1
|
Kraft A, Kirschner MB, Orlowski V, Ronner M, Bodmer C, Boeva V, Opitz I, Meerang M. Exploring RNA cargo in extracellular vesicles for pleural mesothelioma detection. BMC Cancer 2025; 25:212. [PMID: 39920655 PMCID: PMC11804012 DOI: 10.1186/s12885-025-13617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Pleural Mesothelioma (PM) is a highly aggressive cancer, for which effective early detection remains a challenge due to limited screening options and low sensitivity of biomarkers discovered so far. While extracellular vesicles (EVs) have emerged as promising candidates for blood-based biomarkers, their role in PM has not been studied yet. In this study, we characterized the transcriptomic profile of EVs secreted by PM primary cells and explored their potential as a biomarker source for PM detection. METHODS We collected cell culture supernatant from early-passage PM cell cultures derived from the pleural effusion of 4 PM patients. EVs were isolated from the supernatant using Qiagen exoEasy Maxi kit. RNA isolation from EVs was done using the mirVana PARIS kit. Finally, single-end RNA sequencing was done with Illumina Novaseq 6000. RESULTS We identified a range of RNA species expressed in EVs secreted by PM cells, including protein-coding RNA (80%), long non-coding RNA (13%), pseudogenes (4.5%), and short non-coding RNA (1.6%). We detected a subset of genes associated with the previously identified epithelioid (32 genes) and sarcomatoid molecular components (36 genes) in PM-EVs. To investigate whether these markers could serve as biomarkers for PM detection in blood, we compared the RNA content of PM-EVs with the cargo of EVs isolated from the plasma of healthy donors (publicly available data). Majority of upregulated genes in PM-EVs were protein-coding and long non-coding RNAs. Interestingly, 25 of them were the sarcomatoid and epithelioid marker genes. Finally, functional analysis revealed that the PM-EV RNA cargo was associated with Epithelial-Mesenchymal transition, glycolysis, and hypoxia. CONCLUSIONS This is the first study to characterize the transcriptomic profile of EVs secreted by PM primary cell cultures, demonstrating their potential as biomarker source for early detection. Further investigation of the functional role of PM-EVs will provide new insights into disease biology and therapeutic avenues.
Collapse
Affiliation(s)
- Agnieszka Kraft
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Institute for Machine Learning, Department of Computer Science, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Michaela B Kirschner
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Vanessa Orlowski
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Manuel Ronner
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Caroline Bodmer
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Valentina Boeva
- Institute for Machine Learning, Department of Computer Science, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
- ETH AI Center, ETH Zurich, Zurich, Switzerland
- UMR 8104, UMR-S1016, Cochin InstituteCNRSParis Descartes University, Inserm U1016, 75014, Paris, France
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mayura Meerang
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Sundaralingam A, Grabczak EM, Burra P, Costa MI, George V, Harriss E, Jankowska EA, Janssen JP, Karpathiou G, Laursen CB, Maceviciute K, Maskell N, Mei F, Nagavci B, Panou V, Pinelli V, Porcel JM, Ricciardi S, Shojaee S, Welch H, Zanetto A, Udayaraj UP, Cardillo G, Rahman NM. ERS statement on benign pleural effusions in adults. Eur Respir J 2024; 64:2302307. [PMID: 39060018 DOI: 10.1183/13993003.02307-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/10/2024] [Indexed: 07/28/2024]
Abstract
The incidence of non-malignant pleural effusions far outweighs that of malignant pleural effusions and is estimated to be at least 3-fold higher. These so-called benign effusions do not follow a "benign course" in many cases, with mortality rates matching and sometimes exceeding those of malignant pleural effusions. In addition to the impact on patients, healthcare systems are also significantly affected, with recent US epidemiological data demonstrating that 75% of resource allocation for pleural effusion management is spent on non-malignant pleural effusions (excluding empyema). Despite this significant burden of disease, and by existing at the junction of multiple medical specialties, reflecting a heterogenous constellation of medical conditions, non-malignant pleural effusions are rarely the focus of research or the subject of management guidelines. With this European Respiratory Society Task Force, we assembled a multispecialty collaborative across 11 countries and three continents to provide a statement based on systematic searches of the medical literature to highlight evidence in the management of the following clinical areas: a diagnostic approach to transudative effusions, heart failure, hepatic hydrothorax, end-stage renal failure, benign asbestos-related pleural effusion, post-surgical effusion and nonspecific pleuritis.
Collapse
Affiliation(s)
- Anand Sundaralingam
- Oxford Respiratory Trials Unit, Churchill Hospital, Headington, UK
- Oxford Pleural Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Elzbieta M Grabczak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - M Inês Costa
- Pulmonology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Vineeth George
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | - Ewa A Jankowska
- Division of Translational Cardiology and Clinical Registries, Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Julius P Janssen
- Dept of Pulmonary Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Georgia Karpathiou
- Pathology Department, University Hospital of Saint Etienne, Saint Etienne, France
| | - Christian B Laursen
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Nick Maskell
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Federico Mei
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Marche, Italy
- Respiratory Disease Unit, University Hospital, Ancona, Italy
| | - Blin Nagavci
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Vasiliki Panou
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Respiratory Diseases, Aalborg University Hospital, Aalborg, Denmark
| | | | - José M Porcel
- Pleural Medicine Unit, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Sara Ricciardi
- Division of Thoracic Surgery, San Camillo Forlanini Hospital, Rome, Italy
- PhD program Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Samira Shojaee
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hugh Welch
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Udaya Prabhakar Udayaraj
- Oxford Kidney Unit, Churchill Hospital, Oxford, UK
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
- Unicamillus, International University of Health Sciences, Rome, Italy
| | - Najib M Rahman
- Oxford Respiratory Trials Unit, Churchill Hospital, Headington, UK
- Oxford Pleural Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Chinese Academy of Medical Health Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Ebrahimi A, Ak G, Özel C, İzgördü H, Ghorbanpoor H, Hassan S, Avci H, Metintaş M. Clinical Perspectives and Novel Preclinical Models of Malignant Pleural Mesothelioma: A Critical Review. ACS Pharmacol Transl Sci 2024; 7:3299-3333. [PMID: 39539262 PMCID: PMC11555512 DOI: 10.1021/acsptsci.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Pleural mesothelioma (PM), a rare malignant tumor explicitly associated with asbestos and erionite exposures, has become a global health problem due to limited treatment options and a poor prognosis, in which the median life expectancy varies depending on the method of treatment. However, the importance of early diagnosis is emphasized, and the practical methods have not matured yet. This study provides a critical overview of PM, addressing various aspects like epidemiology, etiology, diagnosis, treatment options, and the potential use of advanced technologies like microfluidic chip-based models for research and diagnosis. It initially begins with fundamentals of clinical aspects and then discusses the identification of disease-specific biomarkers in patients' serum or plasma samples, which could potentially be used for early diagnosis. A detailed investigation of the sophisticated preclinical models is highlighted. Recent three-dimensional (3D) model accomplishments, including microarchitecture modeling by transwell coculture, spheroids, organoids, 3D bioprinting constructs, and ex vivo tumor slices, are discussed comprehensively. On-chip models that imitate physiological processes, such as detection chips and therapeutic screening chips, are assessed as potential techniques. The review concludes with a critical and constructive discussion of the growing interest in the topic and its limitations and suggestions.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Güntülü Ak
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Ceren Özel
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Hüseyin İzgördü
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Hamed Ghorbanpoor
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Biomedical Engineering, Eskişehir
Osmangazi University, Eskişehir 26040, Turkey
| | - Shabir Hassan
- Department
of Biological Sciences, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Huseyin Avci
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Muzaffer Metintaş
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
4
|
Lira KE, May JC, McLean JA. Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry. Adv Clin Chem 2024; 124:123-160. [PMID: 39818435 DOI: 10.1016/bs.acc.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges. Here, we highlight representative IM applications and approaches and describe contemporary commercial offerings of IM technology and how these can be, or are currently being, applied to the field of clinical chemistry.
Collapse
Affiliation(s)
- Kyle E Lira
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
5
|
Kuligina ES, Yanus GA, Imyanitov EN. Diversity of the Circulating Tumor Markers: Perspectives of a Multimodal Liquid Biopsy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1985-1997. [PMID: 39647827 DOI: 10.1134/s0006297924110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 12/10/2024]
Abstract
Over the past decade, liquid biopsy (LB) has become a routine diagnostic test essential for the treatment of malignant tumors of various localizations. Its capabilities include early diagnosis, molecular genotyping, prognosis, prediction, and monitoring of tumor response. Typically, liquid biopsy involves the extraction of a single type of tumor-derived molecules or cellular elements from blood and subsequent molecular analysis. These elements may include circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), circulating tumor RNA (ctRNA), or contents of extracellular vesicles (exosomes). Despite the technical sophistication of molecular analysis methods for circulating biomarkers, this diagnostic approach has limited relevance. In a significant proportion of cancer patients (ranging from 10 to 50%, depending on the tumor type), none of these analytes can be detected and analyzed, even in the presence of large, progressing neoplastic foci in the body. It seems reasonable to suggest that heterogeneous fractions of the circulating tumor-specific biomarkers complement each other, thus simultaneous analysis of several fractions will not only increase sensitivity of the method but also more accurately characterize and predict the clinical situation. This review examines the possibilities and advantages of applying a combined multiparametric approach to liquid biopsy, which involves testing multiple circulating analytes in a single blood sample.
Collapse
Affiliation(s)
- Ekaterina S Kuligina
- N. N. Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia.
| | - Grigoriy A Yanus
- N. N. Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| | - Evgeny N Imyanitov
- N. N. Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| |
Collapse
|
6
|
Severcan F, Ozyurt I, Dogan A, Severcan M, Gurbanov R, Kucukcankurt F, Elibol B, Tiftikcioglu I, Gursoy E, Yangin MN, Zorlu Y. Decoding myasthenia gravis: advanced diagnosis with infrared spectroscopy and machine learning. Sci Rep 2024; 14:19316. [PMID: 39164310 PMCID: PMC11336246 DOI: 10.1038/s41598-024-66501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/02/2024] [Indexed: 08/22/2024] Open
Abstract
Myasthenia Gravis (MG) is a rare neurological disease. Although there are intensive efforts, the underlying mechanism of MG still has not been fully elucidated, and early diagnosis is still a question mark. Diagnostic paraclinical tests are also time-consuming, burden patients financially, and sometimes all test results can be negative. Therefore, rapid, cost-effective novel methods are essential for the early accurate diagnosis of MG. Here, we aimed to determine MG-induced spectral biomarkers from blood serum using infrared spectroscopy. Furthermore, infrared spectroscopy coupled with multivariate analysis methods e.g., principal component analysis (PCA), support vector machine (SVM), discriminant analysis and Neural Network Classifier were used for rapid MG diagnosis. The detailed spectral characterization studies revealed significant increases in lipid peroxidation; saturated lipid, protein, and DNA concentrations; protein phosphorylation; PO2-asym + sym /protein and PO2-sym/lipid ratios; as well as structural changes in protein with a significant decrease in lipid dynamics. All these spectral parameters can be used as biomarkers for MG diagnosis and also in MG therapy. Furthermore, MG was diagnosed with 100% accuracy, sensitivity and specificity values by infrared spectroscopy coupled with multivariate analysis methods. In conclusion, FTIR spectroscopy coupled with machine learning technology is advancing towards clinical translation as a rapid, low-cost, sensitive novel approach for MG diagnosis.
Collapse
Affiliation(s)
- Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Türkiye.
| | - Ipek Ozyurt
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Ayca Dogan
- Department of Physiology, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Mete Severcan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Türkiye
| | - Rafig Gurbanov
- Department of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Türkiye
| | - Fulya Kucukcankurt
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye
| | - Irem Tiftikcioglu
- Cigli Training and Research Hospital, Neurology Clinic, Bakircay University, İzmir, Türkiye
| | - Esra Gursoy
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye
- Basaksehir Cam and Sakura City Hospital, Neurology Clinics, Istanbul, Türkiye
| | - Melike Nur Yangin
- Biomedical Sciences Graduate Program, Institute of Graduate Studies, Altinbas University, Istanbul, Türkiye
| | - Yasar Zorlu
- Tepecik Educational and Training Hospital, Neurology Department, University of Health Sciences, Izmir, Türkiye
| |
Collapse
|
7
|
Nuvoli B, Sacconi A, Bottillo G, Sciarra F, Libener R, Maconi A, Carosi M, Piperno G, Mastropasqua E, Papale M, Camera E, Galati R. DHEA-S, Androstenedione, 17-β-estradiol signature as novel biomarkers for early prediction of risk of malignant pleural mesothelioma linked to asbestos-exposure: A preliminary investigation. Biomed Pharmacother 2024; 175:116662. [PMID: 38692064 DOI: 10.1016/j.biopha.2024.116662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
17-β-estradiol, involved in mesothelioma pathogenesis, and its precursors were explored as potential biomarkers for the early diagnosis of mesothelioma. Using enzyme-linked immunosorbent assay(ELISA) for 17-β-estradiol and ultra-high performance liquid chromatography/tandem mass spectrometry(UHPLC-MS/MS) for 19 17-β-estradiol precursors, a comprehensive analysis of 20steroid hormones was conducted in the serum of mesothelioma patients(n=67), asbestos-exposed healthy subjects(n=39), and non-asbestos-exposed healthy subjects(n=35). Bioinformatics analysis explored three potential serum biomarkers: 17-β-estradiol, DHEA-S, and androstenedione. The results revealed significant differences in 17-β-estradiol levels between mesothelioma patients and both non-asbestos-exposed and asbestos-exposed healthy subjects. No significant variations in serum 17-β-estradiol levels were observed among mesothelioma patients at different stages, suggesting its potential as an early diagnostic marker. 17-β-estradiol levels were similar in mesothelioma patients with environmental and occupational asbestos exposure, while males with occupational asbestos exposure exhibited significantly higher levels of 17-β-estradiol compared to females. Significant reduction in androstenedione and an increase in DHEA-S were observed in asbestos-exposed individuals compared to non-asbestos-exposed individuals. The analysis of DHEA-S-androstenedione-17-β-estradiol signature score showed an increase in asbestos-exposed individuals and mesothelioma patients compared to non-asbestos-exposed individuals, and this score effectively distinguished between the groups. The Cancer Genome Atlas data was utilized to analyze the expression of 5-α-reductase1 and hydroxysteroid-17β-dehydrogenase2 genes. The findings indicated that mesothelioma patients with elevated gene values for 5-α-reductase1 and hydroxysteroid-17β-dehydrogenase2 have a worse or better prognosis on overall survival, respectively. In conclusion, this study suggests 17-β-estradiol, DHEA-S, and androstenedione as biomarkers for mesothelioma risk and early diagnosis of mesothelioma in asbestos-exposed individuals, aiding timely intervention and improved care.
Collapse
Affiliation(s)
- Barbara Nuvoli
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Grazia Bottillo
- Laboratory of Cutaneous Physiopathology and Integrated Centre for Metabolomics Research. San Gallicano Dermatological Institute - IRCCS, Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberta Libener
- Department of Integrated Activities Research and Innovation, SS Antonio and Biagio and C. Arrigo General Hospital, Alessandria 15121, Italy
| | - Antonio Maconi
- Department of Integrated Activities Research and Innovation, SS Antonio and Biagio and C. Arrigo General Hospital, Alessandria 15121, Italy
| | - Mariantonia Carosi
- Anatomy Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Giorgio Piperno
- Respiratory physiology Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Eliuccia Mastropasqua
- Respiratory physiology Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Maria Papale
- Respiratory physiology Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Centre for Metabolomics Research. San Gallicano Dermatological Institute - IRCCS, Rome, Italy
| | - Rossella Galati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy.
| |
Collapse
|
8
|
Fen FU, Yang ZHANG, Hong SHEN. [Advances in Targeted Therapy for Malignant Pleural Mesothelioma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:391-398. [PMID: 38880927 PMCID: PMC11183316 DOI: 10.3779/j.issn.1009-3419.2024.102.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 06/18/2024]
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer with high malignancy and aggressiveness on the pleural, caused by the following risk factors including asbestos inhalation, genetic factors, and genetic mutation. The present chemotherapy, antiangiogenic therapy, and immunotherapy methods are ineffective and the survival time of patients is very short. There is an urgent need to find potential therapeutic targets for MPM. At present, it has been found the following types of targets: gene mutation targets such as BRCA associated protein 1 (BAP1) and cyclin-dependent kinase 2A (CDKN2A); epigenetic targets such as lysine (K)-specific demethylase 4A (KDM4A) and lysine-specific demethylase 1 (LSD1), and signal protein targets such as glucose-regulated protein 78 (GRP78) and signal transducer and activator of transcription 3 (STAT3). So far, available clinical trials include phase II clinical trials of histone methyltransferase inhibitor Tazemetostat, poly (ADP-ribose) polymerase (PARP) inhibitor Rucaparib and cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor Abemaciclib, as well as phase I clinical trials of mesothelin-targeting chimeric antigen receptor T-cell immunotherapy (CAR-T) cell injection in the thoracic cavity and TEA domain family member (TEAD) inhibitor VT3989 and IK-930, and the results of these trials have showed certain clinical efficacy.
.
Collapse
|
9
|
Scaccaglia M, Pinelli S, Manini L, Ghezzi B, Nicastro M, Heinrich J, Kulak N, Mozzoni P, Pelosi G, Bisceglie F. Gold(III) complexes with thiosemicarbazone ligands: insights into their cytotoxic effects on lung cancer cells. J Inorg Biochem 2024; 251:112438. [PMID: 38029536 DOI: 10.1016/j.jinorgbio.2023.112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Cancer continues to pose a global threat, underscoring the urgent need for more effective and safer treatment options. Gold-based compounds have recently emerged as promising candidates due to their diverse range of biological activities. In this study, three gold(III) complexes derived from thiosemicarbazone ligands have been synthesized, fully characterized, including their X-ray crystal structures. We conducted initial mode-of-action studies on DNA and BSA, followed by a comprehensive investigation into the cytotoxic effects of these novel gold(III) complexes on lung cancer cells (A549, H2052, and H28). The results demonstrated a concentration-dependent cytotoxic response, with H28 cells exhibiting the highest sensitivity to the treatment. Furthermore, the analysis of the cell cycle revealed that these compounds induce cell cycle arrest and promote apoptosis as a response to treatment. We also observed distinct morphological changes and increased oxidative stress, contributing significantly to cell death. Notably, these complexes exhibited the ability to suppress interleukin-6 production in mesothelioma cell lines, and this highlights their anti-inflammatory potential. To gain an initial understanding of cytotoxicity on healthy cells, hemolysis tests were conducted against human blood cells, with no evidence of hemolysis. Furthermore, a toxicity assessment through the in vivo Galleria mellonella model underscored the absence of detectable toxicity. These findings prove that these complexes are promising novel therapeutic agents for lung cancer.
Collapse
Affiliation(s)
- Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Luca Manini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Benedetta Ghezzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126 Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Maria Nicastro
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Julian Heinrich
- Institute of Chemistry, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Nora Kulak
- Institute of Chemistry, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany; Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Golm, Germany
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; CERT, Centre of Excellence for Toxicological Research, University of Parma, 43124 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; CERT, Centre of Excellence for Toxicological Research, University of Parma, 43124 Parma, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; CERT, Centre of Excellence for Toxicological Research, University of Parma, 43124 Parma, Italy
| |
Collapse
|
10
|
Zupanc C, Franko A, Štrbac D, Kovač V, Dolžan V, Goričar K. Serum Calretinin and Genetic Variability as a Prognostic and Predictive Factor in Malignant Mesothelioma. Int J Mol Sci 2023; 25:190. [PMID: 38203360 PMCID: PMC10778798 DOI: 10.3390/ijms25010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Calretinin is a promising diagnostic biomarker for malignant mesothelioma (MM), but less is known about its prognostic role. Our aim was to evaluate the association between serum calretinin concentration or genetic factors and the survival or outcome of cisplatin-based chemotherapy in MM. Our study included 265 MM patients. Serum calretinin concentration was determined using ELISA. Patients were genotyped for seven polymorphisms in CALB2, E2F2, MIR335, NRF1, and SEPTIN7 using competitive allele-specific PCR. Nonparametric tests, logistic regression, and survival analysis were used for statistical analysis. Higher serum calretinin concentration was associated with shorter progression-free (PFS) (HR = 1.18 (1.02-1.37), p = 0.023) and overall survival (OS) (HR = 1.20 (1.03-1.41), p = 0.023), but the association was not significant after adjusting for clinical factors (HR = 1.05 (0.85-1.31), p = 0.653 and HR = 1.06 (0.84-1.34), p = 0.613, respectively). SEPTIN7 rs3801339 and MIR335 rs3807348 were associated with survival even after adjustment (HR = 1.76 (1.17-2.64), p = 0.007 and HR = 0.65 (0.45-0.95), p = 0.028, respectively). Calretinin concentration was higher in patients who progressed after treatment with cisplatin-based chemotherapy (1.68 vs. 0.45 ng/mL, p = 0.001). Calretinin concentration above 0.89 ng/mL was associated with shorter PFS and OS from the start of chemotherapy (HR = 1.88 (1.28-2.77), p = 0.001 and HR = 1.91 (1.22-2.97), p = 0.004, respectively), even after adjusting for clinical factors (p < 0.05). MIR335 rs3807348 was associated with a better response to chemotherapy (OR = 2.69 (1.17-6.18), p = 0.020). We showed that serum calretinin is associated with survival and chemotherapy treatment outcomes in MM and could serve as a predictive biomarker.
Collapse
Affiliation(s)
- Cita Zupanc
- Military Medical Unit-Slovenian Army, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
| | - Alenka Franko
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Clinical Institute of Occupational Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijela Štrbac
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Viljem Kovač
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
11
|
Sorino C, Mondoni M, Marchetti G, Agati S, Inchingolo R, Mei F, Flamini S, Lococo F, Feller-Kopman D. Pleural Mesothelioma: Advances in Blood and Pleural Biomarkers. J Clin Med 2023; 12:7006. [PMID: 38002620 PMCID: PMC10672377 DOI: 10.3390/jcm12227006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Pleural mesothelioma (PM) is a type of cancer that is highly related to exposure to asbestos fibers. It shows aggressive behavior, and the current therapeutic approaches are usually insufficient to change the poor prognosis. Moreover, apart from staging and histological classification, there are no validated predictors of its response to treatment or its long-term outcomes. Numerous studies have investigated minimally invasive biomarkers in pleural fluid or blood to aid in earlier diagnosis and prognostic assessment of PM. The most studied marker in pleural effusion is mesothelin, which exhibits good specificity but low sensitivity, especially for non-epithelioid PM. Other biomarkers found in pleural fluid include fibulin-3, hyaluronan, microRNAs, and CYFRA-21.1, which have lower diagnostic capabilities but provide prognostic information and have potential roles as therapeutic targets. Serum is the most investigated matrix for biomarkers of PM. Several serum biomarkers in PM have been studied, with mesothelin, osteopontin, and fibulin-3 being the most often tested. A soluble mesothelin-related peptide (SMRP) is the only FDA-approved biomarker in patients with suspected mesothelioma. With different serum and pleural fluid cut-offs, it provides useful information on the diagnosis, prognosis, follow-up, and response to therapy in epithelioid PM. Panels combining different markers and proteomics technologies show promise in terms of improving clinical performance in the diagnosis and monitoring of mesothelioma patients. However, there is still no evidence that early detection can improve the treatment outcomes of PM patients.
Collapse
Affiliation(s)
- Claudio Sorino
- Division of Pulmonology, Sant’Anna Hospital of Como, University of Insubria, 21100 Varese, Italy; (C.S.); (S.A.)
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | | | - Sergio Agati
- Division of Pulmonology, Sant’Anna Hospital of Como, University of Insubria, 21100 Varese, Italy; (C.S.); (S.A.)
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Federico Mei
- Respiratory Diseases Unit, Department of Internal Medicine, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy;
| | - Sara Flamini
- Departement of Thoracic Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.F.); (F.L.)
- Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Filippo Lococo
- Departement of Thoracic Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.F.); (F.L.)
- Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - David Feller-Kopman
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
- Division of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| |
Collapse
|
12
|
Wils RS, Jacobsen NR, Vogel U, Roursgaard M, Jensen A, Møller P. Pleural inflammatory response, mesothelin content and DNA damage in mice at one-year after intra-pleural carbon nanotube administration. Toxicology 2023; 499:153662. [PMID: 37923288 DOI: 10.1016/j.tox.2023.153662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Many in vitro and in vivo studies have shown that exposure to carbon nanotubes (CNTs) is associated with inflammation, oxidative stress and genotoxicity, although there is a paucity of studies on these effects in the pleural cavity. In the present study, we investigated adverse outcomes of pleural exposure to multi-walled CNTs (MWCNT-7, NM-401 and NM-403) and single-walled CNTs (NM-411). Female C57BL/6 mice were exposed to 0.2 or 5 µg of CNTs by intra-pleural injection and sacrificed one-year post-exposure. Exposure to long and straight types of MWCNTs (i.e. MWCNT-7 and NM-401) was associated with decreased number of macrophages and increased number of neutrophils and eosinophils in pleural lavage fluid. Increased protein content in the pleural lavage fluid was also observed in mice exposed to MWCNT-7 and NM-401. The concentration of mesothelin was increased in mice exposed to MWCNT-7 and NM-411. Levels of DNA strand breaks and DNA oxidation damage, measured by the comet assay, were unaltered in cells from pleural scrape. Extra-pleural effects were seen in CNT exposed mice, including enlarged and pigmented mediastinal lymph nodes (all four types of CNTs), pericardial plaques (MWCNT-7 and NM-401), macroscopic abnormalities on the liver (MWCNT-7) and ovaries/uterus (NM-411). In conclusion, the results demonstrate that intra-pleural exposure to long and straight MWCNTs is associated with adverse outcomes. Certain observations such as increased content of mesothelin in pleural lavage fluid and ovarian/uterine abnormalities in mice exposed to NM-411 suggests that exposure to SWCNTs may also be associated with some adverse outcomes.
Collapse
Affiliation(s)
- Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5 A, DK-1014 Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Nicklas Raun Jacobsen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark; DTU Food, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5 A, DK-1014 Copenhagen K, Denmark
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5 A, DK-1014 Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5 A, DK-1014 Copenhagen K, Denmark.
| |
Collapse
|
13
|
Zwijsen K, Schillebeeckx E, Janssens E, Cleemput JV, Richart T, Surmont VF, Nackaerts K, Marcq E, van Meerbeeck JP, Lamote K. Determining the clinical utility of a breath test for screening an asbestos-exposed population for pleural mesothelioma: baseline results. J Breath Res 2023; 17:047105. [PMID: 37683624 DOI: 10.1088/1752-7163/acf7e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Pleural mesothelioma (PM) is an aggressive cancer of the serosal lining of the thoracic cavity, predominantly caused by asbestos exposure. Due to nonspecific symptoms, PM is characterized by an advanced-stage diagnosis, resulting in a dismal prognosis. However, early diagnosis improves patient outcome. Currently, no diagnostic biomarkers or screening tools are available. Therefore, exhaled breath was explored as this can easily be obtained and contains volatile organic compounds, which are considered biomarkers for multiple (patho)physiological processes. A breath test, which differentiates asbestos-exposed (AEx) individuals from PM patients with 87% accuracy, was developed. However, before being implemented as a screening tool, the clinical utility of the test must be determined. Occupational AEx individuals underwent annual breath tests using multicapillary column/ion mobility spectrometry. A baseline breath test was taken and their individual risk of PM was estimated. PM patients were included as controls. In total, 112 AEx individuals and six PM patients were included in the first of four screening rounds. All six PM patients were correctly classified as having mesothelioma (100% sensitivity) and out of 112 AEx individuals 78 were classified by the breath-based model as PM patients (30% specificity). Given the large false positive outcome, the breath test will be repeated annually for three more consecutive years to adhere to the 'test, re-test' principle and improve the false positivity rate. A low-dose computed tomography scan in those with two consecutive positive tests will correlate test positives with radiological findings and the possible growth of a pleural tumor. Finally, the evaluation of the clinical value of a breath-based prediction model may lead to the initiation of a screening program for early detection of PM in Aex individuals, which is currently lacking. This clinical study received approval from the Antwerp University Hospital Ethics Committee (B300201837007).
Collapse
Affiliation(s)
- Kathleen Zwijsen
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Eline Schillebeeckx
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Joris Van Cleemput
- Occupational Health Service, Eternit N.V., 1880 Kapelle-op-den-Bos, Belgium
| | | | - Veerle F Surmont
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Kristiaan Nackaerts
- Department of Respiratory Medicine, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
| | - Jan P van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Department of Pulmonology & Thoracic Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
14
|
Mosleh B, Schelch K, Mohr T, Klikovits T, Wagner C, Ratzinger L, Dong Y, Sinn K, Ries A, Berger W, Grasl‐Kraupp B, Hoetzenecker K, Laszlo V, Dome B, Hegedus B, Jakopovic M, Hoda MA, Grusch M. Circulating FGF18 is decreased in pleural mesothelioma but not correlated with disease prognosis. Thorac Cancer 2023; 14:2177-2186. [PMID: 37340889 PMCID: PMC10396789 DOI: 10.1111/1759-7714.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is a relatively rare malignancy with limited treatment options and dismal prognosis. We have previously found elevated FGF18 expression in PM tissue specimens compared with normal mesothelium. The objective of the current study was to further explore the role of FGF18 in PM and evaluate its suitability as a circulating biomarker. METHODS FGF18 mRNA expression was analyzed by real-time PCR in cell lines and in silico in datasets from the Cancer Genome Atlas (TCGA). Cell lines overexpressing FGF18 were generated by retroviral transduction and cell behavior was investigated by clonogenic growth and transwell assays. Plasma was collected from 40 PM patients, six patients with pleural fibrosis, and 40 healthy controls. Circulating FGF18 was measured by ELISA and correlated to clinicopathological parameters. RESULTS FGF18 showed high mRNA expression in PM and PM-derived cell lines. PM patients with high FGF18 mRNA expression showed a trend toward longer overall survival (OS) in the TCGA dataset. In PM cells with low endogenous FGF18 expression, forced overexpression of FGF18 resulted in reduced growth but increased migration. Surprisingly, despite the high FGF18 mRNA levels observed in PM, circulating FGF18 protein was significantly lower in PM patients and patients with pleural fibrosis than in healthy controls. No significant association of circulating FGF18 with OS or other disease parameters of PM patients was observed. CONCLUSIONS FGF18 is not a prognostic biomarker in PM. Its role in PM tumor biology and the clinical significance of decreased plasma FGF18 in PM patients warrant further investigation.
Collapse
Affiliation(s)
- Berta Mosleh
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Karin Schelch
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Thomas Klikovits
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Christina Wagner
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Lukas Ratzinger
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Yawen Dong
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Katharina Sinn
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Alexander Ries
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Walter Berger
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | | | | | - Viktoria Laszlo
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Balazs Dome
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
- National Koranyi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgeryNational Institute of Oncology‐Semmelweis UniversityBudapestHungary
| | - Balazs Hegedus
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Marko Jakopovic
- Department for Respiratory Diseases JordanovacUniversity of Zagreb School of Medicine, University Hospital Centre ZagrebZagrebCroatia
| | - Mir Alireza Hoda
- Department of Thoracic SurgeryMedical University of ViennaViennaAustria
| | - Michael Grusch
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
15
|
Digifico E, Erreni M, Mannarino L, Marchini S, Ummarino A, Anfray C, Bertola L, Recordati C, Pistillo D, Roncalli M, Bossi P, Zucali PA, D’Incalci M, Belgiovine C, Allavena P. Important functional role of the protein osteopontin in the progression of malignant pleural mesothelioma. Front Immunol 2023; 14:1116430. [PMID: 37398648 PMCID: PMC10312076 DOI: 10.3389/fimmu.2023.1116430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
Background Malignant Pleural Mesothelioma (MPM) is an aggressive cancer of the mesothelial lining associated with exposure to airborne non-degradable asbestos fibers. Its poor response to currently available treatments prompted us to explore the biological mechanisms involved in its progression. MPM is characterized by chronic non-resolving inflammation; in this study we investigated which inflammatory mediators are mostly expressed in biological tumor samples from MPM patients, with a focus on inflammatory cytokines, chemokines and matrix components. Methods Expression and quantification of Osteopontin (OPN) was detected in tumor and plasma samples of MPM patients by mRNA, immunohistochemistry and ELISA. The functional role of OPN was investigated in mouse MPM cell lines in vivo using an orthotopic syngeneic mouse model. Results In patients with MPM, the protein OPN was significantly more expressed in tumors than in normal pleural tissues and predominantly produced by mesothelioma cells; plasma levels were elevated in patients and associated with poor prognosis. However, modulation of OPN levels was not significantly different in a series of 18 MPM patients receiving immunotherapy with durvalumab alone or with pembrolizumab in combination with chemotherapy, some of whom achieved a partial clinical response. Two established murine mesothelioma cell lines: AB1 and AB22 of sarcomatoid and epithelioid histology, respectively, spontaneously produced high levels of OPN. Silencing of the OPN gene (Spp1) dramatically inhibited tumor growth in vivo in an orthotopic model, indicating that OPN has an important promoting role in the proliferation of MPM cells. Treatment of mice with anti-CD44 mAb, blocking a major OPN receptor, significantly reduced tumor growth in vivo. Conclusion These results demonstrate that OPN is an endogenous growth factor for mesothelial cells and inhibition of its signaling may be helpful to restrain tumor progression in vivo. These findings have translational potential to improve the therapeutic response of human MPM.
Collapse
Affiliation(s)
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, Milano, Italy
| | - Laura Mannarino
- Lab. Cancer Pharmacology, IRCCS Humanitas Research Hospital, Milano, Italy
- Department Biomedical Sciences, Humanitas University, Milano, Italy
| | - Sergio Marchini
- Lab. Cancer Pharmacology, IRCCS Humanitas Research Hospital, Milano, Italy
| | - Aldo Ummarino
- Department Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department Biomedical Sciences, Humanitas University, Milano, Italy
| | - Clément Anfray
- Department Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Bertola
- Mouse and Animal Pathology Lab., Fondazione Unimi, and Department of Veterinary Medicine and Animal Sciences, University of Milano, Lodi, Italy
| | - Camilla Recordati
- Mouse and Animal Pathology Lab., Fondazione Unimi, and Department of Veterinary Medicine and Animal Sciences, University of Milano, Lodi, Italy
| | - Daniela Pistillo
- Biobank, Humanitas IRCCS Humanitas Research Hospital, Milano, Italy
| | - Massimo Roncalli
- Department Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paola Bossi
- Department Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo Andrea Zucali
- Department Biomedical Sciences, Humanitas University, Milano, Italy
- Department Oncology, IRCCS Humanitas Research Hospital, Milano, Italy
| | - Maurizio D’Incalci
- Lab. Cancer Pharmacology, IRCCS Humanitas Research Hospital, Milano, Italy
- Department Biomedical Sciences, Humanitas University, Milano, Italy
| | | | - Paola Allavena
- Department Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department Biomedical Sciences, Humanitas University, Milano, Italy
| |
Collapse
|
16
|
Zhang Y, Li J, Zhang S. Prognostic significance of inflammation-related and electrolyte laboratory variables in patients with malignant pleural mesothelioma. Front Med (Lausanne) 2023; 10:1099685. [PMID: 37089600 PMCID: PMC10114925 DOI: 10.3389/fmed.2023.1099685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
ObjectiveMalignant pleural mesothelioma (MPM) is a kind of pleural cancer characterized by low incidence but high invasiveness. There is heterogeneity in survival among patients with MPM. Inflammation-related and electrolyte laboratory variables were previously reported as potential predictors of survival. We evaluated the relationship between overall survival and pre-treatment biomarkers.Materials and methodsPatients diagnosed with MPM in Beijing Chaoyang Hospital for more than 10 years were screened for this study. All basic, clinical, radiologic and laboratory variables were collected. The COX univariable and multivariable analysis were used to explore prognostic related risk factors.ResultsNinety patients with MPM were included. The median follow-up of all patients was 57 months [interquartile range (IQR): 27–100 months]. The median survival time was 24 months (IQR: 12–52 months). Univariate survival analyses indicated that age, Eastern Cooperative Oncology Group Performance Status, treatment, erythrocyte sedimentation rate, calcium, lymphocyte, hemoglobin, platelet-to-lymphocyte ratio (PLR), and monocyte-to-white blood cell ratio (MWR) were significantly related to survival. Multivariable analysis demonstrated that age [hazard ratio (HR), 2.548; 95% confidence interval (CI) 1.145–5.666; p = 0.022], calcium (HR, 0.480; 95% CI 0.270–0.855; p = 0.013), PLR (HR, 2.152; 95% CI 1.163–3.981; p = 0.015), and MWR (HR, 3.360; 95% CI 1.830–6.170; p < 0.001) might have a significant impact on the prognosis.ConclusionCalcium, MWR, and PLR might be related to the prognosis of MPM patients. Analyzing the relationship between the results of inflammation-related and electrolyte laboratory variables in peripheral blood and prognosis could help clinicians evaluate the situation of patients.
Collapse
Affiliation(s)
| | - Jie Li
- *Correspondence: Shu Zhang, ; Jie Li,
| | - Shu Zhang
- *Correspondence: Shu Zhang, ; Jie Li,
| |
Collapse
|
17
|
Palstrøm NB, Overgaard M, Licht P, Beck HC. Identification of Highly Sensitive Pleural Effusion Protein Biomarkers for Malignant Pleural Mesothelioma by Affinity-Based Quantitative Proteomics. Cancers (Basel) 2023; 15:cancers15030641. [PMID: 36765599 PMCID: PMC9913626 DOI: 10.3390/cancers15030641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-associated, highly aggressive cancer characterized by late-stage diagnosis and poor prognosis. Gold standards for diagnosis are pleural biopsy and cytology of pleural effusion (PE), both of which are limited by low sensitivity and markedly inter-observer variations. Therefore, the assessment of PE biomarkers is considered a viable and objective diagnostic tool for MPM diagnosis. We applied a novel affinity-enrichment mass spectrometry-based proteomics method for explorative analysis of pleural effusions from a prospective cohort of 84 patients referred for thoracoscopy due to clinical suspicion of MPM. Protein biomarkers with a high capability to discriminate MPM from non-MPM patients were identified, and a Random Forest algorithm was applied for building classification models. Immunohistology of pleural biopsies confirmed MPM in 40 patients and ruled out MPM in 44 patients. Proteomic analysis of pleural effusions identified panels of proteins with excellent diagnostic properties (90-100% sensitivities, 89-98% specificities, and AUC 0.97-0.99) depending on the specific protein combination. Diagnostic proteins associated with cancer growth included galactin-3 binding protein, testican-2, haptoglobin, Beta ig-h3, and protein AMBP. Moreover, we also confirmed previously reported diagnostic accuracies of the MPM markers fibulin-3 and mesothelin measured by two complementary mass spectrometry-based methods. In conclusion, a novel affinity-enrichment mass spectrometry-based proteomics identified panels of proteins in pleural effusion with extraordinary diagnostic accuracies, which are described here for the first time as biomarkers for MPM.
Collapse
Affiliation(s)
- Nicolai B. Palstrøm
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Martin Overgaard
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Peter Licht
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Hans C. Beck
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Correspondence:
| |
Collapse
|
18
|
Wang JJ, Yan L. Serum diagnostic markers for malignant pleural mesothelioma: a narrative review. Transl Cancer Res 2022; 11:4434-4440. [PMID: 36644178 PMCID: PMC9834602 DOI: 10.21037/tcr-22-2873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Background and Objective The prognosis of patients with malignant pleural mesothelioma (MPM) is poor, and early diagnosis is key to improving the prognosis. Pleural biopsy is the gold reference for diagnosing MPM, but it is an invasive method that can cause operation-related complications such as bleeding and infection. Serum biomarkers, with the advantages of mini-invasiveness, short turnaround time and objectiveness, represent a promising diagnostic tool for MPM. Methods We searched the PubMed database to identify clinical studies published between 1990 to July 2022 that investigated the diagnostic accuracy of serum biomarkers for MPM. The major findings of the verified studies were summarized. Key Content and Findings Currently, there are many available serum markers for MPM, including mesothelin, soluble mesothelin-related peptides, osteopontin, fibulin-3, high mobility group box 1, and microRNA. Systematic review and meta-analysis evidence indicates that the sensitivity and specificity of these serum markers are less than 0.90. In addition, a large portion of previous studies have limitations, especially the representativeness of the study cohort. Conclusions The diagnostic accuracy of currently available serum biomarkers is unsatisfactory, and further studies are needed to investigate novel serum biomarkers.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
19
|
Role of Prosaposin and Extracellular Sulfatase Sulf-1 Detection in Pleural Effusions as Diagnostic Biomarkers of Malignant Mesothelioma. Biomedicines 2022; 10:biomedicines10112803. [PMID: 36359323 PMCID: PMC9687327 DOI: 10.3390/biomedicines10112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Malignant pleural mesothelioma is an aggressive malignancy with poor prognosis. Unilateral pleural effusion is frequently the initial clinical sign requiring therapeutic thoracentesis, which also offers a diagnostic opportunity. Detection of soluble biomarkers can support diagnosis, but few show good diagnostic accuracy. Here, we studied the expression levels and discriminative power of two putative biomarkers, prosaposin and extracellular sulfatase SULF-1, identified by proteomic and transcriptomic analysis, respectively. Pleural effusions from a total of 44 patients (23 with mesothelioma, 8 with lung cancer, and 13 with non-malignant disease) were analyzed for prosaposin and SULF-1 by enzyme-linked immunosorbent assay. Pleural effusions from mesothelioma patients had significantly higher levels of prosaposin and SULF-1 than those from non-malignant disease patients. Receiver-operating characteristic (ROC) analysis showed that both biomarkers have good discriminating power as pointed out by an AUC value of 0.853 (p = 0.0005) and 0.898 (p < 0.0001) for prosaposin and SULF-1, respectively. Combining data ensued a model predicting improvement of the diagnostic performance (AUC = 0.916, p < 0.0001). In contrast, prosaposin couldn’t discriminate mesothelioma patients from lung cancer patients while ROC analysis of SULF-1 data produced an AUC value of 0.821 (p = 0.0077) but with low sensitivity. In conclusion, prosaposin and SULF-1 levels determined in pleural effusion may be promising biomarkers for differential diagnosis between mesothelioma and non-malignant pleural disease. Instead, more patients need to be enrolled before granting the possible usefulness of these soluble proteins in differentiating mesothelioma pleural effusions from those linked to lung cancer.
Collapse
|
20
|
Roshini A, Goparaju C, Kundu S, Nandhu MS, Longo SL, Longo JA, Chou J, Middleton FA, Pass HI, Viapiano MS. The extracellular matrix protein fibulin-3/EFEMP1 promotes pleural mesothelioma growth by activation of PI3K/Akt signaling. Front Oncol 2022; 12:1014749. [PMID: 36303838 PMCID: PMC9593058 DOI: 10.3389/fonc.2022.1014749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited therapeutic options. The extracellular matrix protein fibulin-3/EFEMP1 accumulates in the pleural effusions of MPM patients and has been proposed as a prognostic biomarker of these tumors. However, it is entirely unknown whether fibulin-3 plays a functional role on MPM growth and progression. Here, we demonstrate that fibulin-3 is upregulated in MPM tissue, promotes the malignant behavior of MPM cells, and can be targeted to reduce tumor progression. Overexpression of fibulin-3 increased the viability, clonogenic capacity and invasion of mesothelial cells, whereas fibulin-3 knockdown decreased these phenotypic traits as well as chemoresistance in MPM cells. At the molecular level, fibulin-3 activated PI3K/Akt signaling and increased the expression of a PI3K-dependent gene signature associated with cell adhesion, motility, and invasion. These pro-tumoral effects of fibulin-3 on MPM cells were disrupted by PI3K inhibition as well as by a novel, function-blocking, anti-fibulin-3 chimeric antibody. Anti-fibulin-3 antibody therapy tested in two orthotopic models of MPM inhibited fibulin-3 signaling, resulting in decreased tumor cell proliferation, reduced tumor growth, and extended animal survival. Taken together, these results demonstrate for the first time that fibulin-3 is not only a prognostic factor of MPM but also a relevant molecular target in these tumors. Further development of anti-fibulin-3 approaches are proposed to increase early detection and therapeutic impact against MPM.
Collapse
Affiliation(s)
- Arivazhagan Roshini
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Chandra Goparaju
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Somanath Kundu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Mohan S. Nandhu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Sharon L. Longo
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - John A. Longo
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Joan Chou
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Frank A. Middleton
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Mariano S. Viapiano,
| |
Collapse
|
21
|
Janssens E, Schillebeeckx E, Zwijsen K, Raskin J, Van Cleemput J, Surmont VF, Nackaerts K, Marcq E, van Meerbeeck JP, Lamote K. External Validation of a Breath-Based Prediction Model for Malignant Pleural Mesothelioma. Cancers (Basel) 2022; 14:cancers14133182. [PMID: 35804954 PMCID: PMC9264774 DOI: 10.3390/cancers14133182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Malignant pleural mesothelioma (MPM) is an incurable asbestos-related thoracic cancer for which early-stage diagnosis remains a major challenge. Volatile organic compounds (VOCs), which are metabolites present in exhaled breath, have proven to be promising non-invasive biomarkers for MPM. However, without the necessary validation in an independent group of individuals, clinical implementation is hampered. Therefore, we performed external validation of a VOC-based prediction model for MPM, which initially revealed a poor performance and thus poor generalisability of the model. However, subsequent updating of the model improved its performance in the validation cohort, resulting in a more generalisable model with a screening potential, which could significantly impact MPM management. Abstract During the past decade, volatile organic compounds (VOCs) in exhaled breath have emerged as promising biomarkers for malignant pleural mesothelioma (MPM). However, as these biomarkers lack external validation, no breath test for MPM has been implemented in clinical practice. To address this issue, we performed the first external validation of a VOC-based prediction model for MPM. The external validation cohort was prospectively recruited, consisting of 47 MPM patients and 76 asbestos-exposed (AEx) controls. The predictive performance of the previously developed model was assessed by determining the degree of agreement between the predicted and actual outcome of the participants (patient/control). Additionally, to optimise the performance, the model was updated by refitting it to the validation cohort. External validation revealed a poor performance of the original model as the accuracy was estimated at only 41%, indicating poor generalisability. However, subsequent updating of the model improved the differentiation between MPM patients and AEx controls significantly (73% accuracy, 92% sensitivity, and 92% negative predictive value), substantiating the validity of the original predictors. This updated model will be more generalisable to the target population and exhibits key characteristics of a potential screening test for MPM, which could significantly impact MPM management.
Collapse
Affiliation(s)
- Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium; (E.J.); (E.S.); (K.Z.); (J.P.v.M.)
| | - Eline Schillebeeckx
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium; (E.J.); (E.S.); (K.Z.); (J.P.v.M.)
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Kathleen Zwijsen
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium; (E.J.); (E.S.); (K.Z.); (J.P.v.M.)
| | - Jo Raskin
- Department of Pulmonology & Thoracic Oncology, Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Joris Van Cleemput
- Occupational Health Service, Eternit N.V., 1880 Kapelle-op-den-Bos, Belgium;
| | - Veerle F. Surmont
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Kristiaan Nackaerts
- Department of Respiratory Medicine, University Hospital Gasthuisberg, 3000 Leuven, Belgium;
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium;
| | - Jan P. van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium; (E.J.); (E.S.); (K.Z.); (J.P.v.M.)
- Department of Pulmonology & Thoracic Oncology, Antwerp University Hospital, 2650 Edegem, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium; (E.J.); (E.S.); (K.Z.); (J.P.v.M.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-3-265-25-81
| |
Collapse
|
22
|
Yonar D, Severcan M, Gurbanov R, Sandal A, Yilmaz U, Emri S, Severcan F. Rapid diagnosis of malignant pleural mesothelioma and its discrimination from lung cancer and benign exudative effusions using blood serum. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166473. [PMID: 35753541 DOI: 10.1016/j.bbadis.2022.166473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023]
Abstract
Malignant pleural mesothelioma (MPM), an aggressive cancer associated with exposure to fibrous minerals, can only be diagnosed in the advanced stage because its early symptoms are also connected with other respiratory diseases. Hence, understanding the molecular mechanism and the discrimination of MPM from other lung diseases at an early stage is important to apply effective treatment strategies and for the increase in survival rate. This study aims to develop a new approach for characterization and diagnosis of MPM among lung diseases from serum by Fourier transform infrared spectroscopy (FTIR) coupled with multivariate analysis. The detailed spectral characterization studies indicated the changes in lipid biosynthesis and nucleic acids levels in the malignant serum samples. Furthermore, the results showed that healthy, benign exudative effusion, lung cancer, and MPM groups were successfully separated from each other by applying principal component analysis (PCA), support vector machine (SVM), and especially linear discriminant analysis (LDA) to infrared spectra.
Collapse
Affiliation(s)
- Dilek Yonar
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey; Yuksek Ihtisas University, Faculty of Medicine, Biophysics Department, Ankara, Turkey
| | - Mete Severcan
- Middle East Technical University, Department of Electrical and Electronics Engineering, Ankara, Turkey
| | - Rafig Gurbanov
- Bilecik Seyh Edebali University, Department of Bioengineering, Bilecik, Turkey
| | - Abdulsamet Sandal
- Hacettepe University, Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey; Ankara Occupational and Environmental Diseases Hospital, Ankara, Turkey
| | - Ulku Yilmaz
- Atatürk Chest Diseases and Chest Surgery Training and Research Hospital, Ankara, Turkey
| | - Salih Emri
- Hacettepe University, Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey; Medicana Hospital, Department of Chest Diseases, Kadikoy, Istanbul, Turkey
| | - Feride Severcan
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey; Altinbas University, Faculty of Medicine, Biophysics Department, Istanbul, Turkey.
| |
Collapse
|
23
|
Janssens E, Mol Z, Vandermeersch L, Lagniau S, Vermaelen KY, van Meerbeeck JP, Walgraeve C, Marcq E, Lamote K. Headspace Volatile Organic Compound Profiling of Pleural Mesothelioma and Lung Cancer Cell Lines as Translational Bridge for Breath Research. Front Oncol 2022; 12:851785. [PMID: 35600344 PMCID: PMC9120820 DOI: 10.3389/fonc.2022.851785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 01/05/2023] Open
Abstract
IntroductionMalignant pleural mesothelioma (MPM) is a lethal cancer for which early-stage diagnosis remains a major challenge. Volatile organic compounds (VOCs) in breath proved to be potential biomarkers for MPM diagnosis, but translational studies are needed to elucidate which VOCs originate from the tumor itself and thus are specifically related to MPM cell metabolism.MethodsAn in vitro model was set-up to characterize the headspace VOC profiles of six MPM and two lung cancer cell lines using thermal desorption-gas chromatography-mass spectrometry. A comparative analysis was carried out to identify VOCs that could discriminate between MPM and lung cancer, as well as between the histological subtypes within MPM (epithelioid, sarcomatoid and biphasic).ResultsVOC profiles were identified capable of distinguishing MPM (subtypes) and lung cancer cells with high accuracy. Alkanes, aldehydes, ketones and alcohols represented many of the discriminating VOCs. Discrepancies with clinical findings were observed, supporting the need for studies examining breath and tumor cells of the same patients and studying metabolization and kinetics of in vitro discovered VOCs in a clinical setting.ConclusionWhile the relationship between in vitro and in vivo VOCs is yet to be established, both could complement each other in generating a clinically useful breath model for MPM.
Collapse
Affiliation(s)
- Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Zoë Mol
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Lore Vandermeersch
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Sabrina Lagniau
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Tumor Immunology Lab, Ghent University, Ghent, Belgium
| | - Karim Y. Vermaelen
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Tumor Immunology Lab, Ghent University, Ghent, Belgium
| | - Jan P. van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Christophe Walgraeve
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- *Correspondence: Kevin Lamote,
| |
Collapse
|
24
|
Porcel JM. Mesotelioma pleural. Med Clin (Barc) 2022; 159:240-247. [DOI: 10.1016/j.medcli.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
25
|
Volpi F, D’Amore CA, Colligiani L, Milazzo A, Cavaliere S, De Liperi A, Neri E, Romei C. The Use of Chest Magnetic Resonance Imaging in Malignant Pleural Mesothelioma Diagnosis. Diagnostics (Basel) 2022; 12:diagnostics12030750. [PMID: 35328305 PMCID: PMC8946868 DOI: 10.3390/diagnostics12030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
In recent years, many articles have demonstrated that magnetic resonance imaging (MRI) may be performed successfully in the study of the chest. The aim of this study was to evaluate the potential role of MRI in the differentiation of benign from malignant pleural disease with a special focus on malignant pleural mesothelioma and on MRI protocols. A systematic literature search was performed to find original articles about chest MRI in patients with either benign or malignant pleural disease. We retrieved 1246 papers and 17 studies were finally identified as being in accordance with our purpose. For a morphologic assessment, T1-weighted and T2-weighted sequences were usually performed, eventually associated with T1 post-contrast sequences for better detection of pleural lesions. Functional sequences such as Diffusion Weighting Imaging (DWI), associated with the evaluation of Apparent Diffusion Coefficient (ADC) maps, were lately and gradually introduced in chest MRI protocols and their potentiality in differentiating benign from malignant disease has been investigated by many authors. Many progresses have been performed to improve quality images and diagnostic performances of MRI. A better and early identification of pleural disease may be obtained, providing MRI as a possible tool that can differentiate malignant from benign pleural disease without using invasive procedures.
Collapse
Affiliation(s)
- Federica Volpi
- Department of Translational Research, Academic Radiology, University of Pisa, 56126 Pisa, Italy; (F.V.); (C.A.D.); (L.C.); (A.M.); (E.N.)
| | - Caterina A. D’Amore
- Department of Translational Research, Academic Radiology, University of Pisa, 56126 Pisa, Italy; (F.V.); (C.A.D.); (L.C.); (A.M.); (E.N.)
| | - Leonardo Colligiani
- Department of Translational Research, Academic Radiology, University of Pisa, 56126 Pisa, Italy; (F.V.); (C.A.D.); (L.C.); (A.M.); (E.N.)
| | - Alessio Milazzo
- Department of Translational Research, Academic Radiology, University of Pisa, 56126 Pisa, Italy; (F.V.); (C.A.D.); (L.C.); (A.M.); (E.N.)
| | - Silvia Cavaliere
- Department of Diagnostic Imaging, Diagnostic Radiology 2, Pisa University Hospital, 56124 Pisa, Italy; (S.C.); (A.D.L.)
| | - Annalisa De Liperi
- Department of Diagnostic Imaging, Diagnostic Radiology 2, Pisa University Hospital, 56124 Pisa, Italy; (S.C.); (A.D.L.)
| | - Emanuele Neri
- Department of Translational Research, Academic Radiology, University of Pisa, 56126 Pisa, Italy; (F.V.); (C.A.D.); (L.C.); (A.M.); (E.N.)
| | - Chiara Romei
- Department of Diagnostic Imaging, Diagnostic Radiology 2, Pisa University Hospital, 56124 Pisa, Italy; (S.C.); (A.D.L.)
- Correspondence:
| |
Collapse
|
26
|
Ferrari L, Iodice S, Cantone L, Dallari B, Dioni L, Bordini L, Palleschi A, Mensi C, Pesatori AC. Identification of a new potential plasmatic biomarker panel for the diagnosis of malignant pleural mesothelioma. LA MEDICINA DEL LAVORO 2022; 113:e2022052. [PMID: 36475505 PMCID: PMC9766837 DOI: 10.23749/mdl.v113i6.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare highly aggressive tumor strongly associated with asbestos exposure and characterized by poor prognosis. Currently, diagnosis is based on invasive techniques, thus there is a need of identifying non-invasive biomarkers for early detection of the disease among asbestos-exposed subjects. In the present study, we measured the plasmatic concentrations of Mesothelin, Fibulin-3, and HMGB1 protein biomarkers, and of hsa-miR-30e-3p and hsa-miR-103a-3p Extracellular-Vesicles- embedded micro RNAs (EV-miRNAs). We tested the ability of these biomarkers to discriminate between MPM and PAE subjects alone and in combination. METHODS the study was conducted on a population of 26 patients with MPM and 54 healthy subjects with previous asbestos exposure (PAE). Mesothelin, Fibulin-3, and HMGB1 protein biomarkers were measured by the enzyme-linked immunosorbent assay (ELISA) technique; the levels of hsa-miR-30e-3p and hsa-miR-103a-3p EV-miRNAs was assessed by quantitative real-time PCR (qPCR). RESULTS the most discriminating single biomarker resulted to be Fibulin-3 (AUC 0.94 CI 95% 0.88-1.0; Sensitivity 88%; Specificity 87%). After investigating the different possible combinations, the best performance was obtained by the three protein biomarkers Mesothelin, Fibulin-3, and HMGB1 (AUC 0.99 CI 95% 0.97-1.0; Sensitivity 96%; Specificity 93%). CONCLUSIONS the results obtained contribute to identifying new potential non-invasive biomarkers for the early diagnosis of MPM in high-risk asbestos-exposed subjects. Further studies are needed to validate the evidence obtained, in order to assess the reliability of the proposed biomarker panel.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Iodice
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Cantone
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Barbara Dallari
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Dioni
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bordini
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Palleschi
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Carolina Mensi
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|