1
|
Cooper WA, Amanuel B, Cooper C, Fox SB, Graftdyk JWA, Jessup P, Klebe S, Lam WS, Leong TYM, Lwin Z, Roberts-Thomson R, Solomon BJ, Tay RY, Trowman R, Wale JL, Pavlakis N. Molecular testing of lung cancer in Australia: consensus best practice recommendations from the Royal College of Pathologists of Australasia in collaboration with the Thoracic Oncology Group of Australasia. Pathology 2025; 57:425-436. [PMID: 40102144 DOI: 10.1016/j.pathol.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 03/20/2025]
Abstract
Molecular testing plays a critical role in guiding optimal treatment decisions for lung cancer patients across a variety of clinical settings. While guidelines for biomarker testing exist in other jurisdictions, to date no best practice guidelines have been developed for the Australian setting. To address this need, the Royal College of Pathologists of Australasia collaborated with the Thoracic Oncology Group of Australasia to identify state-based pathologists, oncologists and consumer representatives to develop consensus best practice recommendations. Sixteen recommendations were established encompassing appropriate biomarkers, lung cancer subtype, tumour stage, specimen types, assay selection and quality assurance protocols that can inform and standardise best practice in molecular testing of lung cancer. These multidisciplinary evidence-based recommendations are designed to standardise and enhance molecular testing practices for lung cancers and should help ensure laboratories provide high-quality molecular testing of lung cancer for all Australians, including those from regional or remote communities.
Collapse
Affiliation(s)
- Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| | - Benhur Amanuel
- Anatomical Pathology, PathWest, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia
| | - Caroline Cooper
- Anatomical Pathology, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, Qld, Australia; Faculty of Medicine, The University of Queensland, St Lucia, Qld, Australia
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre, Parkville, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology and the Collaborative Centre for Genomic Cancer Medicine, University of Melbourne, Parkville, Vic, Australia
| | | | - Peter Jessup
- Anatomical Pathology, Royal Hobart Hospital, Hobart, Tas, Australia
| | - Sonja Klebe
- Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; SA Pathology, Adelaide, SA, Australia
| | - Wei-Sen Lam
- Department of Medical Oncology, Fiona Stanley Hospital, Perth, WA, Australia; WA Regional Clinical Trial Coordinating Centre, WA Country Health Service, WA, Australia
| | - Trishe Y-M Leong
- Anatomical Pathology, Melbourne Pathology, Sonic Healthcare, Melbourne, Vic, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Vic, Australia
| | - Zarnie Lwin
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Qld, Australia; The Prince Charles Hospital, University of Queensland, Chermside, Qld, Australia
| | | | - Benjamin J Solomon
- Sir Peter MacCallum Department of Oncology and the Collaborative Centre for Genomic Cancer Medicine, University of Melbourne, Parkville, Vic, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Rebecca Y Tay
- Department of Medical Oncology, Royal Hobart Hospital. Hobart, Tas, Australia
| | - Rebecca Trowman
- Independent Health Technology Assessment Specialist, Perth, WA, Australia
| | - Janney L Wale
- Independent Consumer Advocate, Melbourne, Vic, Australia; Chair of the RCPA Community Advisory Committee, Sydney, NSW, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia; The Thoracic Oncology Group of Australasia, Thornbury, Vic, Australia
| |
Collapse
|
2
|
Gertych A, Zurek N, Piaseczna N, Szkaradnik K, Cui Y, Zhang Y, Nurzynska K, Pyciński B, Paul P, Bartczak A, Chmielik E, Walts AE. Tumor Cellularity Assessment Using Artificial Intelligence Trained on Immunohistochemistry-Restained Slides Improves Selection of Lung Adenocarcinoma Samples for Molecular Testing. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:907-922. [PMID: 39892778 DOI: 10.1016/j.ajpath.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Tumor cellularity (TC) in lung adenocarcinoma slides submitted for molecular testing is important in identifying actionable mutations, but lack of best practice guidelines results in high interobserver variability in TC assessments. An artificial intelligence (AI)-based pipeline developed to assess TC in hematoxylin and eosin (H&E) whole slide images (WSIs) and in tumor areas (TAs) within WSIs includes a new model (CaBeSt-Net) trained to mask cancer cells, benign epithelial cells, stroma in H&E WSIs using immunohistochemistry-restained slides, and a model to detect all cell nuclei. High masking accuracy (>91%) by CaBeSt-Net computed using 1024 H&E regions of interest and intraclass correlation coefficient >0.97 assessing TC assessments reliability by one pathologist and AI in 20 test regions of interest supported the pipeline's applicability to TC assessment in 50 study H&E WSIs. Using the pipeline, TCs assessed in TAs and WSIs were compared with those by three pathologists. Reliabilities of these ratings by the pathologists supported by the pipeline were good (intraclass correlation coefficient >0.82, P < 0.0001). The consistency of sample categorizations as inadequate or adequate (TC ≤ 20% cut point) for molecular testing among the pathologists assessing TCs without AI support was moderate in TAs (κ = 0.410, P < 0.0001) and slight in WSIs (κ = 0.132, nonsignificant). With AI support, the consistency was substantial in both WSIs (κ = 0.602, P < 0.0001) and TAs (κ = 0.704, P < 0.0001). By visualizing cancer and measuring TC in the sample, this novel AI-based pipeline assists pathologists in selecting samples for molecular testing.
Collapse
Affiliation(s)
- Arkadiusz Gertych
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Natalia Zurek
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Natalia Piaseczna
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
| | - Kamil Szkaradnik
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
| | - Yujie Cui
- Biostatistics Shared Resource, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yi Zhang
- Biobank and Research Pathology Resource, Cedars-Sinai Medical Center, Los Angeles, California
| | - Karolina Nurzynska
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Bartłomiej Pyciński
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland; Tumor Pathology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Piotr Paul
- Tumor Pathology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
3
|
Nelan R, Mijuskovic M, Hughes M, Becq J, Kingsbury Z, Tsogka E, He M, Vucenovic D, Craig C, Elgar G, Levey P, Suaris T, Walsh E, Ross M, Jones JL. Clinical utility of 'Shaken' biopsies for whole-genome sequencing. J Clin Pathol 2025:jcp-2024-209781. [PMID: 40032506 DOI: 10.1136/jcp-2024-209781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 03/05/2025]
Abstract
AIMS Whole-genome sequencing (WGS) is beginning to be applied to cancer samples in the clinical setting. This ideally requires high-quality, minimally degraded DNA of high tumour cell content, while retaining sufficient tissue with excellent morphology for histopathological diagnosis and immunohistochemistry. The aim of this study was to investigate alternative ways of handling cancer samples to fulfil both diagnostic and molecular requirements. METHODS Ex vivo biopsies were taken to investigate the feasibility of using cancer cells 'shaken' from the surface of a biopsy for WGS, while maintaining the tissue biopsy for histological diagnosis. WGS from the shaken cells was compared with the gold standard of a fresh-frozen (FF) biopsy. The procedure was piloted in the real-world setting for breast cancer samples. RESULTS Cells shaken from ex vivo biopsies can yield DNA of sufficient quantity and quality for WGS, while having no discernible impact on quality of tissue morphology. WGS data showed good coverage, comparable variant calls and generally higher tumour content in shaken cell samples compared with the control FF samples. For real-world biopsies, DNA yields were lower, but WGS data were of excellent quality for the cases analysed. CONCLUSIONS Shaken biopsy sampling allows genomic sequencing from patients with cancer who may otherwise not receive a genome sequence due to limited sample availability. It represents a way of overcoming the logistics of obtaining and storing FF tissue making it a suitable technique for wider scale implementation in the clinical setting.
Collapse
Affiliation(s)
- Rachel Nelan
- Centre for Tumour Biology, Queen Mary University of London, London, UK
| | | | - Martina Hughes
- Centre for Tumour Biology, Queen Mary University of London, London, UK
| | | | | | | | - Miao He
- Illumina Cambridge, Great Abington, UK
| | | | | | | | - Pauline Levey
- Queen Mary University of London Blizard Institute, London, UK
| | - Tamara Suaris
- Department of Radiology, St Bartholomew's Hospital, London, UK
| | | | - Mark Ross
- Illumina Cambridge, Great Abington, UK
| | - J Louise Jones
- Centre for Tumour Biology, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Schouten RD, Schouten I, Schuurbiers MMF, van der Noort V, Damhuis RAM, van der Heijden EHFM, Burgers JA, Barlo NP, van Lindert ASR, Maas KW, van den Brand JJG, Smit AAJ, van Haarst JMW, van der Maat B, Schuuring E, Blaauwgeers H, Willems SM, Monkhorst K, van den Broek D, van den Heuvel MM. Optimising primary molecular profiling in non-small cell lung cancer. PLoS One 2024; 19:e0290939. [PMID: 39083479 PMCID: PMC11290658 DOI: 10.1371/journal.pone.0290939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 05/02/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Molecular profiling of NSCLC is essential for optimising treatment decisions, but often incomplete. We assessed the efficacy of protocolised molecular profiling in the current standard-of-care (SoC) in a prospective observational study in the Netherlands and measured the effect of providing standardised diagnostic procedures. We also explored the potential of plasma-based molecular profiling in the primary diagnostic setting. METHODS This multi-centre prospective study was designed to explore the performance of current clinical practice during the run-in phase using local SoC tissue profiling procedures. The subsequent phase was designed to investigate the extent to which comprehensive molecular profiling (CMP) can be maximized by protocolising tumour profiling. Successful molecular profiling was defined as completion of at least EGFR and ALK testing. Additionally, PD-L1 tumour proportions scores were explored. Lastly, the additional value of centralised plasma-based testing for EGFR and KRAS mutations using droplet digital PCR was evaluated. RESULTS Total accrual was 878 patients, 22.0% had squamous cell carcinoma and 78.0% had non-squamous NSCLC. Stage I-III was seen in 54.0%, stage IV in 46.0%. Profiling of EGFR and ALK was performed in 69.9% of 136 patients included in the run-in phase, significantly more than real-world data estimates of 55% (p<0.001). Protocolised molecular profiling increased the rate to 77.0% (p = 0.049). EGFR and ALK profiling rates increased from 77.9% to 82.1% in non-squamous NSCLC and from 43.8% to 57.5% in squamous NSCLC. Plasma-based testing was feasible in 98.4% and identified oncogenic driver mutations in 7.1% of patients for whom tissue profiling was unfeasible. CONCLUSION This study shows a high success rate of tissue-based molecular profiling that was significantly improved by a protocolised approach. Tissue-based profiling remains unfeasible for a substantial proportion of patients. Combined analysis of tumour tissue and circulating tumour DNA is a promising approach to allow adequate molecular profiling of more patients.
Collapse
Affiliation(s)
- R. D. Schouten
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - I. Schouten
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M. M. F. Schuurbiers
- Department of Pulmonology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - V. van der Noort
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R. A. M. Damhuis
- Integraal Kankercentrum Nederland (IKNL), Utrecht, The Netherlands
| | | | - J. A. Burgers
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - N. P. Barlo
- Pulmonology, Noordwest Ziekenhuis Groep, Alkmaar, The Netherlands
| | - A. S. R. van Lindert
- Department of Pulmonology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - K. W. Maas
- Department of Pulmonology, Haaglanden Medical Centre, The Hague, The Netherlands
| | | | - A. A. J. Smit
- Department of Pulmonology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | | | - B. van der Maat
- Department of Pulmonology, Flevoziekenhuis, Almere, The Netherlands
| | - E. Schuuring
- Department of Pathology, University Medical Centre Groningen, Groningen, The Netherlands
| | - H. Blaauwgeers
- Department of Pathology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - S. M. Willems
- Department of Pathology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - K. Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D. van den Broek
- Department of Clinical Chemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M. M. van den Heuvel
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pulmonology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Rathbone M, O’Hagan C, Wong H, Khan A, Cook T, Rose S, Heseltine J, Escriu C. Intracranial Efficacy of Atezolizumab, Bevacizumab, Carboplatin, and Paclitaxel in Real-World Patients with Non-Small-Cell Lung Cancer and EGFR or ALK Alterations. Cancers (Basel) 2024; 16:1249. [PMID: 38610927 PMCID: PMC11011096 DOI: 10.3390/cancers16071249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Contrary to Pemetrexed-containing chemo-immunotherapy studies, Atezolizumab, Bevacizumab, Carboplatin, and Paclitaxel (ABCP) treatment has consistently shown clinical benefit in prospective studies in patients with lung cancer and actionable mutations, where intracranial metastases are common. Here, we aimed to describe the real-life population of patients fit to receive ABCP after targeted therapy and quantify its clinical effect in patients with brain metastases. Patients treated in Cheshire and Merseyside between 2019 and 2022 were identified. Data were collected retrospectively. A total of 34 patients with actionable EGFR or ALK alterations had treatment with a median age of 59 years (range 32-77). The disease control rate was 100% in patients with PDL1 ≥ 1% (n = 10). In total, 19 patients (56%) had brain metastases before starting ABCP, 17 (50%) had untreated CNS disease, and 4 (22%) had PDL1 ≥ 1%. The median time to symptom improvement was 12.5 days (range 4-21 days), with 74% intracranial disease control rates and 89.5% synchronous intracranial (IC) and extracranial (EC) responses. IC median Progression Free Survival (mPFS) was 6.48 months, EC mPFS was 10.75 months, and median Overall Survival 11.47 months. ABCP in real-life patients with brain metastases (treated or untreated) was feasible and showed similar efficacy to that described in patients without actionable mutations treated with upfront chemo-immunotherapy.
Collapse
Affiliation(s)
- Marcus Rathbone
- School of Medicine, University of Liverpool, Liverpool L69 3BX, UK; (M.R.); (C.O.)
| | - Conor O’Hagan
- School of Medicine, University of Liverpool, Liverpool L69 3BX, UK; (M.R.); (C.O.)
| | - Helen Wong
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Adeel Khan
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Timothy Cook
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Sarah Rose
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Jonathan Heseltine
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Carles Escriu
- School of Medicine, University of Liverpool, Liverpool L69 3BX, UK; (M.R.); (C.O.)
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| |
Collapse
|
6
|
Ryu WK, Yong SH, Lee SH, Gwon HR, Kim HR, Hong MH, Oh GE, Jung S, Kim CY, Chang YS, Kim EY. Usefulness of bronchial washing fluid for detection of EGFR mutations in non-small cell lung cancer. Lung Cancer 2023; 186:107390. [PMID: 37820540 DOI: 10.1016/j.lungcan.2023.107390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION The implementation of bronchial washing fluid (BWF) as a diagnostic specimen may complement the low diagnostic yields of plasma in detecting EGFR mutation (mEGFR) in non-small cell lung cancer. However, the diagnostic value of BWF in detecting mEGFR has yet to be clarified. MATERIALS AND METHODS From March 2021 to August 2022, patients with histologically confirmed NSCLC with matched tumor tissue, BWF, and/or plasma samples were enrolled. Patients were classified into either initial diagnosis or rebiopsy groups. Diagnostic yields of mEGFR in BWF and plasma were evaluated using droplet digital polymerase chain reaction and compared to mEGFR in tumor tissue as standard. RESULTS The study included 123 patients (74.1 %) in the initial diagnosis and 43 patients (25.9 %) in the rebiopsy group. BWF showed higher sensitivity, specificity, and concordance rates than plasma in both the initial diagnosis (57.4 %, 96.4 %, and 74.0 % vs. 16.4 %, 96.2 %, and 53.1 %) and the rebiopsy group (87.9 %, 60.0 %, and 81.4 % vs. 25.0 %, 75.0 %, and 41.7 %). In the initial diagnosis group, mEGFR was detected in the BWF of 13 out of 16 patients, even in the absence of tumor cells in the tissue biopsy. In these cases, EGFR test results obtained from BWF showed concordance with EGFR test results from the tumor tissue obtained through repeated biopsy or surgery later. In the rebiopsy group, T790M was detected in 16 patients (37.2 %) by tissue biopsy. The combined use of tissue biopsy and BWF increased detection, confirming T790M in 22 patients (51.2 %). DISCUSSION The detection of mEGFR using BWF shows higher diagnostic yields than plasma for both initial diagnosis and rebiopsy. T790M was detected earlier in BWF than in tissue rebiopsy in some cases, providing patients with an early opportunity to access third-generation EGFR-TKIs. The complementary use of BWF with tumor tissue may improve precision in EGFR-mutated NSCLC treatment strategies.
Collapse
Affiliation(s)
- Woo Kyung Ryu
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Division of Pulmonology, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27, Inhang‑ro, Jung‑gu, Incheon 22332, Republic of Korea
| | - Seung Hyun Yong
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hye Ran Gwon
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hye Ryun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min Hee Hong
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Go Eun Oh
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sehee Jung
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
7
|
Smith S, Sapkaroski D, Brand M, Tran A, Zalcberg J, Stirling RG. Mapping the clinical care pathways for advanced stage non-small cell lung cancer patients in Victoria: A retrospective cohort study of supportive and palliative care. Nurs Health Sci 2023; 25:411-423. [PMID: 37562814 DOI: 10.1111/nhs.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/21/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
The lung cancer Optimal Care Pathway recommends supportive care and palliative care integration throughout its various steps, with early referral to appropriate services improving the quality of life in advanced stage non-small cell lung cancer patients. Using Victorian Lung Cancer Registry data and linked administrative datasets, this retrospective cohort study mapped clinical care pathways of 525 Stage III-IV non-small cell lung cancer patients in Victoria to 11 recommendations in the Optimal Care Pathway, identifying unwarranted variations in clinical care. Supportive care and palliative care delivery were further examined to understand the involvement and timing of specialist care teams. Our findings showed that palliative care utilization is highest at the time of treatment, despite recommendations that it should be provided early after diagnosis to improve patient outcomes and satisfaction. Early supportive care screening was observed in half the cohort and almost three-quarters of the patients had been presented at a multidisciplinary meeting. Multidisciplinary meeting presentations and supportive care provide an opportunity to improve communication about palliative care needs and integration into routine clinical practice, such as at the time of treatment planning.
Collapse
Affiliation(s)
- Shantelle Smith
- Cancer Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Sapkaroski
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Margaret Brand
- Cancer Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anh Tran
- Cancer Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - John Zalcberg
- Cancer Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robert G Stirling
- Cancer Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory Medicine, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Costa FMD, Cerezoli MT, Medeiros AK, Magalhães Filho MAF, Castro SN. Small samples, big problems: lipoid pneumonia mimicking lung adenocarcinoma. J Bras Pneumol 2023; 49:e20230147. [PMID: 37341242 PMCID: PMC10578939 DOI: 10.36416/1806-3756/e20230147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Affiliation(s)
- Felipe Marques da Costa
- . Serviço de Pneumologia, Hospital Beneficência Portuguesa de São Paulo, São Paulo (SP) Brasil
| | - Milena Tenorio Cerezoli
- . Serviço de Pneumologia, Hospital Beneficência Portuguesa de São Paulo, São Paulo (SP) Brasil
| | | | | | - Suellen Nastri Castro
- . Serviço de Oncologia, Hospital Beneficência Portuguesa de São Paulo, São Paulo (SP) Brasil
| |
Collapse
|
9
|
Mitsudomi T, Tan D, Yang JCH, Ahn MJ, Batra U, Cho BC, Cornelio G, Lim T, Mok T, Prabhash K, Reungwetwattana T, Ren SX, Singh N, Toyooka S, Wu YL, Yang PC, Yatabe Y. Expert Consensus Recommendations on Biomarker Testing in Metastatic and Nonmetastatic NSCLC in Asia. J Thorac Oncol 2023; 18:436-446. [PMID: 36379356 DOI: 10.1016/j.jtho.2022.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Most published guidelines for genomic biomarker testing in NSCLC reflect the disease epidemiology and treatments readily available in Europe and North America. Nevertheless, 60% of annual global NSCLC cases occur in Asia, where patient characteristics, tumor molecular profiles, and treatments vary greatly from the Western world. For example, mutations in the EGFR occur at a higher prevalence in Asia than in other world regions. Although medical associations such as the International Association for the Study of Lung Cancer, European Society for Medical Oncology, and American Society of Clinical Oncology have described principles for tumor genomic biomarker testing in NSCLC, there is a need for recommendations specific for Asia. METHODS This report provides consensus recommendations for NSCLC biomarker testing from Asian lung cancer experts for clinicians working in Asia to improve patient care. Biomarker testing approaches for actionable genetic alterations in EGFR, ALK, ROS1, and others are discussed. RESULTS These recommendations are divided into nonmetastatic and metastatic forms of adenocarcinoma and squamous cell carcinoma. Owing to the higher prevalence of EGFR mutations in Asia, the experts emphasized the need for EGFR testing to include not just common mutations (exon 19 deletions and L858R substitutions) but also other uncommon EGFR mutations. In addition to the assessment of biomarkers in the tumor tissue, the role of assessing tumor biomarkers by liquid biopsy is discussed. CONCLUSION This consensus provides practical recommendations for biomarker testing in nonmetastatic and metastatic Asian NSCLC patients.
Collapse
Affiliation(s)
- Tetsuya Mitsudomi
- Division of Thoracic Surgery, Faculty of Medicine, Kindai University-Osaka-Sayama, Osaka, Japan.
| | - Daniel Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | | | - Myung-Ju Ahn
- Section of Hematology-Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ullas Batra
- Rajiv Gandhi Cancer Institute & Research Centre, Rohini, New Delhi, India
| | - Byoung-Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Seoul, Republic of Korea
| | - Gerardo Cornelio
- Cancer Institute, St. Luke's Medical Center-Global City, University of the Philippines-Philippine General Hospital, Metro Manila, Philippines
| | - Tony Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tony Mok
- State Key Laboratory in Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People's Republic of China
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sheng-Xiang Ren
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shinichi Toyooka
- Department of Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Yi-Long Wu
- Department of Pulmonary Oncology, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Lin X, Cai Y, Zong C, Chen B, Shao D, Cui H, Li Z, Xu P. Bronchoalveolar Lavage as Potential Diagnostic Specimens to Genetic Testing in Advanced Nonsmall Cell Lung Cancer. Technol Cancer Res Treat 2023; 22:15330338231202881. [PMID: 37743841 PMCID: PMC10521282 DOI: 10.1177/15330338231202881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background: There is limited knowledge on the yield of performing capture-based targeted ultradeep sequencing on bronchoalveolar lavage (BAL) specimens from advanced nonsmall cell lung cancer (NSCLC) patients. This study aimed to evaluate gene variations and performance characteristics in BAL and tissue specimens using targeted sequencing. Methods: This cohort study retrospectively enrolled 20 patients with advanced NSCLC. The variant detection percentage, correlation of tumor mutation burden (TMB), and allele frequency heterogeneity (AFH) were compared between paired BAL and tissue samples. A three-tiered system was also applied for the interpretation of gene variants according to the guidelines. Results: No statistical difference was observed in variant detection between BAL and tissue samples (P = .591 for variant tier and P = .409 for variant type). In general, BAL achieved higher detection rates in tier I variants (96.2% vs 84.6%) and gene fusions (75% vs 50%) compared with tissue samples; tissue samples had better variants detection rates for other variants, such as tier II (89.6% vs 76.0%), tier III (87.1% vs 72.6%), single nucleotide variant (SNV, 89.6% vs 76.5%), insertion/deletion/duplication (InDel, 74.6% vs 69.8%) and copy number variation (CNV, 93.8% vs 43.8%). Besides, there were significant correlations of TMB (R2 = 0.96, P < .001) and AFH (R2 = 0.87, P < .001) between BALs and paired tissues. Conclusions: The findings demonstrate that BAL may serve as a supplement in liquid biopsy for mutation detection and for routine utilization in clinical settings.
Collapse
Affiliation(s)
- Xuwen Lin
- Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yazhou Cai
- Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chenyu Zong
- Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, China
| | | | - Di Shao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hao Cui
- Zhuhai Maternal and Child Health Hospital, Zhuhai, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ping Xu
- Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
11
|
Kim N, Jeong D, Jo A, Eum HH, Lee HO. Prescreening of tumor samples for tumor-centric transcriptome analyses of lung adenocarcinoma. BMC Cancer 2022; 22:1186. [DOI: 10.1186/s12885-022-10317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Single-cell RNA sequencing (scRNA-seq) enables the systemic assessment of intratumoral heterogeneity within tumor cell populations and in diverse stromal cells of the tumor microenvironment. Gain of treatment resistance during tumor progression or drug treatment are important subjects of tumor-centric scRNA-seq analyses, which are hampered by scarce tumor cell portions. To guarantee the inclusion of tumor cells in the data analysis, we developed a prescreening strategy for lung adenocarcinoma.
Methods
We obtained candidate genes that were differentially expressed between normal and tumor cells, excluding stromal cells, from the scRNA-seq data. Tumor cell-specific expression of the candidate genes was assessed via real-time reverse transcription-polymerase chain reaction (RT-PCR) using lung cancer cell lines, normal vs. lung cancer tissues, and lymph node biopsy samples with or without metastasis.
Results
We found that CEA cell adhesion molecule 5 (CEACAM5) and high mobility group box 3 (HMGB3) were reliable markers for RT-PCR-based prescreening of tumor cells in lung adenocarcinoma.
Conclusions
The prescreening strategy using CEACAM5 and HMGB3 expression facilitates tumor-centric scRNA-seq analyses of lung adenocarcinoma.
Collapse
|
12
|
Navani N, Butler R, Ibrahimo S, Verma A, Evans M, Doherty GJ, Ahmed S. Optimising tissue acquisition and the molecular testing pathway for patients with non-small cell lung cancer: A UK expert consensus statement. Lung Cancer 2022; 172:142-153. [PMID: 36099709 DOI: 10.1016/j.lungcan.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022]
Abstract
Targeted therapy against actionable variants has revolutionised the treatment landscape for non-small cell lung cancer (NSCLC). Approximately half of NSCLC adenocarcinomas have an actionable variant, making molecular testing a critical component of the diagnostic process to personalise therapeutic options, optimise clinical outcomes and minimise toxicity. Recently, genomic testing in England has undergone major changes with the introduction of Genomic Laboratory Hubs, designed to consolidate and enhance existing laboratory provision and deliver genomic testing as outlined in the National Genomic Test Directory. Similar changes are ongoing in Scotland, Wales and Northern Ireland. However, multiple challenges exist with current tissue acquisition procedures and the molecular testing pathway in the UK, including quantity and quality of available tissue, adequacy rates, test availability among genomic laboratories, turnaround times, multidisciplinary team communication, and limited guidance and standardisation. The COVID-19 pandemic has added an extra layer of complexity. Herein, we summarise best practice recommendations, based on expert opinion, to overcome existing challenges in the UK. The least invasive biopsy technique should be undertaken with the aim of acquiring the greatest quality and quantity of tissue. Use of sedation should be considered to improve patient experience. Rapid on-site evaluation may also be useful to help guide adequate sampling, and liquid biopsy may be beneficial in some instances. Sample processing should be appropriate to facilitate biomarker testing, in particular, next-generation sequencing for comprehensive genomic information. Steps to optimise tissue utilisation and turnaround times, such as planning of tissue usage, limiting immunohistochemistry, tumour enrichment, and reflex testing at diagnosis, should be implemented. Guidelines for tissue acquisition and sample processing may help to improve sample adequacy to perform downstream testing. Communication among genomic laboratories will help to standardise test availability across England and local auditing could identify further areas for optimisation, including ways to improve turnaround times and adequacy rates.
Collapse
Affiliation(s)
- Neal Navani
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom; University College London Hospitals NHS Foundation Trust, London, United Kingdom.
| | - Rachel Butler
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital, London, United Kingdom
| | | | | | - Matthew Evans
- Black Country Pathology Services, West Midlands, United Kingdom
| | - Gary J Doherty
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Samreen Ahmed
- University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
13
|
Barr MP, Baird AM, Halliday S, Martin P, Allott EH, Phelan J, Korpanty G, Coate L, O’Brien C, Gray SG, Sui JSY, Hayes B, Cuffe S, Finn SP. Liquid Biopsy: A Multi-Parametric Analysis of Mutation Status, Circulating Tumor Cells and Inflammatory Markers in EGFR-Mutated NSCLC. Diagnostics (Basel) 2022; 12:diagnostics12102360. [PMID: 36292049 PMCID: PMC9600124 DOI: 10.3390/diagnostics12102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
The liquid biopsy has the potential to improve patient care in the diagnostic and therapeutic setting in non-small cell lung cancer (NSCLC). Consented patients with epidermal growth factor receptor (EGFR) positive disease (n = 21) were stratified into two cohorts: those currently receiving EGFR tyrosine kinase inhibitor (TKI) therapy (n = 9) and newly diagnosed EGFR TKI treatment-naïve patients (n = 12). Plasma genotyping of cell-free DNA was carried out using the FDA-approved cobas® EGFR mutation test v2 and compared to next generation sequencing (NGS) cfDNA panels. Circulating tumor cell (CTC) numbers were correlated with treatment response and EGFR exon 20 p.T790M. The prognostic significance of the neutrophil to lymphocyte ratio (NLR) and lactate dehydrogenase (LDH) was also investigated. Patients in cohort 1 with an EGFR exon 20 p.T790M mutation progressed more rapidly than those with an EGFR sensitizing mutation, while patients in cohort 2 had a significantly longer progression-free survival (p = 0.04). EGFR exon 20 p.T790M was detected by liquid biopsy prior to disease progression indicated by computed tomography (CT) imaging. The cobas® EGFR mutation test detected a significantly greater number of exon 20 p.T790M mutations (p = 0.05). High NLR and derived neutrophil to lymphocyte ratio (dNLR) were associated with shorter time to progression and worse survival outcomes (p < 0.05). High LDH levels were significantly associated with shorter time to disease progression (p = 0.03). These data support the use of liquid biopsy for monitoring EGFR mutations and inflammatory markers as prognostic indicators in NSCLC.
Collapse
Affiliation(s)
- Martin P. Barr
- Thoracic Oncology Research Group, Trinity St James’s Cancer Institute, St James’s Hospital, D08 W9RT Dublin, Ireland
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Correspondence: ; Tel.: +353-1-8963620
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Sophia Halliday
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Petra Martin
- Thoracic Oncology Research Group, Trinity St James’s Cancer Institute, St James’s Hospital, D08 W9RT Dublin, Ireland
- Department of Medical Oncology, Midlands Regional Hospital, R35 NY51 Tullamore, Ireland
| | - Emma H. Allott
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - James Phelan
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Greg Korpanty
- Department of Medical Oncology, University Hospital Limerick, V94 F858 Limerick, Ireland
| | - Linda Coate
- Department of Medical Oncology, University Hospital Limerick, V94 F858 Limerick, Ireland
| | - Cathal O’Brien
- Cancer Molecular Diagnostics Laboratory, St James’s Hospital, D08 W9RT Dublin, Ireland
| | - Steven G. Gray
- Thoracic Oncology Research Group, Trinity St James’s Cancer Institute, St James’s Hospital, D08 W9RT Dublin, Ireland
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jane S. Y. Sui
- Thoracic Oncology Research Group, Trinity St James’s Cancer Institute, St James’s Hospital, D08 W9RT Dublin, Ireland
| | - Brian Hayes
- Department of Histopathology, Cork University Hospital, T12 XF62 Cork, Ireland
- Department of Pathology, University College Cork, T12 DC4A Cork, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, Trinity St James’s Cancer Institute, St James’s Hospital, D08 W9RT Dublin, Ireland
- Department of Medical Oncology, St James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Stephen P. Finn
- Thoracic Oncology Research Group, Trinity St James’s Cancer Institute, St James’s Hospital, D08 W9RT Dublin, Ireland
- Department of Histopathology, St James’s Hospital, D08 RX0X Dublin, Ireland
| |
Collapse
|
14
|
Nguyen ET, Bayanati H, Hurrell C, Aitken M, Cheung EM, Gupta A, Harris S, Sedlic T, Taylor JL, Gahide G, Dennie C. Canadian Association of Radiologists/Canadian Association of Interventional Radiologists/Canadian Society of Thoracic Radiology Guidelines on Thoracic Interventions. Can Assoc Radiol J 2022; 74:272-287. [PMID: 36154303 DOI: 10.1177/08465371221122807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thoracic interventions are frequently performed by radiologists, but guidelines on appropriateness criteria and technical considerations to ensure patient safety regarding such interventions is lacking. These guidelines, developed by the Canadian Association of Radiologists, Canadian Association of Interventional Radiologists and Canadian Society of Thoracic Radiology focus on the interventions commonly performed by thoracic radiologists. They provide evidence-based recommendations and expert consensus informed best practices for patient preparation; biopsies of the lung, mediastinum, pleura and chest wall; thoracentesis; pre-operative lung nodule localization; and potential complications and their management.
Collapse
Affiliation(s)
- Elsie T Nguyen
- Joint Department of Medical Imaging, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Hamid Bayanati
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Casey Hurrell
- Canadian Association of Radiologists, Ottawa, ON, Canada
| | - Matthew Aitken
- Joint Department of Medical Imaging, Toronto General Hospital, University of Toronto, Toronto, ON, Canada,St. Michael's Hospital, University of Toronto, ON, Canada
| | - Edward M Cheung
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Ashish Gupta
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Scott Harris
- Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Tony Sedlic
- Department of Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Jana Lyn Taylor
- Department of Diagnostic Radiology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Gerald Gahide
- Service de radiologie interventionelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Carole Dennie
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
15
|
Jatkoe T, Wang S, Odegaard JI, Velasco Roth AM, Osgood D, Martinez G, Lucas P, Curtin JC, Karkera J. Clinical Validation of Companion Diagnostics for the Selection of Patients with Non-Small Cell Lung Cancer Tumors Harboring Epidermal Growth Factor Receptor Exon 20 Insertion Mutations for Treatment with Amivantamab. J Mol Diagn 2022; 24:1181-1188. [PMID: 35963523 DOI: 10.1016/j.jmoldx.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Amivantamab, an epidermal growth factor receptor (EGFR)-c-Met bispecific antibody, targets activating/resistance EGFR mutations and MET mutations/amplifications. In the ongoing CHRYSALIS study (ClinicalTrials.gov identifier NCT02609776), amivantamab demonstrated antitumor activity in patients with non-small cell lung cancer harboring EGFR exon 20 insertion mutations (ex20ins) that progressed on or after platinum-based chemotherapy, a population in which amivantamab use has been approved by the US Food and Drug Administration. This bridging study clinically validated two novel candidate companion diagnostics (CDx) tools for use in detecting EGFR ex20ins in plasma and tumor tissue, Guardant360 CDx and Oncomine Dx Target Test (ODxT), respectively. From the 81 patients in the CHRYSALIS efficacy population, 78 plasma and 51 tissue samples were tested. Guardant360 identified 62 positive (16 negative), and ODxT identified 39 positive (3 negative), samples with EGFR ex20ins. Baseline demographic and clinical characteristics were similar between the CHRYSALIS, Guardant360, and ODxT-identified populations. Agreement with local PCR/next-generation sequencing tests used for enrollment into CHRYSALIS demonstrated high adjusted negative (99.6% and 99.9%) and positive (100% for both) predictive values with the Guardant360 CDx and ODxT tests, respectively. Overall response rates were comparable between the CHRYSALIS, Guardant360 CDx, and ODxT populations. Both the plasma- and tissue-based diagnostic tests provided accurate, comprehensive, and complementary approaches to identifying patients with EGFR ex20ins who could benefit from amivantamab therapy.
Collapse
Affiliation(s)
- Timothy Jatkoe
- Janssen Research & Development, Spring House, Pennsylvania.
| | - Songbai Wang
- Janssen Research & Development, Spring House, Pennsylvania.
| | | | | | - Drew Osgood
- Thermo Fisher Scientific, Carlsbad, California
| | | | - Paul Lucas
- Thermo Fisher Scientific, Carlsbad, California
| | | | | |
Collapse
|
16
|
Durães C, Pereira Gomes C, Costa JL, Quagliata L. Demystifying the Discussion of Sequencing Panel Size in Oncology Genetic Testing. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/22c9259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Clinical laboratories worldwide are implementing next-generation sequencing (NGS) to identify cancer genomic variants and ultimately improve patient outcomes. The ability to massively sequence the entire genome or exome of tumour cells has been critical to elucidating many complex biological questions. However, the depth of information obtained by these methods is strenuous to process in the clinical setting, making them currently unfeasible for broader adoption. Instead, targeted sequencing, usually on a selection of clinically relevant genes, represents the predominant approach that best balances accurate identification of genomic variants with high sensitivity and a good cost-effectiveness ratio. The information obtained from targeted sequencing can support diagnostic classification, guide therapeutic decisions, and provide prognostic insights. The use of targeted gene panels expedites sample processing, including data analysis, results interpretation, and medical reports generation, directly affecting patient management. The key decision factors for selecting sequencing methods and panel size in routine testing should include diagnostic yield and clinical utility, sample availability, and processing turnaround time.
Profiling by default all patients with late-stage cancer with large panels is not affordable for most healthcare systems and does not provide substantial clinical benefit at present. Balancing between understanding cancer biology, including patients in clinical trials, maximising testing, and ensuring a sustainable financial burden for society requires thorough consideration. This review provides an overview of the advantages and drawbacks of different sizes NGS panels for tumour molecular profiling and their clinical applicability.
Collapse
Affiliation(s)
- Cecília Durães
- Clinical Next-Generation Sequencing Division, Genetic Sciences Group, Thermo Fisher Scientific, Carlsbad, California, USA
| | | | - Jose Luis Costa
- Clinical Next-Generation Sequencing Division, Genetic Sciences Group, Thermo Fisher Scientific, Carlsbad, California, USA
| | - Luca Quagliata
- Clinical Next-Generation Sequencing Division, Genetic Sciences Group, Thermo Fisher Scientific, Carlsbad, California, USA
| |
Collapse
|
17
|
Fifer S, Ordman R, Briggs L, Cowley A. Patient and Clinician Preferences for Genetic and Genomic Testing in Non-Small Cell Lung Cancer: A Discrete Choice Experiment. J Pers Med 2022; 12:879. [PMID: 35743664 PMCID: PMC9225087 DOI: 10.3390/jpm12060879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Precision (personalised) medicine for non-small cell lung cancer (NSCLC) adopts a molecularly guided approach. Standard-of-care testing in Australia is via sequential single-gene testing which is inefficient and leads to tissue exhaustion. The purpose of this study was to understand preferences around genetic and genomic testing in locally advanced or metastatic NSCLC. A discrete choice experiment (DCE) was conducted in patients with NSCLC (n = 45) and physicians (n = 44). Attributes for the DCE were developed based on qualitative interviews, literature reviews and expert opinion. DCE data were modelled using a mixed multinomial logit model (MMNL). The results showed that the most important attribute for patients and clinicians was the likelihood of an actionable test, followed by the cost. Patients significantly preferred tests with a possibility for reporting on germline findings over those without (β = 0.4626) and those that required no further procedures over tests that required re-biopsy (β = 0.5523). Physician preferences were similar (β = 0.2758 and β = 0.857, respectively). Overall, there was a strong preference for genomic tests that have attribute profiles reflective of comprehensive genomic profiling (CGP) and whole exome sequencing (WES)/whole genome sequencing (WGS), irrespective of high costs. Participants preferred tests that provided actionable outcomes, were affordable, timely, and negated the need for additional biopsy.
Collapse
Affiliation(s)
- Simon Fifer
- Community and Patient Preference Research Pty Ltd., Sydney, NSW 2000, Australia;
| | - Robyn Ordman
- Community and Patient Preference Research Pty Ltd., Sydney, NSW 2000, Australia;
| | - Lisa Briggs
- Thoracic Oncology Group Australasia, Sydney, NSW 2000, Australia;
- Rare Cancers Australia, Sydney, NSW 2000, Australia
| | - Andrea Cowley
- Roche Products Pty Limited, Sydney, NSW 2000, Australia;
| |
Collapse
|
18
|
Conde E, Rojo F, Gómez J, Enguita AB, Abdulkader I, González A, Lozano D, Mancheño N, Salas C, Salido M, Salido-Ruiz E, de Álava E. Molecular diagnosis in non-small-cell lung cancer: expert opinion on ALK and ROS1 testing. J Clin Pathol 2022; 75:145-153. [PMID: 33875457 PMCID: PMC8862096 DOI: 10.1136/jclinpath-2021-207490] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/09/2023]
Abstract
The effectiveness of targeted therapies with tyrosine kinase inhibitors in non-small-cell lung cancer (NSCLC) depends on the accurate determination of the genomic status of the tumour. For this reason, molecular analyses to detect genetic rearrangements in some genes (ie, ALK, ROS1, RET and NTRK) have become standard in patients with advanced disease. Since immunohistochemistry is easier to implement and interpret, it is normally used as the screening procedure, while fluorescence in situ hybridisation (FISH) is used to confirm the rearrangement and decide on ambiguous immunostainings. Although FISH is considered the most sensitive method for the detection of ALK and ROS1 rearrangements, the interpretation of results requires detailed guidelines. In this review, we discuss the various technologies available to evaluate ALK and ROS1 genomic rearrangements using these techniques. Other techniques such as real-time PCR and next-generation sequencing have been developed recently to evaluate ALK and ROS1 gene rearrangements, but some limitations prevent their full implementation in the clinical setting. Similarly, liquid biopsies have the potential to change the treatment of patients with advanced lung cancer, but further research is required before this technology can be applied in routine clinical practice. We discuss the technical requirements of laboratories in the light of quality assurance programmes. Finally, we review the recent updates made to the guidelines for the determination of molecular biomarkers in patients with NSCLC.
Collapse
Affiliation(s)
- Esther Conde
- Department of Pathology and Laboratory of Therapeutic Targets & CIBERONC, HM Hospitales, Madrid, Spain
| | - Federico Rojo
- Department of Pathology, Hospital Universitario Fundacion Jiménez Díaz, Madrid, Spain
| | - Javier Gómez
- Department of Pathology, Hospital Universitario Marques de Valdecilla, Santander, Cantabria, Spain
- Instituto de Investigación Sanitaria Valdecilla IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Ana Belén Enguita
- Department of Pathology, Clínica Dermatológica Internacional, Madrid, Spain
| | - Ihab Abdulkader
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Ana González
- Department of Pathology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Dolores Lozano
- Department of Pathology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Nuria Mancheño
- Department of Pathology, La Fe University and Polytechnic Hospital, Valencia, Comunidad Valenciana, Spain
| | - Clara Salas
- Department of Pathology, Hospital Universitario Puerta del Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Marta Salido
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Eduardo Salido-Ruiz
- Department of Pathology, Hospital Universitario de Canarias, La Laguna, Canarias, Spain
| | - Enrique de Álava
- Department of Pathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
19
|
Gkountakos A, Centonze G, Vita E, Belluomini L, Milella M, Bria E, Milione M, Scarpa A, Simbolo M. Identification of Targetable Liabilities in the Dynamic Metabolic Profile of EGFR-Mutant Lung Adenocarcinoma: Thinking beyond Genomics for Overcoming EGFR TKI Resistance. Biomedicines 2022; 10:biomedicines10020277. [PMID: 35203491 PMCID: PMC8869286 DOI: 10.3390/biomedicines10020277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
The use of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) as first-line treatment in patients with lung adenocarcinoma (LUAD) harboring EGFR-activating mutations has resulted in a dramatic improvement in the management of the disease. However, the long-term clinical benefit is inevitably compromised by multiple resistance mechanisms. Accumulating evidence suggests that metabolic landscape remodeling is one of the mechanisms that EGFR-mutant LUAD cells activate, thus acquiring higher plasticity, tolerating EGFR TKI-mediated cytotoxic stress, and sustaining their oncogenic phenotype. Several metabolic pathways are upregulated in EGFR TKI-resistant models modulating the levels of numerous metabolites such as lipids, carbohydrates, and metabolic enzymes which have been suggested as potential mediators of resistance to EGFR TKIs. Moreover, metabolites have been shown to carry signals and stimulate oncogenic pathways and tumor microenvironment (TME) components such as fibroblasts, facilitating resistance to EGFR TKIs in various ways. Interestingly, metabolic signatures could function as predictive biomarkers of EGFR TKI efficacy, accurately classifying patients with EGFR-mutant LUAD. In this review, we present the identified metabolic rewiring mechanisms and how these act either independently or in concert with epigenetic or TME elements to orchestrate EGFR TKI resistance. Moreover, we discuss potential nutrient dependencies that emerge, highlighting them as candidate druggable metabolic vulnerabilities with already approved drugs which, in combination with EGFR TKIs, might counteract the solid challenge of resistance, hopefully prolonging the clinical benefit.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy; (A.G.); (A.S.)
| | - Giovanni Centonze
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (M.M.)
| | - Emanuele Vita
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.V.); (E.B.)
- Department of Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Belluomini
- Medical Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy; (L.B.); (M.M.)
| | - Michele Milella
- Medical Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy; (L.B.); (M.M.)
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.V.); (E.B.)
- Department of Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Milione
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (M.M.)
| | - Aldo Scarpa
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy; (A.G.); (A.S.)
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
20
|
Nakai T, Watanabe T, Kaimi Y, Ogawa K, Matsumoto Y, Sawa K, Okamoto A, Sato K, Asai K, Matsumoto Y, Ohsawa M, Kawaguchi T. Safety profile and risk factors for bleeding in transbronchial cryobiopsy using a two-scope technique for peripheral pulmonary lesions. BMC Pulm Med 2022; 22:20. [PMID: 35000601 PMCID: PMC8744348 DOI: 10.1186/s12890-021-01817-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022] Open
Abstract
Background A balloon occlusion technique is suggested for use in cryobiopsy for interstitial lung diseases because of the bleeding risk. However, it may interfere with selection of the involved bronchus for peripheral pulmonary lesions (PPLs). A two-scope technique, in which two scopes are prepared and hemostasis is started using the second scope immediately after cryobiopsy, has also been reported. This study aimed to evaluate the safety and diagnostic utility of transbronchial cryobiopsy using the two-scope technique for PPLs. Methods Data of patients who underwent conventional biopsy followed by cryobiopsy using the two-scope technique for PPLs from November 2019 to March 2021 were collected. The incidence of complications and risk factors for clinically significant bleeding (moderate to life-threatening) were investigated. Diagnostic yields were also compared among conventional biopsy, cryobiopsy, and the combination of them. Results A total of 139 patients were analyzed. Moderate bleeding occurred in 25 (18.0%) patients without severe/life-threatening bleeding. Although five cases required transbronchial instillation of thrombin, all bleeding was completely controlled using the two-scope technique. Other complications included two pneumothoraces and one asthmatic attack. On multivariable analysis, only ground-glass features (P < 0.001, odds ratio: 9.30) were associated with clinically significant bleeding. The diagnostic yields of conventional biopsy and cryobiopsy were 76.3% and 81.3%, respectively (P = 0.28). The total diagnostic yield was 89.9%, significantly higher than conventional biopsy alone (P < 0.001). Conclusions The two-scope technique provides useful hemostasis for safe cryobiopsy for PPLs, with a careful decision needed for ground-glass lesions.
Collapse
Affiliation(s)
- Toshiyuki Nakai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuto Kaimi
- Department of Pathology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Koichi Ogawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yoshiya Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kenji Sawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Atsuko Okamoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kanako Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuji Matsumoto
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masahiko Ohsawa
- Department of Pathology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
21
|
Agrahari S, Kumar Gautam R, Kumar Singh A, Tiwari I. Nanoscale materials-based hybrid frameworks modified electrochemical biosensors for early cancer diagnostics: An overview of current trends and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Sakai T, Udagawa H, Kirita K, Nomura S, Itotani R, Tamiya Y, Sugimoto A, Ota T, Naito T, Izumi H, Nosaki K, Ikeda T, Zenke Y, Matsumoto S, Yoh K, Niho S, Nakai T, Ishii G, Goto K. Comparison of the efficiency of endobronchial ultrasound-guided transbronchial needle aspiration using a 22G needle versus 25G needle for the diagnosis of lymph node metastasis in patients with lung cancer: a prospective randomized, crossover study. Transl Lung Cancer Res 2021; 10:3745-3758. [PMID: 34733625 PMCID: PMC8512458 DOI: 10.21037/tlcr-21-480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022]
Abstract
Background Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is generally performed for the diagnosis of hilar/mediastinal lymph node metastasis in patients with lung cancer. Recently, a 25-gauge (G) needle became available, but robust evidence of its usefulness in routine clinical practice is still lacking. Methods A prospective randomized crossover trial was performed, in which patients with suspected hilar/mediastinal lymph node metastasis of lung cancer underwent EBUS-TBNA. The primary endpoint was the rate of yield histology specimens containing malignant cells. Results From December 2018 to February 2020, 102 patients were randomly assigned to EBUS-TBNA using a 22G needle first, followed by a 25G needle (n=50) or EBUS-TBNA using a 25G needle first, followed by a 22G needle (n=52). There was no difference in the diagnostic yield of malignancy between the histology specimens obtained by using the 22G and 25G needles (75% vs. 75%, respectively, P=0.37). The sizes of the tissue samples (16.4 vs. 4.9 mm2, respectively) and number of malignant cells in the tissue samples (626 vs. 400, respectively) were both significantly higher when using the 22G needle than when using the 25G needle. Conclusions No significant difference in the diagnostic yield between the 22G and 25G needles was observed for the diagnosis of lymph node metastasis of lung cancer, suggesting that needles of either gauge could be used for the biopsy. However, we would recommend use of the 22G needle, because it provided larger specimens and specimens containing larger numbers of malignant cells. Trial Registration University hospital Medical Information Network Clinical Trial Registry (ID: UMIN000036680).
Collapse
Affiliation(s)
- Tetsuya Sakai
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Keisuke Kirita
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shogo Nomura
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Kashiwa, Japan
| | - Ryo Itotani
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yutaro Tamiya
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Akira Sugimoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takahiro Ota
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomoyuki Naito
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kaname Nosaki
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takaya Ikeda
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshitaka Zenke
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Seiji Niho
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tokiko Nakai
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
23
|
Mielgo-Rubio X, Martín M, Remon J, Higuera O, Calvo V, Jarabo JR, Conde E, Luna J, Provencio M, De Castro J, López-Ríos F, Hernando-Trancho F, Couñago F. Targeted therapy moves to earlier stages of non-small-cell lung cancer: emerging evidence, controversies and future challenges. Future Oncol 2021; 17:4011-4025. [PMID: 34337973 DOI: 10.2217/fon-2020-1255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer continues to be the leading cause of cancer mortality and a serious health problem despite the numerous advances made in the last decade and the rapid advance of research in this field. In recent years, there has been a decrease in mortality from lung cancer coinciding with the approval times of targeted therapy. To date, targeted therapy has been used in the context of advanced disease in clinical practice, with great benefits in survival and quality of life. The next step will be to incorporate targeted therapy into the treatment of earlier stages of non-small-cell lung cancer, and there is already a randomized trial showing a disease-free survival benefit. However, there are many questions that need to be resolved first. In the present review, the authors discuss the findings of published reports and ongoing clinical trials assessing the role of targeted therapies in nonmetastatic disease.
Collapse
Affiliation(s)
- Xabier Mielgo-Rubio
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, Budapest 1 Alcorcón, Madrid, 28922, Spain
| | - Margarita Martín
- Department of Radiation Oncology, Ramón y Cajal University Hospital, M-607, km. 9, 100, Madrid, 28034, Spain
| | - Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal, Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Oliver Higuera
- Department of Medical Oncology, Hospital Universitario La Paz, Paseo de la Castellana 261, Madrid, 28046, Spain
| | - Virginia Calvo
- Department of Medical Oncology, Puerta de Hierro Hospital, Joaquín Rodrigo 1, Majadahonda, Madrid, 28222, Spain
| | - José Ramón Jarabo
- Department of Thoracic Surgery, Hospital Clínico San Carlos, Calle del Profesor Martín Lagos, s/n, Madrid, 28040, Spain
| | - Esther Conde
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
| | - Javier Luna
- Department of Radiation Oncology, Fundación Jiménez Díaz, Oncohealth Institute, Avda. Reyes Católicos 2, Madrid, 28040, Spain
| | - Mariano Provencio
- Department of Medical Oncology, Puerta de Hierro Hospital, Joaquín Rodrigo 1, Majadahonda, Madrid, 28222, Spain
| | - Javier De Castro
- Department of Medical Oncology, Hospital Universitario La Paz, Paseo de la Castellana 261, Madrid, 28046, Spain
| | - Fernando López-Ríos
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
| | - Florentino Hernando-Trancho
- Department of Thoracic Surgery, Hospital Clínico San Carlos, Calle del Profesor Martín Lagos, s/n, Madrid, 28040, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid, 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid, 28003, Spain
- Medicine Department, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670, Spain
| |
Collapse
|
24
|
Moore DA, Benafif S, Poskitt B, Argue S, Lee SM, Ahmad T, Papadatos-Pastos D, Jamal-Hanjani M, Bennett P, Forster MD. Optimising fusion detection through sequential DNA and RNA molecular profiling of non-small cell lung cancer. Lung Cancer 2021; 161:55-59. [PMID: 34536732 DOI: 10.1016/j.lungcan.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES There is an increasing number of driver fusions in NSCLC which are amenable to targeted therapy. Panel testing for fusions is increasingly appropriate but can be costly and requires adequate good quality biopsy material. In light of the typical mutual exclusivity of driver events in NSCLC, the objective of this study was to trial a novel testing pathway, supported by industrial collaboration, in which only patients negative for driver mutations on DNA-NGS were submitted for fusion panel analysis. MATERIALS AND METHODS Over 18 months, all patients from a single centre with non-squamous NSCLC were submitted for DNA-NGS, plus ALK and ROS1 immunohistochemistry +/- FISH. Those which were negative for a driver mutation were then recalled for RNA panel testing. RESULTS 307 samples were referred for DNA-NGS mutation analysis, of which, 10% of cases were unsuitable for or failed DNA-NGS analysis. Driver mutations were detected in 61% (167/275) of all those successfully tested. Of those without a driver mutation and with some remaining tissue available, 28% had insufficient tissue/extracted RNA or failed RNA-NGS. Of those successfully tested, 24% (17/72) had a fusion gene detected involving either ALK, ROS, MET, RET, FGFR or EGFR. Overall, 66% (184/277) of patients had a driver event detected through the combination of DNA and RNA panels. CONCLUSION Sequential DNA and RNA based molecular profiling increased the efficacy of detecting fusion driven NSCLCs. Continued optimisation of tissue procurement, handling and the diagnostic pathways for gene fusion analysis is necessary to reduce analysis failure rates and improve detection rate for treatment with the next generation of small molecule inhibitors.
Collapse
Affiliation(s)
- David A Moore
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, UCL, London, United Kingdom; Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sarah Benafif
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Benjamin Poskitt
- Sarah Cannon Molecular Diagnostics, HCA Healthcare UK, London, United Kingdom
| | - Stephanie Argue
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Siow-Ming Lee
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, UCL, London, United Kingdom; Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Tanya Ahmad
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, UCL, London, United Kingdom; Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Dionysis Papadatos-Pastos
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Mariam Jamal-Hanjani
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, UCL, London, United Kingdom; Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Philip Bennett
- Sarah Cannon Molecular Diagnostics, HCA Healthcare UK, London, United Kingdom
| | - Martin D Forster
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, UCL, London, United Kingdom; Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
25
|
Aggarwal C, Bubendorf L, Cooper WA, Illei P, Borralho Nunes P, Ong BH, Tsao MS, Yatabe Y, Kerr KM. Molecular testing in stage I-III non-small cell lung cancer: Approaches and challenges. Lung Cancer 2021; 162:42-53. [PMID: 34739853 DOI: 10.1016/j.lungcan.2021.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Precision medicine in non-small cell lung cancer (NSCLC) is a rapidly evolving area, with the development of targeted therapies for advanced disease and concomitant molecular testing to inform clinical decision-making. In contrast, routine molecular testing in stage I-III disease has not been required, where standard of care comprises surgery with or without adjuvant or neoadjuvant chemotherapy, or concurrent chemoradiotherapy for unresectable stage III disease, without the integration of targeted therapy. However, the phase 3 ADAURA trial has recently shown that the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimertinib, reduces the risk of disease recurrence by 80% versus placebo in the adjuvant setting for patients with stage IB-IIIA EGFR mutation-positive NSCLC following complete tumor resection with or without adjuvant chemotherapy, according to physician and patient choice. Treatment with adjuvant osimertinib requires selection of patients based on the presence of an EGFR-TKI sensitizing mutation. Other targeted agents are currently being evaluated in the adjuvant and neoadjuvant settings. Approval of at least some of these other agents is highly likely in the coming years, bringing with it in parallel, a requirement for comprehensive molecular testing for stage I-III disease. In this review, we consider the implications of integrating molecular testing into practice when managing patients with stage I-III non-squamous NSCLC. We discuss best practices, approaches and challenges from pathology, surgical and oncology perspectives.
Collapse
Affiliation(s)
- Charu Aggarwal
- Abramson Cancer Center and Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia; Western Sydney University, Campbelltown, NSW, Australia
| | - Peter Illei
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paula Borralho Nunes
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Hospital CUF Descobertas, Lisbon, Portugal
| | - Boon-Hean Ong
- Department of Cardiothoracic Surgery, National Heart Centre Singapore, Singapore
| | - Ming-Sound Tsao
- Department of Pathology, University Health Network, Princess Margaret Cancer Centre, Toronto, Canada
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center, Tokyo, Japan
| | - Keith M Kerr
- Department of Pathology, Aberdeen University, Medical School and Aberdeen Royal Infirmary, Foresterhill, Aberdeen, UK.
| |
Collapse
|
26
|
Nandy S, Helland TL, Roop BW, Raphaely RA, Ly A, Lew M, Berigei SR, Villiger M, Sorokina A, Szabari MV, Fintelmann FJ, Suter MJ, Hariri LP. Rapid non-destructive volumetric tumor yield assessment in fresh lung core needle biopsies using polarization sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:5597-5613. [PMID: 34692203 PMCID: PMC8515979 DOI: 10.1364/boe.433346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 05/28/2023]
Abstract
Adequate tumor yield in core-needle biopsy (CNB) specimens is essential in lung cancer for accurate histological diagnosis, molecular testing for therapeutic decision-making, and tumor biobanking for research. Insufficient tumor sampling in CNB is common, primarily due to inadvertent sampling of tumor-associated fibrosis or atelectatic lung, leading to repeat procedures and delayed diagnosis. Currently, there is no method for rapid, non-destructive intraprocedural assessment of CNBs. Polarization-sensitive optical coherence tomography (PS-OCT) is a high-resolution, volumetric imaging technique that has the potential to meet this clinical need. PS-OCT detects endogenous tissue properties, including birefringence from collagen, and degree of polarization uniformity (DOPU) indicative of tissue depolarization. Here, PS-OCT birefringence and DOPU measurements were used to quantify the amount of tumor, fibrosis, and normal lung parenchyma in 42 fresh, intact lung CNB specimens. PS-OCT results were compared to and validated against matched histology in a blinded assessment. Linear regression analysis showed strong correlations between PS-OCT and matched histology for quantification of tumors, fibrosis, and normal lung parenchyma in CNBs. PS-OCT distinguished CNBs with low tumor content from those with higher tumor content with high sensitivity and specificity. This study demonstrates the potential of PS-OCT as a method for rapid, non-destructive, label-free intra-procedural tumor yield assessment.
Collapse
Affiliation(s)
- Sreyankar Nandy
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Harvard Medical School, Boston, MA 02110, USA
| | - Timothy L. Helland
- Harvard Medical School, Boston, MA 02110, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02110, USA
| | - Benjamin W. Roop
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02110, USA
| | - Rebecca A. Raphaely
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Harvard Medical School, Boston, MA 02110, USA
| | - Amy Ly
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Harvard Medical School, Boston, MA 02110, USA
| | - Madelyn Lew
- Department of Pathology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Sarita R. Berigei
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02110, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Harvard Medical School, Boston, MA 02110, USA
| | - Anastasia Sorokina
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60131, USA
- Department of Pathology, Research Institute of Human Morphology, Moscow 103132, Russia
| | - Margit V. Szabari
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Harvard Medical School, Boston, MA 02110, USA
| | - Florian J. Fintelmann
- Harvard Medical School, Boston, MA 02110, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02110, USA
| | - Melissa J. Suter
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Harvard Medical School, Boston, MA 02110, USA
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02110, USA
- Harvard Medical School, Boston, MA 02110, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02110, USA
| |
Collapse
|
27
|
Hofman P. EGFR Status Assessment for Better Care of Early Stage Non-Small Cell Lung Carcinoma: What Is Changing in the Daily Practice of Pathologists? Cells 2021; 10:2157. [PMID: 34440926 PMCID: PMC8392580 DOI: 10.3390/cells10082157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
The recent emergence of novel neoadjuvant and/or adjuvant therapies for early stage (I-IIIA) non-small cell lung carcinoma (NSCLC), mainly tyrosine kinase inhibitors (TKIs) targeting EGFR mutations and immunotherapy or chemo-immunotherapy, has suddenly required the evaluation of biomarkers predictive of the efficacy of different treatments in these patients. Currently, the choice of one or another of these treatments mainly depends on the results of immunohistochemistry for PD-L1 and of the status of EGFR and ALK. This new development has led to the setup of different analyses for clinical and molecular pathology laboratories, which have had to rapidly integrate a number of new challenges into daily practice and to establish new organization for decision making. This review outlines the impact of the management of biological samples in laboratories and discusses perspectives for pathologists within the framework of EGFR TKIs in early stage NSCLC.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, CHU Nice, FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06108 Nice, France; ; Tel.: +33-492-038-855; Fax: +33-492-8850
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, 06000 Nice, France
| |
Collapse
|
28
|
Magios N, Bozorgmehr F, Volckmar AL, Kazdal D, Kirchner M, Herth FJ, Heussel CP, Eichhorn F, Meister M, Muley T, Elshafie RA, Fischer JR, Faehling M, Kriegsmann M, Schirmacher P, Bischoff H, Stenzinger A, Thomas M, Christopoulos P. Real-world implementation of sequential targeted therapies for EGFR-mutated lung cancer. Ther Adv Med Oncol 2021; 13:1758835921996509. [PMID: 34408792 PMCID: PMC8366107 DOI: 10.1177/1758835921996509] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/27/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Epidermal growth factor receptor-mutated (EGFR+) non-small-cell lung cancer (NSCLC) patients failing tyrosine kinase inhibitors (TKI) can benefit from next-line targeted therapies, but implementation is challenging. Methods: EGFR+ NSCLC patients treated with first/second-generation (1G/2G) TKI at our institution with a last follow-up after osimertinib approval (February 2016), were analyzed retrospectively, and the results compared with published data under osimertinib. Results: A total of 207 patients received erlotinib (37%), gefitinib (16%) or afatinib (47%). The median age was 66 years, with a predominance of female (70%), never/light-smokers (69%). T790M testing was performed in 174/202 progressive cases (86%), positive in 93/174 (53%), and followed by osimertinib in 87/93 (94%). Among the 135 deceased patients, 94 (70%) received subsequent systemic treatment (43% chemotherapy, 39% osimertinib), while 30% died without, either before (4%) or after progression, due to rapid clinical deterioration (22%), patient refusal of further therapy (2%), or severe competing illness (2%). Lack of subsequent treatment was significantly (4.5x, p < 0.001) associated with lack of T790M testing, whose most frequent cause (in approximately 50% of cases) was also rapid clinical decline. Among the 127 consecutive patients with failure of 1G/2G TKI started after November 2015, 47 (37%) received osimertinib, with a median overall survival of 36 months versus 24 and 21 months for patients with alternative and no subsequent therapies (p = 0.003). Conclusion: Osimertinib after 1G/2G TKI failure prolongs survival, but approximately 15% and 30% of patients forego molecular retesting and subsequent treatment, respectively, mainly due to rapid clinical deterioration. This is an important remediable obstacle to sequential TKI treatment for EGFR+ NSCLC. It pertains also to other actionable resistance mechanisms emerging under 1G/2G inhibitors or osimertinib, whose rate for lack of next-line therapy is similar (approximately 35% in the FLAURA/AURA3 trials), and highlights the need for closer monitoring alongside broader profiling of TKI-treated EGFR+ NSCLC in the future.
Collapse
Affiliation(s)
- Nikolaus Magios
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg
| | - Farastuk Bozorgmehr
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg
| | - Anna-Lena Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Herth
- Department of Pneumology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Claus-Peter Heussel
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg
| | - Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Rami A Elshafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen R Fischer
- Department of Thoracic Oncology, Lungenklinik Löwenstein, Löwenstein, Germany
| | - Martin Faehling
- Department of Cardiology, Angiology and Pneumology, Klinikum Esslingen, Esslingen, Germany
| | - Mark Kriegsmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Helge Bischoff
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg
| | | | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Röntgenstraße 1, Heidelberg, Baden-Württemberg 69126, Germany
| |
Collapse
|
29
|
Gonuguntla HK, Shah M, Gupta N, Agrawal S, Poletti V, Nacheli GC. Endobronchial ultrasound-guided transbronchial cryo-nodal biopsy: a novel approach for mediastinal lymph node sampling. Respirol Case Rep 2021; 9:e00808. [PMID: 34262775 PMCID: PMC8264746 DOI: 10.1002/rcr2.808] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is preferred for evaluating malignant lymph nodes and staging of lung cancer. Nevertheless, larger tissue samples are increasingly needed, particularly for molecular analysis. We describe the feasibility, technical details, and complications of EBUS-guided transbronchial cryo-node biopsy (TBCNB) in four patients with mediastinal adenopathy. The samples obtained by EBUS-TBCNB in all cases were adequate for histopathological examination (HPE) and immunohistochemistry (IHC) staining. In case 1, HPE showed non-caseating epithelioid granuloma with giant cells and fibrosis consistent with sarcoidosis. Case 2 was diagnosed with adenocarcinoma with positivity for ROS1(D4D6). Case 3 showed features of metastatic adenocarcinoma from the breast (positive for Her2, ER, and GATA3). Case 4 was diagnosed with tuberculosis (necrotizing granuloma in histopathology, stain with Ziehl-Neelsen that showed few rod-shaped bacilli). Only one patient had minimal bleeding at the puncture site controlled with cold saline. There were no adverse events such as major bleeding, pneumomediastinum, or pneumothorax.
Collapse
Affiliation(s)
| | - Milap Shah
- Department of Laboratory MedicineYashoda HospitalHyderabadIndia
| | - Nitesh Gupta
- Department of Pulmonary, Critical Care and Sleep MedicineVMMC and Safdarjung HospitalNew DelhiIndia
| | - Sumita Agrawal
- Department of Pulmonary, Critical Care and Sleep MedicineMedipulse HospitalJodhpurIndia
| | - Venerino Poletti
- Department of Diseases of the ThoraxOspedale GB MorgagniForlìItaly
| | - Gustavo Cumbo Nacheli
- Division of Bronchoscopy and Interventional Pulmonology, Pulmonary and Critical Care DivisionSpectrum Health Medical GroupGrand RapidsMIUSA
| |
Collapse
|
30
|
Göker E, Altwairgi A, Al-Omair A, Tfayli A, Black E, Elsayed H, Selek U, Koegelenberg C. Multi-disciplinary approach for the management of non-metastatic non-small cell lung cancer in the Middle East and Africa: Expert panel recommendations. Lung Cancer 2021; 158:60-73. [PMID: 34119934 DOI: 10.1016/j.lungcan.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/25/2022]
Abstract
The Middle East and Africa (MEA) region, a large geographical area, lies at the confluence of Asian, Caucasian and African races and comprises of a population with several distinct ethnicities. The course of management of non-small cell lung cancer (NSCLC) differs as per patients' performance status as well as stage of disease, requiring personalized therapy decisions. Although management of NSCLC has received a significant impetus in the form of molecularly targeted therapies and immune therapies in last few years, surgery remains gold standard for patients with early-stage disease. In case of unresectable disease, radiotherapy and chemotherapy are the primary management modalities. With newer therapies being approved for treatment of early stage disease, use of multi-disciplinary team (MDT) for comprehensive management of NSCLC is of prime importance. A group of experts with interest in thoracic oncology, deliberated and arrived at a consensus statement for the community oncologists treating patients with NSCLC in the MEA region. The deliberation was based on the review of the published evidence including literature and global and local guidelines, subject expertise of the participating panellists and experience in real-life management of patients with NSCLC. We present the proposed regional adaptations of international guidelines and recommends the MDT approach for management of NSCLC in MEA.
Collapse
Affiliation(s)
- Erdem Göker
- Medical Oncology Dept., Ege University, Izmir, Turkey.
| | | | - Ameen Al-Omair
- Radiation Oncology, Oncology Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.
| | - Arafat Tfayli
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon.
| | - Edward Black
- Department of Thoracic Surgery, Sheikh Shakhbout Medical City, P.O. Box 11001, Abu Dhabi, United Arab Emirates.
| | - Hany Elsayed
- Department of Thoracic Surgery, Ain Shams University, Cairo, Egypt.
| | - Ugur Selek
- Department of Radiation Oncology, Koc University School of Medicine, Koc University, Istanbul, Turkey.
| | - Coenraad Koegelenberg
- Division of Pulmonology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa.
| |
Collapse
|
31
|
McKeage MJ, Tin Tin S, Khwaounjoo P, Sheath K, Dixon-McIver A, Ng D, Sullivan R, Cameron L, Shepherd P, Laking GR, Kingston N, Strauss M, Lewis C, Elwood M, Love DR. Screening for anaplastic lymphoma kinase (ALK) gene rearrangements in non-small-cell lung cancer in New Zealand. Intern Med J 2021; 50:716-725. [PMID: 31318119 DOI: 10.1111/imj.14435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/21/2019] [Accepted: 07/09/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Lung cancer is a major cause of death in New Zealand. In recent years, targeted therapies have improved outcomes. AIM To determine the uptake of anaplastic lymphoma kinase (ALK) testing, and the prevalence, demographic profile and outcomes of ALK-positive non-small-cell lung cancer (NSCLC), in New Zealand, where no national ALK-testing guidelines or subsidised ALK tyrosine kinase inhibitor (TKI) therapies are available. METHODS A population-based observational study reviewed databases to identify patients presenting with non-squamous NSCLC over 6.5 years in northern New Zealand. We report the proportion tested for ALK gene rearrangements and the results. NSCLC samples tested by fluorescence in situ hybridisation were retested by next generation sequencing and ALK immunohistochemistry. A survival analysis compared ALK-positive patients treated or not treated with ALK TKI therapy. RESULTS From a total of 3130 patients diagnosed with non-squamous NSCLC, 407 (13%) were tested for ALK gene rearrangements, and patient selection was variable and inequitable. Among those tested, 34 (8.4%) had ALK-positive NSCLC. ALK-positive disease was more prevalent in younger versus older patients, non-smokers versus smokers and in Māori, Pacific or Asian ethnic groups than in New Zealand Europeans. Fluorescence in situ hybridisation, ALK immunohistochemistry and next generation sequencing showed broad concordance for detecting ALK-positive disease under local testing conditions. Among patients with ALK-positive metastatic NSCLC, those treated with ALK TKI survived markedly longer than those not treated with ALK TKI (median overall survival 5.12 vs 0.55 years). CONCLUSION Lung cancer outcomes in New Zealand may be improved by providing national guidelines and funding policy for ALK testing and access to subsidised ALK TKI therapy.
Collapse
Affiliation(s)
- Mark J McKeage
- Department of Pharmacology and Clinical Pharmacology and the Auckland Cancer Society Research Centre Auckland, University of Auckland, Auckland, New Zealand.,Medical Oncology, Auckland City Hospital, Auckland, New Zealand
| | - Sandar Tin Tin
- Section of Epidemiology and Biostatistics, University of Auckland, Auckland, New Zealand
| | - Prashannata Khwaounjoo
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Karen Sheath
- Diagnostic Genetics, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | | | | | | | - Laird Cameron
- Medical Oncology, Auckland City Hospital, Auckland, New Zealand
| | - Philip Shepherd
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - George R Laking
- Medical Oncology, Auckland City Hospital, Auckland, New Zealand
| | - Nicola Kingston
- Anatomical Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Magreet Strauss
- Anatomical Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | | | - Mark Elwood
- Section of Epidemiology and Biostatistics, University of Auckland, Auckland, New Zealand
| | - Donald R Love
- Diagnostic Genetics, LabPLUS, Auckland City Hospital, Auckland, New Zealand.,Pathology Genetics, Sidra Medicine, Doha, Qatar
| |
Collapse
|
32
|
Capmatinib for patients with non-small cell lung cancer with MET exon 14 skipping mutations: A review of preclinical and clinical studies. Cancer Treat Rev 2021; 95:102173. [PMID: 33740553 DOI: 10.1016/j.ctrv.2021.102173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022]
Abstract
The mesenchymal-epithelial transition (MET) receptor tyrosine kinase binds the hepatocyte growth factor to activate downstream cell signaling pathways involved in cell proliferation, survival, and migration. Several genetic mechanisms can result in an aberrant activation of this receptor in cancer cells. One such activating mechanism involves the acquisition of gene mutations that cause MET exon 14 skipping (METex14) during mRNA splicing. Mutations leading to METex14 are found in approximately 3-4% of patients with non-small cell lung cancer (NSCLC). Accumulating evidence suggests that METex14 is a true, independent oncogenic driver in NSCLC, as well as being an independent prognostic factor for poorer survival in patients with NSCLC. The successes of target therapies have relied on improved understanding of the genetic alterations that lead to the dysregulation of the molecular pathways and more advanced molecular diagnostics. Multiple efforts have been made to target the MET pathway in cancer; however, real clinical progress has only occurred since the emergence of METex14 as a valid biomarker for MET inhibition. Capmatinib is a highly potent and selective type Ib inhibitor of MET. Following preclinical demonstration of activity against MET-dependent cancer cell line growth and MET-driven tumor growth in xenograft models, data from a phase 1 clinical trial showed an acceptable safety profile of capmatinib and preliminary evidence of efficacy in patients with MET-dysregulated NSCLC. The multicohort GEOMETRY mono-1 phase 2 trial reported objective response rates of 68% and 41% in treatment-naïve and in pre-treated patients with METex14 advanced NSCLC, respectively. These results have supported the approval of capmatinib by the US Food and Drug Administration for patients with metastatic NSCLC harboring METex14.
Collapse
|
33
|
Machine Learning Based Analysis of Human Serum N-glycome Alterations to Follow up Lung Tumor Surgery. Cancers (Basel) 2020; 12:cancers12123700. [PMID: 33317143 PMCID: PMC7764602 DOI: 10.3390/cancers12123700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Globally, there were around 2.1 million lung cancer cases and 1.8 million deaths in 2018. Hungary—where this study was carried out—had the highest rate of lung cancer in the same year. We developed a new analytical method which can be readily used to follow up the tumor surgery by investigating the glycan (sugar) structures of proteins. As the results of such investigations are very complex, computer-assisted machine learning methods were utilized for data interpretation. Abstract The human serum N-glycome is a valuable source of biomarkers for malignant diseases, already utilized in multiple studies. In this paper, the N-glycosylation changes in human serum proteins were analyzed after surgical lung tumor resection. Seventeen lung cancer patients were involved in this study and the N-glycosylation pattern of their serum samples was analyzed before and after the surgery using capillary electrophoresis separation with laser-induced fluorescent detection. The relative peak areas of 21 N-glycans were evaluated from the acquired electropherograms using machine learning-based data analysis. Individual glycans as well as their subclasses were taken into account during the course of evaluation. For the data analysis, both discrete (e.g., smoker or not) and continuous (e.g., age of the patient) clinical parameters were compared against the alterations in these 21 N-linked carbohydrate structures. The classification tree analysis resulted in a panel of N-glycans, which could be used to follow up on the effects of lung tumor surgical resection.
Collapse
|
34
|
Yoon SH, Lee SM, Park CH, Lee JH, Kim H, Chae KJ, Jin KN, Lee KH, Kim JI, Hong JH, Hwang EJ, Kim H, Suh YJ, Park S, Park YS, Kim DW, Choi M, Park CM. 2020 Clinical Practice Guideline for Percutaneous Transthoracic Needle Biopsy of Pulmonary Lesions: A Consensus Statement and Recommendations of the Korean Society of Thoracic Radiology. Korean J Radiol 2020; 22:263-280. [PMID: 33236542 PMCID: PMC7817630 DOI: 10.3348/kjr.2020.0137] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Percutaneous transthoracic needle biopsy (PTNB) is one of the essential diagnostic procedures for pulmonary lesions. Its role is increasing in the era of CT screening for lung cancer and precision medicine. The Korean Society of Thoracic Radiology developed the first evidence-based clinical guideline for PTNB in Korea by adapting pre-existing guidelines. The guideline provides 39 recommendations for the following four main domains of 12 key questions: the indications for PTNB, pre-procedural evaluation, procedural technique of PTNB and its accuracy, and management of post-biopsy complications. We hope that these recommendations can improve the diagnostic accuracy and safety of PTNB in clinical practice and promote standardization of the procedure nationwide.
Collapse
Affiliation(s)
- Soon Ho Yoon
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chul Hwan Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hyuk Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyungjin Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kum Ju Chae
- Department of Radiology, Institute of Medical Science, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Kwang Nam Jin
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Kyung Hee Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jung Im Kim
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jung Hee Hong
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Jin Hwang
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Heekyung Kim
- Department of Radiology, Eulji University College of Medicine, Eulji University Hospital, Daejeon, Korea
| | - Young Joo Suh
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Samina Park
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young Sik Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Wan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Miyoung Choi
- National Evidence-based Healthcare Collaborating Agency, Seoul, Korea
| | - Chang Min Park
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
35
|
Kapeleris J, Kulasinghe A, Warkiani ME, Oleary C, Vela I, Leo P, Sternes P, O'Byrne K, Punyadeera C. Ex vivo culture of circulating tumour cells derived from non-small cell lung cancer. Transl Lung Cancer Res 2020; 9:1795-1809. [PMID: 33209602 PMCID: PMC7653113 DOI: 10.21037/tlcr-20-521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Tumour tissue-based information is limited. Liquid biopsy can provide valuable real-time information through circulating tumour cells (CTCs). Profiling and expanding CTCs may provide avenues to study transient metastatic disease. Methods Seventy non-small cell lung cancer (NSCLC) patients were recruited. CTCs were enriched using the spiral microfluidic chip and a RosetteSep™ using bloods from NSCLC patients. CTC cultures were carried out using the Clevers media under hypoxic conditions. CTCs were characterized using immunofluorescence and mutation-specific antibodies for samples with known mutation profiles. Exome sequencing was used to characterized CTC cultures. Results CTCs (>2 cells) were detected in 38/70 (54.3%) of patients ranging from 0 to 385 CTCs per 7.5 mL blood. In 4/5 patients where primary tumours harboured an EGFR exon 19 deletion, this EGFR mutation was also captured in CTCs. ALK translocation was confirmed on CTCs from a patient harbouring an ALK-rearrangement in the primary tumour. Short term CTC cultures were successfully generated in 9/70 NSCLC patients. Whole exome sequencing (WES) confirmed the presence of somatic mutations in the CTC cultures with mutational signatures consistent with NSCLC. Conclusions We were able to detect CTCs in >50% of NSCLC patients. NSCLC patients with >2 CTCs had a poor prognosis. The short-term CTC culture success rate was 12.9%. Further optimization of this culture methodology may provide a means by which to expand CTCs derived from NSCLC patient’s bloods. CTC cultures allow for expansion of cells to a critical mass, allowing for functional characterization of CTCs with the goal of drug sensitivity testing and the creation of CTC cell lines.
Collapse
Affiliation(s)
- Joanna Kapeleris
- Saliva and Liquid Biopsy Translational Research Team, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Arutha Kulasinghe
- Saliva and Liquid Biopsy Translational Research Team, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Ultimo NSW, Australia
| | - Connor Oleary
- Translational Research Institute, Woolloongabba, Brisbane, Australia.,Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Ian Vela
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia.,The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia.,Department of Urology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Paul Leo
- Translational Research Institute, Woolloongabba, Brisbane, Australia.,The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Peter Sternes
- Translational Research Institute, Woolloongabba, Brisbane, Australia.,The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Kenneth O'Byrne
- Translational Research Institute, Woolloongabba, Brisbane, Australia.,Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Research Team, The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
36
|
O'Shea A, Tam AL, Kilcoyne A, Flaherty KT, Lee SI. Image-guided biopsy in the age of personalised medicine: strategies for success and safety. Clin Radiol 2020; 76:154.e1-154.e9. [PMID: 32896425 DOI: 10.1016/j.crad.2020.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022]
Abstract
Oncology has progressed into an era of personalised medicine, whereby the therapeutic regimen is tailored to the molecular profile of the patient's cancer. Determining personalised therapeutic options is achieved by using tumour genomics and proteomics to identify the specific molecular targets against which candidate drugs can interact. Several dozen targeted drugs, many for multiple cancer types are already widely in clinical use. Molecular profiling of tumours is contingent on high-quality biopsy specimens and the most common method of tissue sampling is image-guided biopsy. Thus, for radiologists performing these biopsies, the paradigm has now shifted away from obtaining specimens simply for histopathological diagnosis to acquiring larger amounts of viable tumour cells for DNA, RNA, or protein analysis. These developments have highlighted the central role now played by radiologists in the delivery of personalised cancer care. This review describes the principles of molecular profiling assays and biopsy techniques for optimising yield, and describes a scoring system to assist in patient selection for percutaneous biopsy.
Collapse
Affiliation(s)
- A O'Shea
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - A L Tam
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - A Kilcoyne
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - K T Flaherty
- Department of Medicine, Division of Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - S I Lee
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
37
|
Udagawa H, Kirita K, Naito T, Nomura S, Ishibashi M, Matsuzawa R, Hisakane K, Usui Y, Matsumoto S, Yoh K, Niho S, Ishii G, Goto K. Feasibility and utility of transbronchial cryobiopsy in precision medicine for lung cancer: Prospective single-arm study. Cancer Sci 2020; 111:2488-2498. [PMID: 32426898 PMCID: PMC7385344 DOI: 10.1111/cas.14489] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 01/05/2023] Open
Abstract
Cryoprobe is a novel transbronchial biopsy (TBB) tool that yields larger tissue samples than forceps. Pathological diagnosis and biomarker analysis, such as genetic alterations and programmed death‐ligand 1 (PD‐L1) expression, are paramount for precision medicine against lung cancer. We evaluated the safety and usefulness of cryoprobe TBB for lung cancer diagnosis and biomarker analysis. In this single‐center, prospective single‐arm study, patients suspected of having or diagnosed with primary lung cancer underwent cryoprobe TBB using flexible bronchoscopy after conventional forceps TBB from the same lesion. Cryoprobe TBB was performed in 121 patients. The incidence rate of severe bleeding and serious adverse events (4% [90% confidence interval: 2%‐9%]) was significantly lower than the expected rate (20% with 30% threshold, P < 0.01). Combining both central and peripheral lesions, the diagnostic yield rate of cryoprobe samples was 76% and that of forceps samples was 84%. Compared with forceps TBB samples, cryoprobe TBB samples were larger (cryoprobe 15 mm2 vs forceps 2 mm2) and resulted in a larger proportion of definite histomorphological diagnosis (cryoprobe 86% vs forceps 74%, P < 0.01), larger amounts of DNA extracted from samples (median: cryoprobe, 1.60 µg vs forceps, 0.58 µg, P = 0.02) and RNA (median: cryoprobe, 0.62 µg vs forceps, 0.17 µg, P < 0.01) extracted from samples, and tended to yield greater rates of PD‐L1 expression >1% (51% vs 42%). In conclusion, cryoprobe is a safe and useful tool for obtaining lung cancer tissue samples of adequate size and quality, which allow morphological diagnosis and biomarker analysis for precision medicine against lung cancer.
Collapse
Affiliation(s)
- Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Keisuke Kirita
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomoyuki Naito
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shogo Nomura
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masayuki Ishibashi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Reiko Matsuzawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kakeru Hisakane
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuko Usui
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Seiji Niho
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
38
|
Liam CK, Mallawathantri S, Fong KM. Is tissue still the issue in detecting molecular alterations in lung cancer? Respirology 2020; 25:933-943. [PMID: 32335992 DOI: 10.1111/resp.13823] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/23/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023]
Abstract
Molecular biomarker testing of advanced-stage NSCLC is now considered standard of care and part of the diagnostic algorithm to identify subsets of patients for molecular-targeted treatment. Tumour tissue biopsy is essential for an accurate initial diagnosis, determination of the histological subtype and for molecular testing. With the increasing use of small biopsies and cytological specimens for diagnosis and the need to identify an increasing number of predictive biomarkers, proper management of the limited amount of sampling materials available is important. Many patients with advanced NSCLC do not have enough tissue for molecular testing and/or do not have a biopsy-amenable lesion and/or do not want to go through a repeat biopsy given the potential risks. Molecular testing can be difficult or impossible if the sparse material from very small biopsy specimens has already been exhausted for routine diagnostic purposes. A limited diagnostic workup is recommended to preserve sufficient tissue for biomarker testing. In addition, tumour biopsies are limited by tumour heterogeneity, particularly in the setting of disease resistance, and thus may yield false-negative results. Hence, there have been considerable efforts to determine if liquid biopsy in which molecular alterations can be non-invasively identified in plasma cell-free ctDNA, a potential surrogate for the entire tumour genome, can overcome the issues with tissue biopsies and replace the need for the latter.
Collapse
Affiliation(s)
- Chong-Kin Liam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Kwun M Fong
- Thoracic Medicine, The Prince Charles Hospital, The University of Queensland Thoracic Research Centre at TPCH, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Papadopoulou E, Tsoulos N, Tsantikidi K, Metaxa-Mariatou V, Stamou PE, Kladi-Skandali A, Kapeni E, Tsaousis G, Pentheroudakis G, Petrakis D, Lampropoulou DI, Aravantinos G, Varthalitis I, Kesisis G, Boukovinas I, Papakotoulas P, Katirtzoglou N, Athanasiadis E, Stavridi F, Christodoulou C, Koumarianou A, Eralp Y, Nasioulas G. Clinical feasibility of NGS liquid biopsy analysis in NSCLC patients. PLoS One 2019; 14:e0226853. [PMID: 31860648 PMCID: PMC6924668 DOI: 10.1371/journal.pone.0226853] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Analysis of circulating tumor nucleic acids in plasma of Non-Small Cell Lung Cancer (NSCLC) patients is the most widespread and documented form of "liquid biopsy" and provides real-time information on the molecular profile of the tumor without an invasive tissue biopsy. Methods Liquid biopsy analysis was requested by the referral physician in 121 NSCLC patients at diagnosis and was performed using a sensitive Next Generation Sequencing assay. Additionally, a comparative analysis of NSCLC patients at relapse following EGFR Tyrosine Kinase Inhibitor (TKIs) treatment was performed in 50 patients by both the cobas and NGS platforms. Results At least one mutation was identified in almost 49% of the cases by the NGS approach in NSCLC patients analyzed at diagnosis. In 36 cases with paired tissue available a high concordance of 86.11% was observed for clinically relevant mutations, with a Positive Predictive Value (PPV) of 88.89%. Furthermore, a concordance rate of 82% between cobas and the NGS approach for the EGFR sensitizing mutations (in exons 18, 19, 21) was observed in patients with acquired resistance to EGFR TKIs, while this concordance was 94% for the p.T790M mutation, with NGS being able to detect this mutation in three 3 additional patients. Conclusions This study indicates the feasibility of circulating tumor nucleic acids (ctNA) analysis as a tumor biopsy surrogate in clinical practice for NSCLC personalized treatment decision making. The use of new sensitive NGS techniques can reliably detect tumor-derived mutations in liquid biopsy and provide clinically relevant information both before and after targeted treatment in patients with NSCLC. Thus, it could aid physicians in treatment decision making in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - George Pentheroudakis
- Department of Medical Oncology, School of Medicine, Ioannina, Greece
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | - Dimitrios Petrakis
- Department of Medical Oncology, School of Medicine, Ioannina, Greece
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | | | - Gerasimos Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | | | - George Kesisis
- Oncology Department, Saint Luke Private Hospital, Thessaloniki, Greece
| | | | - Pavlos Papakotoulas
- First Department of Clinical Oncology, Theagenio Hospital, Thessaloniki, Greece
| | | | | | - Flora Stavridi
- Fourth Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | | | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Yeşim Eralp
- Department of Medical Oncology, Istanbul University School of Medicine, İstanbul, Turkey
| | | |
Collapse
|
40
|
Ishiwata T, Nakajima T, Terada J, Tatsumi K. A novel biosimulator based on ex vivo porcine lungs for training in peripheral tissue sampling using endobronchial ultrasonography with a guide sheath. J Thorac Dis 2019; 11:4152-4158. [PMID: 31737298 DOI: 10.21037/jtd.2019.10.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Although radial probe endobronchial ultrasonography (EBUS) with a guide sheath (GS; EBUS-GS) is widely used for sampling peripheral pulmonary lesions (PPLs), a standard training model for EBUS-GS remains to be developed. The purpose of this study was to evaluate the feasibility of a novel pulmonary biosimulator for hands-on training in peripheral tissue sampling using EBUS-GS. Methods We established a novel biosimulator for EBUS-GS using porcine lungs. The simulator was equipped with multiple pseudo PPLs that were created using blue agar solution injected through GS inserted in a bronchoscope. A total of 12 voluntary trainees participated in a hands-on training course using the biosimulator. The size of samples acquired using biopsy forceps were compared between initial and post-training biopsies, and trainee satisfaction with the biosimulator and training program were evaluated using a questionnaire. Results Under the guidance of a trainer, all trainees successfully detected pseudo PPLs using radial probe EBUS before the initial biopsy, and 11 trainees acquired samples from the target lesions during the initial biopsy. Post-training biopsy samples were larger than the initial samples for eight trainees. The results of the questionnaire revealed that all trainees were satisfied with the biosimulator. Moreover, eight trainees who had previously participated in another hands-on EBUS-GS training program involving a synthetic phantom model showed greater satisfaction for the biosimulator. Conclusions A hands-on training program using the novel biosimulator assessed in this study could aid clinicians in improving their skills for EBUS-GS and acquiring larger peripheral tissue samples using biopsy forceps inserted through GS.
Collapse
Affiliation(s)
- Tsukasa Ishiwata
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Nakajima
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
41
|
Rajadurai P, Cheah PL, How SH, Liam CK, Annuar MAA, Omar N, Othman N, Marzuki NM, Pang YK, Bustamam RSA, Tho LM. Molecular testing for advanced non-small cell lung cancer in Malaysia: Consensus statement from the College of Pathologists, Academy of Medicine Malaysia, the Malaysian Thoracic Society, and the Malaysian Oncological Society. Lung Cancer 2019; 136:65-73. [DOI: 10.1016/j.lungcan.2019.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/13/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
|
42
|
Comparison of Epidermal Growth Factor Receptor Gene Mutations Identified Using Pleural Effusion and Primary Tumor Tissue Samples in Non-Small Cell Lung Cancer. Appl Immunohistochem Mol Morphol 2019; 26:e44-e51. [PMID: 28800007 DOI: 10.1097/pai.0000000000000543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although the use of pleural effusion samples for epidermal growth factor receptor (EGFR) testing in lung cancer is increasing, the accuracy rate and effectiveness of identifying EGFR mutations using these samples, rather than primary tumor tissue samples, is not established. MATERIALS AND METHODS One hundred ninety-two advanced, non-small cell lung cancer patients were enrolled into this study. All patients had primary tumor tissue and corresponding pleural effusion samples, and we employed the Amplification Refractory Mutation System to detect EGFR gene mutations in these samples. RESULT The number of EGFR mutations detected in primary tumor tissue and pleural effusion samples was 119 (61.98%) and 113 (58.85%), respectively. The EGFR-mutation rate was significantly higher in female than in male patients, and in adenocarcinoma than in nonadenocarcinoma patients (P=0.000). Single mutations in exons 19 and 21 were the predominant observed mutation type, and the overall concordance rate of EGFR-mutation status between the 192 matched pleural effusion and primary tumor tissue samples was 86.98%. CONCLUSIONS We observed a high concordance rate between EGFR mutations identified using primary tumor tissue and corresponding pleural effusion samples by Amplification Refractory Mutation System. Thus, it is likely that pleural effusion sampling from advanced non-small cell lung cancer patients, especially those with adenocarcinoma, may be effective in EGFR-mutation screening.
Collapse
|
43
|
Gregg JP, Li T, Yoneda KY. Molecular testing strategies in non-small cell lung cancer: optimizing the diagnostic journey. Transl Lung Cancer Res 2019; 8:286-301. [PMID: 31367542 PMCID: PMC6626860 DOI: 10.21037/tlcr.2019.04.14] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/14/2019] [Indexed: 01/21/2023]
Abstract
Molecular testing identifies patients with advanced non-small cell lung cancer (NSCLC) who may benefit from targeted therapy or immunotherapy (i.e., immune checkpoint inhibitor treatment for patients with high tumor mutational burden (TMB), microsatellite instability-high or mismatch repair-deficient tumors). Current guidelines state that molecular testing should be conducted at the time of initial diagnosis and tumor progression on targeted therapy. In real-world clinical practice in the United States (US), molecular testing is often not conducted or happens late in the diagnostic journey, resulting in delayed or inappropriate treatment. Herein, we review the rationale for molecular testing in advanced NSCLC, along with best-practice guidelines based on published recommendations and our own clinical experience, including a case study. We propose three strategies to optimize molecular testing in newly diagnosed patients with advanced NSCLC: (I) pulmonologists, interventional radiologists, or thoracic surgeons order molecular tests as soon as advanced NSCLC with an adenocarcinoma component is suspected; (II) liquid biopsies conducted early in the diagnostic pathway; and (III) pathologist-directed reflex testing, as conducted in other areas of oncology. To help facilitate these strategies, we outline our recommendations for optimal sample collection techniques and stewardship. In summary, we believe that implementation of these individual strategies will allow clinicians to effectively leverage available treatment options for advanced NSCLC, reducing the time to optimal treatment and improving patient outcomes.
Collapse
Affiliation(s)
- Jeffrey P. Gregg
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, CA, USA
| | - Tianhong Li
- Division of Hematology & Oncology, Department of Internal Medicine, School of Medicine, University of California, Davis Comprehensive Cancer Center, CA, USA
| | - Ken Y. Yoneda
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis Medical Center, CA, USA
| |
Collapse
|
44
|
De Marinis F, Barberis M, Barbieri V, Marchianò A, Gasparini S, Migliorino MR, Romano G, Spinnato F, Vitiello F, Gridelli C. Diagnosis and first-line treatment of non-small cell lung cancer in the era of novel immunotherapy: recommendations for clinical practice. Expert Rev Respir Med 2019; 13:217-228. [PMID: 30640563 DOI: 10.1080/17476348.2019.1569517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION In the era of personalized cancer therapy, the sampling of adequate tumor tissue for histologic diagnosis and genomic profiling is crucial, not only at the initial diagnosis but also in the event of resistant and recurrent disease when sequential biopsies may be required to evaluate somatic mutations and histologic changes. Areas covered: The identification of genetic driver alterations led to the selection of patients who are most likely to benefit from epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) and rat osteosarcoma (ROS-1) tyrosine kinase inhibitors; on the other hand, in the absence of oncogenic alterations, platinum-based doublet chemotherapy regimens were the cornerstone of treatment. However, the advent of immunotherapy has widely changed the first-line treatment. Expert commentary: An Italian Experts Panel Meeting was held to discuss on recommendations for diagnosis (optimization of the cyto/histologic tumor sample issue and management of tissue to molecular evaluation) and immunotherapy as first-line treatment of patients with advanced non-small-cell lung cancer.
Collapse
Affiliation(s)
- Filippo De Marinis
- a Thoracic Oncology Division , European Institute of Oncology , Milan , Italy
| | - Massimo Barberis
- b Massimo Barberis, Clinic Unit of Histopathology and Molecular Diagnostics , European Institute of Oncology , Milan , Italy
| | - Vito Barbieri
- c Medical Oncology Unit, Mater Domini Hospital , Salvatore Venuta University Campus , Catanzaro , Italy
| | - Alfonso Marchianò
- d Diagnostic and Interventional Radiology Department , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Stefano Gasparini
- e Department of Biomedical Sciences and Public Health, Polytechnic University of the Marche Region, Pulmonary Diseases Unit , Azienda Ospedaliero-Universitaria Ospedali Riuniti , Ancona , Italy
| | | | - Giampiero Romano
- g Division of Medical Oncology , 'Vito Fazzi' Hospital , Lecce , Italy
| | | | - Fabiana Vitiello
- i Department of Pneumology and Oncology , U.O.S.D. Day Hospital Pneumoncologico Azienda Ospedaliera dei Colli Monaldi , Napoli , Italy
| | - Cesare Gridelli
- j Division of Medical Oncology , 'S. G. Moscati' Hospital , Avellino , Italy
| |
Collapse
|
45
|
Ha S, Choi H, Paeng JC, Cheon GJ. Radiomics in Oncological PET/CT: a Methodological Overview. Nucl Med Mol Imaging 2019; 53:14-29. [PMID: 30828395 DOI: 10.1007/s13139-019-00571-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Radiomics is a medical imaging analysis approach based on computer-vision. Metabolic radiomics in particular analyses the spatial distribution patterns of molecular metabolism on PET images. Measuring intratumoral heterogeneity via image is one of the main targets of radiomics research, and it aims to build a image-based model for better patient management. The workflow of radiomics using texture analysis follows these steps: 1) imaging (image acquisition and reconstruction); 2) preprocessing (segmentation & quantization); 3) quantification (texture matrix design & texture feature extraction); and 4) analysis (statistics and/or machine learning). The parameters or conditions at each of these steps are effect on the results. In statistical testing or modeling, problems such as multiple comparisons, dependence on other variables, and high dimensionality of small sample size data should be considered. Standardization of methodology and harmonization of image quality are one of the most important challenges with radiomics methodology. Even though there are current issues in radiomics methodology, it is expected that radiomics will be clinically useful in personalized medicine for oncology.
Collapse
Affiliation(s)
- Seunggyun Ha
- 1Radiation Medicine Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- 2Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hongyoon Choi
- 2Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jin Chul Paeng
- 2Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Gi Jeong Cheon
- 1Radiation Medicine Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- 2Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
- 3Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
46
|
Epidermal Growth Factor Receptor Gene Mutation Status in Primary Lung Adenocarcinoma and Corresponding Bone Metastases. Appl Immunohistochem Mol Morphol 2019; 28:49-56. [PMID: 30601156 DOI: 10.1097/pai.0000000000000725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The aim of this study was to compare epidermal growth factor receptor (EGFR) mutations between primary tumors and corresponding bone metastases (BMs) in lung adenocarcinoma. MATERIALS AND METHODS In total, 115 paired primary lung adenocarcinoma and corresponding BM tumors were analyzed for EGFR mutations by Amplification Refractory Mutation System. RESULTS EGFR mutations were detected in 61 primary lung adenocarcinomas (53.04%) and in 67 corresponding metastases (58.26%), respectively. The EGFR mutation rate was significantly higher in female and in never-smoker patients. The consistency of EGFR mutations between the 115 matched BMs and primary tumor tissue samples reached to 80.87%, and the disparity was 19.13%. Mutations in exons 19 (19-del) and 21 (point mutation L858R) were the predominant mutation type. CONCLUSIONS The concordance rate demonstrated the feasibility of EGFR mutations in corresponding metastases using Amplification Refractory Mutation System when the primary tumor tissue is unavailable in the lung adenocarcinoma patients, and the inconsistency indicates that corresponding metastasis being screened simultaneously with the primary tumor samples may present some supplementary information for the patients.
Collapse
|
47
|
Gill RR, Murphy DJ, Kravets S, Sholl LM, Janne PA, Johnson BE. Success of genomic profiling of non-small cell lung cancer biopsies obtained by trans-thoracic percutaneous needle biopsy. J Surg Oncol 2018; 118:1170-1177. [PMID: 30261097 DOI: 10.1002/jso.25241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023]
Abstract
PURPOSE Genomic profiling for personalized targeted therapy has become standard of care. We report the success of genomic profiling of non-small cell lung cancer (NSCLC) obtained by trans-thoracic needle biopsy (TTNB) in a single center experience. MATERIALS AND METHODS Patients with NSCLC who underwent TTNB for genomic were identified. Pathology specimens were evaluated for tumor adequacy and then analyzed for selected exons of epidermal growth factor receptor, KRAS, BRAF, PIK3CA, and ERBB2. ALK rearrangements were detected with fluorescence in situ hybridization and/or immunohistochemistry. Technical success was recorded and the factors affecting successful profiling were evaluated. Complications (pneumothorax, hemorrhage, and admission) were recorded. Comparison of yield and complications were done between the two groups (core biopsy and fine needle aspiration only group). Utility of PET-CT to guide the needle track for optimized yield was assessed in a subset of patients. RESULTS Between December 6, 2009, and December 30, 2016, 765 patients with NSCLC underwent TTNB. Five-hundred and seventy-seven of 765 (75%) of all TTNB were profiled, for genomic analysis. Five-hundred and eight of 577 (88%) were successfully profiled. The number of samples obtained ranged from 1 to 10 (1 to 2 cm, 18 to 20 G). Lesions biopsied ranged in size from 0.6 to 16 cm. No statistically significant difference was observed in the incidence of pneumothorax between two groups (P = 0.26). PET guidance was not found to be statistically significant ( P = 0.79) in the overall yield. CONCLUSION Computed tomographic guided TTNB is a safe and efficacious technique for genomic profiling, enables the acquisition of sufficient tissue for genetic mutation analyses allowing for personalized therapy with an acceptable complication rate.
Collapse
Affiliation(s)
- Ritu R Gill
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David John Murphy
- Department of Radiology, Guy's & St Thomas, NHS Foundation Trust & King's College, London, UK
| | - Sasha Kravets
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lynnette Mary Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Pasi Antero Janne
- Department of Medical Oncology, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bruce Evan Johnson
- Department of Medical Oncology, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
48
|
Uozu S, Imaizumi K, Yamaguchi T, Goto Y, Kawada K, Minezawa T, Okamura T, Akao K, Hayashi M, Isogai S, Okazawa M, Hashimoto N, Hasegawa Y. Feasibility of tissue re-biopsy in non-small cell lung cancers resistant to previous epidermal growth factor receptor tyrosine kinase inhibitor therapies. BMC Pulm Med 2017; 17:175. [PMID: 29212495 PMCID: PMC5719748 DOI: 10.1186/s12890-017-0514-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023] Open
Abstract
Background When epidermal growth factor receptor (EGFR) gene mutation-positive non-small cell lung cancer (NSCLC) acquires resistance to the initial tyrosine kinase inhibitor (TKI) treatment, reassessing the tumor DNA by re-biopsy is essential for further treatment selection. However, the process of TKI-sensitive tumor re-progression and whether re-biopsy is possible in all cases of acquired resistance to EGFR-TKI remain unclear. Methods We retrospectively analyzed data from 69 consecutive patients with EGFR gene mutation-positive advanced NSCLC who had been treated with EGFR-TKI and exhibited disease relapse after initial disease remission. The relapsing lesions were identified at the time of RECIST-progressive disease (PD) and clinical-PD (when the attending physician judged the patient as clinically relapsing and stopped EGFR-TKI therapy). We determined the potential re-biopsy methods for each relapsing lesion and evaluated their feasibility according to difficulty and invasiveness criteria as follows: category A, accessible by conventional biopsy techniques; category B, difficult (but possible) to biopsy and accessible with invasive methods; and category C, extremely difficult to biopsy or inaccessible without using highly invasive methods, including surgical biopsy. Results The total feasibility rate of re-biopsy (category A or B) was 68% at RECIST-PD and 84% at clinical-PD, and the most common accessible relapsing lesions were primary tumors at RECIST-PD and pleural effusion at clinical-PD. All relapsing lesions at primary sites (categories A and B) were assessed as having the potential for re-biopsy. However, re-biopsy for metastasis was assessed as difficult in a substantial proportion of the study population (42 and 20% category C at RECIST-PD and clinical-PD, respectively). Conclusions Re-biopsy of relapsing disease is feasible in many cases, although it may present difficulties in cases with, e.g., metastatic relapsing lesions. To facilitate treatment strategies in NSCLC patients with relapse after EGFR-TKI therapy, re-biopsy should be standardized with the use of simpler and more reliable methods.
Collapse
Affiliation(s)
- Sakurako Uozu
- Department of Respiratory Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.,Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Teppei Yamaguchi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kenji Kawada
- Department of Clinical Oncology, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tomoyuki Minezawa
- Department of Respiratory Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takuya Okamura
- Department of Respiratory Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ken Akao
- Department of Respiratory Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masamichi Hayashi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Sumito Isogai
- Department of Respiratory Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Mitsushi Okazawa
- Department of Respiratory Medicine, Daiyukai General Hospital, 1-9-9 Sakura, Ichinomiya, Aichi, 491-8551, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| |
Collapse
|
49
|
Scheuenpflug J. Precision Medicine in Oncology and Immuno-Oncology: Where We Stand and Where We're Headed. Biomed Hub 2017; 2:79-86. [PMID: 31988938 PMCID: PMC6945891 DOI: 10.1159/000481878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/28/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND/AIMS Precision medicine has only been a clinical reality only since the start of the 21st century, spurred on by the coevolution of science and technologies, as well as the increasing medical needs of aging societies of industrialized countries. Its overarching objective, from the perspective of the pharmaceutical and diagnostic industry, is to develop innovative therapeutic "concepts" with increased value for patients in a global health economy context. This article analyzes the recent advances and remaining challenges from a research, medical, and regulatory perspective in the development and introduction of precision medicine in oncology, more precisely in immuno-oncology. METHODS Analysis of the most recent scientific publications and clinical evidence. RESULTS AND CONCLUSION Stakeholders need to combine efforts in order to turn scientific insights, such as those related to predictive biomarkers, into superior and affordable therapeutic concepts. Policymakers should also help to bring this about by ensuring that a suitable regulatory framework and incentive system are in place in order to encourage groundbreaking innovation, and hence the availability of new treatment options for patients.
Collapse
|
50
|
Rebonato A, Maiettini D, Andolfi M, Fischer MJ, Vannucci J, Metro G, Basile A, Rossi M, Duranti M. CT-Guided Percutaneous Trans-scapular Lung Biopsy in the Diagnosis of Peripheral Pulmonary Lesion Nodules of the Superior Lobes Using Large Needles. Cardiovasc Intervent Radiol 2017; 41:284-290. [DOI: 10.1007/s00270-017-1768-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
|