF3B1, TET2, ASXL1, TP53, and DNMT3A) in MDS, was developed and performed on individual cells isolated from the CD34+ and six lineage populations in the bone marrow of healthy donors (HDs) and patients with MDS. The detected mutations were used as clonal markers to define clones. By dissecting the distribution of clones in six lineages, the clonal origin was determined. We identified three mutations both in HDs and patients with MDS, termed clonal hematopoiesis (CH) mutations. We also identified fifteen mutations only detected in patients with MDS, termed MDS mutations. Clonal analysis showed that CH clones marked by CH mutations and MDS clones marked by MDS mutations were derived from hematopoietic stem cells as well as various hematopoietic progenitor cells. Most patients with MDS showed the chimeric state with CH clones and MDS clones. Clone size analysis suggested that CH mutations may not contribute to clonal expansion of MDS. In conclusion, MDS comprise multiple clones derived from hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Bingqing Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Tiejun Qin
- MDS and MPN Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Qingyun Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Haitao Bai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jinhong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yujiao Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhijian Xiao
- MDS and MPN Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hideo Ema
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
18
|
Dircio-Maldonado R, Castro-Oropeza R, Flores-Guzman P, Cedro-Tanda A, Beltran-Anaya FO, Hidalgo-Miranda A, Mayani H. Gene expression profiles and cytokine environments determine the in vitro proliferation and expansion capacities of human hematopoietic stem and progenitor cells. Hematology 2022; 27:476-487. [PMID: 35413231 DOI: 10.1080/16078454.2022.2061108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The interplay between intrinsic and extrinsic elements involved in the physiology of hematopoietic cells is not completely understood. In the present study, we analyzed the transcriptional profiles of human cord blood-derived hematopoietic stem cells (HSCs), as well as myeloid (MPCs) and erythroid (EPCs) progenitors, and assessed their proliferation and expansion kinetics in vitro. METHODS All cell populations were obtained by cell-sorting, and were cultured in liquid cultures supplemented with different cytokine combinations. Their gene expression profiles were determined by RNA microarrays right after cell-sorting, before culture. RESULTS HSCs showed the highest proliferation and expansion capacities in culture, and were found to be more closely related, in transcriptional terms, to MPCs than to EPCs. This correlated with the fact that after 30 days, only cultures initiated with HSCs and MPCs were sustained. Expression of cell cycle and cell division-related genes was enriched in EPCs. Such cells showed significantly higher proliferation than MPCs, however, their expansion potential was reduced, so that cultures initiated with EPCs declined after 15 days and became exhausted by day 30. Proliferation and expansion of HSCs and EPCs were higher in the presence of a cytokine combination that favors erythropoiesis, whereas the growth of MPCs was higher under a cytokine combination that favors myelopoiesis. CONCLUSION This study shows a correlation between the transcriptional profiles of HSCs, MPCs, and EPCs, and their respective in vitro growth under particular culture conditions. These results may be relevant in the development of ex vivo systems for the expansion of hematopoietic cells for clinical application.
Collapse
Affiliation(s)
- Roberto Dircio-Maldonado
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Rosario Castro-Oropeza
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Patricia Flores-Guzman
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Alberto Cedro-Tanda
- National Institute of Genomic Medicine, National Ministry of Health, Mexico City, Mexico
| | | | | | - Hector Mayani
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| |
Collapse
|
19
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
20
|
Zhang P, Li X, Pan C, Zheng X, Hu B, Xie R, Hu J, Shang X, Yang H. Single-cell RNA sequencing to track novel perspectives in HSC heterogeneity. Stem Cell Res Ther 2022; 13:39. [PMID: 35093185 PMCID: PMC8800338 DOI: 10.1186/s13287-022-02718-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/21/2022] Open
Abstract
As the importance of cell heterogeneity has begun to be emphasized, single-cell sequencing approaches are rapidly adopted to study cell heterogeneity and cellular evolutionary relationships of various cells, including stem cell populations. The hematopoietic stem and progenitor cell (HSPC) compartment contains HSC hematopoietic stem cells (HSCs) and distinct hematopoietic cells with different abilities to self-renew. These cells perform their own functions to maintain different hematopoietic lineages. Undeniably, single-cell sequencing approaches, including single-cell RNA sequencing (scRNA-seq) technologies, empower more opportunities to study the heterogeneity of normal and pathological HSCs. In this review, we discuss how these scRNA-seq technologies contribute to tracing origin and lineage commitment of HSCs, profiling the bone marrow microenvironment and providing high-resolution dissection of malignant hematopoiesis, leading to exciting new findings in HSC biology.
Collapse
|
21
|
Kusne Y, Xie Z, Patnaik MM. Clonal Hematopoiesis: Molecular and Clinical Implications. Leuk Res 2022; 113:106787. [DOI: 10.1016/j.leukres.2022.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
|
22
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:159-176. [DOI: 10.1093/bfgp/elac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/14/2022] Open
|
23
|
Kusne Y, Fernandez J, Patnaik MM. Clonal hematopoiesis and VEXAS syndrome: survival of the fittest clones? Semin Hematol 2021; 58:226-229. [PMID: 34802544 DOI: 10.1053/j.seminhematol.2021.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023]
Abstract
Clonal hematopoiesis (CH) is defined by the acquisition of somatic mutations in hematopoietic stem cells (HSC) leading to enhanced cellular fitness and proliferation under positive clonal selection pressures. CH most frequently involves epigenetic regulator genes (DNMT3A, TET2 and ASXL1), with these mutations being associated with enhanced inflammation and increased all-cause mortality largely from cardiovascular disease and endothelial dysfunction. These mutations also increase the risk for hematological neoplasms. Somatic mutations in UBA1, encoding the E1 ubiquitin ligase in HSC, cause a severe adult-onset autoinflammatory disease that can be associated with myeloid and plasma cell neoplasms, termed VEXAS (vacuoles, X-linked, autoinflammatory, somatic) syndrome. Given the degree of inflammation seen, one would have expected this to be a fertile ground for CH development and propagation, however, preliminary data doesn't support this. Here in, we review the current data on CH, inflammation and VEXAS syndrome.
Collapse
Affiliation(s)
- Yael Kusne
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ
| | - Jenna Fernandez
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
24
|
The stem cell revolution: on the role of CD164 as a human stem cell marker. NPJ Regen Med 2021; 6:33. [PMID: 34103536 PMCID: PMC8187384 DOI: 10.1038/s41536-021-00143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Accurately defining hierarchical relationships between human stem cells and their progeny, and using this knowledge for new cellular therapies, will undoubtedly lead to further successful treatments for life threatening and chronic diseases, which represent substantial burdens on patient quality of life and to healthcare systems globally. Clinical translation relies in part on appropriate biomarker, in vitro manipulation and transplantation strategies. CD164 has recently been cited as an important biomarker for enriching both human haematopoietic and skeletal stem cells, yet a thorough description of extant human CD164 monoclonal antibody (Mab) characteristics, which are critical for identifying and purifying these stem cells, was not discussed in these articles. Here, we highlight earlier but crucial research describing these relevant characteristics, including the differing human CD164 Mab avidities and their binding sites on the human CD164 sialomucin, which importantly may affect subsequent stem cell function and fate.
Collapse
|
25
|
Papasavva PL, Papaioannou NY, Patsali P, Kurita R, Nakamura Y, Sitarou M, Christou S, Kleanthous M, Lederer CW. Distinct miRNA Signatures and Networks Discern Fetal from Adult Erythroid Differentiation and Primary from Immortalized Erythroid Cells. Int J Mol Sci 2021; 22:3626. [PMID: 33807258 PMCID: PMC8037168 DOI: 10.3390/ijms22073626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs crucial for post-transcriptional and translational regulation of cellular and developmental pathways. The study of miRNAs in erythropoiesis elucidates underlying regulatory mechanisms and facilitates related diagnostic and therapy development. Here, we used DNA Nanoball (DNB) small RNA sequencing to comprehensively characterize miRNAs in human erythroid cell cultures. Based on primary human peripheral-blood-derived CD34+ (hCD34+) cells and two influential erythroid cell lines with adult and fetal hemoglobin expression patterns, HUDEP-2 and HUDEP-1, respectively, our study links differential miRNA expression to erythroid differentiation, cell type, and hemoglobin expression profile. Sequencing results validated by reverse-transcription quantitative PCR (RT-qPCR) of selected miRNAs indicate shared differentiation signatures in primary and immortalized cells, characterized by reduced overall miRNA expression and reciprocal expression increases for individual lineage-specific miRNAs in late-stage erythropoiesis. Despite the high similarity of same-stage hCD34+ and HUDEP-2 cells, differential expression of several miRNAs highlighted informative discrepancies between both cell types. Moreover, a comparison between HUDEP-2 and HUDEP-1 cells displayed changes in miRNAs, transcription factors (TFs), target genes, and pathways associated with globin switching. In resulting TF-miRNA co-regulatory networks, major therapeutically relevant regulators of globin expression were targeted by many co-expressed miRNAs, outlining intricate combinatorial miRNA regulation of globin expression in erythroid cells.
Collapse
Affiliation(s)
- Panayiota L. Papasavva
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (N.Y.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Nikoletta Y. Papaioannou
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (N.Y.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (N.Y.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan; (R.K.); (Y.N.)
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan; (R.K.); (Y.N.)
| | - Maria Sitarou
- Thalassemia Clinic Larnaca, Larnaca General Hospital, Larnaca 6301, Cyprus;
| | - Soteroulla Christou
- Thalassemia Clinic Nicosia, Archbishop Makarios III Hospital, Nicosia 1474, Cyprus;
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (N.Y.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (N.Y.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
26
|
Panch SR, Logan B, Sees JA, Bo-Subait S, Savani B, Shah NN, Hsu JW, Switzer G, Lazarus HM, Anderlini P, Hematti P, Confer D, Pulsipher MA, Shaw BE, Stroncek DF. Shorter Interdonation Interval Contributes to Lower Cell Counts in Subsequent Stem Cell Donations. Transplant Cell Ther 2021; 27:503.e1-503.e8. [PMID: 33823169 DOI: 10.1016/j.jtct.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Approximately 7% of unrelated hematopoietic stem cell donors are asked to donate stem cells a subsequent time to the same or a different recipient. Recent studies have shown that donation-related symptoms for second donations are similar to those for the first donation. Little is known about differences in stem cell mobilization and yields for subsequent peripheral blood stem cell (PBSC) and bone marrow (BM) collections. We hypothesized that CD34+ cell yields and total nucleated cell (TNC) concentrations for subsequent PBSC or BM donations are lower than those at the first donation. We also evaluated the factors influencing stem cell yields in healthy unrelated second-time donors. Data were gathered from the Center for International Blood and Marrow Transplant Research database on 513 PBSC and 43 BM donors who donated a second time between 2006 and 2017 through the National Marrow Donor Program. Among the second-time PBSC donors, we found significantly lower preapheresis peripheral blood CD34+ cell counts (68.6 × 106/L versus 73.9 × 106/L; P = .03), and collection yields (556 × 106 versus 608 × 106; P = .02) at the second donation compared to the first. This decrease at the subsequent donation was associated with a shorter interdonation interval, lower body mass index (BMI), and a lower total G-CSF dose. In most instances, suboptimal mobilizers at their first donation donated suboptimal numbers of stem cells at their subsequent donations. Among repeat BM donors, the TNC concentration was lower at the second donation. The small size of this group precluded additional analysis. Overall, when considering repeat donations, increasing the interdonation intervals and evaluating for BMI changes should be considered to optimize stem cell yields. Some of these parameters may be improved by increasing G-CSF dose in PBSC donors within permissible limits.
Collapse
Affiliation(s)
- Sandhya R Panch
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, Maryland
| | - Brent Logan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer A Sees
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephanie Bo-Subait
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Bipin Savani
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jack W Hsu
- Division of Hematology & Oncology, Department of Medicine, Shands HealthCare & University of Florida, Gainesville, Florida
| | - Galen Switzer
- Department of Medicine, University of Pittsburgh Medical Center-Cancer Center, Pittsburgh, Pennsylvania
| | - Hillard M Lazarus
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Paolo Anderlini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peiman Hematti
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Dennis Confer
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Michael A Pulsipher
- Section of Transplantation and Cellular Therapy, Children's Hospital Los Angeles Cancer and Blood Disease Institute, USC Keck School of Medicine, Los Angeles, California
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, Maryland
| |
Collapse
|
27
|
Eskandarian P, Bagherzadeh Mohasefi J, Pirnejad H, Niazkhani Z. Prediction of future gene expression profile by analyzing its past variation pattern. Gene Expr Patterns 2021; 39:119166. [PMID: 33444808 DOI: 10.1016/j.gep.2021.119166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 01/21/2023]
Abstract
A number of initial Hematopoietic Stem Cells (HSC) are considered in a container that are able to divide into HSCs or differentiate into various types of descendant cells. In this paper, a method is designed to predict an approximate gene expression profile (GEP) for future descendant cells resulted from HSC division/differentiation. First, the GEP prediction problem is modeled into a multivariate time series prediction problem. A novel method called EHSCP (Extended Hematopoietic Stem Cell Prediction) is introduced which is an artificial neural machine to solve the problem. EHSCP accepts the initial sequence of measured GEPs as input and predicts GEPs of future descendant cells. This prediction can be performed for multiple stages of cell division/differentiation. EHSCP considers the GEP sequence as time series and computes correlation between input time series. Two novel artificial neural units called PLSTM (Parametric Long Short Term Memory) and MILSTM (Multi-Input LSTM) are designed. PLSTM makes EHSCP able to consider this correlation in output prediction. Since there exist thousands of time series in GEP prediction, a hierarchical encoder is proposed that computes this correlation using 101 MILSTMs. EHSCP is trained using 155 datasets and is evaluated on 39 test datasets. These evaluations show that EHSCP surpasses existing methods in terms of prediction accuracy and number of correctly-predicted division/differentiation stages. In these evaluations, number of correctly-predicted stages in EHSCP was 128 when as many as 8 initial stages were given.
Collapse
Affiliation(s)
- Parinaz Eskandarian
- Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | - Jamshid Bagherzadeh Mohasefi
- Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran; Department of Electrical and Computer Engineering, Urmia University, Urmia, Iran.
| | - Habibollah Pirnejad
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Zahra Niazkhani
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
28
|
Elsaid R, Soares-da-Silva F, Peixoto M, Amiri D, Mackowski N, Pereira P, Bandeira A, Cumano A. Hematopoiesis: A Layered Organization Across Chordate Species. Front Cell Dev Biol 2020; 8:606642. [PMID: 33392196 PMCID: PMC7772317 DOI: 10.3389/fcell.2020.606642] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of distinct waves of progenitors during development, each corresponding to a specific time, space, and function, provided the basis for the concept of a "layered" organization in development. The concept of a layered hematopoiesis was established by classical embryology studies in birds and amphibians. Recent progress in generating reliable lineage tracing models together with transcriptional and proteomic analyses in single cells revealed that, also in mammals, the hematopoietic system evolves in successive waves of progenitors with distinct properties and fate. During embryogenesis, sequential waves of hematopoietic progenitors emerge at different anatomic sites, generating specific cell types with distinct functions and tissue homing capacities. The first progenitors originate in the yolk sac before the emergence of hematopoietic stem cells, some giving rise to progenies that persist throughout life. Hematopoietic stem cell-derived cells that protect organisms against environmental pathogens follow the same sequential strategy, with subsets of lymphoid cells being only produced during embryonic development. Growing evidence indicates that fetal immune cells contribute to the proper development of the organs they seed and later ensure life-long tissue homeostasis and immune protection. They include macrophages, mast cells, some γδ T cells, B-1 B cells, and innate lymphoid cells, which have "non-redundant" functions, and early perturbations in their development or function affect immunity in the adult. These observations challenged the view that all hematopoietic cells found in the adult result from constant and monotonous production from bone marrow-resident hematopoietic stem cells. In this review, we evaluate evidence for a layered hematopoietic system across species. We discuss mechanisms and selective pressures leading to the temporal generation of different cell types. We elaborate on the consequences of disturbing fetal immune cells on tissue homeostasis and immune development later in life.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Francisca Soares-da-Silva
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
- I3S—Instituto de Investigação e Inovação em Saúde and INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomeìdicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Marcia Peixoto
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
- I3S—Instituto de Investigação e Inovação em Saúde and INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Dali Amiri
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Nathan Mackowski
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Pablo Pereira
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Antonio Bandeira
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Ana Cumano
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| |
Collapse
|
29
|
Longitudinal assessment of clonal mosaicism in human hematopoiesis via mitochondrial mutation tracking. Blood Adv 2020; 3:4161-4165. [PMID: 31841597 DOI: 10.1182/bloodadvances.2019001196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Our ability to track cellular dynamics in humans over time in vivo has been limited. Here, we demonstrate how somatic mutations in mitochondrial DNA (mtDNA) can be used to longitudinally track the dynamic output of hematopoietic stem and progenitor cells in humans. Over the course of 3 years of blood sampling in a single individual, our analyses reveal somatic mtDNA sequence variation and evolution reminiscent of models of hematopoiesis established by genetic labeling approaches. Furthermore, we observe fluctuations in mutation heteroplasmy, coinciding with specific clinical events, such as infections, and further identify lineage-specific somatic mtDNA mutations in longitudinally sampled circulating blood cell subsets in individuals with leukemia. Collectively, these observations indicate the significant potential of using tracking of somatic mtDNA sequence variation as a broadly applicable approach to systematically assess hematopoietic clonal dynamics in human health and disease.
Collapse
|
30
|
Xie X, Liu M, Zhang Y, Wang B, Zhu C, Wang C, Li Q, Huo Y, Guo J, Xu C, Hu L, Pang A, Ma S, Wang L, Cao W, Chen S, Li Q, Zhang S, Zhao X, Zhou W, Luo H, Zheng G, Jiang E, Feng S, Chen L, Shi L, Cheng H, Hao S, Zhu P, Cheng T. Single-cell transcriptomic landscape of human blood cells. Natl Sci Rev 2020; 8:nwaa180. [PMID: 34691592 PMCID: PMC8288407 DOI: 10.1093/nsr/nwaa180] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
High throughput single-cell RNA-seq has been successfully implemented to dissect the cellular and molecular features underlying hematopoiesis. However, an elaborate and comprehensive transcriptome reference of the whole blood system is lacking. Here, we profiled the transcriptomes of 7551 human blood cells representing 32 immunophenotypic cell types, including hematopoietic stem cells, progenitors and mature blood cells derived from 21 healthy donors. With high sequencing depth and coverage, we constructed a single-cell transcriptional atlas of blood cells (ABC) on the basis of both protein-coding genes and long noncoding RNAs (lncRNAs), and showed a high consistence between them. Notably, putative lncRNAs and transcription factors regulating hematopoietic cell differentiation were identified. While common transcription factor regulatory networks were activated in neutrophils and monocytes, lymphoid cells dramatically changed their regulatory networks during differentiation. Furthermore, we showed a subset of nucleated erythrocytes actively expressing immune signals, suggesting the existence of erythroid precursors with immune functions. Finally, a web portal offering transcriptome browsing and blood cell type prediction has been established. Thus, our work provides a transcriptional map of human blood cells at single-cell resolution, thereby offering a comprehensive reference for the exploration of physiological and pathological hematopoiesis.
Collapse
Affiliation(s)
- Xiaowei Xie
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yawen Zhang
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Bingrui Wang
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Chenchen Wang
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qing Li
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yingying Huo
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jiaojiao Guo
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Linping Hu
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Wenbin Cao
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shulian Chen
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qiuling Li
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Sudong Zhang
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xueying Zhao
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Wen Zhou
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Hongbo Luo
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
31
|
Upadhaya S, Krichevsky O, Akhmetzyanova I, Sawai CM, Fooksman DR, Reizis B. Intravital Imaging Reveals Motility of Adult Hematopoietic Stem Cells in the Bone Marrow Niche. Cell Stem Cell 2020; 27:336-345.e4. [PMID: 32589864 DOI: 10.1016/j.stem.2020.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Adult mammalian hematopoietic stem cells (HSCs) reside in the bone marrow (BM) but can be mobilized into blood for use in transplantation. HSCs interact with BM niche cells that produce growth factor c-Kit ligand (Kitl/SCF) and chemokine CXCL12, and were thought to be static and sessile. We used two-photon laser scanning microscopy to visualize genetically labeled HSCs in the BM of live mice for several hours. The majority of HSCs showed a dynamic non-spherical morphology and significant motility, undergoing slow processive motion interrupted by short stretches of confined motion. HSCs moved in the perivascular space and showed intermittent close contacts with SCF-expressing perivascular stromal cells. In contrast, mobilization-inducing blockade of CXCL12 receptor CXCR4 and integrins rapidly abrogated HSC motility and shape dynamics in real time. Our results reveal an unexpectedly dynamic nature of HSC residence in the BM and interaction with the SCF+ stromal niche, which is disrupted during HSC mobilization.
Collapse
Affiliation(s)
- Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Oleg Krichevsky
- Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | - Catherine M Sawai
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; INSERM Unit 1218 ACTION Laboratory, University of Bordeaux, Bergonié Cancer Institute, 33076 Bordeaux, France
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
32
|
Teets EM, Gregory C, Shaffer J, Blachly JS, Blaser BW. Quantifying Hematopoietic Stem Cell Clonal Diversity by Selecting Informative Amplicon Barcodes. Sci Rep 2020; 10:2153. [PMID: 32034234 PMCID: PMC7005852 DOI: 10.1038/s41598-020-59119-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/24/2020] [Indexed: 11/09/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are functionally and genetically diverse and this diversity decreases with age and disease. Numerous systems have been developed to quantify HSC diversity by genetic barcoding, but no framework has been established to empirically validate barcode sequences. Here we have developed an analytical framework, Selection of informative Amplicon Barcodes from Experimental Replicates (SABER), that identifies barcodes that are unique among a large set of experimental replicates. Amplicon barcodes were sequenced from the blood of 56 adult zebrafish divided into training and validation sets. Informative barcodes were identified and samples with a high fraction of informative barcodes were chosen by bootstrapping. There were 4.2 ± 1.8 barcoded HSC clones per sample in the training set and 3.5 ± 2.1 in the validation set (p = 0.3). SABER reproducibly quantifies functional HSCs and can accommodate a wide range of experimental group sizes. Future large-scale studies aiming to understand the mechanisms of HSC clonal evolution will benefit from this new approach to identifying informative amplicon barcodes.
Collapse
Affiliation(s)
- Emily M Teets
- The Ohio State University College of Medicine, Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Ohio, USA
| | - Charles Gregory
- The Ohio State University College of Medicine, Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Ohio, USA
| | - Jami Shaffer
- The Ohio State University College of Medicine, Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Ohio, USA
| | - James S Blachly
- The Ohio State University College of Medicine, Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Ohio, USA
- The Ohio State University College of Medicine, Department of Biomedical Informatics, Ohio, USA
| | - Bradley W Blaser
- The Ohio State University College of Medicine, Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Ohio, USA.
| |
Collapse
|
33
|
Tarakanchikova Y, Alzubi J, Pennucci V, Follo M, Kochergin B, Muslimov A, Skovorodkin I, Vainio S, Antipina MN, Atkin V, Popov A, Meglinski I, Cathomen T, Cornu TI, Gorin DA, Sukhorukov GB, Nazarenko I. Biodegradable Nanocarriers Resembling Extracellular Vesicles Deliver Genetic Material with the Highest Efficiency to Various Cell Types. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904880. [PMID: 31840408 DOI: 10.1002/smll.201904880] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Indexed: 05/11/2023]
Abstract
Efficient delivery of genetic material to primary cells remains challenging. Here, efficient transfer of genetic material is presented using synthetic biodegradable nanocarriers, resembling extracellular vesicles in their biomechanical properties. This is based on two main technological achievements: generation of soft biodegradable polyelectrolyte capsules in nanosize and efficient application of the nanocapsules for co-transfer of different RNAs to tumor cell lines and primary cells, including hematopoietic progenitor cells and primary T cells. Near to 100% efficiency is reached using only 2.5 × 10-4 pmol of siRNA, and 1 × 10-3 nmol of mRNA per cell, which is several magnitude orders below the amounts reported for any of methods published so far. The data show that biodegradable nanocapsules represent a universal and highly efficient biomimetic platform for the transfer of genetic material with the utmost potential to revolutionize gene transfer technology in vitro and in vivo.
Collapse
Affiliation(s)
- Yana Tarakanchikova
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Opto-Electronics and Measurement Techniques Research Unit, P.O. Box 4500, University of Oulu, Oulu, 90014, Finland
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg, 194021, Russia
- RASA center in St. Petersburg, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Jamal Alzubi
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Valentina Pennucci
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 153000, Germany
| | - Boris Kochergin
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetievskiy Avenue 7, 153000, Ivanovo, Russia
| | - Albert Muslimov
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg, 194021, Russia
| | - Ilya Skovorodkin
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, Infotech Oulu, University of Oulu, Borealis Biobank of Northern Finland, 138634, Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, Infotech Oulu, University of Oulu, Borealis Biobank of Northern Finland, 138634, Oulu, Finland
| | - Maria N Antipina
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Vsevolod Atkin
- Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Alexey Popov
- Opto-Electronics and Measurement Techniques Research Unit, P.O. Box 4500, University of Oulu, Oulu, 90014, Finland
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques Research Unit, P.O. Box 4500, University of Oulu, Oulu, 90014, Finland
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, UK
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Dmitry A Gorin
- Skoltech center of Photonics & Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russia
| | - Gleb B Sukhorukov
- Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Astrakhanskaya 83, 410012, Saratov, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, B47ET, UK
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, B47ET, Germany
| |
Collapse
|