1
|
Shaabani N, Zak J, Johnson JL, Huang Z, Nguyen N, Lazar DC, Vartabedian VF, Honke N, Jardine JG, Woehl J, Prinz M, Knobeloch KP, Arimoto KI, Zhang DE, Catz SD, Teijaro JR. ISG15 Drives Immune Pathology and Respiratory Failure during Systemic Lymphocytic Choriomeningitis Virus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1811-1824. [PMID: 39495004 PMCID: PMC11784630 DOI: 10.4049/jimmunol.2400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
ISG15, an IFN-stimulated gene, plays a crucial role in modulating immune responses during viral infections. Its upregulation is part of the host's defense mechanism against viruses, contributing to the antiviral state of cells. However, altered ISG15 expression can also lead to immune dysregulation and pathological outcomes, particularly during persistent viral infections. Understanding the balance of ISG15 in promoting antiviral immunity while avoiding immune-mediated pathology is essential for developing targeted therapeutic interventions against viral diseases. In this article, using Usp18-deficient, USP18 enzymatic-inactive and Isg15-deficient mouse models, we report that a lack of USP18 enzymatic function during persistent viral infection leads to severe immune pathology characterized by hematological disruptions described by reductions in platelets, total WBCs, and lymphocyte counts; pulmonary cytokine amplification; lung vascular leakage; and death. The lack of Usp18 in myeloid cells mimicked the pathological manifestations observed in Usp18-/- mice and required Isg15. Mechanistically, interrupting the enzymes that conjugate/deconjugate ISG15, using Uba7-/- or Usp18C61A mice, respectively, led to accumulation of ISG15 that was accompanied by inflammatory neutrophil accumulation, lung pathology, and death similar to that observed in Usp18-deficient mice. Moreover, myeloid cell depletion reversed pathological manifestations, morbidity, and mortality in Usp18C61A mice. Our results suggest that dysregulated ISG15 production and signaling during persistent lymphocytic choriomeningitis virus infection can produce lethal immune pathology and could serve as a therapeutic target during severe viral infections with pulmonary pathological manifestations.
Collapse
Affiliation(s)
- Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Nhan Nguyen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Daniel C Lazar
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Vincent F Vartabedian
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Nadine Honke
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Joseph G Jardine
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jordan Woehl
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- Department of Pathology, University of California San Diego, La Jolla, CA
- Division of Biological Science, University of California San Diego, La Jolla, CA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
2
|
Liu F, Zeng M, Zhou X, Huang F, Song Z. Aspergillus fumigatus escape mechanisms from its harsh survival environments. Appl Microbiol Biotechnol 2024; 108:53. [PMID: 38175242 DOI: 10.1007/s00253-023-12952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024]
Abstract
Aspergillus fumigatus is a ubiquitous pathogenic mold and causes several diseases, including mycotoxicosis, allergic reactions, and systemic diseases (invasive aspergillosis), with high mortality rates. In its ecological niche, the fungus has evolved and mastered many reply strategies to resist and survive against negative threats, including harsh environmental stress and deficiency of essential nutrients from natural environments, immunity responses and drug treatments in host, and competition from symbiotic microorganisms. Hence, treating A. fumigatus infection is a growing challenge. In this review, we summarized A. fumigatus reply strategies and escape mechanisms and clarified the main competitive or symbiotic relationships between A. fumigatus, viruses, bacteria, or fungi in host microecology. Additionally, we discussed the contemporary drug repertoire used to treat A. fumigatus and the latest evidence of potential resistance mechanisms. This review provides valuable knowledge which will stimulate further investigations and clinical applications for treating and preventing A. fumigatus infections. KEY POINTS: • Harsh living environment was a great challenge for A. fumigatus survival. • A. fumigatus has evolved multiple strategies to escape host immune responses. • A. fumigatus withstands antifungal drugs via intrinsic escape mechanisms.
Collapse
Affiliation(s)
- Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
- Department of Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, People's Republic of China
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
3
|
Chatterjee P, Moss CT, Omar S, Dhillon E, Hernandez Borges CD, Tang AC, Stevens DA, Hsu JL. Allergic Bronchopulmonary Aspergillosis (ABPA) in the Era of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J Fungi (Basel) 2024; 10:656. [PMID: 39330416 PMCID: PMC11433030 DOI: 10.3390/jof10090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity disease caused by Aspergillus fumigatus (Af), prevalent in persons with cystic fibrosis (CF) or asthma. In ABPA, Af proteases drive a T-helper cell-2 (Th2)-mediated allergic immune response leading to inflammation that contributes to permanent lung damage. Corticosteroids and antifungals are the mainstays of therapies for ABPA. However, their long-term use has negative sequelae. The treatment of patients with CF (pwCF) has been revolutionized by the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Pharmacological improvement in CFTR function with highly effective elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes of pwCF. The mechanism behind the improvement in patient outcomes is a continued topic of investigation as our understanding of the role of CFTR function evolves. As ETI therapy gains traction in CF management, understanding its potential impact on ABPA, especially on the allergic immune response pathways and Af infection becomes increasingly crucial for optimizing patient outcomes. This literature review aims to examine the extent of these findings and expand our understanding of the already published research focusing on the intersection between ABPA therapeutic approaches in CF and the rapid impact of the evolving CFTR modulator landscape. While our literature search yielded limited reports specifically focusing on the role of CFTR modulator therapy on CF-ABPA, findings from epidemiologic and retrospective studies suggest the potential for CFTR modulator therapies to positively influence pulmonary outcomes by addressing the underlying pathophysiology of CF-ABPA, especially by decreasing inflammatory response and Af colonization. Thus, this review highlights the promising scope of CFTR modulator therapy in decreasing the overall prevalence and incidence of CF-ABPA.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Carson Tyler Moss
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sarah Omar
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Ekroop Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | | | - Alan C. Tang
- Department of Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - David A. Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA;
| | - Joe L. Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| |
Collapse
|
4
|
Chen Q, Li J. Molecular mechanism analysis of nontuberculous mycobacteria infection in patients with cystic fibrosis. Future Microbiol 2024; 19:877-888. [PMID: 38700285 PMCID: PMC11290754 DOI: 10.2217/fmb-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Aim: This study aims to explore the molecular mechanisms of cystic fibrosis (CF) complicated with nontuberculous mycobacteria (NTM) infection. Materials & methods: Expression profiles of CF with NTM-infected patients were downloaded from GEO database. Intersection analysis yielded 78 genes associated with CF with NTM infection. The protein-protein interaction (PPI) network and the functions of hub genes were investigated. Results: Five hub genes (PIK3R1, IL1A, CXCR4, ACTN1, PFN1) were identified, which were primarily enriched in actin-related biological processes and pathways. Transcription factors RELA, JUN, NFKB1 and FOS that regulated hub genes modulated IL1A expression, while 21 other transcription factors regulated CXCR4 expression. Conclusion: In summary, this study may provide new insights into the mechanisms of CF with NTM infection.
Collapse
Affiliation(s)
- Qihuang Chen
- Department of Tuberculosis, 900TH Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Jin Li
- Department of Tuberculosis, 900TH Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| |
Collapse
|
5
|
Cystic Fibrosis: Systems Biology Analysis from Homozygous p.Phe508del Variant Patients' Samples Reveals Perturbations in Tissue-Specific Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5262000. [PMID: 34901273 PMCID: PMC8660202 DOI: 10.1155/2021/5262000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder, caused by diverse genetic variants for the CF transmembrane conductance regulator (CFTR) protein. Among these, p.Phe508del is the most prevalent variant. The effects of this variant on the physiology of each tissue remains unknown. This study is aimed at predicting cell signaling pathways present in different tissues of fibrocystic patients, homozygous for p.Phe508del. The study involved analysis of two microarray datasets, E-GEOD-15568 and E-MTAB-360 corresponding to the rectal and bronchial epithelium, respectively, obtained from the ArrayExpress repository. Particularly, differentially expressed genes (DEGs) were predicted, protein-protein interaction (PPI) networks were designed, and centrality and functional interaction networks were analyzed. The study reported that p.Phe508del-mutated CFTR-allele in homozygous state influenced the whole gene expression in each tissue differently. Interestingly, gene ontology (GO) term enrichment analysis revealed that only “neutrophil activation” was shared between both tissues; however, nonshared DEGs were grouped into the same GO term. For further verification, functional interaction networks were generated, wherein no shared nodes were reported between these tissues. These results suggested that the p.Phe508del-mutated CFTR-allele in homozygous state promoted tissue-specific pathways in fibrocystic patients. The generated data might further assist in prediction diagnosis to define biomarkers or devising therapeutic strategies.
Collapse
|
6
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
7
|
Lara-Reyna S, Holbrook J, Jarosz-Griffiths HH, Peckham D, McDermott MF. Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations. Cell Mol Life Sci 2020; 77:4485-4503. [PMID: 32367193 PMCID: PMC7599191 DOI: 10.1007/s00018-020-03540-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is one of the most common life-limiting recessive genetic disorders in Caucasians, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF is a multi-organ disease that involves the lungs, pancreas, sweat glands, digestive and reproductive systems and several other tissues. This debilitating condition is associated with recurrent lower respiratory tract bacterial and viral infections, as well as inflammatory complications that may eventually lead to pulmonary failure. Immune cells play a crucial role in protecting the organs against opportunistic infections and also in the regulation of tissue homeostasis. Innate immune cells are generally affected by CFTR mutations in patients with CF, leading to dysregulation of several cellular signalling pathways that are in continuous use by these cells to elicit a proper immune response. There is substantial evidence to show that airway epithelial cells, neutrophils, monocytes and macrophages all contribute to the pathogenesis of CF, underlying the importance of the CFTR in innate immune responses. The goal of this review is to put into context the important role of the CFTR in different innate immune cells and how CFTR dysfunction contributes to the pathogenesis of CF, highlighting several signalling pathways that may be dysregulated in cells with CFTR mutations.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Heledd H Jarosz-Griffiths
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
- Adult Cystic Fibrosis Unit, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
8
|
Peng Y, Wu Q, Tang H, Chen J, Wu Q, Yuan X, Xiong S, Ye Y, Lv H. NLRP3 Regulated CXCL12 Expression in Acute Neutrophilic Lung Injury. J Inflamm Res 2020; 13:377-386. [PMID: 32801831 PMCID: PMC7399452 DOI: 10.2147/jir.s259633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose Both NLRP3 inflammasome and chemokines are involved in the initiation and development of acute lung inflammation, but the underlying mechanism is still elusive. The present study investigated the role of chemokines and NLRP3 in recruiting neutrophils in the early phase of acute lung injury. Methods In an endotoxin (lipopolysaccharide [LPS])-induced acute lung injury model, we measured the lung injury severity, myeloperoxidase (MPO) activity and chemokine profiles in wild-type (WT) and NLRP3 knockout (NLRP3–/–) mice, and then identified the key chemokines by specific antibody blockage. Results The results showed that NLRP3 deficiency was associated with alleviating lung damage, by reducing alveolar epithelial cell apoptosis and decreasing neutrophil accumulation. Furthermore, compared with WT mice, IL-1β, CCL2, CXCL1, CXCL5 and CXCL12 levels from the serum of NLRP3–/– mice were much lower after exposure to LPS. However, in lung tissue, only lower CXCL12 levels were observed from the NLRP3–/– ALI mice, and higher levels of CXCR4 were expressed in NLRP3–/– neutrophils. Blockage of CXCL12 dramatically relieved the severity of ALI and reduced neutrophil accumulation in the lung. Conclusion NLRP3 alters CXCL12 expression in acute lung injury. CXCL12 is crucial for neutrophil recruitment in NLRP3-mediated neutrophilic lung injury.
Collapse
Affiliation(s)
- Yanwen Peng
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Qiongli Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Hao Tang
- Department of General Practice, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Jingrou Chen
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Qili Wu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Xiaofeng Yuan
- The General Intensive Care Unit, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Shiqiu Xiong
- Cell Biology Group, National Measurement Lab, LGC Fordham, Cambridgeshire CB7 5WW, UK
| | - Yujin Ye
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Haijin Lv
- The Surgical and Transplant Intensive Care Unit, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
9
|
Wang XA, Griffiths K, Foley M. Emerging Role of CXCR4 in Fibrosis. ANTI-FIBROTIC DRUG DISCOVERY 2020:211-234. [DOI: 10.1039/9781788015783-00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Recent evidence has shown that the chemokine receptor CXCR4 and its natural chemokine ligand CXCL12 promote pro-inflammatory responses in a variety of situations and this axis has emerged as a central player in tissue fibrosis. Although its role as a co-receptor for human immunodeficiency virus (HIV) and a key player in various cancers has been well established, the role of CXCR4 in various types of fibrosis has emerged only recently. This review will explore the involvement of CXCR4 in the development of fibrosis, focusing mainly on lung, kidney and eye fibrosis.
Collapse
Affiliation(s)
- Xilun Anthony Wang
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Melbourne 3086 Australia
| | - Katherine Griffiths
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Melbourne 3086 Australia
| | - Michael Foley
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Melbourne 3086 Australia
- AdAlta Limited 15/2 Park Drive Bundoora 3083 Australia
| |
Collapse
|
10
|
Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019; 10:genes10030183. [PMID: 30813645 PMCID: PMC6471578 DOI: 10.3390/genes10030183] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.
Collapse
Affiliation(s)
- Meraj A Khan
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Zubair Sabz Ali
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Neil Sweezey
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Hartmut Grasemann
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
11
|
Eickmeier O, Fussbroich D, Mueller K, Serve F, Smaczny C, Zielen S, Schubert R. Pro-resolving lipid mediator Resolvin D1 serves as a marker of lung disease in cystic fibrosis. PLoS One 2017; 12:e0171249. [PMID: 28158236 PMCID: PMC5291435 DOI: 10.1371/journal.pone.0171249] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is an autosomal recessive genetic disorder that affects multiple organs, including the lungs, pancreas, liver and intestine. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) locus lead to defective proteins and reduced Cl- secretion and Na+ hyperabsorption in the affected organs. In addition, patients suffering from CF display chronic inflammation that contributes to the pathogenesis of CF. Recent work suggests that CF patients have a reduced capacity to biosynthesize specialized pro-resolving lipid mediators (SPMs), which contributes to the development and duration of the unwanted inflammation. Alterations in the metabolism of arachidonic acid (AA) and docosahexaenoic acid (DHA) to specialized pro-resolving mediators (SPMs), like lipoxins (LXs), maresins (MaRs), protectins (PDs) and resolvins (Rvs), may play a major role on clinical impact of airway inflammation in CF. METHODS In this study, our aims were to detect and quantitate Resolvin D1 (RvD1) in sputum and plasma from patients with CF and compare levels of RvD1 with biomarkers of inflammation and lung function. We studied 27 CF patients aged 6 to 55 years (median 16 years) in a prospective approach. RESULTS DHA can be found in the plasma of our CF patients in the milligram range and is decreased in comparison to a healthy control group. The DHA-derived pro-resolving mediator Resolvin D1 (RvD1) was also present in the plasma (286.4 ± 50 pg/ mL, mean ± SEM) and sputum (30.0 ± 2.6 pg/ mL, mean ± SEM) samples from our patients with CF and showed a positive correlation with sputum inflammatory markers. The plasma concentrations of RvD1 were ten times higher than sputum concentrations. Interestingly, sputum RvD1/ IL-8 levels showed a positive correlation with FEV1 (rs = 0.3962, p< 0.05). CONCLUSIONS SPMs, like RvD1, are well known to down-regulate inflammatory pathways. Our study shows that the bioactive lipid mediator RvD1, derived from DHA, was present in sputum and plasma of CF patients and may serve as a representative peripheral biomarker of the lung resolution program for CF patients.
Collapse
Affiliation(s)
- Olaf Eickmeier
- Department for Children and Adolescents, Division of Allergology, Pulmonology, and Cystic Fibrosis, Goethe-University, Frankfurt, Germany
| | - Daniela Fussbroich
- Department for Children and Adolescents, Division of Allergology, Pulmonology, and Cystic Fibrosis, Goethe-University, Frankfurt, Germany
- Department of Food Technology, University of Applied Sciences, Fulda, Germany
| | - Klaus Mueller
- Department for Children and Adolescents, Division of Allergology, Pulmonology, and Cystic Fibrosis, Goethe-University, Frankfurt, Germany
| | - Friederike Serve
- Department for Children and Adolescents, Division of Allergology, Pulmonology, and Cystic Fibrosis, Goethe-University, Frankfurt, Germany
| | - Christina Smaczny
- Department of Internal Medicine III, Goethe-University, Frankfurt, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology, and Cystic Fibrosis, Goethe-University, Frankfurt, Germany
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergology, Pulmonology, and Cystic Fibrosis, Goethe-University, Frankfurt, Germany
| |
Collapse
|
12
|
Tracy MC, Okorie CUA, Foley EA, Moss RB. Allergic Bronchopulmonary Aspergillosis. J Fungi (Basel) 2016; 2:jof2020017. [PMID: 29376934 PMCID: PMC5753079 DOI: 10.3390/jof2020017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA), a progressive fungal allergic lung disease, is a common complication of asthma or cystic fibrosis. Although ABPA has been recognized since the 1950s, recent research has underscored the importance of Th2 immune deviation and granulocyte activation in its pathogenesis. There is also strong evidence of widespread under-diagnosis due to the complexity and lack of standardization of diagnostic criteria. Treatment has long focused on downregulation of the inflammatory response with prolonged courses of oral glucocorticosteroids, but more recently concerns with steroid toxicity and availability of new treatment modalities has led to trials of oral azoles, inhaled amphotericin, pulse intravenous steroids, and subcutaneously-injected anti-IgE monoclonal antibody omalizumab, all of which show evidence of efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Michael C Tracy
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, 770 Welch Road suite 350, Palo Alto, CA 94304, USA.
| | - Caroline U A Okorie
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, 770 Welch Road suite 350, Palo Alto, CA 94304, USA.
| | - Elizabeth A Foley
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, 770 Welch Road suite 350, Palo Alto, CA 94304, USA.
| | - Richard B Moss
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, 770 Welch Road suite 350, Palo Alto, CA 94304, USA.
| |
Collapse
|