1
|
Li Y, Tan Y, Zhao H, Chen S, Nilghaz A, Cao R, Zhou S. Green biosynthetic silver nanoparticles from Ageratum conyzoides as multifunctional hemostatic agents: Combining hemostasis, antibacterial, and anti-inflammatory properties for effective wound healing. Mater Today Bio 2025; 31:101468. [PMID: 39906203 PMCID: PMC11791296 DOI: 10.1016/j.mtbio.2025.101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Widespread interest in new hemostatic agents arises from the challenge of simultaneously satisfying the requirements of hemostatic, antibacterial, and anti-inflammatory properties while also considering the associated economic costs. An ideal hemostasis material should facilitate rapid hemostasis, intervene against infection, promote wound healing, and be cost-effective and easy to prepare. Herein, we demonstrate that medicinal plant-derived silver nanoparticles (AgNPs) exhibit the potential to constitute a promising multifunctional hemostatic reagent library. Biogenic synthesis of AgNPs utilizing Ageratum conyzoides extracts, referred to as AC-AgNPs, successfully combines the hemostatic and anti-inflammatory properties of Ageratum conyzoides with the inherent antibacterial activity exhibited by AgNPs. In-vitro coagulation experiments indicate that AC-AgNPs have a strong hemostatic effect, which is related to their size, concentration, and negative charge, and they exhibit low cytotoxicity and hemolysis. Subsequent experiments including scanning electron microscopy, flow cytometry, western blotting, and network pharmacology analysis have revealed that AC-AgNPs can cause platelet activation and aggregation, stimulated kallikrein-kinin system, shorten activated partial thromboplastin and prothrombin time, and increase fibrinogen content. These findings indicate that AC-AgNPs act on multiple signaling pathways, including endogenous and exogenous coagulation pathways, complement system, platelet activation, and aggregation. Furthermore, the hemostatic efficacy of AC-AgNPs is demonstrated in mouse models of tail amputation and liver injury, where AC-AgNPs significantly reduce the amount of blood loss and the bleeding time. Our work shows that AC-AgNPs possess strong hemostatic, anti-inflammatory, and antibacterial capabilities, ultimately facilitating wound healing. The biogenic synthesis of AgNPs from medicinal plants could be a multifunctional hemostatic candidate for practical application.
Collapse
Affiliation(s)
- Yang Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Yinfeng Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Huange Zhao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Shiting Chen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Azadeh Nilghaz
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Rong Cao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Songlin Zhou
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, Hainan, 571199, China
| |
Collapse
|
2
|
Haynes LM, Holding ML, DiGiovanni HL, Siemieniak D, Ginsburg D. High-throughput amino acid-level characterization of the interactions of plasminogen activator inhibitor-1 with variably divergent proteases. Protein Sci 2025; 34:e70088. [PMID: 40100143 PMCID: PMC11917113 DOI: 10.1002/pro.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
While members of large paralogous protein families share structural features, their functional niches often diverge significantly. Serine protease inhibitors (SERPINs), whose members typically function as covalent inhibitors of serine proteases, are one such family. Plasminogen activator inhibitor-1 (PAI-1) is a prototypic SERPIN, which canonically inhibits tissue- and urokinase-type plasminogen activators (tPA and uPA) to regulate fibrinolysis. PAI-1 has been shown to also inhibit other serine proteases, including coagulation factor XIIa (FXIIa) and transmembrane serine protease 2 (TMPRSS2). The structural determinants of PAI-1 inhibitory function toward these non-canonical protease targets, and the biological significance of these functions, are unknown. We applied deep mutational scanning (DMS) to assess the effects of ~80% of all possible single-amino acid substitutions in PAI-1 on its ability to inhibit three putative serine protease targets (uPA, FXIIa, and TMPRSS2). Selection with each target protease generated a unique PAI-1 mutational landscape, with the determinants of protease specificity distributed throughout PAI-1's primary sequence. Next, we conducted a comparative analysis of extant orthologous sequences, demonstrating that key residues modulating PAI-1 inhibition of uPA and FXIIa, but not TMPRSS2, are maintained by purifying selection (also referred to as "negative selection"). PAI-1's activity toward FXIIa may reflect how protease evolutionary relationships predict SERPIN functional divergence, which we support via a cophylogenetic analysis of secreted SERPINs and their cognate serine proteases. This work provides insight into the functional diversification of SERPINs and lays the framework for extending these studies to other proteases and their regulators.
Collapse
Affiliation(s)
- Laura M. Haynes
- Life Sciences InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Matthew L. Holding
- Life Sciences InstituteUniversity of MichiganAnn ArborMichiganUSA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - David Siemieniak
- Life Sciences InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - David Ginsburg
- Life Sciences InstituteUniversity of MichiganAnn ArborMichiganUSA
- Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Human GeneticsUniversity of MichiganAnn ArborMichiganUSA
- Department of PediatricsUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
3
|
Dong XQ, Zhang YH, Luo J, Li MJ, Ma LQ, Qi YT, Miao YL. Keratin 1 modulates intestinal barrier and immune response via kallikrein kinin system in ulcerative colitis. World J Gastroenterol 2025; 31:102070. [PMID: 39958441 PMCID: PMC11752705 DOI: 10.3748/wjg.v31.i6.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND External factors in ulcerative colitis (UC) exacerbate colonic epithelial permeability and inflammatory responses. Keratin 1 (KRT1) is crucial in regulating these alterations, but its specific role in the progression of UC remains to be fully elucidated. AIM To explore the role and mechanisms of KRT1 in the regulation of colonic epithelial permeability and inflammation in UC. METHODS A KRT1 antibody concentration gradient test, along with a dextran sulfate sodium (DSS)-induced animal model, was implemented to investigate the role of KRT1 in modulating the activation of the kallikrein kinin system (KKS) and the cleavage of bradykinin (BK)/high molecular weight kininogen (HK) in UC. RESULTS Treatment with KRT1 antibody in Caco-2 cells suppressed cell proliferation, induced apoptosis, reduced HK expression, and increased BK expression. It further downregulated intestinal barrier proteins, including occludin, zonula occludens-1, and claudin, and negatively impacted the coagulation factor XII. These changes led to enhanced activation of BK and HK cleavage, thereby intensifying KKS-mediated inflammation in UC. In the DSS-induced mouse model, administration of KRT1 antibody mitigated colonic injury, increased colon length, alleviated weight loss, and suppressed inflammatory cytokines such as interleukin (IL)-1, IL-6, tumor necrosis factor-α. It also facilitated repair of the intestinal barrier, reducing DSS-induced injury. CONCLUSION KRT1 inhibits BK expression, suppresses inflammatory cytokines, and enhances markers of intestinal barrier function, thus ameliorating colonic damage and maintaining barrier integrity. KRT1 is a viable therapeutic target for UC.
Collapse
Affiliation(s)
- Xiang-Qian Dong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ying-Hui Zhang
- Department of Gastroenterology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Mao-Juan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Lan-Qing Ma
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ya-Ting Qi
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ying-Lei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| |
Collapse
|
4
|
Shamanaev A, Litvak M, Ivanov I, Srivastava P, Sun MF, Dickeson SK, Kumar S, He TZ, Gailani D. Factor XII Structure-Function Relationships. Semin Thromb Hemost 2024; 50:937-952. [PMID: 37276883 PMCID: PMC10696136 DOI: 10.1055/s-0043-1769509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a "closed" form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ivan Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Priyanka Srivastava
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tracey Z. He
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
5
|
Kearney KJ, Spronk HMH, Emsley J, Key NS, Philippou H. Plasma Kallikrein as a Forgotten Clotting Factor. Semin Thromb Hemost 2024; 50:953-961. [PMID: 37072020 DOI: 10.1055/s-0043-57034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
For decades, it was considered that plasma kallikrein's (PKa) sole function within the coagulation cascade is the activation of factor (F)XII. Until recently, the two key known activators of FIX within the coagulation cascade were activated FXI(a) and the tissue factor-FVII(a) complex. Simultaneously, and using independent experimental approaches, three groups identified a new branch of the coagulation cascade, whereby PKa can directly activate FIX. These key studies identified that (1) FIX or FIXa can bind with high affinity to either prekallikrein (PK) or PKa; (2) in human plasma, PKa can dose dependently trigger thrombin generation and clot formation independent of FXI; (3) in FXI knockout murine models treated with intrinsic pathway agonists, PKa activity results in increased formation of FIXa:AT complexes, indicating direct activation of FIX by PKa in vivo. These findings suggest that there is both a canonical (FXIa-dependent) and non-canonical (PKa-dependent) pathway of FIX activation. These three recent studies are described within this review, alongside historical data that hinted at the existence of this novel role of PKa as a coagulation clotting factor. The implications of direct PKa cleavage of FIX remain to be determined physiologically, pathophysiologically, and in the context of next-generation anticoagulants in development.
Collapse
Affiliation(s)
- Katherine J Kearney
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Henri M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Nigel S Key
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Helen Philippou
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Lira AL, Kohs TC, Moellmer SA, Shatzel JJ, McCarty OJ, Puy C. Substrates, Cofactors, and Cellular Targets of Coagulation Factor XIa. Semin Thromb Hemost 2024; 50:962-969. [PMID: 36940715 PMCID: PMC11069399 DOI: 10.1055/s-0043-1764469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation. While FXIa is canonically known for activating the intrinsic pathway of coagulation by catalyzing the conversion of FIX into FIXa, it is promiscuous in nature and has been shown to contribute to thrombin generation independent of FIX. In addition to its role in the intrinsic pathway of coagulation, FXI also interacts with platelets, endothelial cells, and mediates the inflammatory response through activation of FXII and cleavage of high-molecular-weight kininogen to generate bradykinin. In this manuscript, we critically review the current body of knowledge surrounding how FXI navigates the interplay of hemostasis, inflammatory processes, and the immune response and highlight future avenues for research. As FXI continues to be clinically explored as a druggable therapeutic target, understanding how this coagulation factor fits into physiological and disease mechanisms becomes increasingly important.
Collapse
Affiliation(s)
- André L. Lira
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Tia C.L. Kohs
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Samantha A. Moellmer
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Joseph J. Shatzel
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Divison of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Divison of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Cristina Puy
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Divison of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
7
|
Haynes LM, Holding ML, DiGiovanni H, Siemieniak D, Ginsburg D. High-throughput amino acid-level characterization of the interactions of plasminogen activator inhibitor-1 with variably divergent proteases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612699. [PMID: 39345533 PMCID: PMC11429915 DOI: 10.1101/2024.09.16.612699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
While members of large paralogous protein families share structural features, their functional niches often diverge significantly. Serine protease inhibitors (SERPINs), whose members typically function as covalent inhibitors of serine proteases, are one such family. Plasminogen activator inhibitor-1 (PAI-1) is a prototypic SERPIN, which canonically inhibits tissue-and urokinase-type plasminogen activators (tPA and uPA) to regulate fibrinolysis. PAI-1 has been shown to also inhibit other serine proteases, including coagulation factor XIIa (FXIIa) and transmembrane serine protease 2 (TMPRSS2). The structural determinants of PAI-1 inhibitory function toward these non-canonical protease targets, and the biological significance of these functions, are unknown. We applied deep mutational scanning (DMS) to assess the effects of ∼80% of all possible single amino acid substitutions in PAI-1 on its ability to inhibit three putative serine protease targets (uPA, FXIIa, and TMPRSS2). Selection with each target protease generated a unique PAI-1 mutational landscape, with the determinants of protease specificity distributed throughout PAI-1's primary sequence. Next, we conducted a comparative analysis of extant orthologous sequences, demonstrating that key residues modulating PAI-1 inhibition of uPA and FXIIa, but not TMPRSS2, are maintained by purifying selection. PAI-1's activity toward FXIIa may reflect how protease evolutionary relationships predict SERPIN functional divergence, which we support via a cophylogenetic analysis of all secreted SERPINs and their cognate serine proteases. This work provides insight into the functional diversification of SERPINs and lays the framework for extending these studies to other proteases and their regulators.
Collapse
|
8
|
Wan J, Dhrolia S, Kasthuri RR, Prokopenko Y, Ilich A, Saha P, Roest M, Wolberg AS, Key NS, Pawlinski R, Bendapudi PK, Mackman N, Grover SP. Plasma kallikrein supports FXII-independent thrombin generation in mouse whole blood. Blood Adv 2024; 8:3045-3057. [PMID: 38593231 PMCID: PMC11215197 DOI: 10.1182/bloodadvances.2024012613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT Plasma kallikrein (PKa) is an important activator of factor XII (FXII) of the contact pathway of coagulation. Several studies have shown that PKa also possesses procoagulant activity independent of FXII, likely through its ability to directly activate FIX. We evaluated the procoagulant activity of PKa using a mouse whole blood (WB) thrombin-generation (TG) assay. TG was measured in WB from PKa-deficient mice using contact pathway or extrinsic pathway triggers. PKa-deficient WB had significantly reduced contact pathway-initiated TG compared with that of wild-type controls and was comparable with that observed in FXII-deficient WB. PKa-deficient WB supported equivalent extrinsic pathway-initiated TG compared with wild-type controls. Consistent with the presence of FXII-independent functions of PKa, targeted blockade of PKa with either small molecule or antibody-based inhibitors significantly reduced contact pathway-initiated TG in FXII-deficient WB. Inhibition of activated FXII (FXIIa) using an antibody-based inhibitor significantly reduced TG in PKa-deficient WB, consistent with a PKa-independent function of FXIIa. Experiments using mice expressing low levels of tissue factor demonstrated that persistent TG present in PKa- and FXIIa-inhibited WB was driven primarily by endogenous tissue factor. Our work demonstrates that PKa contributes significantly to contact pathway-initiated TG in the complex milieu of mouse WB, and a component of this contribution occurs in an FXII-independent manner.
Collapse
Affiliation(s)
- Jun Wan
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Sophia Dhrolia
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rohan R. Kasthuri
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Yuriy Prokopenko
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anton Ilich
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Prakash Saha
- School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
| | - Mark Roest
- Synapse Research Institute, Maastricht, The Netherlands
| | - Alisa S. Wolberg
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nigel S. Key
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pavan K. Bendapudi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Nigel Mackman
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Steven P. Grover
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
9
|
Bar Barroeta A, Albanese P, Kadavá T, Jankevics A, Marquart JA, Meijers JCM, Scheltema RA. Thrombin activation of the factor XI dimer is a multistaged process for each subunit. J Thromb Haemost 2024; 22:1336-1346. [PMID: 38242207 DOI: 10.1016/j.jtha.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Factor (F)XI can be activated by proteases, including thrombin and FXIIa. The interactions of these enzymes with FXI are transient in nature and therefore difficult to study. OBJECTIVES To identify the binding interface between thrombin and FXI and understand the dynamics underlying FXI activation. METHODS Crosslinking mass spectrometry was used to localize the binding interface of thrombin on FXI. Molecular dynamics simulations were applied to investigate conformational changes enabling thrombin-mediated FXI activation after binding. The proposed trajectory of activation was examined with nanobody 1C10, which was previously shown to inhibit thrombin-mediated activation of FXI. RESULTS We identified a binding interface of thrombin located on the light chain of FXI involving residue Pro520. After this initial interaction, FXI undergoes conformational changes driven by binding of thrombin to the apple 1 domain in a secondary step to allow migration toward the FXI cleavage site. The 1C10 binding site on the apple 1 domain supports this proposed trajectory of thrombin. We validated the results with known mutation sites on FXI. As Pro520 is conserved in prekallikrein (PK), we hypothesized and showed that thrombin can bind PK, even though it cannot activate PK. CONCLUSION Our investigations show that the activation of FXI is a multistaged procedure. Thrombin first binds to Pro520 in FXI; thereafter, it migrates toward the activation site by engaging the apple 1 domain. This detailed analysis of the interaction between thrombin and FXI paves a way for future interventions for bleeding or thrombosis.
Collapse
Affiliation(s)
- Awital Bar Barroeta
- Department of Molecular Hematology, Sanquin, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Pascal Albanese
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Tereza Kadavá
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands; Univ. Grenoble Alpes, CNRS, INRAE, CEA, LPCV, INSERM, UMR BioSanté U1292, Grenoble, France
| | - J Arnoud Marquart
- Department of Molecular Hematology, Sanquin, Amsterdam, the Netherlands
| | - Joost C M Meijers
- Department of Molecular Hematology, Sanquin, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands; Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands; Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Keeling NM, Wallisch M, Johnson J, Le HH, Vu HH, Jordan KR, Puy C, Tucker EI, Nguyen KP, McCarty OJT, Aslan JE, Hinds MT, Anderson DEJ. Pharmacologic targeting of coagulation factors XII and XI by monoclonal antibodies reduces thrombosis in nitinol stents under flow. J Thromb Haemost 2024; 22:1433-1446. [PMID: 38331196 PMCID: PMC11055672 DOI: 10.1016/j.jtha.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cardiovascular implantable devices, such as vascular stents, are critical for the treatment of cardiovascular diseases. However, their success is dependent on robust and often long-term antithrombotic therapies. Yet, the current standard-of-care therapies often pose significant bleeding risks to patients. Coagulation factor (F)XI and FXII have emerged as potentially safe and efficacious targets to safely reduce pathologic thrombin generation in medical devices. OBJECTIVES To study the efficacy of monoclonal antibody-targeting FXII and FXI of the contact pathway in preventing vascular device-related thrombosis. METHODS The effects of inhibition of FXII and FXI using function-blocking monoclonal antibodies were examined in a nonhuman primate model of nitinol stent-related thrombosis under arterial and venous flow conditions. RESULTS We found that function-blocking antibodies of FXII and FXI reduced markers of stent-induced thrombosis in vitro and ex vivo. However, FXI inhibition resulted in more effective mitigation of thrombosis markers under varied flow conditions. CONCLUSION This work provides further support for the translation of contact pathway of coagulation inhibitors for their adjunctive clinical use with cardiovascular devices.
Collapse
Affiliation(s)
- Novella M Keeling
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Michael Wallisch
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Aronora Inc, Portland, Oregon, USA
| | - Jennifer Johnson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Hillary H Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Helen H Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Kelley R Jordan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Erik I Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Aronora Inc, Portland, Oregon, USA
| | - Khanh P Nguyen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
11
|
Gailani D, Gruber A. Targeting factor XI and factor XIa to prevent thrombosis. Blood 2024; 143:1465-1475. [PMID: 38142404 PMCID: PMC11033593 DOI: 10.1182/blood.2023020722] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Direct oral anticoagulants (DOACs) that inhibit the coagulation proteases thrombin or factor Xa (FXa) have replaced warfarin and other vitamin K antagonists (VKAs) for most indications requiring long-term anticoagulation. In many clinical situations, DOACs are as effective as VKAs, cause less bleeding, and do not require laboratory monitoring. However, because DOACs target proteases that are required for hemostasis, their use increases the risk of serious bleeding. Concerns over therapy-related bleeding undoubtedly contribute to undertreatment of many patients who would benefit from anticoagulation therapy. There is considerable interest in the plasma zymogen factor XI (FXI) and its protease form factor XIa (FXIa) as drug targets for treating and preventing thrombosis. Laboratory and epidemiologic studies support the conclusion that FXI contributes to venous and arterial thrombosis. Based on 70 years of clinical observations of patients lacking FXI, it is anticipated that drugs targeting this protein will cause less severe bleeding than warfarin or DOACs. In phase 2 studies, drugs that inhibit FXI or FXIa prevent venous thromboembolism after total knee arthroplasty as well as, or better than, low molecular weight heparin. Patients with heart disease on FXI or FXIa inhibitors experienced less bleeding than patients taking DOACs. Based on these early results, phase 3 trials have been initiated that compare drugs targeting FXI and FXIa to standard treatments or placebo. Here, we review the contributions of FXI to normal and abnormal coagulation and discuss results from preclinical, nonclinical, and clinical studies of FXI and FXIa inhibitors.
Collapse
Affiliation(s)
- David Gailani
- The Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
12
|
Mrozińska Z, Kudzin MH, Ponczek MB, Kaczmarek A, Król P, Lisiak-Kucińska A, Żyłła R, Walawska A. Biochemical Approach to Poly(Lactide)-Copper Composite-Impact on Blood Coagulation Processes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:608. [PMID: 38591465 PMCID: PMC10856769 DOI: 10.3390/ma17030608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 04/10/2024]
Abstract
The paper presents the investigation of the biological properties of Poly(Lactide)-Copper composite material obtained by sputter deposition of copper onto Poly(lactide) melt-blown nonwoven fabrics. The functionalized composite material was subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, Chaetomium globosum and Candida albicans fungal mold species and biochemical-hematological tests including the evaluation of the Activated Partial Thromboplastin Time, Prothrombin Time, Thrombin Time and electron microscopy fibrin network imaging. The substantial antimicrobial and antifungal activities of the Poly(Lactide)-Copper composite suggests potential applications as an antibacterial/antifungal material. The unmodified Poly(Lactide) fabric showed accelerated human blood plasma clotting in the intrinsic pathway, while copper plating abolished this effect. Unmodified PLA itself could be used for the preparation of wound dressing materials, accelerating coagulation in the case of hemorrhages, and its modifications with the use of various metals might be applied as new customized materials where blood coagulation process could be well controlled, yielding additional anti-pathogen effects.
Collapse
Affiliation(s)
- Zdzisława Mrozińska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (A.K.); (P.K.); (A.L.-K.); (R.Ż.); (A.W.)
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (A.K.); (P.K.); (A.L.-K.); (R.Ż.); (A.W.)
| | - Michał B. Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Anna Kaczmarek
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (A.K.); (P.K.); (A.L.-K.); (R.Ż.); (A.W.)
| | - Paulina Król
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (A.K.); (P.K.); (A.L.-K.); (R.Ż.); (A.W.)
| | - Agnieszka Lisiak-Kucińska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (A.K.); (P.K.); (A.L.-K.); (R.Ż.); (A.W.)
| | - Renata Żyłła
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (A.K.); (P.K.); (A.L.-K.); (R.Ż.); (A.W.)
| | - Anetta Walawska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (A.K.); (P.K.); (A.L.-K.); (R.Ż.); (A.W.)
| |
Collapse
|
13
|
Mohammed BM, Sun MF, Cheng Q, Litvak M, McCrae KR, Emsley J, McCarty OJT, Gailani D. High molecular weight kininogen interactions with the homologs prekallikrein and factor XI: importance to surface-induced coagulation. J Thromb Haemost 2024; 22:225-237. [PMID: 37813198 PMCID: PMC10841474 DOI: 10.1016/j.jtha.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND In plasma, high molecular weight kininogen (HK) is either free or bound to prekallikrein (PK) or factor (F) XI (FXI). During contact activation, HK is thought to anchor PK and FXI to surfaces, facilitating their conversion to the proteases plasma kallikrein and FXIa. Mice lacking HK have normal hemostasis but are resistant to injury-induced arterial thrombosis. OBJECTIVES To identify amino acids on the HK-D6 domain involved in PK and FXI binding and study the importance of the HK-PK and HK-FXI interactions to coagulation. METHODS Twenty-four HK variants with alanine replacements spanning residues 542-613 were tested in PK/FXI binding and activated partial thromboplastin time clotting assays. Surface-induced FXI and PK activation in plasma were studied in the presence or absence of HK. Kng1-/- mice lacking HK were supplemented with human or murine HK and tested in an arterial thrombosis model. RESULTS Overlapping binding sites for PK and FXI were identified in the HK-D6 domain. HK variants with defects only in FXI binding corrected the activated partial thromboplastin time of HK-deficient plasma poorly compared to a variant defective only in PK-binding. In plasma, HK deficiency appeared to have a greater deleterious effect on FXI activation than PK activation. Human HK corrected the defect in arterial thrombus formation in HK-deficient mice poorly due to a specific defect in binding to mouse FXI. CONCLUSION Clinical observations indicate FXI is required for hemostasis, while HK is not. Yet, the HK-FXI interaction is required for contact activation-induced clotting in vitro and in vivo suggesting an important role in thrombosis and perhaps other FXI-related activities.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Edward A. Doisy Research Center, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, USA.
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith R McCrae
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Owen J T McCarty
- Department of Biomedical Engineering, Division of Hematology/Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
14
|
Padilla S, Prado R, Anitua E. An evolutionary history of F12 gene: Emergence, loss, and vulnerability with the environment as a driver. Bioessays 2023; 45:e2300077. [PMID: 37750435 DOI: 10.1002/bies.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
In the context of macroevolutionary transitions, environmental changes prompted vertebrates already bearing genetic variations to undergo gradual adaptations resulting in profound anatomical, physiological, and behavioral adaptations. The emergence of new genes led to the genetic variation essential in metazoan evolution, just as was gene loss, both sources of genetic variation resulting in adaptive phenotypic diversity. In this context, F12-coding protein with defense and hemostatic roles emerged some 425 Mya, and it might have contributed in aquatic vertebrates to the transition from water-to-land. Conversely, the F12 loss in marine, air-breathing mammals like cetaceans has been associated with phenotypic adaptations in some terrestrial mammals in their transition to aquatic lifestyle. More recently, the advent of technological innovations in western lifestyle with blood-contacting devices and harmful environmental nanoparticles, has unfolded new roles of FXII. Environment operates as either a positive or a relaxed selective pressure on genes, and consequently genes are selected or lost. FXII, an old dog facing environmental novelties can learn new tricks and teach us new therapeutic avenues.
Collapse
Affiliation(s)
- Sabino Padilla
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Roberto Prado
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Eduardo Anitua
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
15
|
Li C, Barroeta AB, Wong SS, Kim HJ, Pathak M, Dreveny I, Meijers JCM, Emsley J. Structures of factor XI and prekallikrein bound to domain 6 of high-molecular weight kininogen reveal alternate domain 6 conformations and exosites. J Thromb Haemost 2023; 21:2378-2389. [PMID: 37068593 DOI: 10.1016/j.jtha.2023.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND High-molecular weight kininogen (HK) circulates in plasma as a complex with zymogen prekallikrein (PK). HK is both a substrate and a cofactor for activated plasma kallikrein, and the principal exosite interactions occur between PK N-terminal apple domains and the C-terminal D6 domain of HK. OBJECTIVES To determine the structure of the complex formed between PK apple domains and an HKD6 fragment and compare this with the coagulation factor XI (FXI)-HK complex. METHODS We produced recombinant FXI and PK heavy chains (HCs) spanning all 4 apple domains. We cocrystallized PKHC (and subsequently FXIHC) with a 31-amino acid synthetic peptide spanning HK residues Ser565-Lys595 and determined the crystal structure. We also analyzed the full-length FXI-HK complex in solution using hydrogen deuterium exchange mass spectrometry. RESULTS The 2.3Å PKHC-HK peptide crystal structure revealed that the HKD6 sequence WIPDIQ (Trp569-Gln574) binds to the apple 1 domain and HK FNPISDFPDT (Phe582-Thr591) binds to the apple 2 domain with a flexible intervening sequence resulting in a bent double conformation. A second 3.2Å FXIHC-HK peptide crystal structure revealed a similar interaction with the apple 2 domain but an alternate, straightened conformation of the HK peptide where residues LSFN (Leu579-Asn583) interacts with a unique pocket formed between the apple 2 and 3 domains. HDX-MS of full length FXI-HK complex in solution confirmed interactions with both apple 2 and apple 3. CONCLUSIONS The alternate conformations and exosite binding of the HKD6 peptide likely reflects the diverging relationship of HK to the functions of PK and FXI.
Collapse
Affiliation(s)
- Chan Li
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Awital Bar Barroeta
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Szu Shen Wong
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Hyo Jung Kim
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Monika Pathak
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Ingrid Dreveny
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Joost C M Meijers
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, department of Experimental Vascular Medicine, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
16
|
Motta G, Juliano L, Chagas JR. Human plasma kallikrein: roles in coagulation, fibrinolysis, inflammation pathways, and beyond. Front Physiol 2023; 14:1188816. [PMID: 37711466 PMCID: PMC10499198 DOI: 10.3389/fphys.2023.1188816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Human plasma kallikrein (PKa) is obtained by activating its precursor, prekallikrein (PK), historically named the Fletcher factor. Human PKa and tissue kallikreins are serine proteases from the same family, having high- and low-molecular weight kininogens (HKs and LKs) as substrates, releasing bradykinin (Bk) and Lys-bradykinin (Lys-Bk), respectively. This review presents a brief history of human PKa with details and recent observations of its evolution among the vertebrate coagulation proteins, including the relations with Factor XI. We explored the role of Factor XII in activating the plasma kallikrein-kinin system (KKS), the mechanism of activity and control in the KKS, and the function of HK on contact activation proteins on cell membranes. The role of human PKa in cell biology regarding the contact system and KSS, particularly the endothelial cells, and neutrophils, in inflammatory processes and infectious diseases, was also approached. We examined the natural plasma protein inhibitors, including a detailed survey of human PKa inhibitors' development and their potential market.
Collapse
Affiliation(s)
- Guacyara Motta
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jair Ribeiro Chagas
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Perrin KL. Coagulation Disorders, Testing, and Treatment in Exotic Animal Critical Care. Vet Clin North Am Exot Anim Pract 2023:S1094-9194(23)00024-5. [PMID: 37321935 DOI: 10.1016/j.cvex.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite poor recognition in the literature, exotic companion animals are affected by many diseases that can result in disordered coagulation and fibrinolysis. This article outlines current knowledge of hemostasis, common diagnostic tests and reviews reported diseases associated with coagulopathy in small mammals, bird and reptiles. A range of conditions affect platelets and thrombocytes, endothelium and blood vessels, and plasma clotting factors. Improved recognition and monitoring of hemostatic disorders will enable targeted therapy and improved case outcomes.
Collapse
Affiliation(s)
- Kathryn L Perrin
- San Diego Zoo Wildlife Alliance, Veterinary Services, 15500 San Pasqual Valley Road, Escondido, CA 92027, USA.
| |
Collapse
|
18
|
Shamanaev A, Litvak M, Cheng Q, Ponczek M, Dickeson SK, Smith SA, Morrissey JH, Gailani D. A site on factor XII required for productive interactions with polyphosphate. J Thromb Haemost 2023; 21:1567-1579. [PMID: 36863563 PMCID: PMC10192085 DOI: 10.1016/j.jtha.2023.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND During plasma contact activation, factor XII (FXII) binds to surfaces through its heavy chain and undergoes conversion to the protease FXIIa. FXIIa activates prekallikrein and factor XI (FXI). Recently, we showed that the FXII first epidermal growth factor-1 (EGF1) domain is required for normal activity when polyphosphate is used as a surface. OBJECTIVES The aim of this study was to identify amino acids in the FXII EGF1 domain required for polyphosphate-dependent FXII functions. METHODS FXII with alanine substitutions for basic residues in the EGF1 domain were expressed in HEK293 fibroblasts. Wild-type FXII (FXII-WT) and FXII containing the EGF1 domain from the related protein Pro-HGFA (FXII-EGF1) were positive and negative controls. Proteins were tested for their capacity to be activated, and to activate prekallikrein and FXI, with or without polyphosphate, and to replace FXII-WT in plasma clotting assays and a mouse thrombosis model. RESULTS FXII and all FXII variants were activated similarly by kallikrein in the absence of polyphosphate. However, FXII with alanine replacing Lys73, Lys74, and Lys76 (FXII-Ala73,74,76) or Lys76, His78, and Lys81 (FXII-Ala76,78,81) were activated poorly in the presence of polyphosphate. Both have <5% of normal FXII activity in silica-triggered plasma clotting assays and have reduced binding affinity for polyphosphate. Activated FXIIa-Ala73,74,76 displayed profound defects in surface-dependent FXI activation in purified and plasma systems. FXIIa-Ala73,74,76 reconstituted FXII-deficient mice poorly in an arterial thrombosis model. CONCLUSION FXII Lys73, Lys74, Lys76, and Lys81 form a binding site for polyanionic substances such as polyphosphate that is required for surface-dependent FXII function.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA. https://twitter.com/Aleksan18944927
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michal Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - S Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie A Smith
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James H Morrissey
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
19
|
Tsutsui S, Yoshimura A, Iwakuma Y, Nakamura O. Discovery of Teleost Plasma Kallikrein/Coagulation Factor XI-Like Gene from Channel Catfish (Ictalurus punctatus) and the Evidence that the Protein Encoded by it Acts as a Lectin. J Mol Evol 2023:10.1007/s00239-023-10113-4. [PMID: 37154840 DOI: 10.1007/s00239-023-10113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Mammalian plasma kallikrein (PK) and coagulation factor XI (fXI) are serine proteases that play in the kinin-kallikrein cascade and in the blood clotting pathway. These proteases share sequence homology and have four apple domains (APDs) and a serine protease domain (SPD) from their N-terminus to C-terminus. No homologs of these proteases are believed to be present in fish species, except for lobe-finned fish. Fish, however, have a unique lectin, named kalliklectin (KL), which is composed of APDs only. In the present study, we found genomic sequences encoding a protein with both APDs and SPD in a few cartilaginous and bony fishes, including the channel catfish Ictalurus punctatus, using bioinformatic analysis. Furthermore, we purified two ~ 70 kDa proteins from the blood plasma of the catfish using mannose-affinity and gel filtration chromatography sequentially. Using de novo sequencing with quadrupole time-of-flight tandem mass spectrometry, several internal amino acid sequences in these proteins were mapped onto possible PK/fXI-like sequences that are thought to be splicing variants. Exploration of APD-containing proteins in the hagfish genome database and phylogenetic analysis suggested that the PK/fXI-like gene originated from hepatocyte growth factor, and that the gene was acquired in a common ancestor of jawed fish. Synteny analysis provided evidence for chromosomal translocation around the PK/fXI-like locus that occurred in the common ancestor of holosteans and teleosts after separation from the lobe-finned fish lineage, or gene duplication into two chromosomes, followed by independent gene losses. This is the first identification of PK/fXI-like proteins in teleosts.
Collapse
Affiliation(s)
- Shigeyuki Tsutsui
- Laboratory of Fish Pathology, School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Asuka Yoshimura
- Laboratory of Fish Pathology, School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yoshiharu Iwakuma
- Laboratory of Fish Pathology, School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Osamu Nakamura
- Laboratory of Fish Pathology, School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
20
|
Litvak M, Shamanaev A, Zalawadiya S, Matafonov A, Kobrin A, Feener EP, Wallisch M, Tucker EI, McCarty OJT, Gailani D. Titanium is a potent inducer of contact activation: implications for intravascular devices. J Thromb Haemost 2023; 21:1200-1213. [PMID: 36696212 PMCID: PMC10621279 DOI: 10.1016/j.jtha.2022.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Titanium (Ti) and its alloys are widely used in manufacturing medical devices because of their strength and resistance to corrosion. Although Ti compounds are considered compatible with blood, they appear to support plasma contact activation and may be thrombogenic. OBJECTIVES The objective of this study was to compare Ti and titanium nitride (TiN) with known activators of contact activation (kaolin and silica) in plasma-clotting assays and to assess binding and activation of factor XII, (FXII), factor XI (FXI), prekallikrein, and high-molecular-weight kininogen (HK) with Ti/TiN. METHODS Ti-based nanospheres and foils were compared with kaolin, silica, and aluminum in plasma-clotting assays. Binding and activation of FXII, prekallikrein, HK, and FXI to surfaces was assessed with western blots and chromogenic assays. RESULTS Using equivalent surface amounts, Ti and TiN were comparable with kaolin and superior to silica, for inducing coagulation and FXII autoactivation. Similar to many inducers of contact activation, Ti and TiN are negatively charged; however, their effects on FXII are not neutralized by the polycation polybrene. Antibodies to FXII, prekallikrein, or FXI or coating Ti with poly-L-arginine blocked Ti-induced coagulation. An antibody to FXII reduced FXII and PK binding to Ti, kallikrein generation, and HK cleavage. CONCLUSION Titanium compounds induce contact activation with a potency comparable with that of kaolin. Binding of FXII with Ti shares some features with FXII binding to soluble polyanions but may have unique features. Inhibitors targeting FXII or FXI may be useful in mitigating Ti-induced contact activation in patients with titanium-based implants that are exposed to blood.
Collapse
Affiliation(s)
- Maxim Litvak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aleksandr Shamanaev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandip Zalawadiya
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anton Matafonov
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anton Kobrin
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward P Feener
- KalVista Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Michael Wallisch
- Aronora, Inc., Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - Erik I Tucker
- Aronora, Inc., Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - David Gailani
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
21
|
Al-Ansari RY, Alruwaili AF, Alqahtani KM, Al-Harbi AF, Woodman A. "Familial Multiple Coagulation Factor Deficiencies of FXI and FXII in an Asymptomatic Saudi Woman". J Investig Med High Impact Case Rep 2023; 11:23247096231199413. [PMID: 37705386 PMCID: PMC10503275 DOI: 10.1177/23247096231199413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/15/2023] Open
Abstract
Factor XI deficiency (FXI) is the third most common coagulation factor deficiency after hemophilia A and B, ie, in the hierarchy after factors VIII and IX, taking into account von Willebrand's factor deficiency, as bleeding disorders are higher than in hemophilia C. Factor XII deficiency (FXII) is a congenital condition, inherited in the vast majority of cases in an autosomal recessive manner, more often associated with thromboembolic complications. A combination of both factor deficiencies has been found very rarely, and it can be familial multiple coagulation factor deficiency (FMCFD). This study reports the case of a 39-year-old woman from Saudi Arabia who had the combination of FXI and FXII deficiencies, known to be on treatment for hypothyroidism and was referred to a hematology clinic with an incidental finding of prolonged activated partial thromboplastin time (aPTT). Although there was no history of bleeding tendency, her siblings had a family history of an unknown type of bleeding disorder. On physical examination, the patient did not show any bruising, petechiae, or ecchymosis. The aPTT was 69 seconds (27-38) with normal use of other hemostatic agents and was corrected after a 50:50 mixing study. Intrinsic coagulation factors were evaluated, and they revealed severe FXI and moderate FXII deficiencies. Due to a strong family history, the patient was diagnosed with FMCFD. In conclusion, familial combined multiple clotting factor deficiency (FCMFD) is a rare condition that requires attention and reporting. The management strategy in such cases has not been well studied, especially in the long-term symptomatic patient with severe but asymptomatic combined FXI and FXII deficiencies, which is an area for review and further study.
Collapse
|
22
|
Coban A, Bornberg-Bauer E, Kemena C. Domain Evolution of Vertebrate Blood Coagulation Cascade Proteins. J Mol Evol 2022; 90:418-428. [PMID: 36181519 PMCID: PMC9643190 DOI: 10.1007/s00239-022-10071-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/26/2022] [Indexed: 10/06/2022]
Abstract
Vertebrate blood coagulation is controlled by a cascade containing more than 20 proteins. The cascade proteins are found in the blood in their zymogen forms and when the cascade is triggered by tissue damage, zymogens are activated and in turn activate their downstream proteins by serine protease activity. In this study, we examined proteomes of 21 chordates, of which 18 are vertebrates, to reveal the modular evolution of the blood coagulation cascade. Additionally, two Arthropoda species were used to compare domain arrangements of the proteins belonging to the hemolymph clotting and the blood coagulation cascades. Within the vertebrate coagulation protein set, almost half of the studied proteins are shared with jawless vertebrates. Domain similarity analyses revealed that there are multiple possible evolutionary trajectories for each coagulation protein. During the evolution of higher vertebrate clades, gene and genome duplications led to the formation of other coagulation cascade proteins.
Collapse
Affiliation(s)
- Abdulbaki Coban
- Institute for Evolutionary Biology, WWU Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolutionary Biology, WWU Münster, Münster, Germany
- Max Planck-Institute for Biology Tuebingen, Tübingen, Germany
| | - Carsten Kemena
- Institute for Evolutionary Biology, WWU Münster, Münster, Germany.
| |
Collapse
|
23
|
Stojanovski BM, Di Cera E. Comparative sequence analysis of vitamin K-dependent coagulation factors. J Thromb Haemost 2022; 20:2837-2849. [PMID: 36156849 PMCID: PMC9669250 DOI: 10.1111/jth.15897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prothrombin, protein C, and factors VII, IX, and X are vitamin K (VK)-dependent coagulation proteins that play an important role in the initiation, amplification, and subsequent attenuation of the coagulation response. Blood coagulation evolved in the common vertebrate ancestor as a specialization of the complement system and immune response, which in turn bear close evolutionary ties with developmental enzyme cascades. There is currently no comprehensive analysis of the evolutionary changes experienced by these coagulation proteins during the radiation of vertebrates and little is known about conservation of residues that are important for zymogen activation and catalysis. OBJECTIVES To characterize the conservation level of functionally important residues among VK-dependent coagulation proteins from different vertebrate lineages. METHODS The conservation level of residues important for zymogen activation and catalysis was analyzed in >1600 primary sequences of VK-dependent proteins. RESULTS Functionally important residues are most conserved in prothrombin and least conserved in protein C. Some of the most profound functional modifications in protein C occurred in the ancestor of bony fish when the basic residue in the activation site was replaced by an aromatic residue. Furthermore, during the radiation of placental mammals from marsupials, protein C acquired a cysteine-rich insert that introduced an additional disulfide in the EGF1 domain and evolved a proprotein convertase cleavage site in the activation peptide linker that also became significantly elongated. CONCLUSIONS Sequence variabilities at functionally important residues may lead to interspecies differences in the zymogen activation and catalytic properties of orthologous VK-dependent proteins.
Collapse
Affiliation(s)
- Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
24
|
Mohammed BM, Cheng Q, Gailani D. A demonstration of factor XI contributing to hemostasis in the absence of factor XII. Res Pract Thromb Haemost 2022; 6:e12841. [PMID: 36426234 PMCID: PMC9679972 DOI: 10.1002/rth2.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Bassem M. Mohammed
- Department of BiochemistrySt. Louis UniversityMissouriSt. LouisUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - David Gailani
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterTennesseeNashvilleUSA
| |
Collapse
|
25
|
Bar Barroeta A, Marquart JA, Bakhtiari K, Meijer AB, Urbanus RT, Meijers JCM. Nanobodies against factor XI apple 3 domain inhibit binding of factor IX and reveal a novel binding site for high molecular weight kininogen. J Thromb Haemost 2022; 20:2538-2549. [PMID: 35815349 PMCID: PMC9795894 DOI: 10.1111/jth.15815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Factor XI (FXI) is a promising target for novel anticoagulants because it shows a strong relation to thromboembolic diseases, while fulfilling a mostly supportive role in hemostasis. Anticoagulants targeting FXI could therefore reduce the risk for thrombosis, without increasing the chance of bleeding side effects. OBJECTIVES To generate nanobodies that can interfere with FXIa mediated activation of factor IX (FIX). METHODS Nanobodies were selected for binding to the apple 3 domain of FXI and their effects on FXI and coagulation were measured in purified protein systems as well as in plasma-based coagulation assays. Additionally, the binding epitope of selected nanobodies was assessed by hydrogen-deuterium exchange mass spectrometry. RESULTS We have identified five nanobodies that inhibit FIX activation by FXI by competing with the FIX binding site on FXI. Interestingly, a sixth nanobody was found to target a different binding epitope in the apple 3 domain, resulting in competition with the FXI-high molecular weight kininogen (HK) interaction. CONCLUSIONS We have characterized a nanobody targeting the FXI apple 3 domain that elucidates the binding orientation of HK on FXI. Moreover, we have produced five nanobodies that can inhibit the FXI-FIX interaction.
Collapse
Affiliation(s)
| | | | - Kamran Bakhtiari
- Department of Molecular HematologySanquinAmsterdamthe Netherlands
| | - Alexander B. Meijer
- Department of Molecular HematologySanquinAmsterdamthe Netherlands
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht UniversityUtrechtthe Netherlands
| | - Rolf T. Urbanus
- Center for Benign Haematology, Thrombosis and Haemostasis, Van CreveldkliniekUniversity Medical Center Utrecht, University UtrechtUtrechtthe Netherlands
| | - Joost C. M. Meijers
- Department of Molecular HematologySanquinAmsterdamthe Netherlands
- Department of Experimental Vascular MedicineAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and ThrombosisAmsterdamthe Netherlands
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Factor XII (FXII), the precursor of the protease FXIIa, contributes to pathologic processes including angioedema and thrombosis. Here, we review recent work on structure-function relationships for FXII based on studies using recombinant FXII variants. RECENT FINDINGS FXII is a homolog of pro-hepatocyte growth factor activator (Pro-HGFA). We prepared FXII in which domains are replaced by corresponding parts of Pro-HGA, and tested them in FXII activation and activity assays. In solution, FXII and prekallikrein undergo reciprocal activation to FXIIa and kallikrein. The rate of this process is restricted by the FXII fibronectin type-2 and kringle domains. Pro-HGA replacements for these domains accelerate FXII and prekallikrein activation. When FXII and prekallikrein bind to negatively charged surfaces, reciprocal activation is enhanced. The FXII EGF1 domain is required for surface binding. SUMMARY We propose a model in which FXII is normally maintained in a closed conformation resistant to activation by intramolecular interactions involving the fibronectin type-2 and kringle domains. These interactions are disrupted when FXII binds to a surface through EGF1, enhancing FXII activation and prekallikrein activation by FXIIa. These observations have important implications for understanding the contributions of FXII to disease, and for developing therapies to treat thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
27
|
Evolutionary Insight into Immunothrombosis as a Healing Mechanism. Int J Mol Sci 2022; 23:ijms23158346. [PMID: 35955499 PMCID: PMC9368803 DOI: 10.3390/ijms23158346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Both invertebrates and vertebrates possess a cluster of immediate and local wound-sealing, pathogen-killing, and tissue healing responses known as immunoclotting and immunothrombosis, respectively, to cope with two life-threatening emergencies, namely, bleeding and microbial invasion. Despite their convergence in function, immunoclotting and immunothrombosis are deployed by different blood cells and intravascular multidomain proteins. In vertebrates, these proteins share some domains with intrinsic chemical affinities useful in generating cooperative networks such as pathogen and damage pattern recognition molecules. Moreover, many of the proteins involved in coagulation and fibrinolysis in humans are multifunctional molecules playing roles in other processes from inflammation to healing and beyond. In our modern society, however, the interaction of activated intravascular allosteric proteins with one another and with blood cells entails vulnerabilities posing a biological paradox: intravascular proteins that locally operate as tissue repair enhancers can nevertheless generate pathogenic processes by acting systemically. In this manuscript, we contextualize and frame the coagulation system and hemostasis through an evolutionary time scale, illustrating their role as dual players in the defense against exsanguination and pathogens while significantly influencing wound healing.
Collapse
|
28
|
Liu YB, Zhou XC, Liu Y, Zhang L, Zhou Y, Xu X, Zheng C, Zhao ZY, Wu CT, Jin JD. Inhibitory role of recombinant neorudin on canine coronary artery thrombosis. Pharmacol Res Perspect 2022; 10:e00956. [PMID: 35505637 PMCID: PMC9065819 DOI: 10.1002/prp2.956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/17/2022] [Indexed: 11/26/2022] Open
Abstract
The anticoagulant application is an effective treatment modality for cardiovascular diseases such as coronary heart disease, unstable angina pectoris, and myocardial infarction. In this study, the antithrombotic effect of recombinant neorudin (EPR‐hirudin, EH) was evaluated using a canine model of coronary artery thrombosis. A canine model with platelet thrombosis in the left circumferent branch of the coronary artery was designed using Folt's method, and the anti‐thrombus activity of EH was investigated. Femoral administration of EH intravenously had a significant dose‐dependent inhibitory effect on canine coronary artery thrombosis and the effective rates were 66.7% (p < .05), 83.3% (p < .05), and 100% (p < .01) after injection of 0.3, 1.0, and 3.0 mg/kg EH, respectively. Furthermore, EH demonstrated lower bleeding, with shorter bleeding time and less bleeding loss than low molecular weight heparin (LMWH). Under the similar effect intensity of EH and LMWH (85 IU/kg), the bleeding time of the EH group at 30 min was shorter, and the blood loss at 30–120 min was less than that of LMWH (p < .05 and p < .05–.001, respectively). EH had a significant dose‐dependent inhibitory effect in the dose range of 0.3–3.0 mg/kg on the coronary artery thrombosis and lower bleeding side effects than LMWH with a similar antithrombosis effect.
Collapse
Affiliation(s)
- Yu-Bin Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Yun Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lin Zhang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Zhou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao Xu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Can Zheng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuan-You Zhao
- Center for Pharmacodynamic Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Chu-Tse Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ji-de Jin
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
29
|
Kuder H, Dickeson SK, Brooks MB, Kehl A, Müller E, Gailani D, Giger U. A Common Missense Variant Causing Factor XI Deficiency and Increased Bleeding Tendency in Maine Coon Cats. Genes (Basel) 2022; 13:792. [PMID: 35627175 PMCID: PMC9140718 DOI: 10.3390/genes13050792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Hereditary factor XI (FXI) deficiency is characterized as an autosomal mild to moderate coagulopathy in humans and domestic animals. Coagulation testing revealed FXI deficiency in a core family of Maine Coon cats (MCCs) in the United States. Factor XI-deficient MCCs were homozygous for a guanine to adenine transition resulting in a methionine substitution for the highly conserved valine-516 in the FXI catalytic domain. Immunoblots detected FXI of normal size and quantity in plasmas of MCCs homozygous for V516M. Some FXI-deficient MCCs experienced excessive post-operative/traumatic bleeding. Screening of 263 MCCs in Europe revealed a mutant allele frequency of 0.232 (23.2%). However, V516M was not found among 100 cats of other breeds. Recombinant feline FXI-M516 (fFXI-M516) expressed ~4% of the activity of wild-type fFXI-V516 in plasma clotting assays. Furthermore, fFXIa-M516 cleaved the chromogenic substrate S-2366 with ~4.3-fold lower catalytic efficacy (kcat/Km) than fFXIa-V516, supporting a conformational alteration of the protease active site. The rate of FIX activation by fFXIa-M516 was reduced >3-fold compared with fFXIa-V516. The common missense variant FXI-V516M causes a cross-reactive material positive FXI deficiency in MCCs that is associated with mild-moderate bleeding tendencies. Given the prevalence of the variant in MCCs, genotyping is recommended prior to invasive procedures or breeding.
Collapse
Affiliation(s)
- Henrike Kuder
- Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland;
- Laboklin GmbH & Co. KG (Labogen), Steubenstrasse 4, D-97688 Bad Kissingen, Germany; (A.K.); (E.M.)
| | - S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1301 Medical Center Dr, Nashville, TN 37232, USA; (S.K.D.); (D.G.)
| | - Marjory B. Brooks
- Comparative Coagulation Laboratory, Cornell University, 240 Farrier Road, Ithaca, NY 14853, USA;
| | - Alexandra Kehl
- Laboklin GmbH & Co. KG (Labogen), Steubenstrasse 4, D-97688 Bad Kissingen, Germany; (A.K.); (E.M.)
| | - Elisabeth Müller
- Laboklin GmbH & Co. KG (Labogen), Steubenstrasse 4, D-97688 Bad Kissingen, Germany; (A.K.); (E.M.)
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1301 Medical Center Dr, Nashville, TN 37232, USA; (S.K.D.); (D.G.)
| | - Urs Giger
- Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland;
| |
Collapse
|
30
|
A Model for Surface-Dependent Factor XII Activation: The Roles of Factor XII Heavy Chain Domains. Blood Adv 2022; 6:3142-3154. [PMID: 35086137 PMCID: PMC9131904 DOI: 10.1182/bloodadvances.2021005976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/16/2022] [Indexed: 11/20/2022] Open
Abstract
The FXII EGF1 domain promotes surface binding, FXII activation on surfaces, and FXIIa activation of prekallikrein on surfaces. The FXII FN2 and KNG domains are part of a mechanism that restricts FXII activation in the absence of a surface.
Factor XII (FXII) is the zymogen of a plasma protease (FXIIa) that contributes to bradykinin generation by converting prekallikrein to the protease plasma kallikrein (PKa). FXII conversion to FXIIa by autocatalysis or PKa-mediated cleavage is enhanced when the protein binds to negatively charged surfaces such as polymeric orthophosphate. FXII is composed of noncatalytic (heavy chain) and catalytic (light chain) regions. The heavy chain promotes FXII surface-binding and surface-dependent activation but restricts activation when FXII is not surface bound. From the N terminus, the heavy chain contains fibronectin type 2 (FN2), epidermal growth factor-1 (EGF1), fibronectin type 1 (FN1), EGF2, and kringle (KNG) domains and a proline-rich region. It shares this organization with its homolog, pro–hepatocyte growth factor activator (Pro-HGFA). To study the importance of heavy chain domains in FXII function, we prepared FXII with replacements of each domain with corresponding Pro-HGFA domains and tested them in activation and activity assays. EGF1 is required for surface-dependent FXII autoactivation and surface-dependent prekallikrein activation by FXIIa. KNG and FN2 are important for limiting FXII activation in the absence of a surface by a process that may require interactions between a lysine/arginine binding site on KNG and basic residues elsewhere on FXII. This interaction is disrupted by the lysine analog ε-aminocaproic acid. A model is proposed in which an ε-aminocaproic acid–sensitive interaction between the KNG and FN2 domains maintains FXII in a conformation that restricts activation. Upon binding to a surface through EGF1, the KNG/FN2-dependent mechanism is inactivated, exposing the FXII activation cleavage site.
Collapse
|
31
|
High Molecular Weight Kininogen: A Review of the Structural Literature. Int J Mol Sci 2021; 22:ijms222413370. [PMID: 34948166 PMCID: PMC8706920 DOI: 10.3390/ijms222413370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 12/23/2022] Open
Abstract
Kininogens are multidomain glycoproteins found in the blood of most vertebrates. High molecular weight kininogen demonstrate both carrier and co-factor activity as part of the intrinsic pathway of coagulation, leading to thrombin generation. Kininogens are the source of the vasoactive nonapeptide bradykinin. To date, attempts to crystallize kininogen have failed, and very little is known about the shape of kininogen at an atomic level. New advancements in the field of cryo-electron microscopy (cryoEM) have enabled researchers to crack the structure of proteins that has been refractory to traditional crystallography techniques. High molecular weight kininogen is a good candidate for structural investigation by cryoEM. The goal of this review is to summarize the findings of kininogen structural studies.
Collapse
|
32
|
Harris VA, Lin W, Perkins SJ. Analysis of 272 Genetic Variants in the Upgraded Interactive FXI Web Database Reveals New Insights into FXI Deficiency. TH OPEN 2021; 5:e543-e556. [PMID: 35059554 PMCID: PMC8763576 DOI: 10.1055/a-1683-8605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Coagulation Factor XI (FXI) is a plasma glycoprotein composed of four apple (Ap) domains and a serine protease (SP) domain. FXI circulates as a dimer and activates Factor IX (FIX), promoting thrombin production and preventing excess blood loss. Genetic variants that degrade FXI structure and function often lead to bleeding diatheses, commonly termed FXI deficiency. The first interactive FXI variant database underwent initial development in 2003 at
https://www.factorxi.org
. Here, based on a much improved FXI crystal structure, the upgraded FXI database contains information regarding 272 FXI variants (including 154 missense variants) found in 657 patients, this being a significant increase from the 183 variants identified in the 2009 update. Type I variants involve the simultaneous reduction of FXI coagulant activity (FXI:C) and FXI antigen levels (FXI:Ag), whereas Type II variants result in decreased FXI:C yet normal FXI:Ag. The database updates now highlight the predominance of Type I variants in FXI. Analysis in terms of a consensus Ap domain revealed the near-uniform distribution of 81 missense variants across the Ap domains. A further 66 missense variants were identified in the SP domain, showing that all regions of the FXI protein were important for function. The variants clarified the critical importance of changes in surface solvent accessibility, as well as those of cysteine residues and the dimer interface. Guidelines are provided below for clinicians who wish to use the database for diagnostic purposes. In conclusion, the updated database provides an easy-to-use web resource on FXI deficiency for clinicians.
Collapse
Affiliation(s)
- Victoria A. Harris
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Weining Lin
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Stephen J. Perkins
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
33
|
Mailer RK, Rangaswamy C, Konrath S, Emsley J, Renné T. An update on factor XII-driven vascular inflammation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119166. [PMID: 34699874 DOI: 10.1016/j.bbamcr.2021.119166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
The plasma protein factor XII (FXII) is the liver-derived zymogen of the serine protease FXIIa that initiates an array of proteolytic cascades. Zymogen activation, enzymatic FXIIa activity and functions are regulated by interactions with cell receptors, negatively charged surfaces, other serine proteases, and serpin inhibitors, which bind to distinct protein domains and regions in FXII(a). FXII exerts mitogenic activity, while FXIIa initiates the pro-inflammatory kallikrein-kinin pathway and the pro-thrombotic intrinsic coagulation pathway, respectively. Growing evidence indicates that FXIIa-mediated thrombo-inflammation plays a crucial role in various pathological states besides classical thrombosis, such as endothelial dysfunction. Consistently, increased FXIIa levels are associated with hypercholesterolemia and hypertriglyceridemia. In contrast, FXII deficiency protects from thrombosis but is otherwise not associated with prolonged bleeding or other adverse clinical manifestations. Here, we review current concepts for FXII(a)-driven vascular inflammation focusing on endothelial hyperpermeability, receptor signaling, atherosclerosis and immune cell activation.
Collapse
Affiliation(s)
- Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chandini Rangaswamy
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Emsley
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany.
| |
Collapse
|
34
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
35
|
Abstract
Factor XI (FXI) deficiency (hemophilia C or Rosenthal disease) was first described in the 1950s in a multigenerational family experiencing bleeding related to surgery and dental procedures. Managing patients with FXI deficiency presents several challenges, including a lack of correlation of bleeding symptoms with FXI activity levels, the large volume of fresh frozen plasma required to achieve hemostatic FXI levels, lack of availability of FXI concentrate in certain regions of the world, and the inherent thrombotic risk associated with replacement therapy. This article summarizes presentation, diagnosis, and management of patients with FXI deficiency in a variety of clinical settings.
Collapse
Affiliation(s)
| | - Jean Marie Connors
- Hematology Division, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis Street, Boston, MA 02215, USA. https://twitter.com/connors_md
| |
Collapse
|