1
|
Monteiro R, Sousa AM, Pereira MO. Aspartic acid unveils as antibiofilm agent and tobramycin adjuvant against mucoid and small colony variants of Pseudomonas aeruginosa isolates in vitro within cystic fibrosis airway mucus. Biofilm 2025; 9:100252. [PMID: 39866543 PMCID: PMC11759549 DOI: 10.1016/j.bioflm.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/07/2024] [Accepted: 12/29/2024] [Indexed: 01/28/2025] Open
Abstract
Antibiotics are central to managing airway infections in cystic fibrosis (CF), yet current treatments often fail due to the presence of Pseudomonas aeruginosa biofilms, settling down the need for seeking therapies targeting biofilms. This study aimed to investigate the antibiofilm activity of aspartic acid and its potential as an adjuvant to tobramycin against P. aeruginosa biofilms formed by mucoid and small colony variant (SCV) tobramycin tolerant strain. We assessed the effect of aspartic acid on both surface-attached and suspended P. aeruginosa biofilms within CF artificial mucus and investigated the synergistic impact of combining it with non-lethal tobramycin concentrations. Our findings showed that aspartic acid inhibited planktonic P. aeruginosa without affecting its viability and prevented biofilm formation by hindering bacterial adhesion or interfering with EPS production, depending on the experimental conditions. In CF mucus, aspartic acid significantly reduced bacterial growth, with the highest inhibition observed when combined with tobramycin, showing notable effects against the mucoid and tolerant SCV strain. Despite these reductions, P. aeruginosa repopulated the mucus within 24 h of stress withdrawal. Additional strategies, including delayed tobramycin application and a second dose of co-application of aspartic acid and tobramycin were explored to address bacterial survival and recovery. Although none of the strategies eradicated P. aeruginosa, the second co-application resulted in slower bacterial recovery rates. In conclusion, this study highlighted aspartic acid as an effective antibiofilm agent and demonstrated for the first time its potential as an adjuvant to tobramycin. The combined use of aspartic acid and tobramycin offers a promising advancement in CF therapeutics, particularly against P. aeruginosa biofilms formed by mucoid and SCV strains, mitigating their antibiotic resistance.
Collapse
Affiliation(s)
- Rosana Monteiro
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana Margarida Sousa
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Jiang M, Yan Y, Wang T, Wang B, Li Y, Tang J, Zheng Y. Chronic exposure to diesel engine exhaust and alteration of the airway bacteriome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117857. [PMID: 39933232 DOI: 10.1016/j.ecoenv.2025.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The detrimental effects of diesel engine exhaust (DEE) on public health are receiving increasing attention, particularly concerning respiratory health. Our understanding of the associations of the airway bacterial ecosystem with exposure to DEE and respiratory health remains limited. Our study aimed to identify the airway bacterial signature and assess its correlation with respiratory health in occupational populations. In this study, we collected induced sputum from 54 diesel-exposed workers and 52 unexposed controls. The exposed participants experienced lower forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) than controls. Importantly, the overall airway bacterial signature and assemblage in exposed individuals differed significantly from controls. The relative abundance of Prevotella nanceiensis, Prevotella shahii, Aggregatibacter segnis, and Lachnoanaerobaculum umeaense displayed remarkable differences between the two groups. Furthermore, exposed individuals showed a less robust correlation network and fewer keystone species in their airway bacteriome than controls. Furthermore, the Spearman analysis indicated notable correlations of specific species with carbon content in airway macrophages (CCAM), club cell protein (CC16), FVC and FEV1. Taken together, our study provided new information on the difference in the airway bacterial signature under exposure to DEE and supported a potential new link between specific species and lung function in occupational populations.
Collapse
Affiliation(s)
- Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, Shandong, China.
| | - Yongwei Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Tao Wang
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Bojia Wang
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Li Y, Bhagirath A, Badr S, Zhang P, Chen L, Dadashi M, Surette MG, Duan K. The Fem cell-surface signaling system is regulated by ExsA in Pseudomonas aeruginosa and affects pathogenicity. iScience 2025; 28:111629. [PMID: 39850353 PMCID: PMC11754118 DOI: 10.1016/j.isci.2024.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Bacterial interspecies interactions shape microbial communities and influence the progression of polymicrobial infections. FemI-FemR-FemA, a cell-surface signaling system, in Pseudomonas aeruginosa, is involved in the uptake of iron-chelating mycobactin produced by Mycobacterium spp. In this report, we present the data that indicates the femA-PA1909 operon is positively regulated by ExsA, a master regulator for the type three secretion system (T3SS), connecting the Fem system with T3SS. Intriguingly, the Fem system also influenced virulence factors in P. aeruginosa, including the quorum sensing systems, pyocyanin production, biofilm formation, and the type six secretion systems (T6SSs). Using a Galleria mellonella infection model we observed that a femA deletion in PAO1 significantly increased the host survival rate while femI over-expression decreased it, suggesting a role for the Fem system in pathogenicity in vivo. Our data indicate the Fem system is a target of the T3SS master activator ExsA, and it affects P. aeruginosa pathogenicity.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Anjali Bhagirath
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Dalhousie University, Faculty of Dentistry, Halifax, NS B3H 1W2, Canada
| | - Sara Badr
- Department of Medical Microbiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Pansong Zhang
- College of Life Sciences, Northwest University, Xian 710069, China
| | - Lin Chen
- College of Life Sciences, Northwest University, Xian 710069, China
| | - Maryam Dadashi
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Michael G. Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kangmin Duan
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Medical Microbiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
4
|
Hamiwe T, White DA, Kwenda S, Ismail A, Klugman S, Van Bruwaene L, Goga A, Kock MM, Smith AM, Ehlers MM. Detection of the epidemic Pseudomonas aeruginosa AUST-03 (ST242) strain in people with cystic fibrosis in South Africa. Pediatr Pulmonol 2024; 59:3340-3348. [PMID: 39109912 PMCID: PMC11600992 DOI: 10.1002/ppul.27202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION Pseudomonas aeruginosa AUST-03 (ST242) has been reported to cause epidemics in people with CF (pwCF) from Australia and has been associated with multidrug resistance and increased morbidity and mortality. Here, we report an epidemic P. aeruginosa (AUST-03) strain in South African pwCF detected at a public hospital and characterize the genomic antibiotic resistance determinants. METHODS The P. aeruginosa AUST-03 (ST242) study isolates were analysed with whole genome sequencing using the Illumina NextSeq2000 platform. Raw sequencing reads were processed using the Jekesa pipeline and multilocus sequence typing and genomic antibiotic resistance characterization was performed using public databases. Genetic relatedness between the study isolates and global P. aeruginosa ST242 from public databases was determined using a maximum-likelihood phylogenetic tree. Antibiotic susceptibility testing was performed using the disk diffusion and broth microdilution techniques. RESULTS A total of 11 P. aeruginosa AUST-03 isolates were isolated from two children with CF. The majority (8/11) of these isolates were multidrug-resistant (MDR) or extensively drug resistant; and the multidrug efflux pumps MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM were the most clinically relevant antibiotic resistance determinants and were detected in all of the isolates. The study isolates were the most closely related to a 2020 P. aeruginosa AUST-03 (ST242) CF isolate from Russia. CONCLUSION Epidemic MDR P. aeruginosa strains are present at South African public CF clinics and need to be considered when implementing segregation and infection control strategies to prevent possible spread and outbreaks.
Collapse
Affiliation(s)
- Thabo Hamiwe
- Department of Medical Microbiology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Debbie A. White
- Department of Paediatric Pulmonology, Charlotte Maxeke Johannesburg Academic Hospital, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Stanford Kwenda
- Division of the National Health Laboratory ServiceSequencing Core Facility, National Institute for Communicable DiseasesJohannesburgSouth Africa
| | - Arshad Ismail
- Division of the National Health Laboratory ServiceSequencing Core Facility, National Institute for Communicable DiseasesJohannesburgSouth Africa
- Department of Biochemistry and MicrobiologyUniversity of VendaThohoyandouSouth Africa
- Institute for Water and Wastewater TechnologyDurban University of TechnologyDurbanSouth Africa
| | - Susan Klugman
- Department of Paediatric Pulmonology, Charlotte Maxeke Johannesburg Academic Hospital, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Lore Van Bruwaene
- Department of Paediatric PulmonologySteve Biko Academic Hospital/University of PretoriaPretoriaSouth Africa
- Department of PediatricsCentre Hospitalier Universitaire Saint‐Pierre HospitalBrusselsBelgium
| | - Ameena Goga
- Department of Paediatric PulmonologySteve Biko Academic Hospital/University of PretoriaPretoriaSouth Africa
- South African Medical Research CouncilPretoriaSouth Africa
| | - Marleen M. Kock
- Department of Medical Microbiology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of MicrobiologyNational Health Laboratory Service, Tshwane Academic DivisionPretoriaSouth Africa
| | - Anthony M. Smith
- Department of Medical Microbiology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Division of the National Health Laboratory ServiceCentre for Enteric Diseases, National Institute for Communicable DiseasesJohannesburgSouth Africa
| | - Marthie M. Ehlers
- Department of Medical Microbiology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of MicrobiologyNational Health Laboratory Service, Tshwane Academic DivisionPretoriaSouth Africa
| |
Collapse
|
5
|
Baker EJ, Allcott G, Molloy A, Cox JAG. Cystic fibrosis sputum media induces an overall loss of antibiotic susceptibility in Mycobacterium abscessus. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:34. [PMID: 39843503 PMCID: PMC11721417 DOI: 10.1038/s44259-024-00054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 01/24/2025]
Abstract
Mycobacterium abscessus complex (MABSC) comprises a group of environmental microorganisms, which are a concerning cause of opportunistic respiratory infections in patients with cystic fibrosis or bronchiectasis. Only 45.6% of MABSC treatments are successful, and therefore this is a need to discover new antimicrobials that can treat these pathogens. However, the transferability of outcomes to the clinic is flawed by an inability to accurately represent the lung environment within the laboratory. Herein, we apply two preestablished formulations of sputum media (ACFS and SCFM1) to MABSC antibiotic susceptibility testing. Using conventional broth microdilution, we have observed strain and antibiotic dependent alterations in antimicrobial sensitivity in each sputum media compared standard laboratory media (7H9), with an overall reduction in susceptibility within the physiologically relevant conditions. We provide a timely contribution to the field of M. abscessus antibiotic discovery by emphasising the need for improved physiological relevance.
Collapse
Affiliation(s)
- Emily J Baker
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Gemma Allcott
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Antonia Molloy
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jonathan A G Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
6
|
Koumans CIM, Tandar ST, Liakopoulos A, van Hasselt JGC. Interspecies interactions alter the antibiotic sensitivity of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0201224. [PMID: 39495005 PMCID: PMC11619387 DOI: 10.1128/spectrum.02012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Polymicrobial infections are infections that are caused by multiple pathogens and are common in patients with cystic fibrosis (CF). Although polymicrobial infections are associated with poor treatment responses in CF, the effects of the ecological interactions between co-infecting pathogens on antibiotic sensitivity and treatment outcome are poorly characterized. To this end, we systematically quantified the impact of these effects on the antibiotic sensitivity of Pseudomonas aeruginosa for nine antibiotics in medium conditioned by 13 secondary cystic fibrosis-associated bacterial and fungal pathogens through time-kill assays. We fitted pharmacodynamic models to these kill curves for each antibiotic-species combination and found that interspecies interactions changing the antibiotic sensitivity of P. aeruginosa are abundant. Interactions that lower antibiotic sensitivity are more common than those that increase it, with generally more substantial reductions than increases in sensitivity. For a selection of co-infecting species, we performed pharmacokinetic-pharmacodynamic modeling of P. aeruginosa treatment. We predicted that interspecies interactions can either improve or reduce treatment response to the extent that treatment is rendered ineffective from a previously effective antibiotic dosing schedule and vice versa. In summary, we show that quantifying the ecological interaction effects as pharmacodynamic parameters is necessary to determine the abundance and the extent to which these interactions affect antibiotic sensitivity in polymicrobial infections.IMPORTANCEIn cystic fibrosis (CF) patients, chronic respiratory tract infections are often polymicrobial, involving multiple pathogens simultaneously. Polymicrobial infections are difficult to treat as they often respond unexpectedly to antibiotic treatment, which might possibly be explained because co-infecting pathogens can influence each other's antibiotic sensitivity, but it is unknown to what extent such effects occur. To investigate this, we systematically quantified the impact of co-infecting species on antibiotic sensitivity, focusing on P. aeruginosa, a common CF pathogen. We studied for a large set co-infecting species and antibiotics whether changes in antibiotic response occur. Based on these experiments, we used mathematical modeling to simulate P. aeruginosa's response to colistin and tobramycin treatment in the presence of multiple pathogens. This study offers comprehensive data on altered antibiotic sensitivity of P. aeruginosa in polymicrobial infections, serves as a foundation for optimizing treatment of such infections, and consolidates the importance of considering co-infecting pathogens.
Collapse
Affiliation(s)
- C. I. M. Koumans
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - S. T. Tandar
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - A. Liakopoulos
- Microbiology, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - J. G. C. van Hasselt
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
7
|
Goltermann L, Laborda P, Irazoqui O, Pogrebnyakov I, Bendixen MP, Molin S, Johansen HK, La Rosa R. Macrolide resistance through uL4 and uL22 ribosomal mutations in Pseudomonas aeruginosa. Nat Commun 2024; 15:8906. [PMID: 39414850 PMCID: PMC11484784 DOI: 10.1038/s41467-024-53329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
Macrolides are widely used antibiotics for the treatment of bacterial airway infections. Due to its elevated minimum inhibitory concentration in standardized culture media, Pseudomonas aeruginosa is considered intrinsically resistant and, therefore, antibiotic susceptibility testing against macrolides is not performed. Nevertheless, due to macrolides' immunomodulatory effect and suppression of virulence factors, they are used for the treatment of persistent P. aeruginosa infections. Here, we demonstrate that macrolides are, instead, effective antibiotics against P. aeruginosa airway infections in an Air-Liquid Interface (ALI) infection model system resembling the human airways. Importantly, macrolide treatment in both people with cystic fibrosis and primary ciliary dyskinesia patients leads to the accumulation of uL4 and uL22 ribosomal protein mutations in P. aeruginosa which causes antibiotic resistance. Consequently, higher concentrations of antibiotics are needed to modulate the macrolide-dependent suppression of virulence. Surprisingly, even in the absence of antibiotics, these mutations also lead to a collateral reduction in growth rate, virulence and pathogenicity in airway ALI infections which are pivotal for the establishment of a persistent infection. Altogether, these results lend further support to the consideration of macrolides as de facto antibiotics against P. aeruginosa and the need for resistance monitoring upon prolonged macrolide treatment.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Pablo Laborda
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Oihane Irazoqui
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Maria Pals Bendixen
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Ruggero La Rosa
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Loffredo MR, Cappiello F, Cappella G, Capuozzo E, Torrini L, Diaco F, Di YP, Mangoni ML, Casciaro B. The pH-Insensitive Antimicrobial and Antibiofilm Activities of the Frog Skin Derived Peptide Esc(1-21): Promising Features for Novel Anti-Infective Drugs. Antibiotics (Basel) 2024; 13:701. [PMID: 39200001 PMCID: PMC11350779 DOI: 10.3390/antibiotics13080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The number of antibiotic-resistant microbial infections is dramatically increasing, while the discovery of new antibiotics is significantly declining. Furthermore, the activity of antibiotics is negatively influenced by the ability of bacteria to form sessile communities, called biofilms, and by the microenvironment of the infection, characterized by an acidic pH, especially in the lungs of patients suffering from cystic fibrosis (CF). Antimicrobial peptides represent interesting alternatives to conventional antibiotics, and with expanding properties. Here, we explored the effects of an acidic pH on the antimicrobial and antibiofilm activities of the AMP Esc(1-21) and we found that it slightly lost activity (from 2- to 4-fold) against the planktonic form of a panel of Gram-negative bacteria, with respect to a ≥ 32-fold of traditional antibiotics. Furthermore, it retained its activity against the sessile form of these bacteria grown in media with a neutral pH, and showed similar or higher effectiveness against the biofilm form of bacteria grown in acidic media, simulating a CF-like acidic microenvironment, compared to physiological conditions.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Floriana Cappiello
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Giacomo Cappella
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Elisabetta Capuozzo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Luisa Torrini
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.D.)
| | - Fabiana Diaco
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.D.)
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| |
Collapse
|
10
|
Grassi L, Crabbé A. Recreating chronic respiratory infections in vitro using physiologically relevant models. Eur Respir Rev 2024; 33:240062. [PMID: 39142711 PMCID: PMC11322828 DOI: 10.1183/16000617.0062-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the need for effective treatments against chronic respiratory infections (often caused by pathogenic biofilms), only a few new antimicrobials have been introduced to the market in recent decades. Although different factors impede the successful advancement of antimicrobial candidates from the bench to the clinic, a major driver is the use of poorly predictive model systems in preclinical research. To bridge this translational gap, significant efforts have been made to develop physiologically relevant models capable of recapitulating the key aspects of the airway microenvironment that are known to influence infection dynamics and antimicrobial activity in vivo In this review, we provide an overview of state-of-the-art cell culture platforms and ex vivo models that have been used to model chronic (biofilm-associated) airway infections, including air-liquid interfaces, three-dimensional cultures obtained with rotating-wall vessel bioreactors, lung-on-a-chips and ex vivo pig lungs. Our focus is on highlighting the advantages of these infection models over standard (abiotic) biofilm methods by describing studies that have benefited from these platforms to investigate chronic bacterial infections and explore novel antibiofilm strategies. Furthermore, we discuss the challenges that still need to be overcome to ensure the widespread application of in vivo-like infection models in antimicrobial drug development, suggesting possible directions for future research. Bearing in mind that no single model is able to faithfully capture the full complexity of the (infected) airways, we emphasise the importance of informed model selection in order to generate clinically relevant experimental data.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
11
|
Sousa AM, Pereira MO. Challenges with drug efficacy prediction of in vitro models of biofilms infecting cystic fibrosis airway. Expert Opin Drug Discov 2024; 19:635-638. [PMID: 38712907 DOI: 10.1080/17460441.2024.2350567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Affiliation(s)
- Ana Margarida Sousa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| |
Collapse
|
12
|
Azoicai AN, Lupu A, Trandafir LM, Alexoae MM, Alecsa M, Starcea IM, Cuciureanu M, Knieling A, Salaru DL, Hanganu E, Mocanu A, Lupu VV, Ioniuc I. Cystic fibrosis management in pediatric population-from clinical features to personalized therapy. Front Pediatr 2024; 12:1393193. [PMID: 38798310 PMCID: PMC11116730 DOI: 10.3389/fped.2024.1393193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). In 1949, it's been identified as a monogenic disease and was thought to primarily affect individuals of Northern European descent. It was the most prevalent autosomal recessive disease that shortens life. With the availability of multiple testing methodologies nowadays, there is a chance to create novel and enhanced treatment options. Even in the absence of a high sweat chloride test (SCT) result, the discovery of two causal mutations is diagnostic for cystic fibrosis (CF). For a CF diagnosis, however, at least two positive E sweat chloride tests are still required. In order to achieve early and active intervention to manage cystic fibrosis (CF) and its comorbidities, treatment regimens for pediatric patients should be evaluated, improved, and closely monitored. New developments in the treatment of cystic fibrosis (CF) have led to the development of medications derived from molecules that target the pathogenetic pathway of the illness. These options are very efficient and allow pediatric patients to receive individualized care. However, in order to better direct patient care and enhance patient outcomes, it is crucial to research uncommon CF mutations, which can provide crucial information about the prognosis of the disease and the relationships between genotype and phenotype. To ensure the success of creating novel, safer, and more efficient treatment approaches, a deeper understanding of the pathogeny of the illness is required. In the age of customized medicine, genetic research will be essential to improving patient care and quality of life for those with uncommon mutations.
Collapse
Affiliation(s)
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | | | - Mirabela Alecsa
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Magdalena Cuciureanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Elena Hanganu
- Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
13
|
Pompilio A, Kaya E, Lupetti V, Catelli E, Bianchi M, Maisetta G, Esin S, Di Bonaventura G, Batoni G. Cell-free supernatants from Lactobacillus strains exert antibacterial, antibiofilm, and antivirulence activity against Pseudomonas aeruginosa from cystic fibrosis patients. Microbes Infect 2024; 26:105301. [PMID: 38237656 DOI: 10.1016/j.micinf.2024.105301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Chronic lung infections caused by Pseudomonas aeruginosa play a significant role in the mortality and morbidity of cystic fibrosis (CF) patients. The widespread bacterial resistance to conventional antimicrobials demands identifying new strategies to complement or replace current antibiotic therapies. In this study, we evaluated the antibacterial, antibiofilm, and antivirulence properties of cell-free supernatants (CFS) from several Lactobacillus probiotic strains against P. aeruginosa isolated from the sputum of CF patients. A strong and fast antibacterial activity of CFS from different strains of lactobacilli was observed at acidic pH towards P. aeruginosa, both in planktonic and biofilm mode of growth, in conditions mimicking CF lung. Interestingly, although when adjusted at pH 6.0, CFS lost most of their antibacterial potential, they retained some antivirulence activity towards P. aeruginosa, largely dependent on the dose, exposure time, and the Lactobacillus-P. aeruginosa strain combination. In vivo testing in the invertebrate Galleria mellonella model disclosed the lack of toxicity of acidic CFS and their ability to prevent P. aeruginosa infection. For the first time, the results revealed lactobacilli postbiotic activities in the context of the pulmonary environment, pointing to innovative postbiotics' uses in anti-infective therapy.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; Center for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Esingül Kaya
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Veronica Lupetti
- Department of Medical, Oral, and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; Center for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Elisa Catelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Marta Bianchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; Center for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Via L. Polacchi 11, 66100 Chieti, Italy.
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy.
| |
Collapse
|
14
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
15
|
Vanderwoude J, Azimi S, Read TD, Diggle SP. The role of hypermutation and collateral sensitivity in antimicrobial resistance diversity of Pseudomonas aeruginosa populations in cystic fibrosis lung infection. mBio 2024; 15:e0310923. [PMID: 38171021 PMCID: PMC10865868 DOI: 10.1128/mbio.03109-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which causes chronic, drug-resistant lung infections in cystic fibrosis (CF) patients. In this study, we explore the role of genomic diversification and evolutionary trade-offs in antimicrobial resistance (AMR) diversity within P. aeruginosa populations sourced from CF lung infections. We analyzed 300 clinical isolates from four CF patients (75 per patient) and found that genomic diversity is not a consistent indicator of phenotypic AMR diversity. Remarkably, some genetically less diverse populations showed AMR diversity comparable to those with significantly more genetic variation. We also observed that hypermutator strains frequently exhibited increased sensitivity to antimicrobials, contradicting expectations from their treatment histories. Investigating potential evolutionary trade-offs, we found no substantial evidence of collateral sensitivity among aminoglycoside, beta-lactam, or fluoroquinolone antibiotics, nor did we observe trade-offs between AMR and growth in conditions mimicking CF sputum. Our findings suggest that (i) genomic diversity is not a prerequisite for phenotypic AMR diversity, (ii) hypermutator populations may develop increased antimicrobial sensitivity under selection pressure, (iii) collateral sensitivity is not a prominent feature in CF strains, and (iv) resistance to a single antibiotic does not necessarily lead to significant fitness costs. These insights challenge prevailing assumptions about AMR evolution in chronic infections, emphasizing the complexity of bacterial adaptation during infection.IMPORTANCEUpon infection in the cystic fibrosis (CF) lung, Pseudomonas aeruginosa rapidly acquires genetic mutations, especially in genes involved in antimicrobial resistance (AMR), often resulting in diverse, treatment-resistant populations. However, the role of bacterial population diversity within the context of chronic infection is still poorly understood. In this study, we found that hypermutator strains of P. aeruginosa in the CF lung undergoing treatment with tobramycin evolved increased sensitivity to tobramycin relative to non-hypermutators within the same population. This finding suggests that antimicrobial treatment may only exert weak selection pressure on P. aeruginosa populations in the CF lung. We further found no evidence for collateral sensitivity in these clinical populations, suggesting that collateral sensitivity may not be a robust, naturally occurring phenomenon for this microbe.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Trognon J, Rima M, Lajoie B, Roques C, El Garah F. NaCl-induced modulation of species distribution in a mixed P. aeruginosa / S. aureus / B.cepacia biofilm. Biofilm 2023; 6:100153. [PMID: 37711514 PMCID: PMC10497989 DOI: 10.1016/j.bioflm.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia are notorious pathogens known for their ability to form resilient biofilms, particularly within the lung environment of cystic fibrosis (CF) patients. The heightened concentration of NaCl, prevalent in the airway liquid of CF patients' lungs, has been identified as a factor that promotes the growth of osmotolerant bacteria like S. aureus and dampens host antibacterial defenses, thereby fostering favorable conditions for infections. In this study, we aimed to investigate how increased NaCl concentrations impact the development of multi-species biofilms in vitro, using both laboratory strains and clinical isolates of P. aeruginosa, S. aureus, and B. cepacia co-cultures. Employing a low-nutrient culture medium that fosters biofilm growth of the selected species, we quantified biofilm formation through a combination of adherent CFU counts, qPCR analysis, and confocal microscopy observations. Our findings reaffirmed the challenges faced by S. aureus in establishing growth within 1:1 mixed biofilms with P. aeruginosa when cultivated in a minimal medium. Intriguingly, at an elevated NaCl concentration of 145 mM, a symbiotic relationship emerged between S. aureus and P. aeruginosa, enabling their co-existence. Notably, this hyperosmotic environment also exerted an influence on the interplay of these two bacteria with B. cepacia. We demonstrated that elevated NaCl concentrations play a pivotal role in orchestrating the distribution of these three species within the biofilm matrix. Furthermore, our study unveiled the beneficial impact of NaCl on the biofilm growth of clinically relevant mucoid P. aeruginosa strains, as well as two strains of methicillin-sensitive and methicillin-resistant S. aureus. This underscores the crucial role of the microenvironment during the colonization and infection processes. The results suggest that hyperosmotic conditions could hold the key to unlocking a deeper understanding of the genesis and behavior of CF multi-species biofilms.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maya Rima
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Barbora Lajoie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie Hygiène, Toulouse, France
| | - Fatima El Garah
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
17
|
Jiang X, Patil NA, Xu Y, Wickremasinghe H, Zhou QT, Zhou F, Thompson PE, Wang L, Xiao M, Roberts KD, Velkov T, Li J. Structure-Interaction Relationship of Polymyxins with Lung Surfactant. J Med Chem 2023; 66:16109-16119. [PMID: 38019899 PMCID: PMC11608096 DOI: 10.1021/acs.jmedchem.3c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant Gram-negative bacteria present an urgent and formidable threat to the global public health. Polymyxins have emerged as a last-resort therapy against these 'superbugs'; however, their efficacy against pulmonary infection is poor. In this study, we integrated chemical biology and molecular dynamics simulations to examine how the alveolar lung surfactant significantly reduces polymyxin antibacterial activity. We discovered that lung surfactant is a phospholipid-based permeability barrier against polymyxins, compromising their efficacy against target bacteria. Next, we unraveled the structure-interaction relationship between polymyxins and lung surfactant, elucidating the thermodynamics that govern the penetration of polymyxins through this critical surfactant layer. Moreover, we developed a novel analog, FADDI-235, which exhibited potent activity against Gram-negative bacteria, both in the presence and absence of lung surfactant. These findings shed new light on the sequestration mechanism of lung surfactant on polymyxins and importantly pave the way for the rational design of new-generation lipopeptide antibiotics to effectively treat Gram-negative bacterial pneumonia.
Collapse
Affiliation(s)
- Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Nitin A. Patil
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Yuwen Xu
- Shandong Institute for Food and Drug Control, Jinan, 250000, China
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette 47907, United States of America
| | - Fanfan Zhou
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney 2006, Australia
| | - Philip E. Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Kade D. Roberts
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne 3010, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| |
Collapse
|
18
|
Van den Bossche S, Abatih E, Grassi L, De Broe E, Rigole P, Boelens J, Van Caenegem J, Verhasselt B, Janssens I, Van Braeckel E, Versmessen N, Cools P, Coenye T, Crabbé A. Pooling isolates to address the diversity in antimicrobial susceptibility of Pseudomonas aeruginosa in cystic fibrosis. Microbiol Spectr 2023; 11:e0044923. [PMID: 37982625 PMCID: PMC10714813 DOI: 10.1128/spectrum.00449-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE People with cystic fibrosis (pwCF) often suffer from chronic lung infections with Pseudomonas aeruginosa. While antibiotics are still commonly used to treat P. aeruginosa infections, there is a high discordance between in vitro and in vivo antibiotic efficacy, which contributes to suboptimal antibiotic therapy. In the present study, we found that isolates from the same sputum sample had highly diverse antibiotic resistance profiles [based on the minimal inhibitory concentration (MIC)], which may explain the reported discrepancy between in vitro and in vivo antibiotic efficacy. Through systematic analysis, we report that pooling nine isolates per sputum sample significantly decreased intrasample diversity in MIC and influenced clinical interpretation of antibiotic susceptibility tests compared to single isolate testing. Hence, pooling of isolates may offer a solution to obtain a consistent MIC test result and could lead to optimizing antibiotic therapy in pwCF and other infectious diseases where diversity in antibiotic resistance is observed.
Collapse
Affiliation(s)
| | - Emmanuel Abatih
- Data Analysis and Statistical Science (DASS), Ghent University, Ghent, Belgium
| | - Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Joris Van Caenegem
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Bruno Verhasselt
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Iris Janssens
- Department of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nick Versmessen
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Piet Cools
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Youf R, Ghanem R, Nasir A, Lemercier G, Montier T, Le Gall T. Impact of mucus and biofilm on antimicrobial photodynamic therapy: Evaluation using Ruthenium(II) complexes. Biofilm 2023; 5:100113. [PMID: 37396462 PMCID: PMC10313506 DOI: 10.1016/j.bioflm.2023.100113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 07/04/2023] Open
Abstract
The biofilm lifestyle of bacterial pathogens is a hallmark of chronic lung infections such as in cystic fibrosis (CF) patients. Bacterial adaptation to the complex conditions in CF-affected lungs and repeated antibiotherapies lead to increasingly tolerant and hard-to-treat biofilms. In the context of growing antimicrobial resistance and restricted therapeutic options, antimicrobial photodynamic therapy (aPDT) shows great promise as an alternative to conventional antimicrobial modalities. Typically, aPDT consists in irradiating a non-toxic photosensitizer (PS) to generate reactive oxygen species (ROS), which kill pathogens in the surrounding environment. In a previous study, we reported that some ruthenium (II) complexes ([Ru(II)]) can mediate potent photodynamic inactivation (PDI) against planktonic cultures of Pseudomonas aeruginosa and Staphylococcus aureus clinical isolates. In the present work, [Ru(II)] were further assayed to evaluate their ability to photo-inactivate such bacteria under more complex experimental conditions better recapitulating the microenvironment in lung infected airways. Bacterial PDI was tentatively correlated with the properties of [Ru(II)] in biofilms, in mucus, and following diffusion across the latter. Altogether, the results obtained demonstrate the negative impacting role of mucus and biofilm components on [Ru(II)]-mediated PDT, following different possible mechanisms of action. Technical limitations were also identified that may be overcome, making this report a pilot for other similar studies. In conclusion, [Ru(II)] may be subjected to specific chemical engineering and/or drug formulation to adapt their properties to the harsh micro-environmental conditions of the infected respiratory tract.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Rosy Ghanem
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, 29200, Brest, France
| | - Adeel Nasir
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Gilles Lemercier
- Université de Reims Champagne-Ardenne, UMR CNRS 7312, BP 1039, CEDEX 2, 51687, Reims, France
| | - Tristan Montier
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, 29200, Brest, France
- CHU de Brest, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200, Brest, France
| | - Tony Le Gall
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200, Brest, France
| |
Collapse
|
20
|
Louis M, Tahrioui A, Tremlett CJ, Clamens T, Leprince J, Lefranc B, Kipnis E, Grandjean T, Bouffartigues E, Barreau M, Defontaine F, Cornelis P, Feuilloley MG, Harmer NJ, Chevalier S, Lesouhaitier O. The natriuretic peptide receptor agonist osteocrin disperses Pseudomonas aeruginosa biofilm. Biofilm 2023; 5:100131. [PMID: 37252226 PMCID: PMC10220261 DOI: 10.1016/j.bioflm.2023.100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Biofilms are highly tolerant to antimicrobials and host immune defense, enabling pathogens to thrive in hostile environments. The diversity of microbial biofilm infections requires alternative and complex treatment strategies. In a previous work we demonstrated that the human Atrial Natriuretic Peptide (hANP) displays a strong anti-biofilm activity toward Pseudomonas aeruginosa and that the binding of hANP by the AmiC protein supports this effect. This AmiC sensor has been identified as an analog of the human natriuretic peptide receptor subtype C (h-NPRC). In the present study, we evaluated the anti-biofilm activity of the h-NPRC agonist, osteocrin (OSTN), a hormone that displays a strong affinity for the AmiC sensor at least in vitro. Using molecular docking, we identified a pocket in the AmiC sensor that OSTN reproducibly docks into, suggesting that OSTN might possess an anti-biofilm activity as well as hANP. This hypothesis was validated since we observed that OSTN dispersed established biofilm of P. aeruginosa PA14 strain at the same concentrations as hANP. However, the OSTN dispersal effect is less marked than that observed for the hANP (-61% versus -73%). We demonstrated that the co-exposure of P. aeruginosa preformed biofilm to hANP and OSTN induced a biofilm dispersion with a similar effect to that observed with hANP alone suggesting a similar mechanism of action of these two peptides. This was confirmed by the observation that OSTN anti-biofilm activity requires the activation of the complex composed by the sensor AmiC and the regulator AmiR of the ami pathway. Using a panel of both P. aeruginosa laboratory reference strains and clinical isolates, we observed that the OSTN capacity to disperse established biofilms is highly variable from one strain to another. Taken together, these results show that similarly to the hANP hormone, OSTN has a strong potential to be used as a tool to disperse P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Melissande Louis
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Courtney J. Tremlett
- Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Thomas Clamens
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Jérôme Leprince
- PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
| | - Eric Kipnis
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France
| | - Teddy Grandjean
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France
| | - Emeline Bouffartigues
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Magalie Barreau
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Florian Defontaine
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Pierre Cornelis
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Marc G.J. Feuilloley
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Nicholas J. Harmer
- Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Sylvie Chevalier
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| |
Collapse
|
21
|
Bao X, Goeteyn E, Crabbé A, Coenye T. Effect of malate on the activity of ciprofloxacin against Pseudomonas aeruginosa in different in vivo and in vivo-like infection models. Antimicrob Agents Chemother 2023; 67:e0068223. [PMID: 37819115 PMCID: PMC10649037 DOI: 10.1128/aac.00682-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
The clinical significance of Pseudomonas aeruginosa infections and the tolerance of this opportunistic pathogen to antibiotic therapy makes the development of novel antimicrobial strategies an urgent need. We previously found that D,L-malic acid potentiates the activity of ciprofloxacin against P. aeruginosa biofilms grown in a synthetic cystic fibrosis sputum medium by increasing metabolic activity and tricarboxylic acid cycle activity. This suggested a potential new strategy to improve antibiotic therapy in P. aeruginosa infections. Considering the importance of the microenvironment on microbial antibiotic susceptibility, the present study aims to further investigate the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in physiologically relevant infection models, aiming to mimic the infection environment more closely. We used Caenorhabditis elegans nematodes, Galleria mellonella larvae, and a 3-D lung epithelial cell model to assess the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa. D,L-malate was able to significantly enhance ciprofloxacin activity against P. aeruginosa in both G. mellonella larvae and the 3-D lung epithelial cell model. In addition, ciprofloxacin combined with D,L-malate significantly improved the survival of infected 3-D cells compared to ciprofloxacin alone. No significant effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in C. elegans nematodes was observed. Overall, these data indicate that the outcome of the experiment is influenced by the model system used which emphasizes the importance of using models that reflect the in vivo environment as closely as possible. Nevertheless, this study confirms the potential of D,L-malate to enhance ciprofloxacin activity against P. aeruginosa-associated infections.
Collapse
Affiliation(s)
- Xuerui Bao
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Chen X, Gong L, Li C, Wang S, Wang Z, Chu M, Zhou Y. Single-cell and bulk tissue sequencing unravels the heterogeneity of synovial microenvironment in arthrofibrosis. iScience 2023; 26:107379. [PMID: 37705954 PMCID: PMC10495645 DOI: 10.1016/j.isci.2023.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 09/15/2023] Open
Abstract
Arthrofibrosis (AF) is a debilitating complication that occurs after trauma or surgery, leading to functional impairment and surgical failures worldwide. This study aimed to uncover the underlying mechanism of AF. A total of 141 patients were enrolled, and synovial samples were collected from both patients and animal models at different time points. Single-cell RNA-sequencing (scRNA-seq) and bulk tissue RNA sequencing (bulk-seq) were employed to profile the distinct synovial microenvironment. This study revealed changes in cell proportions during AF pathogenesis and identified Engrailed-1 (EN1) as a key transcription factor strongly associated with disease severity and clinical prognosis. Additionally, the researchers discovered a specific type of synovial fibroblast called DKK3-SLF, which played a critical role in driving AF development. These findings shed light on the composition and heterogeneity of the synovial microenvironment in AF, offering potential avenues for identifying therapeutic targets and developing clinical treatments for AF and other fibrotic diseases.
Collapse
Affiliation(s)
- Xi Chen
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing 100035, China
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Lihua Gong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Cheng Li
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Siyuan Wang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Ziyuan Wang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yixin Zhou
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing 100035, China
| |
Collapse
|
23
|
De Bleeckere A, Van den Bossche S, De Sutter PJ, Beirens T, Crabbé A, Coenye T. High throughput determination of the biofilm prevention concentration for Pseudomonas aeruginosa biofilms using a synthetic cystic fibrosis sputum medium. Biofilm 2023; 5:100106. [PMID: 36845825 PMCID: PMC9945637 DOI: 10.1016/j.bioflm.2023.100106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
The presence of Pseudomonas aeruginosa biofilms in cystic fibrosis (CF) patients suffering from chronic lung infections contributes to the failure of antimicrobial therapy. Conventionally, the minimal inhibitory concentration (MIC) is determined to assess the antimicrobial susceptibility of a pathogen, however this parameter fails to predict success in treating biofilm-associated infections. In the present study we developed a high throughput method to determine the antimicrobial concentration required to prevent P. aeruginosa biofilm formation, using a synthetic cystic fibrosis sputum medium (SCFM2). Biofilms were grown in SCFM2 for 24 h in the presence of antibiotics (tobramycin, ciprofloxacin or colistin), whereafter biofilms were disrupted and a resazurin staining was used to quantify the number of surviving metabolically active cells. In parallel, the content of all wells was plated to determine the number of colony forming units (CFU). Biofilm preventing concentrations (BPCs) were compared to MICs and minimal bactericidal concentrations (MBCs) determined according to EUCAST guidelines. Correlations between the resazurin-derived fluorescence and CFU counts were assessed with Kendall's Tau Rank tests. A significant correlation between fluorescence and CFU counts was observed for 9 out of 10 strains investigated, suggesting the fluorometric assay is a reliable alternative to plating for most P. aeruginosa isolates to determine biofilm susceptibility in relevant conditions. For all isolates a clear difference between MICs and BPCs of all three antibiotics was observed, with the BPCs being consistently higher than the MICs. Additionally, the extent of this difference appeared to be antibiotic-dependent. Our findings suggest that this high throughput assay could be a valuable addition to evaluate the antimicrobial susceptibility in P. aeruginosa biofilms in the context of CF.
Collapse
Affiliation(s)
- Amber De Bleeckere
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Pieter-Jan De Sutter
- Laboratory of Medical Biochemistry and Clinical Analysis, Ghent University, Ghent, Belgium
| | - Tine Beirens
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium,Corresponding author.
| |
Collapse
|
24
|
Wiesmann CL, Zhang Y, Alford M, Hamilton CD, Dosanjh M, Thoms D, Dostert M, Wilson A, Pletzer D, Hancock REW, Haney CH. The ColR/S two-component system is a conserved determinant of host association across Pseudomonas species. THE ISME JOURNAL 2023; 17:286-296. [PMID: 36424517 PMCID: PMC9859794 DOI: 10.1038/s41396-022-01343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Members of the bacterial genus Pseudomonas form mutualistic, commensal, and pathogenic associations with diverse hosts. The prevalence of host association across the genus suggests that symbiosis may be a conserved ancestral trait and that distinct symbiotic lifestyles may be more recently evolved. Here we show that the ColR/S two-component system, part of the Pseudomonas core genome, is functionally conserved between Pseudomonas aeruginosa and Pseudomonas fluorescens. Using plant rhizosphere colonization and virulence in a murine abscess model, we show that colR is required for commensalism with plants and virulence in animals. Comparative transcriptomics revealed that the ColR regulon has diverged between P. aeruginosa and P. fluorescens and deleting components of the ColR regulon revealed strain-specific, but not host-specific, requirements for ColR-dependent genes. Collectively, our results suggest that ColR/S allows Pseudomonas to sense and respond to a host, but that the ColR-regulon has diverged between Pseudomonas strains with distinct lifestyles. This suggests that conservation of two-component systems, coupled with life-style dependent diversification of the regulon, may play a role in host association and lifestyle transitions.
Collapse
Affiliation(s)
- Christina L Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Yue Zhang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Morgan Alford
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Corri D Hamilton
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David Thoms
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Melanie Dostert
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew Wilson
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Daniel Pletzer
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St., 9054, Dunedin, New Zealand
| | - Robert E W Hancock
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- 2259 Lower Mall Research Station, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
25
|
Perikleous EP, Gkentzi D, Bertzouanis A, Paraskakis E, Sovtic A, Fouzas S. Antibiotic Resistance in Patients with Cystic Fibrosis: Past, Present, and Future. Antibiotics (Basel) 2023; 12:217. [PMID: 36830128 PMCID: PMC9951886 DOI: 10.3390/antibiotics12020217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Patients with cystic fibrosis (CF) are repeatedly exposed to antibiotics, especially during the pulmonary exacerbations of the disease. However, the available therapeutic strategies are frequently inadequate to eradicate the involved pathogens and most importantly, facilitate the development of antimicrobial resistance (AMR). The evaluation of AMR is demanding; conventional culture-based susceptibility-testing techniques cannot account for the lung microenvironment and/or the adaptive mechanisms developed by the pathogens, such as biofilm formation. Moreover, features linked to modified pharmaco-kinetics and pulmonary parenchyma penetration make the dosing of antibiotics even more challenging. In this review, we present the existing knowledge regarding AMR in CF, we shortly review the existing therapeutic strategies, and we discuss the future directions of antimicrobial stewardship. Due to the increasing difficulty in eradicating strains that develop AMR, the appropriate management should rely on targeting the underlying resistance mechanisms; thus, the interest in novel, molecular-based diagnostic tools, such as metagenomic sequencing and next-generation transcriptomics, has increased exponentially. Moreover, since the development of new antibiotics has a slow pace, the design of effective treatment strategies to eradicate persistent infections represents an urgency that requires consorted work. In this regard, both the management and monitoring of antibiotics usage are obligatory and more relevant than ever.
Collapse
Affiliation(s)
| | - Despoina Gkentzi
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece
| | - Aris Bertzouanis
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece
- Pediatric Respiratory Unit, University Hospital of Patras, 26504 Patras, Greece
| | - Emmanouil Paraskakis
- Pediatric Respiratory Unit, Department of Pediatrics, University of Crete, 71500 Heraklion, Greece
| | - Aleksandar Sovtic
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Pulmonology, Mother and Child Health Institute of Serbia, 11070 Belgrade, Serbia
| | - Sotirios Fouzas
- Department of Pediatrics, University of Patras Medical School, 26504 Patras, Greece
- Pediatric Respiratory Unit, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
26
|
de Dios R, Proctor CR, Maslova E, Dzalbe S, Rudolph CJ, McCarthy RR. Artificial sweeteners inhibit multidrug-resistant pathogen growth and potentiate antibiotic activity. EMBO Mol Med 2023; 15:e16397. [PMID: 36412260 PMCID: PMC9832836 DOI: 10.15252/emmm.202216397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial resistance is one of the most pressing concerns of our time. The human diet is rich with compounds that alter bacterial gut communities and virulence-associated behaviours, suggesting food additives may be a niche for the discovery of novel anti-virulence compounds. Here, we identify three artificial sweeteners, saccharin, cyclamate and acesulfame-K (ace-K), that have a major growth inhibitory effect on priority pathogens. We further characterise the impact of ace-K on multidrug-resistant Acinetobacter baumannii, demonstrating that it can disable virulence behaviours such as biofilm formation, motility and the ability to acquire exogenous antibiotic-resistant genes. Further analysis revealed the mechanism of growth inhibition is through bulge-mediated cell lysis and that cells can be rescued by cation supplementation. Antibiotic sensitivity assays demonstrated that at sub-lethal concentrations, ace-K can resensitise A. baumannii to last resort antibiotics, including carbapenems. Using a novel ex vivo porcine skin wound model, we show that ace-K antimicrobial activity is maintained in the wound microenvironment. Our findings demonstrate the influence of artificial sweeteners on pathogen behaviour and uncover their therapeutic potential.
Collapse
Affiliation(s)
- Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Chris R Proctor
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Sindija Dzalbe
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Christian J Rudolph
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Ronan R McCarthy
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| |
Collapse
|
27
|
Inflammation and Infection in Cystic Fibrosis: Update for the Clinician. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121898. [PMID: 36553341 PMCID: PMC9777099 DOI: 10.3390/children9121898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022]
Abstract
Inflammation and infection play an important role in the pathophysiology of cystic fibrosis, and they are significant causes of morbidity and mortality in CF. The presence of thick mucus in the CF airways predisposes to local hypoxia and promotes infection and inflammation. A vicious cycle of airway obstruction, inflammation, and infection is of critical importance for the progression of the disease, and new data elucidate the different factors that influence it. Recent research has been focused on improving infection and inflammation in addition to correcting the basic gene defect. This review aims to summarize important advances in infection and inflammation as well as the effect of new treatments modulating the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. New approaches to target infection and inflammation are being studied, including gallium, nitric oxide, and phage therapy for infection, along with retinoids and neutrophil elastase inhibitors for inflammation.
Collapse
|
28
|
Anju VT, Busi S, Imchen M, Kumavath R, Mohan MS, Salim SA, Subhaswaraj P, Dyavaiah M. Polymicrobial Infections and Biofilms: Clinical Significance and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11121731. [PMID: 36551388 PMCID: PMC9774821 DOI: 10.3390/antibiotics11121731] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Biofilms are population of cells growing in a coordinated manner and exhibiting resistance towards hostile environments. The infections associated with biofilms are difficult to control owing to the chronicity of infections and the emergence of antibiotic resistance. Most microbial infections are contributed by polymicrobial or mixed species interactions, such as those observed in chronic wound infections, otitis media, dental caries, and cystic fibrosis. This review focuses on the polymicrobial interactions among bacterial-bacterial, bacterial-fungal, and fungal-fungal aggregations based on in vitro and in vivo models and different therapeutic interventions available for polymicrobial biofilms. Deciphering the mechanisms of polymicrobial interactions and microbial diversity in chronic infections is very helpful in anti-microbial research. Together, we have discussed the role of metagenomic approaches in studying polymicrobial biofilms. The outstanding progress made in polymicrobial research, especially the model systems and application of metagenomics for detecting, preventing, and controlling infections, are reviewed.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
- Correspondence:
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala 671316, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Mahima S. Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Pattnaik Subhaswaraj
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, Sambalpur 768019, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
29
|
Weiss DJ, Rolandsson Enes S. MSCs interaction with the host lung microenvironment: An overlooked aspect? Front Immunol 2022; 13:1072257. [DOI: 10.3389/fimmu.2022.1072257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) were identified more than 50 years ago, and research advances have promoted the translation of pre-clinical studies into clinical settings in several diseases. However, we are only starting to uncover the local factors that regulate cell phenotype, cell function, and cell viability across tissues following administration in different diseases. Advances in pre-clinical and translational studies suggest that the host environment, especially inflammatory active environments, plays a significant role in directing the infused MSCs towards different phenotypes with different functions. This can significantly effect their therapeutic efficacy. One way to study this interaction between the host environment and the infused cells is to expose MSCs ex vivo to patient samples such as serum or bronchoalveolar lavage fluid. Using this approach, it has been demonstrated that MSCs are very sensitive to different host factors such as pathogens, inflammatory cytokines, and extra cellular matrix properties. By understanding how different local host factors effect MSC function it will open possibilities to select specific patient sub-groups that are more likely to respond to this type of treatment and will also open possibilities to prime the local host environment to increase viability and to enrich for a specific MSC phenotype. Here, we aim to review the current understanding of the interaction of MSCs with the host microenvironment. To narrow the scope of this mini review, the focus will be on the pulmonary microenvironment, with a specific focus on the diseases acute respiratory distress syndrome (ARDS) and cystic fibrosis (CF).
Collapse
|
30
|
Guillaume O, Butnarasu C, Visentin S, Reimhult E. Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 2022; 4:100089. [PMID: 36324525 PMCID: PMC9618985 DOI: 10.1016/j.bioflm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a highly, if not the most, versatile microorganism capable of colonizing diverse environments. One of the niches in which PA is able to thrive is the lung of cystic fibrosis (CF) patients. Due to a genetic aberration, the lungs of CF-affected patients exhibit impaired functions, rendering them highly susceptible to bacterial colonization. Once PA attaches to the epithelial surface and transitions to a mucoid phenotype, the infection becomes chronic, and antibiotic treatments become inefficient. Due to the high number of affected people and the severity of this infection, CF-chronic infection is a well-documented disease. Still, numerous aspects of PA CF infection remain unclear. The scientific reports published over the last decades have stressed how PA can adapt to CF microenvironmental conditions and how its surrounding matrix of extracellular polymeric substances (EPS) plays a key role in its pathogenicity. In this context, it is of paramount interest to present the nature of the EPS together with the local CF-biofilm microenvironment. We review how the PA biofilm microenvironment interacts with drugs to contribute to the pathogenicity of CF-lung infection. Understanding why so many drugs are inefficient in treating CF chronic infection while effectively treating planktonic PA is essential to devising better therapeutic targets and drug formulations.
Collapse
Affiliation(s)
- Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria,Austrian Cluster for Tissue Regeneration, Austria,Corresponding author. 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria.
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Erik Reimhult
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
31
|
Drevinek P, Canton R, Johansen HK, Hoffman L, Coenye T, Burgel PR, Davies JC. New concepts in antimicrobial resistance in cystic fibrosis respiratory infections. J Cyst Fibros 2022; 21:937-945. [DOI: 10.1016/j.jcf.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
|
32
|
Youf R, Nasir A, Müller M, Thétiot F, Haute T, Ghanem R, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Ruthenium(II) Polypyridyl Complexes for Antimicrobial Photodynamic Therapy: Prospects for Application in Cystic Fibrosis Lung Airways. Pharmaceutics 2022; 14:pharmaceutics14081664. [PMID: 36015290 PMCID: PMC9412327 DOI: 10.3390/pharmaceutics14081664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) depends on a variety of parameters notably related to the photosensitizers used, the pathogens to target and the environment to operate. In a previous study using a series of Ruthenium(II) polypyridyl ([Ru(II)]) complexes, we reported the importance of the chemical structure on both their photo-physical/physico-chemical properties and their efficacy for aPDT. By employing standard in vitro conditions, effective [Ru(II)]-mediated aPDT was demonstrated against planktonic cultures of Pseudomonas aeruginosa and Staphylococcus aureus strains notably isolated from the airways of Cystic Fibrosis (CF) patients. CF lung disease is characterized with many pathophysiological disorders that can compromise the effectiveness of antimicrobials. Taking this into account, the present study is an extension of our previous work, with the aim of further investigating [Ru(II)]-mediated aPDT under in vitro experimental settings approaching the conditions of infected airways in CF patients. Thus, we herein studied the isolated influence of a series of parameters (including increased osmotic strength, acidic pH, lower oxygen availability, artificial sputum medium and biofilm formation) on the properties of two selected [Ru(II)] complexes. Furthermore, these compounds were used to evaluate the possibility to photoinactivate P. aeruginosa while preserving an underlying epithelium of human bronchial epithelial cells. Altogether, our results provide substantial evidence for the relevance of [Ru(II)]-based aPDT in CF lung airways. Besides optimized nano-complexes, this study also highlights the various needs for translating such a challenging perspective into clinical practice.
Collapse
Affiliation(s)
- Raphaëlle Youf
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Adeel Nasir
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Tanguy Haute
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Rosy Ghanem
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- Correspondence:
| |
Collapse
|
33
|
Madden DE, Olagoke O, Baird T, Neill J, Ramsay KA, Fraser TA, Bell SC, Sarovich DS, Price EP. Express Yourself: Quantitative Real-Time PCR Assays for Rapid Chromosomal Antimicrobial Resistance Detection in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2022; 66:e0020422. [PMID: 35467369 PMCID: PMC9112894 DOI: 10.1128/aac.00204-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/31/2022] [Indexed: 01/03/2023] Open
Abstract
The rise of antimicrobial-resistant (AMR) bacteria is a global health emergency. One critical facet of tackling this epidemic is more rapid AMR diagnosis in serious multidrug-resistant pathogens like Pseudomonas aeruginosa. Here, we designed and then validated two multiplex quantitative real-time PCR (qPCR) assays to simultaneously detect differential expression of the resistance-nodulation-division efflux pumps MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM, the AmpC β-lactamase, and the porin OprD, which are commonly associated with chromosomally encoded AMR. Next, qPCRs were tested on 15 sputa from 11 participants with P. aeruginosa respiratory infections to determine AMR profiles in vivo. We confirmed multiplex qPCR testing feasibility directly on sputa, representing a key advancement in in vivo AMR diagnosis. Notably, comparison of sputa with their derived isolates grown in Luria-Bertani broth (±2.5% NaCl) or a 5-antibiotic cocktail showed marked expression differences, illustrating the difficulty in replicating in vivo expression profiles in vitro. Cystic fibrosis sputa showed significantly reduced mexE and mexY expression compared with chronic obstructive pulmonary disease sputa, despite harboring fluoroquinolone- and aminoglycoside-resistant strains, indicating that these loci do not contribute to AMR in vivo. oprD was also significantly downregulated in cystic fibrosis sputa, even in the absence of contemporaneous carbapenem use, suggesting a common adaptive trait in chronic infections that may affect carbapenem efficacy. Sputum ampC expression was highest in participants receiving carbapenems (6.7 to 15×), some of whom were simultaneously receiving cephalosporins, the latter of which would be rendered ineffective by the upregulated ampC. Our qPCR assays provide valuable insights into the P. aeruginosa resistome, and their use on clinical specimens will permit timely treatment alterations that will improve patient outcomes and antimicrobial stewardship measures.
Collapse
Affiliation(s)
- Danielle E. Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Olusola Olagoke
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Timothy Baird
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Jane Neill
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Kay A. Ramsay
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Tamieka A. Fraser
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Scott C. Bell
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Derek S. Sarovich
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Erin P. Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|
34
|
Galiniak S, Mołoń M, Rachel M. Links between Disease Severity, Bacterial Infections and Oxidative Stress in Cystic Fibrosis. Antioxidants (Basel) 2022; 11:antiox11050887. [PMID: 35624751 PMCID: PMC9137818 DOI: 10.3390/antiox11050887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is one of the most common, yet fatal genetic diseases in Caucasians. The presence of a defective CF transmembrane conductance regulator and the massive neutrophils influx into the airways contribute to an imbalance in epithelial cell processes and extracellular fluids and lead to excessive production of reactive oxygen species and intensification of oxidative stress. The study included 16 controls and 42 participants with CF aged 10 to 38. The products of protein oxidation, total antioxidant capacity (TAC) and markers of lipid peroxidation were estimated in the serum of the subjects. Furthermore, we compared the level of oxidative stress in patients with CF according to the severity of disease and type of bacterial infection. Thiol groups and serum TAC decreased significantly in patients with CF (p < 0.05). Elevated levels of 3-nitrotyrosine, malondialdehyde and 8-isoprostane were observed in CF subjects (p < 0.05). Furthermore, as the severity of the disease increased, there was a decrease in the thiol groups and TAC levels, as well as an increase in the concentration of 3-nitrotyrosine and 8-isoprostane. CF participants infected with Pseudomonas aeruginosa had elevated 3-nitrotyrosine concentration levels (p < 0.05), while those infected with Staphylococcus aureus noted a decrease in thiol groups (p < 0.05). Elevated levels of oxidative stress markers were found in the serum of CF patients. Furthermore, oxidative stress progressively increased over the years and along with the severity of the disease. The presence of bacterial infection with P. aeruginosa or S. aureus had a slight effect on oxidative stress, while co-infection by two species did not affect the level of oxidative stress.
Collapse
Affiliation(s)
- Sabina Galiniak
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland
- Correspondence: (S.G.); (M.R.); Tel.: +48-17-851-68-38 (S.G.); +48-17-866-46-67 (M.R.)
| | - Mateusz Mołoń
- Department of Biology, Institute of Biology and Biotechnology, Rzeszów University, Zelwerowicza 4, 35-601 Rzeszów, Poland;
| | - Marta Rachel
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Warzywna 1a, 35-310 Rzeszów, Poland
- Department of Allergology and Cystic Fibrosis, State Hospital 2 in Rzeszów, Lwowska 60, 35-301 Rzeszów, Poland
- Correspondence: (S.G.); (M.R.); Tel.: +48-17-851-68-38 (S.G.); +48-17-866-46-67 (M.R.)
| |
Collapse
|
35
|
Vyas HKN, Xia B, Mai-Prochnow A. Clinically relevant in vitro biofilm models: A need to mimic and recapitulate the host environment. Biofilm 2022; 4:100069. [PMID: 36569981 PMCID: PMC9782257 DOI: 10.1016/j.bioflm.2022.100069] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Biofilm-associated infections are difficult to treat and eradicate because of their increased antimicrobial tolerance. In vitro biofilm models have enabled the high throughput testing of an array of differing novel antimicrobials and treatment strategies. However, biofilms formed in these oftentimes basic in vitro systems do not resemble biofilms seen in vivo. As a result, translatability from the lab to the clinic is poor or limited. To improve translatability, in vitro models must better recapitulate the host environment. This review describes and critically evaluates new and innovative in vitro models that better mimic the environments of a variety of clinically important, biofilm-associated infections of the skin, oropharynx, lungs, and infections related to indwelling implants and medical devices. This review highlights that many of these models represent considerable advances in the field of biofilm research and help to translate laboratory findings into the clinical practice.
Collapse
|
36
|
Pseudomonas aeruginosa in the Cystic Fibrosis Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:347-369. [DOI: 10.1007/978-3-031-08491-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|