1
|
Khayatan D, Barzegar PEF, Fatima A, Sattar T, Zahid A, Batool SA, Jabbar M, Mureed M, Haider F, Butt AJ, Hanif S, Seifalian A, Tebyaniyan H. Advancements in lung regeneration: from bench to bedside. J Transl Med 2025; 23:154. [PMID: 39905476 PMCID: PMC11796163 DOI: 10.1186/s12967-024-05954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/07/2024] [Indexed: 02/06/2025] Open
Abstract
Lung disorders rank among the leading causes of mortality worldwide, presenting a critical challenge in healthcare. The underlying limited regenerative capacity of the lung makes this an unmet clinical need, often necessitating lung transplantation for patients with severe lung disease. However, the lack of viable donor organs underscores the urgent need for alternative therapeutic strategies. Addressing this challenge requires a comprehensive understanding of the structure of lung tissue and the complexities inherent in its regeneration. In this review, we explore recent breakthroughs in lung regenerative medicine, highlighting innovative approaches aimed at tackling lung and tracheal diseases. From stem cell and cell-based therapies to the utilization of biological and synthetic materials, as well as the strategic deployment of growth factors, a diverse array of strategies is being explored to rejuvenate lung function. By critical analysis of in vitro, preclinical, and clinical studies, this review aims to provide a comprehensive overview of the emerging technology of lung regeneration research, shedding light on promising avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Danial Khayatan
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Arooj Fatima
- University Institute of Physical Therapy, University of Lahore, Lahore, Pakistan
- Faculty of Rehabilitation Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Tayyaba Sattar
- University Institute of Physical Therapy, University of Lahore, Lahore, Pakistan
| | - Ambreen Zahid
- Institute of Physical Therapy, University of Lahore, Lahore, Pakistan
| | - Syeda Aiman Batool
- University Institute of Physical Therapy, University of Lahore, Lahore, Pakistan
| | - Mehreen Jabbar
- University Institute of Physical Therapy, University of Lahore, Lahore, Pakistan
| | | | | | | | - Sana Hanif
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), LBIC, University of London, London, UK.
| | - Hamid Tebyaniyan
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.
| |
Collapse
|
2
|
Guimarães LL, Brito AA, Cereta AD, Oliveira APL, Afonso JPR, Mello DACPG, Oliveira-Silva I, Silva CHM, Oliveira RF, Oliveira DAAP, Vieira RDP, Santos DB, Insalaco G, Oliveira LVF, da Palma RK. Enhancing Lung Recellularization with Mesenchymal Stem Cells via Photobiomodulation Therapy: Insights into Cytokine Modulation and Sterilization. Int J Mol Sci 2024; 25:10131. [PMID: 39337615 PMCID: PMC11432310 DOI: 10.3390/ijms251810131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Several lung diseases can cause structural damage, making lung transplantation the only therapeutic option for advanced disease stages. However, the transplantation success rate remains limited. Lung bioengineering using the natural extracellular matrix (ECM) of decellularized lungs is a potential alternative. The use of undifferentiated cells to seed the ECM is practical; however, sterilizing the organ for recellularization is challenging. Photobiomodulation therapy (PBMT) may offer a solution, in which the wavelength is crucial for tissue penetration. This study aimed to explore the potential of optimizing lung recellularization with mesenchymal stem cells using PBMT (660 nm) after sterilization with PBMT (880 nm). The lungs from C57BL/6 mice were decellularized using 1% SDS and sterilized using PBMT (880 nm, 100 mW, 30 s). Recellularization was performed in two groups: (1) recellularized lung and (2) recellularized lung + 660 nm PBMT (660 nm, 100 mW, 30 s). Both were seeded with mesenchymal stem cells from human tooth pulp (DPSc) and incubated for 24 h at 37 °C and 5% CO2 in bioreactor-like conditions with continuous positive airway pressure (CPAP) at 20 cmH2O and 90% O2. The culture medium was analyzed after 24 h. H&E, immunostaining, SEM, and ELISA assays were performed. Viable biological scaffolds were produced, which were free of cell DNA and preserved the glycosaminoglycans; collagens I, III, and IV; fibronectin; laminin; elastin; and the lung structure (SEM). The IL-6 and IL-8 levels were stable during the 24 h culture, but the IFN-γ levels showed significant differences in the recellularized lung and recellularized lung + 660 nm PBMT groups. Greater immunological modulation was observed in the recellularized groups regarding pro-inflammatory cytokines (IL-6, IFN-γ, and IL-8). These findings suggest that PBMT plays a role in cytokine regulation and antimicrobial activity, thus offering promise for enhanced therapeutic strategies in lung bioengineering.
Collapse
Affiliation(s)
- Leticia L. Guimarães
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (L.L.G.); (A.D.C.); (R.K.d.P.)
| | - Auriléia A. Brito
- Post-Graduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo 17011-102, SP, Brazil; (A.A.B.); (A.P.L.O.)
| | - Andressa D. Cereta
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (L.L.G.); (A.D.C.); (R.K.d.P.)
| | - Ana Paula L. Oliveira
- Post-Graduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo 17011-102, SP, Brazil; (A.A.B.); (A.P.L.O.)
| | - João Pedro R. Afonso
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Diego A. C. P. G. Mello
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Iransé Oliveira-Silva
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Carlos H. M. Silva
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Rodrigo F. Oliveira
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Deise A. A. P. Oliveira
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Rodolfo de Paula Vieira
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Dante Brasil Santos
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Giuseppe Insalaco
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy;
| | - Luís V. F. Oliveira
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Renata Kelly da Palma
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (L.L.G.); (A.D.C.); (R.K.d.P.)
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
- Facultad de Ciencias de la Salud de Manresa, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Manresa, Spain
| |
Collapse
|
3
|
Kolanko E, Cargnoni A, Papait A, Silini AR, Czekaj P, Parolini O. The evolution of in vitro models of lung fibrosis: promising prospects for drug discovery. Eur Respir Rev 2024; 33:230127. [PMID: 38232990 DOI: 10.1183/16000617.0127-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Lung fibrosis is a complex process, with unknown underlying mechanisms, involving various triggers, diseases and stimuli. Different cell types (epithelial cells, endothelial cells, fibroblasts and macrophages) interact dynamically through multiple signalling pathways, including biochemical/molecular and mechanical signals, such as stiffness, affecting cell function and differentiation. Idiopathic pulmonary fibrosis (IPF) is the most common fibrosing interstitial lung disease (fILD), characterised by a notably high mortality. Unfortunately, effective treatments for advanced fILD, and especially IPF and non-IPF progressive fibrosing phenotype ILD, are still lacking. The development of pharmacological therapies faces challenges due to limited knowledge of fibrosis pathogenesis and the absence of pre-clinical models accurately representing the complex features of the disease. To address these challenges, new model systems have been developed to enhance the translatability of preclinical drug testing and bridge the gap to human clinical trials. The use of two- and three-dimensional in vitro cultures derived from healthy or diseased individuals allows for a better understanding of the underlying mechanisms responsible for lung fibrosis. Additionally, microfluidics systems, which replicate the respiratory system's physiology ex vivo, offer promising opportunities for the development of effective therapies, especially for IPF.
Collapse
Affiliation(s)
- Emanuel Kolanko
- Department of Cytophysiology, Katowice Medical University of Silesia in Katowice, Katowice, Poland
- These authors contributed equally
| | - Anna Cargnoni
- Fondazione Poliambulanza Istituto Ospedaliero, Centro di Ricerca E. Menni, Brescia, Italy
- These authors contributed equally
| | - Andrea Papait
- Università Cattolica del Sacro Cuore, Department Life Sciences and Public Health, Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Antonietta Rosa Silini
- Fondazione Poliambulanza Istituto Ospedaliero, Centro di Ricerca E. Menni, Brescia, Italy
| | - Piotr Czekaj
- Department of Cytophysiology, Katowice Medical University of Silesia in Katowice, Katowice, Poland
| | - Ornella Parolini
- Università Cattolica del Sacro Cuore, Department Life Sciences and Public Health, Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| |
Collapse
|
4
|
Thiam F, Phogat S, Abokor FA, Osei ET. In vitro co-culture studies and the crucial role of fibroblast-immune cell crosstalk in IPF pathogenesis. Respir Res 2023; 24:298. [PMID: 38012580 PMCID: PMC10680329 DOI: 10.1186/s12931-023-02608-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
IPF is a fatal lung disease characterized by intensive remodeling of lung tissue leading to respiratory failure. The remodeling in IPF lungs is largely characterized by uncontrolled fibrosis. Fibroblasts and their contractile phenotype the myofibroblast are the main cell types responsible for typical wound healing responses, however in IPF, these responses are aberrant and result in the overactivation of fibroblasts which contributes to the inelasticity of the lung leading to a decrease in lung function. The specific mechanisms behind IPF pathogenesis have been elusive, but recently the innate and adaptive immunity have been implicated in the fibrotic processes of the disease. In connection with this, several in vitro co-culture models have been used to investigate the specific interactions occurring between fibroblasts and immune cells and how this contributes to the pathobiology of IPF. In this review, we discuss the in vitro models that have been used to examine the abnormal interactions between fibroblasts and cells of the innate and adaptive immune system, and how these contribute to the fibrotic processes in the lungs of IPF patients.
Collapse
Affiliation(s)
- Fama Thiam
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Sakshi Phogat
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Debski T, Siennicka K, Idaszek J, Roszkowski B, Swieszkowski W, Pojda Z. Effect of adipose-derived stem cells seeding and surgical prefabrication on composite scaffold vascularization. J Biomater Appl 2023; 38:548-561. [PMID: 37732423 DOI: 10.1177/08853282231202601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The study aimed to evaluate an angiogenic effect of adipose-derived stem cells (ASCs) seeding and surgical prefabrication (placing a vascular pedicle inside the scaffold) on developed composite scaffolds made of poly-ε-caprolactone (PCL), β-tricalcium phosphate (β-TCP), and poly (lactic-co-glycolic acid) (PLGA) (PCL+β-TCP+PLGA). Moreover, we aimed to compare our data with previously tested PCL scaffolds to assess whether the new material has better angiogenic properties. The study included 18 inbred male WAG rats. There were three scaffold groups (six animals each): with non-seeded PCL+β-TCP+PLGA scaffolds, with PCL+β-TCP+PLGA scaffolds seeded with ASCs and with PCL+β-TCP+PLGA scaffolds seeded with ASCs and osteogenic-induced. Each rat was implanted with two scaffolds in the inguinal region (one prefabricated and one non-prefabricated). After 2 months from implantation, the scaffolds were explanted, and vessel density was determined by histopathological examination. Prefabricated ASC-seeded PCL+β-TCP+PLGA scaffolds promoted greater vessel formation than non-seeded scaffolds (19.73 ± 5.46 vs 12.54 ± 0.81; p = .006) and those seeded with osteogenic-induced ASCs (19.73 ± 5.46 vs 11.87±2.21; p = .004). The developed composite scaffold promotes vessel formation more effectively than the previously described PCL scaffold.
Collapse
Affiliation(s)
- Tomasz Debski
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Idaszek
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Bartlomiej Roszkowski
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
6
|
Kühl L, Graichen P, von Daacke N, Mende A, Wygrecka M, Potaczek DP, Miethe S, Garn H. Human Lung Organoids-A Novel Experimental and Precision Medicine Approach. Cells 2023; 12:2067. [PMID: 37626876 PMCID: PMC10453737 DOI: 10.3390/cells12162067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The global burden of respiratory diseases is very high and still on the rise, prompting the need for accurate models for basic and translational research. Several model systems are currently available ranging from simple airway cell cultures to complex tissue-engineered lungs. In recent years, human lung organoids have been established as highly transferrable three-dimensional in vitro model systems for lung research. For acute infectious and chronic inflammatory diseases as well as lung cancer, human lung organoids have opened possibilities for precise in vitro research and a deeper understanding of mechanisms underlying lung injury and regeneration. Human lung organoids from induced pluripotent stem cells or from adult stem cells of patients' samples introduce tools for understanding developmental processes and personalized medicine approaches. When further state-of-the-art technologies and protocols come into use, the full potential of human lung organoids can be harnessed. High-throughput assays in drug development, gene therapy, and organoid transplantation are current applications of organoids in translational research. In this review, we emphasize novel approaches in translational and personalized medicine in lung research focusing on the use of human lung organoids.
Collapse
Affiliation(s)
- Laura Kühl
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Pauline Graichen
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Nele von Daacke
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Anne Mende
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany;
- Institute of Lung Health, German Center for Lung Research (DZL), 35392 Giessen, Germany
- CSL Behring Innovation GmbH, 35041 Marburg, Germany
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany;
- Bioscientia MVZ Labor Mittelhessen GmbH, 35394 Giessen, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| |
Collapse
|
7
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
8
|
Keshavan S, Bannuscher A, Drasler B, Barosova H, Petri-Fink A, Rothen-Rutishauser B. Comparing species-different responses in pulmonary fibrosis research: Current understanding of in vitro lung cell models and nanomaterials. Eur J Pharm Sci 2023; 183:106387. [PMID: 36652970 DOI: 10.1016/j.ejps.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 01/16/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible lung disease that is typically fatal and characterized by an abnormal fibrotic response. As a result, vast areas of the lungs are gradually affected, and gas exchange is impaired, making it one of the world's leading causes of death. This can be attributed to a lack of understanding of the onset and progression of the disease, as well as a poor understanding of the mechanism of adverse responses to various factors, such as exposure to allergens, nanomaterials, environmental pollutants, etc. So far, the most frequently used preclinical evaluation paradigm for PF is still animal testing. Nonetheless, there is an urgent need to understand the factors that induce PF and find novel therapeutic targets for PF in humans. In this regard, robust and realistic in vitro fibrosis models are required to understand the mechanism of adverse responses. Over the years, several in vitro and ex vivo models have been developed with the goal of mimicking the biological barriers of the lung as closely as possible. This review summarizes recent progress towards the development of experimental models suitable for predicting fibrotic responses, with an emphasis on cell culture methods, nanomaterials, and a comparison of results from studies using cells from various species.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Anne Bannuscher
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Hana Barosova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland; Chemistry Department, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | | |
Collapse
|
9
|
Heires AJ, Samuelson D, Villageliu D, Nordgren TM, Romberger DJ. Agricultural dust derived bacterial extracellular vesicle mediated inflammation is attenuated by DHA. Sci Rep 2023; 13:2767. [PMID: 36797300 PMCID: PMC9933036 DOI: 10.1038/s41598-023-29781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Dietary long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) and their pro-resolving metabolites are protective against atherosclerotic disease, and ameliorate systemic inflammatory conditions including lupus erythematosus, psoriasis, and bronchial asthma. Organic bioaerosol inhalation is a common and injurious hazard associated with agricultural occupations such as work in swine concentrated animal feeding operations (CAFOs) and is known to increase the risk for developing respiratory conditions such as asthma and COPD. Nearly all cells secrete membrane-bound vesicles (extracellular vesicles, EVs) that have the capacity to transmit protein, nucleic acid, and lipid signaling mediators between cells. Using a polymer-based isolation technique (ExoQuick, PEG) followed by ultracentrifugation, EVs were isolated from CAFO dust extracts, and were quantified and partially characterized. Here, we investigated the role of the n-3 PUFA docosahexaenoic acid (DHA) as a component of n-6 to n-3 PUFA mixtures used to recapitulate physiologically relevant dietary ratios in the resolution of inflammatory injury caused by exposure to EVs carried by agricultural organic dust in vitro. Primary human bronchial epithelial cells, fibroblasts and monocyte-derived macrophages were exposed to EVs isolated from swine CAFO dust. Cells were treated with mixtures of n-6 and n-3 PUFA during recovery from the EV-induced injury. CAFO dust extract (DE) was found to contain EVs that contributed significantly to the overall consequences of exposure to complete DE. DHA-rich PUFA ratios inhibited DE-derived EV-induced proinflammatory cytokine release dose-dependently. DHA-rich PUFA ratios also reversed the damaging effects of EVs on recellularization of lung matrix scaffolds, accelerated wound healing, and stimulated the release of pro-resolution mediators. These results underscore the importance of n-3 PUFA as anti-inflammatory compounds during recovery from EV-laden environmental dust exposure in the context of cellular responses in vitro, warranting future translational studies.
Collapse
Affiliation(s)
- Art J Heires
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Derrick Samuelson
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daniel Villageliu
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tara M Nordgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Debra J Romberger
- VA Nebraska Western Iowa Health Care System, Omaha, NE, USA.
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
11
|
Humbert MV, Spalluto CM, Bell J, Blume C, Conforti F, Davies ER, Dean LSN, Elkington P, Haitchi HM, Jackson C, Jones MG, Loxham M, Lucas JS, Morgan H, Polak M, Staples KJ, Swindle EJ, Tezera L, Watson A, Wilkinson TMA. Towards an artificial human lung: modelling organ-like complexity to aid mechanistic understanding. Eur Respir J 2022; 60:2200455. [PMID: 35777774 DOI: 10.1183/13993003.00455-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cosma Mirella Spalluto
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- M.V. Humbert and C.M. Spalluto are co-first authors and contributed equally to this work
| | - Joseph Bell
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Cornelia Blume
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Elizabeth R Davies
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Paul Elkington
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Claire Jackson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jane S Lucas
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Hywel Morgan
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Marta Polak
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Karl J Staples
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Emily J Swindle
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Liku Tezera
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Infection and Immunity, Faculty of Medicine, University College London, London, UK
| | - Alastair Watson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tom M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
12
|
Joglekar MM, Nizamoglu M, Fan Y, Nemani SSP, Weckmann M, Pouwels SD, Heijink IH, Melgert BN, Pillay J, Burgess JK. Highway to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic lung diseases. Front Pharmacol 2022; 13:995051. [PMID: 36408219 PMCID: PMC9669433 DOI: 10.3389/fphar.2022.995051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/19/2022] [Indexed: 10/31/2023] Open
Abstract
Environmental insults including respiratory infections, in combination with genetic predisposition, may lead to lung diseases such as chronic obstructive pulmonary disease, lung fibrosis, asthma, and acute respiratory distress syndrome. Common characteristics of these diseases are infiltration and activation of inflammatory cells and abnormal extracellular matrix (ECM) turnover, leading to tissue damage and impairments in lung function. The ECM provides three-dimensional (3D) architectural support to the lung and crucial biochemical and biophysical cues to the cells, directing cellular processes. As immune cells travel to reach any site of injury, they encounter the composition and various mechanical features of the ECM. Emerging evidence demonstrates the crucial role played by the local environment in recruiting immune cells and their function in lung diseases. Moreover, recent developments in the field have elucidated considerable differences in responses of immune cells in two-dimensional versus 3D modeling systems. Examining the effect of individual parameters of the ECM to study their effect independently and collectively in a 3D microenvironment will help in better understanding disease pathobiology. In this article, we discuss the importance of investigating cellular migration and recent advances in this field. Moreover, we summarize changes in the ECM in lung diseases and the potential impacts on infiltrating immune cell migration in these diseases. There has been compelling progress in this field that encourages further developments, such as advanced in vitro 3D modeling using native ECM-based models, patient-derived materials, and bioprinting. We conclude with an overview of these state-of-the-art methodologies, followed by a discussion on developing novel and innovative models and the practical challenges envisaged in implementing and utilizing these systems.
Collapse
Affiliation(s)
- Mugdha M. Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - YiWen Fan
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Sai Sneha Priya Nemani
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Markus Weckmann
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
| | - Janesh Pillay
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Critical Care, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, Netherlands
| |
Collapse
|
13
|
Shakir S, Hackett TL, Mostaço-Guidolin LB. Bioengineering lungs: An overview of current methods, requirements, and challenges for constructing scaffolds. Front Bioeng Biotechnol 2022; 10:1011800. [PMID: 36394026 PMCID: PMC9649450 DOI: 10.3389/fbioe.2022.1011800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 09/28/2023] Open
Abstract
Chronic respiratory diseases remain a significant health burden worldwide. The only option for individuals with end-stage lung failure remains Lung Transplantation. However, suitable organ donor shortages and immune rejection following transplantation remain a challenge. Since alternative options are urgently required to increase tissue availability for lung transplantation, researchers have been exploring lung bioengineering extensively, to generate functional, transplantable organs and tissue. Additionally, the development of physiologically-relevant artificial tissue models for testing novel therapies also represents an important step toward finding a definite clinical solution for different chronic respiratory diseases. This mini-review aims to highlight some of the most common methodologies used in bioengineering lung scaffolds, as well as the benefits and disadvantages associated with each method in conjunction with the current areas of research devoted to solving some of these challenges in the area of lung bioengineering.
Collapse
Affiliation(s)
- Shahad Shakir
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
| | - Tillie Louise Hackett
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
14
|
Wang Y, Singer R, Liu X, Inman SJ, Cao Q, Zhou Q, Noble A, Li L, Arizpe Tafoya AV, Babi M, Ask K, Kolb MR, Ramsay S, Geng F, Zhang B, Shargall Y, Moran-Mirabal JM, Dabaghi M, Hirota JA. The CaT stretcher: An open-source system for delivering uniaxial strain to cells and tissues (CaT). Front Bioeng Biotechnol 2022; 10:959335. [PMID: 36329705 PMCID: PMC9622803 DOI: 10.3389/fbioe.2022.959335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/29/2022] [Indexed: 01/23/2025] Open
Abstract
Integration of mechanical cues in conventional 2D or 3D cell culture platforms is an important consideration for in vivo and ex vivo models of lung health and disease. Available commercial and published custom-made devices are frequently limited in breadth of applications, scalability, and customization. Herein we present a technical report on an open-source, cell and tissue (CaT) stretcher, with modularity for different in vitro and ex vivo systems, that includes the following features: 1) Programmability for modeling different breathing patterns, 2) scalability to support low to high-throughput experimentation, and 3) modularity for submerged cell culture, organ-on-chips, hydrogels, and live tissues. The strategy for connecting the experimental cell or tissue samples to the stretching device were designed to ensure that traditional biomedical outcome measurements including, but not limited to microscopy, soluble mediator measurement, and gene and protein expression remained possible. Lastly, to increase the uptake of the device within the community, the system was built with economically feasible and available components. To accommodate diverse in vitro and ex vivo model systems we developed a variety of chips made of compliant polydimethylsiloxane (PDMS) and optimized coating strategies to increase cell adherence and viability during stretch. The CaT stretcher was validated for studying mechanotransduction pathways in lung cells and tissues, with an increase in alpha smooth muscle actin protein following stretch for 24 h observed in independent submerged monolayer, 3D hydrogel, and live lung tissue experiments. We anticipate that the open-source CaT stretcher design will increase accessibility to studies of the dynamic lung microenvironment through direct implementation by other research groups or custom iterations on our designs.
Collapse
Affiliation(s)
- Yushi Wang
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Ryan Singer
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Xinyue Liu
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Seth J. Inman
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Quynh Cao
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Quan Zhou
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Alex Noble
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Laura Li
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Aidee Verónica Arizpe Tafoya
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Mouhanad Babi
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Michael G. DeGroote Centre for Learning and Discovery, Hamilton, ON, Canada
| | - Martin R. Kolb
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Scott Ramsay
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Fei Geng
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON, Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Yaron Shargall
- Division of Thoracic Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jose Manuel Moran-Mirabal
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| | - Mohammadhossein Dabaghi
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Jeremy A. Hirota
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Michael G. DeGroote Centre for Learning and Discovery, Hamilton, ON, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
15
|
Liu T, Zhou C, Shao Y, Xiong Z, Weng D, Pang Y, Sun W. Construction and Application of in vitro Alveolar Models Based on 3D Printing Technology. CHINESE JOURNAL OF MECHANICAL ENGINEERING: ADDITIVE MANUFACTURING FRONTIERS 2022. [PMCID: PMC9213023 DOI: 10.1016/j.cjmeam.2022.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing lung diseases, mutating coronaviruses, and the development of new compounds urgently require biomimetic in vitro lung models for lung pathology, toxicology, and pharmacology. The current construction strategies for lung models mainly include animal models, 2D cell culture, lung-on-a-chip, and lung organoids. However, current models face difficulties in reproducing in vivo-like alveolar size and vesicle-like structures, and are unable to contain multiple cell types. In this study, a strategy for constructing alveolar models based on degradable hydrogel microspheres is proposed. Hydrogel microspheres, 200–250 µm in diameter, were prepared using a self-developed printing technique driven by alternating viscous and inertial forces. Microcapsules were further constructed using a coacervation-based layer-by-layer technique and core liquefaction. Three types of cells were inoculated and co-cultured on hydrogel capsules based on optimized microcapsule surface treatment strategies. Finally, an in vitro three-dimensional endothelial alveolar model with a multicellular composition and vesicle-like structure with a diameter of approximately 230 µm was successfully constructed. Cells in the constructed alveolar model maintained a high survival rate. The LD50 values of glutaraldehyde based on the constructed models were in good agreement with the reference values, validating the potential of the model for future toxicant and drug detection.
Collapse
|
16
|
Mohgan R, Candasamy M, Mayuren J, Singh SK, Gupta G, Dua K, Chellappan DK. Emerging Paradigms in Bioengineering the Lungs. Bioengineering (Basel) 2022; 9:bioengineering9050195. [PMID: 35621473 PMCID: PMC9137616 DOI: 10.3390/bioengineering9050195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
In end-stage lung diseases, the shortage of donor lungs for transplantation and long waiting lists are the main culprits in the significantly increasing number of patient deaths. New strategies to curb this issue are being developed with the help of recent advancements in bioengineering technology, with the generation of lung scaffolds as a steppingstone. There are various types of lung scaffolds, namely, acellular scaffolds that are developed via decellularization and recellularization techniques, artificial scaffolds that are synthesized using synthetic, biodegradable, and low immunogenic materials, and hybrid scaffolds which combine the advantageous properties of materials in the development of a desirable lung scaffold. There have also been advances in the design of bioreactors in terms of providing an optimal regenerative environment for the maturation of functional lung tissue over time. In this review, the emerging paradigms in the field of lung tissue bioengineering will be discussed.
Collapse
Affiliation(s)
- Raxshanaa Mohgan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia;
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia;
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| |
Collapse
|
17
|
Mir M, Chen J, Pinezich MR, O'Neill JD, Guenthart BA, Vunjak-Novakovic G, Kim J. Imaging-Guided Bioreactor for Generating Bioengineered Airway Tissue. J Vis Exp 2022:10.3791/63544. [PMID: 35467661 PMCID: PMC9204391 DOI: 10.3791/63544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Repeated injury to airway tissue can impair lung function and cause chronic lung disease, such as chronic obstructive pulmonary disease. Advances in regenerative medicine and bioreactor technologies offer opportunities to produce lab-grown functional tissue and organ constructs that can be used to screen drugs, model disease, and engineer tissue replacements. Here, a miniaturized bioreactor coupled with an imaging modality that allows in situ visualization of the inner lumen of explanted rat trachea during in vitro tissue manipulation and culture is described. Using this bioreactor, the protocol demonstrates imaging-guided selective removal of endogenous cellular components while preserving the intrinsic biochemical features and ultrastructure of the airway tissue matrix. Furthermore, the delivery, uniform distribution, and subsequent prolonged culture of exogenous cells on the decellularized airway lumen with optical monitoring in situ are shown. The results highlight that the imaging-guided bioreactor can potentially be used to facilitate the generation of functional in vitro airway tissues.
Collapse
Affiliation(s)
- Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center
| | | | | | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology;
| |
Collapse
|
18
|
Shokrani H, Shokrani A, Sajadi SM, Seidi F, Mashhadzadeh AH, Rabiee N, Saeb MR, Aminabhavi T, Webster TJ. Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis. Int J Nanomedicine 2022; 17:1035-1068. [PMID: 35309965 PMCID: PMC8927652 DOI: 10.2147/ijn.s353062] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
One of the most arduous challenges in tissue engineering is neovascularization, without which there is a lack of nutrients delivered to a target tissue. Angiogenesis should be completed at an optimal density and within an appropriate period of time to prevent cell necrosis. Failure to meet this challenge brings about poor functionality for the tissue in comparison with the native tissue, extensively reducing cell viability. Prior studies devoted to angiogenesis have provided researchers with some biomaterial scaffolds and cell choices for angiogenesis. For example, while most current angiogenesis approaches require a variety of stimulatory factors ranging from biomechanical to biomolecular to cellular, some other promising stimulatory factors have been underdeveloped (such as electrical, topographical, and magnetic). When it comes to choosing biomaterial scaffolds in tissue engineering for angiogenesis, key traits rush to mind including biocompatibility, appropriate physical and mechanical properties (adhesion strength, shear stress, and malleability), as well as identifying the appropriate biomaterial in terms of stability and degradation profile, all of which may leave essential trace materials behind adversely influencing angiogenesis. Nevertheless, the selection of the best biomaterial and cells still remains an area of hot dispute as such previous studies have not sufficiently classified, integrated, or compared approaches. To address the aforementioned need, this review article summarizes a variety of natural and synthetic scaffolds including hydrogels that support angiogenesis. Furthermore, we review a variety of cell sources utilized for cell seeding and influential factors used for angiogenesis with a concentrated focus on biomechanical factors, with unique stimulatory factors. Lastly, we provide a bottom-to-up overview of angiogenic biomaterials and cell selection, highlighting parameters that need to be addressed in future studies.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil, 625, Iraq
- Department of Phytochemistry, SRC, Soran University, Soran, KRG, 624, Iraq
- Correspondence: S Mohammad Sajadi; Navid Rabiee, Email ; ;
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, Iran
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Tejraj Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University, Tianjin, People’s Republic of China
- Center for Biomaterials, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
19
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
20
|
Abbas M, Alqahtani MS, Almohiy HM, Alqahtani FF, Alhifzi R, Jambi LK. The Potential Contribution of Biopolymeric Particles in Lung Tissue Regeneration of COVID-19 Patients. Polymers (Basel) 2021; 13:4011. [PMID: 34833310 PMCID: PMC8623030 DOI: 10.3390/polym13224011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
The lung is a vital organ that houses the alveoli, which is where gas exchange takes place. The COVID-19 illness attacks lung cells directly, creating significant inflammation and resulting in their inability to function. To return to the nature of their job, it may be essential to rejuvenate the afflicted lung cells. This is difficult because lung cells need a long time to rebuild and resume their function. Biopolymeric particles are the most effective means to transfer developing treatments to airway epithelial cells and then regenerate infected lung cells, which is one of the most significant symptoms connected with COVID-19. Delivering biocompatible and degradable natural biological materials, chemotherapeutic drugs, vaccines, proteins, antibodies, nucleic acids, and diagnostic agents are all examples of these molecules' usage. Furthermore, they are created by using several structural components, which allows them to effectively connect with these cells. We highlight their most recent uses in lung tissue regeneration in this review. These particles are classified into three groups: biopolymeric nanoparticles, biopolymeric stem cell materials, and biopolymeric scaffolds. The techniques and processes for regenerating lung tissue will be thoroughly explored.
Collapse
Affiliation(s)
- Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; (M.S.A.); (H.M.A.); (R.A.)
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Hussain M. Almohiy
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; (M.S.A.); (H.M.A.); (R.A.)
| | - Fawaz F. Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 1988, Saudi Arabia;
| | - Roaa Alhifzi
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; (M.S.A.); (H.M.A.); (R.A.)
| | - Layal K. Jambi
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| |
Collapse
|
21
|
Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021; 176:113901. [PMID: 34331989 PMCID: PMC7611797 DOI: 10.1016/j.addr.2021.113901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023]
Abstract
Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Sivan Arber Raviv
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Jeny Shklover
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Netanel Korin
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Adi Gross
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Avi Schroeder
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
22
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
23
|
Vasse GF, Van Os L, De Jager M, Jonker MR, Borghuis T, Van Den Toorn LT, Jellema P, White ES, Van Rijn P, Harmsen MC, Heijink IH, Melgert BN, Burgess JK. Adipose Stromal Cell-Secretome Counteracts Profibrotic Signals From IPF Lung Matrices. Front Pharmacol 2021; 12:669037. [PMID: 34393771 PMCID: PMC8355988 DOI: 10.3389/fphar.2021.669037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease characterized by excess deposition and altered structure of extracellular matrix (ECM) in the lungs. The fibrotic ECM is paramount in directing resident cells toward a profibrotic phenotype. Collagens, an important part of the fibrotic ECM, have been shown to be structurally different in IPF. To further understand the disease to develop better treatments, the signals from the ECM that drive fibrosis need to be identified. Adipose tissue-derived stromal cell conditioned medium (ASC-CM) has demonstrated antifibrotic effects in animal studies but has not been tested in human samples yet. In this study, the collagen structural integrity in (fibrotic) lung tissue, its interactions with fibroblasts and effects of ASC-CM treatment hereon were studied. Methods: Native and decellularized lung tissue from patients with IPF and controls were stained for denatured collagen using a collagen hybridizing peptide. Primary lung fibroblasts were seeded into decellularized matrices from IPF and control subjects and cultured for 7 days in the presence or absence of ASC-CM. Reseeded matrices were fixed, stained and analyzed for total tissue deposition and specific protein expression. Results: In both native and decellularized lung tissue, more denatured collagen was observed in IPF tissue compared to control tissue. Upon recellularization with fibroblasts, the presence of denatured collagen was equalized in IPF and control matrices, whereas total ECM was higher in IPF matrices than in the control. Treatment with ASC-CM resulted in less ECM deposition, but did not alter the levels of denatured collagen. Discussion: Our data showed that ASC-CM can inhibit fibrotic ECM-induced profibrotic behavior of fibroblasts. This process was independent of collagen structural integrity. Our findings open up new avenues for ASC-CM to be explored as treatment for IPF.
Collapse
Affiliation(s)
- Gwenda F. Vasse
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Lisette Van Os
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Marina De Jager
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
| | - Marnix R. Jonker
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - L. Tim Van Den Toorn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Pytrick Jellema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Eric S. White
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Patrick Van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
| | - Martin C. Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Barbro N. Melgert
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| |
Collapse
|
24
|
Ptasinski V, Stegmayr J, Belvisi MG, Wagner DE, Murray LA. Targeting Alveolar Repair in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:347-365. [PMID: 34129811 PMCID: PMC8525210 DOI: 10.1165/rcmb.2020-0476tr] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal interstitial lung disease with limited therapeutic options. Current evidence suggests that IPF may be initiated by repeated epithelial injury in the distal lung followed by abnormal wound healing responses which occur due to intrinsic and extrinsic factors. Mechanisms contributing to chronic damage of the alveolar epithelium in IPF include dysregulated cellular processes such as apoptosis, senescence, abnormal activation of developmental pathways, aging, as well as genetic mutations. Therefore, targeting the regenerative capacity of the lung epithelium is an attractive approach in the development of novel therapies for IPF. Endogenous lung regeneration is a complex process involving coordinated cross-talk between multiple cell types and re-establishment of a normal extracellular matrix environment. This review will describe the current knowledge of reparative epithelial progenitor cells in the alveolar region of the lung and discuss potential novel therapeutic approaches for IPF focusing on endogenous alveolar repair. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Collapse
Affiliation(s)
- Victoria Ptasinski
- Lund University Faculty of Medicine, 59568, Lund, Sweden.,AstraZeneca R&D Gothenburg, 128698, Goteborg, Sweden
| | - John Stegmayr
- Lunds University Faculty of Medicine, 59568, Lund, Sweden
| | - Maria G Belvisi
- Imperial College London, 4615, London, United Kingdom of Great Britain and Northern Ireland
| | - Darcy E Wagner
- Lunds Universitet, 5193, Experimental Medical Sciences, Lund, Sweden
| | - Lynne A Murray
- AstraZeneca PLC, 4625, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
25
|
Bobrova MM, Safonova LA, Efimov AE, Iljinsky IM, Agapova OI, Agapov II. Relation between micro- and nanostructure features and biological properties of the decellularized rat liver. Biomed Mater 2021; 16. [PMID: 34100773 DOI: 10.1088/1748-605x/ac058b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
Organ decellularization is one of the promising technologies of regenerative medicine, which allows obtaining cell-free extracellular matrix (ECM), which provide preservation of the composition, architecture, vascular network and biological activity of the ECM. The method of decellularization opens up wide prospects for its practical application not only in the field of creating full-scale bioengineered structures, but also in the manufacture of vessels, microcarriers, hydrogels, and coatings. The main goal of our work was the investigation of structure and biological properties of lyophilized decellularized Wistar rat liver fragments (LDLFs), as well as we assessed the regenerative potential of the obtained ECM. We obtained decellularized liver of a Wistar rat, the vascular network and the main components of the ECM of tissue were preserved. H&E staining of histological sections confirmed the removal of cells. DNA content of ECM is equal to 0.7% of native tissue DNA content. Utilizing scanning probe nanotomogrphy method, we showed sinuous, rough topography and highly nanoporous structure of ECM, which provide high level of mouse 3T3 fibroblast and Hep-G2cells biocompatibility. Obtained LDLF had a high regenerative potential, which we studied in an experimental model of a full-thickness rat skin wound healing: we observed the acceleration of wound healing by 2.2 times in comparison with the control.
Collapse
Affiliation(s)
- Maria M Bobrova
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Liubov A Safonova
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Anton E Efimov
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia.,SNOTRA LLC., 121205 Moscow, Russia
| | - Igor M Iljinsky
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Olga I Agapova
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Igor I Agapov
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| |
Collapse
|
26
|
Bukowy-Bieryłło Z. Long-term differentiating primary human airway epithelial cell cultures: how far are we? Cell Commun Signal 2021; 19:63. [PMID: 34044844 PMCID: PMC8159066 DOI: 10.1186/s12964-021-00740-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human airway epithelial (HAE) cellular models are widely used in applicative studies of the airway physiology and disease. In vitro expanded and differentiated primary HAE cells collected from patients seem to be an accurate model of human airway, offering a quicker and cheaper alternative to the induced pluripotent stem cell (iPSCs) models. However, the biggest drawback of primary HAE models is their limited proliferative lifespan in culture. Much work has been devoted to understand the factors, which govern the HAE cell proliferation and differentiation, both in vivo and in vitro. Here, I have summarized recent achievements in primary HAE culture, with the special emphasis on the models of conditionally reprogrammed cells (CRC), which allow longer in vitro proliferation and differentiation of HAE cells. The review compares the CRC HAE technique variants (feeder culture or HAE mono-culture), based on recently published studies exploiting this model. The advantages and limitations of each CRC HAE model variant are summarized, along with the description of other factors affecting the CRC HAE culture success (tissue type, sampling method, sample quality). CONCLUSIONS CRC HAE cultures are a useful technique in respiratory research, which in many cases exceeds the iPSCs and organoid culture methods. Until the current limitations of the iPSCs and organoid culture methods will be alleviated, the primary CRC HAE cultures might be a useful model in respiratory research. Airway epithelium (AE) is a type of tissue, which lines the whole length of human airways, from the nose to the bronchi. Improper functioning of AE causes several human airway disorders, such as asthma, chronic obstructive pulmonary disease (COPD) or cystic fibrosis (CF). Much work has been devoted to finding the best scientific model of human AE, in order to learn about its functioning in health and disease. Among the popular AE models are the primary in vitro cultured AE cells collected from human donors. Unfortunately, such human AE (HAE) cells do not easily divide (expand) in vitro; this poses a large logistic and ethical problem for the researchers. Here, I summarize recent achievements in the methods for in vitro culture of human AE cells, with special emphasis on the conditionally reprogrammed cell (CRC) models, which allow longer and more effective expansion of primary human AE cells in vitro. The review describes how the specific chemicals used in the CRC models work to allow the increased HAE divisions and compares the effects of the different so-far developed variants of the CRC HAE culture. The review also pinpoints the areas which need to be refined, in order to maximize the usefulness of the CRC AE cultures from human donors in research on human airway disorders. Video abstract.
Collapse
|
27
|
Busch SM, Lorenzana Z, Ryan AL. Implications for Extracellular Matrix Interactions With Human Lung Basal Stem Cells in Lung Development, Disease, and Airway Modeling. Front Pharmacol 2021; 12:645858. [PMID: 34054525 PMCID: PMC8149957 DOI: 10.3389/fphar.2021.645858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is not simply a quiescent scaffold. This three-dimensional network of extracellular macromolecules provides structural, mechanical, and biochemical support for the cells of the lung. Throughout life, the ECM forms a critical component of the pulmonary stem cell niche. Basal cells (BCs), the primary stem cells of the airways capable of differentiating to all luminal cell types, reside in close proximity to the basolateral ECM. Studying BC-ECM interactions is important for the development of therapies for chronic lung diseases in which ECM alterations are accompanied by an apparent loss of the lung's regenerative capacity. The complexity and importance of the native ECM in the regulation of BCs is highlighted as we have yet to create an in vitro culture model that is capable of supporting the long-term expansion of multipotent BCs. The interactions between the pulmonary ECM and BCs are, therefore, a vital component for understanding the mechanisms regulating BC stemness during health and disease. If we are able to replicate these interactions in airway models, we could significantly improve our ability to maintain basal cell stemness ex vivo for use in in vitro models and with prospects for cellular therapies. Furthermore, successful, and sustained airway regeneration in an aged or diseased lung by small molecules, novel compounds or via cellular therapy will rely upon both manipulation of the airway stem cells and their immediate niche within the lung. This review will focus on the current understanding of how the pulmonary ECM regulates the basal stem cell function, how this relationship changes in chronic disease, and how replicating native conditions poses challenges for ex vivo cell culture.
Collapse
Affiliation(s)
- Shana M. Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
28
|
Xing Y, Varghese B, Ling Z, Kar AS, Reinoso Jacome E, Ren X. Extracellular Matrix by Design: Native Biomaterial Fabrication and Functionalization to Boost Tissue Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00210-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Hedström U, Öberg L, Vaarala O, Dellgren G, Silverborn M, Bjermer L, Westergren-Thorsson G, Hallgren O, Zhou X. Impaired Differentiation of Chronic Obstructive Pulmonary Disease Bronchial Epithelial Cells Grown on Bronchial Scaffolds. Am J Respir Cell Mol Biol 2021; 65:201-213. [PMID: 33882260 PMCID: PMC8399573 DOI: 10.1165/rcmb.2019-0395oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airway inflammation, small airway remodeling, and emphysema. Airway remodeling in patients with COPD involves both the airway epithelium and the subepithelial extracellular matrix (ECM). However, it is currently unknown how epithelial remodeling in COPD airways depends on the relative influence from inherent defects in the epithelial cells and alterations in the ECM. To address this, we analyzed global gene expression in COPD human bronchial epithelial cells (HBEC) and normal HBEC after repopulation on decellularized bronchial scaffolds derived from patients with COPD or donors without COPD. COPD HBEC grown on bronchial scaffolds showed an impaired ability to initiate ciliated-cell differentiation, which was evident on all scaffolds regardless of their origin. In addition, although normal HBEC were less affected by the disease state of the bronchial scaffolds, COPD HBEC showed a gene expression pattern indicating increased proliferation and a retained basal-cell phenotype when grown on COPD bronchial scaffolds compared with normal bronchial scaffolds. By using mass spectrometry, we identified 13 matrisome proteins as being differentially abundant between COPD bronchial scaffolds and normal bronchial scaffolds. These observations are consistent with COPD pathology and suggest that both epithelial cells and the ECM contribute to epithelial-cell remodeling in COPD airways.
Collapse
Affiliation(s)
- Ulf Hedström
- Department of Bioscience COPD/IPF, and.,Division of Lung Biology, Department of Experimental Medical Science, and
| | - Lisa Öberg
- Department of Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden
| | | | - Göran Dellgren
- Transplant Institute and.,Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Silverborn
- Transplant Institute and.,Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Leif Bjermer
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, Lund, Sweden; and
| | | | - Oskar Hallgren
- Division of Lung Biology, Department of Experimental Medical Science, and.,Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, Lund, Sweden; and
| | | |
Collapse
|
30
|
Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - An Liu
- Department of Orthopaedic Surgery Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310000 China
| | - Xiaofu Yang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Jiaxing Gong
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Xinhua Yao
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Yong He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
- State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| |
Collapse
|
31
|
Shirani A, Ganji F, Golmohammadi M, Hashemi SM, Mozafari M, Amoabediny G, Karkuki Osguei N, Samadikuchaksaraei A. Cross-linked acellular lung for application in tissue engineering: Effects on biocompatibility, mechanical properties and immunological responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111938. [PMID: 33641926 DOI: 10.1016/j.msec.2021.111938] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Abstract
The concept of providing tissue engineering scaffolds with natural physical properties and minimal immunogenicity has not been systematically approached for the lungs yet. Here, the rat acellular lung tissue (ALT) was cross-linked to provide either EDC/NHS cross-linked tissue (EDC/NHS-CLT) or tannic acid cross-linked tissue (TA-CLT). Young's modulus revealed that EDC/NHS-CLT had mechanical properties similar to the native lung and culture of lung mesenchymal cells showed a higher potential of cell proliferation on EDC/NHS-CLT versus TA-CLT and ALT. The in vitro immunogenicity tests showed a strong induction of T-cell proliferation by TA-CLT and an attenuated macrophage induction by TA-CLT. Processed rat lungs were implanted xenogenically into the mouse peritoneal cavity and the host-implant interactions showed that tannic acid is not released from TA-CLT in a physiologically effective dose. The profile of peritoneal fluid proinflammatory (TNFα, IL-1β, IL-12p70 and IL-17) and anti-inflammatory (IL-10 and TGFβ1) cytokines, and CD3+ T-lymphocytes and CD11b+ macrophages revealed that apart from induction of high levels of IL-17 during the first week and IL-10 during the second to third weeks after implantation by TA-CLT, other indicators of immune reactions to cross-linked tissues were not significantly different from ALT. Also, a high fibrotic reaction to TA-CLT was observed on the weeks 2-3, but alveolar structures were preserved in EDC/NHS-CLT. Our findings show that by controlled EDC/NHS cross-linking, an acellular lung scaffold could be provided with mechanical properties similar to native lung, which promotes mesenchymal lung cells proliferation and does not stimulate recipient's immune system more than a non-cross-linked tissue.
Collapse
Affiliation(s)
- Ali Shirani
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ganji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahtab Golmohammadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | | | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Saygili E, Yildiz-Ozturk E, Green MJ, Ghaemmaghami AM, Yesil-Celiktas O. Human lung-on-chips: Advanced systems for respiratory virus models and assessment of immune response. BIOMICROFLUIDICS 2021; 15:021501. [PMID: 33791050 PMCID: PMC7990507 DOI: 10.1063/5.0038924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/15/2021] [Indexed: 05/06/2023]
Abstract
Respiratory viral infections are leading causes of death worldwide. A number of human respiratory viruses circulate in all age groups and adapt to person-to-person transmission. It is vital to understand how these viruses infect the host and how the host responds to prevent infection and onset of disease. Although animal models have been widely used to study disease states, incisive arguments related to poor prediction of patient responses have led to the development of microfluidic organ-on-chip models, which aim to recapitulate organ-level physiology. Over the past decade, human lung chips have been shown to mimic many aspects of the lung function and its complex microenvironment. In this review, we address immunological responses to viral infections and elaborate on human lung airway and alveolus chips reported to model respiratory viral infections and therapeutic interventions. Advances in the field will expedite the development of therapeutics and vaccines for human welfare.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Ece Yildiz-Ozturk
- Translational Pulmonary Research Center, Ege University, 35100 Izmir, Turkey
| | | | | | | |
Collapse
|
33
|
Nuge T, Liu Z, Liu X, Ang BC, Andriyana A, Metselaar HSC, Hoque ME. Recent Advances in Scaffolding from Natural-Based Polymers for Volumetric Muscle Injury. Molecules 2021; 26:699. [PMID: 33572728 PMCID: PMC7865392 DOI: 10.3390/molecules26030699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Volumetric Muscle Loss (VML) is associated with muscle loss function and often untreated and considered part of the natural sequelae of trauma. Various types of biomaterials with different physical and properties have been developed to treat VML. However, much work remains yet to be done before the scaffolds can pass from the bench to the bedside. The present review aims to provide a comprehensive summary of the latest developments in the construction and application of natural polymers-based tissue scaffolding for volumetric muscle injury. Here, the tissue engineering approaches for treating volumetric muscle loss injury are highlighted and recent advances in cell-based therapies using various sources of stem cells are elaborated in detail. An overview of different strategies of tissue scaffolding and their efficacy on skeletal muscle cells regeneration and migration are presented. Furthermore, the present paper discusses a wide range of natural polymers with a special focus on proteins and polysaccharides that are major components of the extracellular matrices. The natural polymers are biologically active and excellently promote cell adhesion and growth. These bio-characteristics justify natural polymers as one of the most attractive options for developing scaffolds for muscle cell regeneration.
Collapse
Affiliation(s)
- Tamrin Nuge
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Bee Chin Ang
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hendrik Simon Cornelis Metselaar
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh;
| |
Collapse
|
34
|
Cárdenes N, Sembrat J, Noda K, Lovelace T, Álvarez D, Bittar HET, Philips BJ, Nouraie M, Benos PV, Sánchez PG, Rojas M. Human ex vivo lung perfusion: a novel model to study human lung diseases. Sci Rep 2021; 11:490. [PMID: 33436736 PMCID: PMC7804395 DOI: 10.1038/s41598-020-79434-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Experimental animal models to predict physiological responses to injury and stress in humans have inherent limitations. Therefore, the development of preclinical human models is of paramount importance. Ex vivo lung perfusion (EVLP) has typically been used to recondition donor lungs before transplantation. However, this technique has recently advanced into a model to emulate lung mechanics and physiology during injury. In the present study, we propose that the EVLP of diseased human lungs is a well-suited preclinical model for translational research on chronic lung diseases. Throughout this paper, we demonstrate this technique's feasibility in pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), emphysema, and non-disease donor lungs not suitable for transplantation. In this study, we aimed to perfuse the lungs for 6 h with the EVLP system. This facilitated a robust and continuous assessment of airway mechanics, pulmonary hemodynamics, gas exchange, and biochemical parameters. We then collected at different time points tissue biopsies of lung parenchyma to isolate RNA and DNA to identify each disease's unique gene expression. Thus, demonstrating that EVLP could successfully serve as a clinically relevant experimental model to derive essential insights into pulmonary pathophysiology and various human lung diseases.
Collapse
Affiliation(s)
- Nayra Cárdenes
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tyler Lovelace
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, PA, USA
| | - Diana Álvarez
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Humberto E Trejo Bittar
- Department of Pathology, Thoracic and Autopsy Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brian J Philips
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, PA, USA
| | - Pablo G Sánchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA. .,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Rolandsson Enes S, Weiss DJ. Bioartificial lungs based on de- and recellularisation approaches: a historical perspective. Breathe (Sheff) 2020; 16:200168. [PMID: 33447287 PMCID: PMC7792863 DOI: 10.1183/20734735.0168-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A discussion of three landmark studies on bioartificial lungs published during 2010 that were instrumental in invigorating the lung regenerative medicine field https://bit.ly/31qQAEa.
Collapse
Affiliation(s)
- Sara Rolandsson Enes
- Dept of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Daniel J Weiss
- Dept of Medicine, 226 Health Science Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
36
|
Melo-Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020; 29:29/157/200222. [DOI: 10.1183/16000617.0222-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
Collapse
|
37
|
Jimenez-Valdes RJ, Can UI, Niemeyer BF, Benam KH. Where We Stand: Lung Organotypic Living Systems That Emulate Human-Relevant Host-Environment/Pathogen Interactions. Front Bioeng Biotechnol 2020; 8:989. [PMID: 32903497 PMCID: PMC7438438 DOI: 10.3389/fbioe.2020.00989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Lung disorders such as chronic obstructive pulmonary disease (COPD) and lower respiratory tract infections (LRTIs) are leading causes of death in humans globally. Cigarette smoking is the principal risk factor for the development of COPD, and LRTIs are caused by inhaling respiratory pathogens. Thus, a thorough understanding of host–environment/pathogen interactions is crucial to developing effective preventive and therapeutic modalities against these disorders. While animal models of human pulmonary conditions have been widely utilized, they suffer major drawbacks due to inter-species differences, hindering clinical translation. Here we summarize recent advances in generating complex 3D culture systems that emulate the microarchitecture and pathophysiology of the human lung, and how these platforms have been implemented for studying exposure to environmental factors, airborne pathogens, and therapeutic agents.
Collapse
Affiliation(s)
- Rocio J Jimenez-Valdes
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Uryan I Can
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brian F Niemeyer
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kambez H Benam
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Bioengineering, University of Colorado Denver, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
38
|
Evans KV, Lee J. Alveolar wars: The rise of in vitro models to understand human lung alveolar maintenance, regeneration, and disease. Stem Cells Transl Med 2020; 9:867-881. [PMID: 32272001 PMCID: PMC7381809 DOI: 10.1002/sctm.19-0433] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
Diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia injure the gas-exchanging alveoli of the human lung. Animal studies have indicated that dysregulation of alveolar cells, including alveolar type II stem/progenitor cells, is implicated in disease pathogenesis. Due to mouse-human differences, there has been a desperate need to develop human-relevant lung models that can more closely recapitulate the human lung during homeostasis, injury repair, and disease. Here we discuss how current single-cell RNA sequencing studies have increased knowledge of the cellular and molecular composition of human lung alveoli, including the identification of molecular heterogeneity, cellular diversity, and previously unknown cell types, some of which arise specifically during disease. For functional analysis of alveolar cells, in vitro human alveolar organoids established from human pluripotent stem cells, embryonic progenitors, and adult tissue from both healthy and diseased lungs have modeled aspects of the cellular and molecular features of alveolar epithelium. Drawbacks of such systems are highlighted, along with possible solutions. Organoid-on-a-chip and ex vivo systems including precision-cut lung slices can complement organoid studies by providing further cellular and structural complexity of lung tissues, and have been shown to be invaluable models of human lung disease, while the production of acellular and synthetic scaffolds hold promise in lung transplant efforts. Further improvements to such systems will increase understanding of the underlying biology of human alveolar stem/progenitor cells, and could lead to future therapeutic or pharmacological intervention in patients suffering from end-stage lung diseases.
Collapse
Affiliation(s)
- Kelly V. Evans
- Wellcome – MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Joo‐Hyeon Lee
- Wellcome – MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
39
|
Translating Basic Research into Safe and Effective Cell-based Treatments for Respiratory Diseases. Ann Am Thorac Soc 2020; 16:657-668. [PMID: 30917290 DOI: 10.1513/annalsats.201812-890cme] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Respiratory diseases, such as chronic obstructive pulmonary disease and pulmonary fibrosis, result in severely impaired quality of life and impose significant burdens on healthcare systems worldwide. Current disease management involves pharmacologic interventions, oxygen administration, reduction of infections, and lung transplantation in advanced disease stages. An increasing understanding of mechanisms of respiratory epithelial and pulmonary vascular endothelial maintenance and repair and the underlying stem/progenitor cell populations, including but not limited to airway basal cells and type II alveolar epithelial cells, has opened the possibility of cell replacement-based regenerative approaches for treatment of lung diseases. Further potential for personalized therapies, including in vitro drug screening, has been underscored by the recent derivation of various lung epithelial, endothelial, and immune cell types from human induced pluripotent stem cells. In parallel, immunomodulatory treatments using allogeneic or autologous mesenchymal stromal cells have shown a good safety profile in clinical investigations for acute inflammatory conditions, such as acute respiratory distress syndrome and septic shock. However, as yet, no cell-based therapy has been shown to be both safe and effective for any lung disease. Despite the investigational status of cell-based interventions for lung diseases, businesses that market unproven, unlicensed and potentially harmful cell-based interventions for respiratory diseases have proliferated in the United States and worldwide. The current status of various cell-based regenerative approaches for lung disease as well as the effect of the regulatory environment on clinical translation of such approaches are presented and critically discussed in this review.
Collapse
|
40
|
Adams JC, Bell PD, Bodine SC, Brooks HL, Bunnett N, Joe B, Keehan KH, Kleyman TR, Marette A, Morty RE, Ramírez JM, Thomsen MB, Yates BJ, Zucker IH. An American Physiological Society cross-journal Call for Papers on "Deconstructing Organs: Single-Cell Analyses, Decellularized Organs, Organoids, and Organ-on-a-Chip Models". Am J Physiol Lung Cell Mol Physiol 2020; 319:L266-L272. [PMID: 32609556 PMCID: PMC7473938 DOI: 10.1152/ajplung.00311.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Nigel Bunnett
- Department of Molecular Pathobiology, New York University, New York, New York
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | | | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Hôpital Laval, Quebec City, Quebec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, Justus Liebig University Giessen, member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jan-Marino Ramírez
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, Washington.,Center on Human Development and Disability, University of Washington, Seattle, Washington.,Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington, Seattle, Washington
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
41
|
De Santis MM, Wagner DE. Collagen IV: a critical new starting point for engineering upper airways. Eur Respir J 2020; 55:2001130. [PMID: 32554777 DOI: 10.1183/13993003.01130-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Martina M De Santis
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Molecular Medicine Center, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Darcy E Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Molecular Medicine Center, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Bourguignon C, Vernisse C, Mianné J, Fieldès M, Ahmed E, Petit A, Vachier I, Bertrand TL, Assou S, Bourdin A, De Vos J. [Lung organoids]. Med Sci (Paris) 2020; 36:382-388. [PMID: 32356715 DOI: 10.1051/medsci/2020056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As burden of chronic respiratory diseases is constantly increasing, improving in vitro lung models is essential in order to reproduce as closely as possible the complex pulmonary architecture, responsible for oxygen uptake and carbon dioxide clearance. The study of diseases that affect the respiratory system has benefited from in vitro reconstructions of the respiratory epithelium with inserts in air/liquid interface (2D) or in organoids able to mimic up to the arborescence of the respiratory tree (3D). Recent development in the fields of pluripotent stem cells-derived organoids and genome editing technologies has provided new insights to better understand pulmonary diseases and to find new therapeutic perspectives.
Collapse
Affiliation(s)
- Chloé Bourguignon
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Charlotte Vernisse
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France
| | - Joffrey Mianné
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Mathieu Fieldès
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Engi Ahmed
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France - Département de pneumologie, CHU de Montpellier, Montpellier, France
| | - Aurélie Petit
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France
| | - Isabelle Vachier
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France
| | | | - Said Assou
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Arnaud Bourdin
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France - Département de pneumologie, CHU de Montpellier, Montpellier, France
| | - John De Vos
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France - Département d'ingénierie cellulaire et tissulaire, CHU de Montpellier, Montpellier, France
| |
Collapse
|
43
|
Brandsma C, Van den Berge M, Hackett T, Brusselle G, Timens W. Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. J Pathol 2020; 250:624-635. [PMID: 31691283 PMCID: PMC7216938 DOI: 10.1002/path.5364] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease with a high personal and societal burden. Exposure to toxic particles and gases, including cigarette smoke, is the main risk factor for COPD. Together with smoking cessation, current treatment strategies of COPD aim to improve symptoms and prevent exacerbations, but there is no disease-modifying treatment. The biggest drawback of today's COPD treatment regimen is the 'one size fits all' pharmacological intervention, mainly based on disease severity and symptoms and not the individual's disease pathology. To halt the worrying increase in the burden of COPD, disease management needs to be advanced with a focus on personalized treatment. The main pathological feature of COPD includes a chronic and abnormal inflammatory response within the lungs, which results in airway and alveolar changes in the lung as reflected by (small) airways disease and emphysema. Here we discuss recent developments related to the abnormal inflammatory response, ECM and age-related changes, structural changes in the small airways and the role of sex-related differences, which are all relevant to explain the individual differences in the disease pathology of COPD and improve disease endotyping. Furthermore, we will discuss the most recent developments of new treatment strategies using biologicals to target specific pathological features or disease endotypes of COPD. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Corry‐Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Maarten Van den Berge
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary DiseasesGroningenThe Netherlands
| | - Tillie‐Louise Hackett
- Centre for Heart Lung InnovationUnive rsity of British ColumbiaVancouverCanada
- Department of Anesthesiology, Pharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Guy Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Epidemiology and Respiratory MedicineErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
44
|
Bolte C, Kalin TV, Kalinichenko VV. Molecular, cellular, and bioengineering approaches to stimulate lung regeneration after injury. Semin Cell Dev Biol 2020; 100:101-108. [PMID: 31669132 DOI: 10.1016/j.semcdb.2019.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 01/03/2023]
Abstract
The lung is susceptible to damage from a variety of sources throughout development and in adulthood. As a result, the lung has great capacities for repair and regeneration, directed by precisely controlled sequences of molecular and signaling pathways. Impairments or alterations in these signaling events can have deleterious effects on lung structure and function, ultimately leading to chronic lung disorders. When lung injury is too severe for the normal pathways to repair, or if those pathways do not function properly, lung regenerative medicine is needed to restore adequate structure and function. Great progress has been made in recent years in the number of regenerative techniques and their efficacy. This review will address recent progress in lung regenerative medicine focusing on pharmacotherapy including the expanding role of nanotechnology, stem cell-based therapies, and bioengineering techniques. The use of these techniques individually and collectively has the potential to significantly improve morbidity and mortality associated with congenital and acquired lung disorders.
Collapse
Affiliation(s)
- Craig Bolte
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States.
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States.
| |
Collapse
|
45
|
Tsuchiya T, Doi R, Obata T, Hatachi G, Nagayasu T. Lung Microvascular Niche, Repair, and Engineering. Front Bioeng Biotechnol 2020; 8:105. [PMID: 32154234 PMCID: PMC7047880 DOI: 10.3389/fbioe.2020.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/03/2020] [Indexed: 12/28/2022] Open
Abstract
Biomaterials have been used for a long time in the field of medicine. Since the success of "tissue engineering" pioneered by Langer and Vacanti in 1993, tissue engineering studies have advanced from simple tissue generation to whole organ generation with three-dimensional reconstruction. Decellularized scaffolds have been widely used in the field of reconstructive surgery because the tissues used to generate decellularized scaffolds can be easily harvested from animals or humans. When a patient's own cells can be seeded onto decellularized biomaterials, theoretically this will create immunocompatible organs generated from allo- or xeno-organs. The most important aspect of lung tissue engineering is that the delicate three-dimensional structure of the organ is maintained during the tissue engineering process. Therefore, organ decellularization has special advantages for lung tissue engineering where it is essential to maintain the extremely thin basement membrane in the alveoli. Since 2010, there have been many methodological developments in the decellularization and recellularization of lung scaffolds, which includes improvements in the decellularization protocols and the selection and preparation of seeding cells. However, early transplanted engineered lungs terminated in organ failure in a short period. Immature vasculature reconstruction is considered to be the main cause of engineered organ failure. Immature vasculature causes thrombus formation in the engineered lung. Successful reconstruction of a mature vasculature network would be a major breakthrough in achieving success in lung engineering. In order to regenerate the mature vasculature network, we need to remodel the vascular niche, especially the microvasculature, in the organ scaffold. This review highlights the reconstruction of the vascular niche in a decellularized lung scaffold. Because the vascular niche consists of endothelial cells (ECs), pericytes, extracellular matrix (ECM), and the epithelial-endothelial interface, all of which might affect the vascular tight junction (TJ), we discuss ECM composition and reconstruction, the contribution of ECs and perivascular cells, the air-blood barrier (ABB) function, and the effects of physiological factors during the lung microvasculature repair and engineering process. The goal of the present review is to confirm the possibility of success in lung microvascular engineering in whole organ engineering and explore the future direction of the current methodology.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Division of Nucleic Acid Drug Development, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Ryoichiro Doi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
46
|
Kabirian F, Mozafari M. Decellularized ECM-derived bioinks: Prospects for the future. Methods 2020; 171:108-118. [PMID: 31051254 DOI: 10.1016/j.ymeth.2019.04.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/11/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Decellularization aims to remove cells from tissue ultrastructure while preserving the mechanical and biological properties, which makes the decellularized extracellular matrix (dECM) an appropriate scaffold for tissue engineering applications. Three-dimensional (3D) bioprinting technology as a reproducible and accurate method can print the combination of ECM and autologous cells layer by layer to fabricate patient based cell-laden structures representing the intrinsic cues of natural ECM. This review defines ECM, classifies decellularization agents and techniques, and explains different sources of ECM. Then, bioprinting techniques, bioink concept, applications of dECM bioinks, and finally the future perspectives of 3d bioprinting technology are discussed.
Collapse
Affiliation(s)
- Fatemeh Kabirian
- Bioengineering Research Group, Nanotechnology & Advanced Materials Department, Materials & Energy Research Center (MERC), Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology & Advanced Materials Department, Materials & Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
47
|
Oakley F, Gee LM, Sheerin NS, Borthwick LA. Implementation of pre-clinical methodologies to study fibrosis and test anti-fibrotic therapy. Curr Opin Pharmacol 2019; 49:95-101. [PMID: 31731225 PMCID: PMC6904905 DOI: 10.1016/j.coph.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Diseases where fibrosis plays a major role accounts for enormous morbidity and mortality and yet we have very little in our therapeutic arsenal despite decades of research and clinical trials. Our understanding of fibrosis biology is primarily built on data generated in conventional mono-culture or co-culture systems and in vivo model systems. While these approaches have undoubtedly enhanced our understanding of basic mechanisms, they have repeatedly failed to translate to clinical benefit. Recently, there had been a push to generate more physiologically relevant platforms to study fibrosis and identify new therapeutic targets. Here we review the state-of-the-art regarding the development and application of 3D complex cultures, bio-printing and precision cut slices to study pulmonary, hepatic and renal fibrosis.
Collapse
Affiliation(s)
- Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Lucy M Gee
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Renal Department, Freeman Hospital, Newcastle upon Tyne, UK; Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
48
|
Abstract
As the prevalence and impact of lung diseases continue to increase worldwide, new therapeutic strategies are desperately needed. Advances in lung-regenerative medicine, a broad field encompassing stem cells, cell-based therapies, and a range of bioengineering approaches, offer new insights into and new techniques for studying lung physiology and pathophysiology. This provides a platform for the development of novel therapeutic approaches. Applicability to chronic obstructive pulmonary disease of recent advances and applications in cell-based therapies, predominantly those with mesenchymal stromal cell-based approaches, and bioengineering approaches for lung diseases are reviewed.
Collapse
|
49
|
Lu Q, El-Hashash AHK. Cell-based therapy for idiopathic pulmonary fibrosis. Stem Cell Investig 2019; 6:22. [PMID: 31559309 PMCID: PMC6737434 DOI: 10.21037/sci.2019.06.09] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an example of interstitial lung diseases that is characterized by chronic, progressive, and fibrotic lung injuries. During lung fibrosis, normal healthy lung tissues are replaced by remarkably destroyed alveolar architecture and altered extracellular cell matrix. These changes eventually cause severe disruption of the tightly-controlled gas exchange process and reduction of lung compliance that ultimately lead to both respiratory failure and death. In the last decade, progress has been made toward understanding the pathogenesis of pulmonary fibrosis, and two novel disease-modifying therapies were approved. However, finding more effective treatments for pulmonary fibrosis is still a challenge, with its incidence continues to increase globally, which is associated with significantly high mortality, morbidity and economical healthcare burden. Different stem cell types have recently emerged as a promising therapy for human diseases, including lung fibrosis, with numerous studies on the identification, characterization, proliferation and differentiation of stem cells. A large body of both basic and pre-clinical research on stem cells has been recently translated to patient care worldwide. Herein, we review recent advances in our understanding of the pathophysiology of IPF, and types of cells used in IPF cell-based therapies, including alveolar and mixed lung epithelial cells, different stem cell types (MSCs, ADSCs, IPSCs…etc.), endogenous lung tissue-specific stem cells, and circulating endothelial progenitors (EPCs). We also discuss recent studies on the applications of these cells in IPF therapy and their delivery routes, effective doses for cell therapy, and timing of delivery. Finally, we discuss attractive recent and current clinical trials conducted on cell-based therapy for IPF.
Collapse
Affiliation(s)
- Qi Lu
- The University of Edinburgh-Zhejiang International campus (UoE-ZJU Institute), Haining, China
- Centre of Stem Cell and Regenerative Medicine Schools of Medicine & Basic Medicine, Hangzhou, China
| | - Ahmed H. K. El-Hashash
- The University of Edinburgh-Zhejiang International campus (UoE-ZJU Institute), Haining, China
- Centre of Stem Cell and Regenerative Medicine Schools of Medicine & Basic Medicine, Hangzhou, China
| |
Collapse
|
50
|
Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int J Mol Sci 2018; 19:ijms19124117. [PMID: 30567407 PMCID: PMC6321114 DOI: 10.3390/ijms19124117] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering and regenerative medicine involve many different artificial and biologic materials, frequently integrated in composite scaffolds, which can be repopulated with various cell types. One of the most promising scaffolds is decellularized allogeneic extracellular matrix (ECM) then recellularized by autologous or stem cells, in order to develop fully personalized clinical approaches. Decellularization protocols have to efficiently remove immunogenic cellular materials, maintaining the nonimmunogenic ECM, which is endowed with specific inductive/differentiating actions due to its architecture and bioactive factors. In the present paper, we review the available literature about the development of grafts from decellularized human tissues/organs. Human tissues may be obtained not only from surgery but also from cadavers, suggesting possible development of Human Tissue BioBanks from body donation programs. Many human tissues/organs have been decellularized for tissue engineering purposes, such as cartilage, bone, skeletal muscle, tendons, adipose tissue, heart, vessels, lung, dental pulp, intestine, liver, pancreas, kidney, gonads, uterus, childbirth products, cornea, and peripheral nerves. In vitro recellularizations have been reported with various cell types and procedures (seeding, injection, and perfusion). Conversely, studies about in vivo behaviour are poorly represented. Actually, the future challenge will be the development of human grafts to be implanted fully restored in all their structural/functional aspects.
Collapse
|