1
|
Ban J, Qian J, Zhang C, Li J. Recent advances in TAM mechanisms in lung diseases. J Transl Med 2025; 23:479. [PMID: 40287707 PMCID: PMC12032715 DOI: 10.1186/s12967-025-06398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
TYRO3, MERTK, and AXL receptor tyrosine kinases, collectively known as TAM receptors, play a vital role in maintaining lung tissue homeostasis by regulating integrity and self-renewal. These receptors activate signalling pathways that inhibit apoptosis, promote cell proliferation and differentiation, mediate cell adhesion and migration, and perform other essential biological functions. Additionally, TAM receptors are implicated in mechanisms that suppress anti-tumor immunity and confer resistance to immune checkpoint inhibitors. Disruption of the homeostatic balances can lead to pathological conditions such as lung inflammation, fibrosis, or tumors. Recent studies highlight their significant role in COVID-19-induced lung injury. However, the exact mechanisms by which TAM receptors contribute to lung diseases remain unclear. This article reviews the potential mechanisms of TAM receptor involvement in disease progression, focusing on lung inflammation, fibrosis, cancer, and COVID-19-induced lung injury. It also explores future research aspects and the therapeutic potentials of targeting TAM receptors, providing a theoretical foundation for understanding lung disease mechanisms and identifying treatment targets.
Collapse
Affiliation(s)
- Jiaqi Ban
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China
| | - Jiayi Qian
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China
| | - Chi Zhang
- School of Clinical Medicine, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, People's Republic of China
| | - Jun Li
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China.
| |
Collapse
|
2
|
Moen EV, Prior TS, Kreuter M, Wuyts WA, Molina-Molina M, Wijsenbeek M, Morais A, Tzouvelekis A, Ryerson CJ, Caro F, Buendia-Roldan I, Magnusson JM, Lee JS, Morisett J, Oldham JM, Troy LK, Funke-Chambour M, Alberti ML, Borie R, Walsh SLF, Rajan S, Kondoh Y, Khor YH, Bendstrup E. Diagnosis, screening, and follow-up of patients with familial interstitial lung disease: Results from an international survey. BMC Pulm Med 2025; 25:59. [PMID: 39901224 PMCID: PMC11792556 DOI: 10.1186/s12890-025-03532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Advances in the field of genetics of interstitial lung diseases (ILDs) have led to the recent consensus statements made by expert groups. International standards for genetic testing in ILD have not yet been established. We aimed to examine current real-world strategies employed by pulmonologists working with familial ILD. METHODS A panel of pulmonologists with expertise in ILD developed an international survey aimed at clinicians working with ILD. The survey consisted of 74 questions divided into eight topics: characteristics of respondents, diagnosis, screening of first-degree relatives, screening tools, genetic testing methods, lung transplantation, ethical concerns, and future needs. RESULTS Overall, 237 pulmonologists from 50 countries participated. A family history of ILD was asked for by 91% of respondents while fewer asked for symptoms related to telomere disorders. Respondents stated that 59% had access to genetic testing, and 30% to a genetic multidisciplinary team (MDT). Many respondents were unaware of specific genetic testing methods. Pathogenic genetic variants were seen as a potential contraindication for lung transplantation in 6-8% of respondents. Genetic screening of relatives was supported by 80% of respondents who indicated insufficient evidence and a lack of formal guidelines for genetics and ILD. Only 16% had a standardized program. CONCLUSION Most pulmonologists ask for a family history of ILD and recommend genetic testing for ILD and screening in relatives but have limited knowledge of specific tests and access to genetic MDT. Evidence-based guidelines to inform patients, relatives, and physicians are still warranted.
Collapse
Affiliation(s)
- Emil Vilstrup Moen
- Department of Respiratory Diseases and Allergy, Centre for Rare Lung Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | - Thomas Skovhus Prior
- Department of Respiratory Diseases and Allergy, Centre for Rare Lung Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Kreuter
- Lung Center Mainz, Department of Pneumology, Mainz University Medical Center and Department of Pulmonary, Critical Care & Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Wim A Wuyts
- Unit for Interstitial Lung Diseases, Dept Respiratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Maria Molina-Molina
- ILD Unit, Respiratory Department, University Hospital of Bellvitge. IDIBELL. CIBERES, Barcelona, Spain
| | - Marlies Wijsenbeek
- Centre for Interstitial Lung Diseases and Sarcoidosis, Department of Respiratory Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Antonió Morais
- Pulmonology Department, Centro Hospitalar São João, Porto, Portugal Faculty of Medicine, University of Porto, Porto, Portugal i3S Instituto de Biologia Molecular E Celular/Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
| | | | - Christopher J Ryerson
- Department of Medicine and Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Fabian Caro
- ILD Unit, "Maria Ferrer" Hospital. Buenos Aires City, Buenos Aires, Argentina
| | - Ivette Buendia-Roldan
- Laboratory of Traslational Research in Aging and Fibrosis Lung Disease. Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Jesper M Magnusson
- Departement of Respiratory Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Joyce S Lee
- Department of Medicine, University of CO Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Julie Morisett
- Département de Médecine, Centre Hospitalier de L'Université de Montréal, Montréal, Québec, Canada
| | - Justin M Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Michigan, USA
| | - Lauren K Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia
| | - Manuela Funke-Chambour
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Raphael Borie
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, France, Université Paris Cité, Inserm, PHERE, Université Paris Cité, 75018, Paris, France
| | - Simon L F Walsh
- National Heart and Lung Institute Imperial College, London, England
| | - Sujeet Rajan
- Department of Chest Medicine, Interstitial Lung Disease, Bombay Hospital Institute of Medical Sciences, and Bhatia Hospital, Mumbai, India
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Yet H Khor
- Respiratory Research@Alfred, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, VIC, Australia
- Institute for Breathing and Sleep, Heidelberg, VIC, Australia
| | - Elisabeth Bendstrup
- Department of Respiratory Diseases and Allergy, Centre for Rare Lung Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Spagnolo P, Tonelli R, Mura M, Reisman W, Sotiropoulou V, Tzouvelekis A. Investigational gene expression inhibitors for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2025; 34:61-80. [PMID: 39916340 DOI: 10.1080/13543784.2025.2462592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/31/2025] [Indexed: 02/12/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial lung disease of unknown cause that occurs primarily in older adults and is associated with poor quality of life and substantial healthcare utilization. IPF has a dismal prognosis. Indeed, first-line therapy, which includes nintedanib and pirfenidone, does not stop disease progression and is often associated with tolerability issues. Therefore, there remains a high medical need for more efficacious and better tolerated treatments. AREAS COVERED Gene therapy is a relatively unexplored field of research in IPF that has the potential to mitigate a range of profibrotic pathways by introducing genetic material into cells. Here, we summarize and critically discuss publications that have explored the safety and efficacy of gene therapy in experimentally-induced pulmonary fibrosis in animals, as clinical studies in humans have not been published yet. EXPERT OPINION The application of gene therapy in pulmonary fibrosis requires further investigation to address several technical and biological hurdles, improve vectors' design, drug delivery, and target selection, mitigate off-target effects and develop markers of gene penetration into target cells. Long-term clinical data are needed to bring gene therapy in IPF one step closer to practice.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - William Reisman
- Division of Respirology, Western University, London, Ontario, Canada
| | | | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
4
|
Lu W, Teoh A, Waters M, Haug G, Shakeel I, Hassan I, Shahzad AM, Callerfelt AKL, Piccari L, Sohal SS. Pathology of idiopathic pulmonary fibrosis with particular focus on vascular endothelium and epithelial injury and their therapeutic potential. Pharmacol Ther 2025; 265:108757. [PMID: 39586361 DOI: 10.1016/j.pharmthera.2024.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/15/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains a challenging disease with no drugs available to change the trajectory. It is a condition associated with excessive and highly progressive scarring of the lungs with remodelling and extracellular matrix deposition. It is a highly "destructive" disease of the lungs. The diagnosis of IPF is challenging due to continuous evolution of the disease, which also makes early interventions very difficult. The role of vascular endothelial cells has not been explored in IPF in great detail. We do not know much about their contribution to arterial or vascular remodelling, extracellular matrix changes and contribution to pulmonary hypertension and lung fibrosis in general. Endothelial to mesenchymal transition appears to be central to such changes in IPF. Similarly, for epithelial changes, the process of epithelial to mesenchymal transition seem to be the key both for airway epithelial cells and type-2 pneumocytes. We focus here on endothelial and epithelial cell changes and its contributions to IPF. In this review we revisit the pathology of IPF, mechanistic signalling pathways, clinical definition, update on diagnosis and new advances made in treatment of this disease. We discuss ongoing clinical trials with mode of action. A multidisciplinary collaborative approach is needed to understand this treacherous disease for new therapeutic targets.
Collapse
Affiliation(s)
- Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Alan Teoh
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Maddison Waters
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Ilma Shakeel
- Centre For Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Imtaiyaz Hassan
- Centre For Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Medical School, Oceania University of Medicine, Apia, Samoa
| | | | - Lucilla Piccari
- Department of Pulmonology, Hospital del Mar, Barcelona, Spain
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
5
|
Cerri S, Manzini E, Nori O, Pacchetti L, Rossi L, Turchiano MG, Samarelli AV, Raineri G, Andrisani D, Gozzi F, Beghè B, Clini E, Tonelli R. Genetic Risk Factors in Idiopathic and Non-Idiopathic Interstitial Lung Disease: Similarities and Differences. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1967. [PMID: 39768847 PMCID: PMC11677115 DOI: 10.3390/medicina60121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Recent advances in genetics and epigenetics have provided critical insights into the pathogenesis of both idiopathic and non-idiopathic interstitial lung diseases (ILDs). Mutations in telomere-related genes and surfactant proteins have been linked to familial pulmonary fibrosis, while variants in MUC5B and TOLLIP increase the risk of ILD, including idiopathic pulmonary fibrosis and rheumatoid arthritis-associated ILD. Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs such as miR-21 and miR-29, regulate fibrotic pathways, influencing disease onset and progression. Although no standardized genetic panel for ILD exists, understanding the interplay of genetic mutations and epigenetic alterations could aid in the development of personalized therapeutic approaches. This review highlights the genetic and epigenetic factors driving ILD, emphasizing their potential for refining diagnosis and treatment.
Collapse
Affiliation(s)
- Stefania Cerri
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Laboratory of Experimental Pneumology, Department of Surgical and Medical Science, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| | - Elisa Manzini
- Post Doctoral School in Respiratory Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (E.M.); (O.N.); (L.P.); (L.R.)
- Respiratory Disease Unit, Hospital of Sassuolo, 41049 Sassuolo, Italy
| | - Ottavia Nori
- Post Doctoral School in Respiratory Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (E.M.); (O.N.); (L.P.); (L.R.)
- U.O. Pneumologia, Presidio Ospedaliero di Arco, APSS Provincia Autonoma di Trento, 38062 Trento, Italy
| | - Lucia Pacchetti
- Post Doctoral School in Respiratory Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (E.M.); (O.N.); (L.P.); (L.R.)
- Division of Pneumology, MultiMedica IRCCS, 20099 Milan, Italy
| | - Laura Rossi
- Post Doctoral School in Respiratory Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (E.M.); (O.N.); (L.P.); (L.R.)
- Respiratory Disease Unit, Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy
| | - Maria Giulia Turchiano
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Post Doctoral School in Respiratory Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (E.M.); (O.N.); (L.P.); (L.R.)
| | - Anna Valeria Samarelli
- Laboratory of Experimental Pneumology, Department of Surgical and Medical Science, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| | - Giulia Raineri
- Laboratory of Experimental Pneumology, Department of Surgical and Medical Science, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Dario Andrisani
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| | - Filippo Gozzi
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| | - Bianca Beghè
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
| | - Enrico Clini
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Laboratory of Experimental Pneumology, Department of Surgical and Medical Science, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (M.G.T.); (D.A.); (F.G.); (B.B.); (E.C.)
- Laboratory of Experimental Pneumology, Department of Surgical and Medical Science, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Center for Rare Lung Diseases, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
6
|
Griese M, Kurland G, Cidon M, Deterding RR, Epaud R, Nathan N, Schwerk N, Warburton D, Weinman JP, Young LR, Deutsch GH. Pulmonary fibrosis may begin in infancy: from childhood to adult interstitial lung disease. Thorax 2024; 79:1162-1172. [PMID: 39153860 PMCID: PMC11671978 DOI: 10.1136/thorax-2024-221772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Childhood interstitial lung disease (chILD) encompasses a group of rare heterogeneous respiratory conditions associated with significant morbidity and mortality. Reports suggest that many patients diagnosed with chILD continue to have potentially progressive or fibrosing disease into adulthood. Over the last decade, the spectrum of conditions within chILD has widened substantially, with the discovery of novel entities through advanced genetic testing. However, most evidence is often limited to small case series, with reports disseminated across an array of subspecialty, clinical and molecular journals. In particular, the frequency, management and outcome of paediatric pulmonary fibrosis is not well characterised, unlike in adults, where clear diagnosis and treatment guidelines are available. METHODS AND RESULTS This review assesses the current understanding of pulmonary fibrosis in chILD. Based on registry data, we have provisionally estimated the occurrence of fibrosis in various manifestations of chILD, with 47 different potentially fibrotic chILD entities identified. Published evidence for fibrosis in the spectrum of chILD entities is assessed, and current and future issues in management of pulmonary fibrosis in childhood, continuing into adulthood, are considered. CONCLUSIONS There is a need for improved knowledge of chILD among pulmonologists to optimise the transition of care from paediatric to adult facilities. Updated evidence-based guidelines are needed that incorporate recommendations for the diagnosis and management of immune-mediated disorders, as well as chILD in older children approaching adulthood.
Collapse
Affiliation(s)
- Matthias Griese
- German Center for Lung Research (DZL), University of Munich, LMU Hospital Department of Pediatrics at Dr von Hauner Children's Hospital, Munchen, Germany
| | - Geoffrey Kurland
- Division of Pediatric Pulmonology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Michal Cidon
- Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Robin R Deterding
- Section of Pediatric Pulmonary and Sleep Medicine Department of Pediatrics, University of Colorado Denver, Denver, Colorado, USA
- Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ralph Epaud
- Pediatric Pulmonology Department, Centre Hospitalier Intercommunal de Créteil; Centre des Maladies Respiratoires Rares (RESPIRARE®); University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Nadia Nathan
- Paediatric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, Laboratory of Childhood Genetic Diseases, Inserm UMS_S933, Sorbonne Université and AP-HP, Hôpital Trousseau, Paris, France
| | - Nicolaus Schwerk
- Clinic for Paediatric Pneumology, Allergy and Neonatology, Hannover Medical School, German Center for Lung Research (DZL), Hannover, Germany
| | - David Warburton
- Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jason P Weinman
- Department of Radiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital and University of Washington Medical Center, Seattle, Washington, USA
| |
Collapse
|
7
|
Ognean ML, Anciuc-Crauciuc M, Galiș R, Stepan AE, Stepan MD, Bănescu C, Grosu F, Kramer BW, Cucerea M. ABCA3 c.838C>T (p.Arg280Cys, R280C) and c.697C>T (p.Gln233Ter, Q233X, Q233*) as Causative Variants for RDS: A Family Case Study and Literature Review. Biomedicines 2024; 12:2390. [PMID: 39457702 PMCID: PMC11505159 DOI: 10.3390/biomedicines12102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Respiratory distress syndrome (RDS) is the primary cause of respiratory failure in preterm infants, but it also affects 5-7% of term infants. Dysfunctions in pulmonary surfactant metabolism, resulting from mutations of the lung surfactant genes, are rare diseases, ranging from fatal neonatal RDS to interstitial lung disease, associated with increased morbidity and mortality. This study aims to clarify the clinical significance of ABCA3 variants found in a specific family case, as existing data in the literature are inconsistent. Material and Methods: A family case report was conducted; targeted panel genetic testing identified a variant of the SFTPB gene and two variants of ABCA3 genes. Comprehensive research involving a systematic review of PubMed, Google Scholar databases, and genome browsers was used to clarify the pathogenicity of the two ABCA3 variants found in the index patient. Advanced prediction tools were employed to assess the pathogenicity of the two ABCA3 variants, ensuring the validity and reliability of our findings. Results: The index case exhibited fatal neonatal RDS. Genetic testing revealed the presence of the SFTPB p.Val267Ile variant, which was not previously reported but is a benign variant based on family genetic testing and history. Additionally, two ABCA3 gene variants were identified: c.697C>T, not yet reported, and c.838C>T. These variants were found to affect ABCA3 protein function and were likely associated with neonatal RDS. Prediction tools and data from nine other cases in the literature supported this conclusion. Conclusions: Based on in silico predictors, an analysis of the presented family, and cases described in the literature, it is reasonable to consider reclassifying the two ABCA3 variants identified in the index case as pathogenic/pathogenic. Reclassification will improve genetic counseling accuracy and facilitate correct diagnosis.
Collapse
Affiliation(s)
- Maria Livia Ognean
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Neonatology Department, Clinical County Emergency Hospital, 550245 Sibiu, Romania
| | - Mădălina Anciuc-Crauciuc
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| | - Radu Galiș
- Department of Neonatology, Emergency County Hospital Bihor, Oradea University, 410087 Oradea, Romania;
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Alex-Emilian Stepan
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Mioara Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Claudia Bănescu
- Genetic Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania
| | - Florin Grosu
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Imaging Department, Lucian Blaga University, 550169 Sibiu, Romania
| | - Boris W. Kramer
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Manuela Cucerea
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| |
Collapse
|
8
|
Jain KG, Liu Y, Zhao R, Muire PJ, Zhang J, Zang QS, Ji HL. Humanized L184Q Mutated Surfactant Protein C Gene Alters Alveolar Type 2 Epithelial Cell Fate. Int J Mol Sci 2024; 25:8723. [PMID: 39201410 PMCID: PMC11354303 DOI: 10.3390/ijms25168723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Alveolar type 2 epithelial (AT2) cells synthesize surfactant protein C (SPC) and repair an injured alveolar epithelium. A mutated surfactant protein C gene (SftpcL184Q, Gene ID: 6440) in newborns has been associated with respiratory distress syndrome and pulmonary fibrosis. However, the underlying mechanisms causing Sftpc gene mutations to regulate AT2 lineage remain unclear. We utilized three-dimensional (3D) feeder-free AT2 organoids in vitro to simulate the alveolar epithelium and compared AT2 lineage characteristics between WT (C57BL/6) and SftpcL184Q mutant mice using colony formation assays, immunofluorescence, flow cytometry, qRT-PCR, and Western blot assays. The AT2 numbers were reduced significantly in SftpcL184Q mice. Organoid numbers and colony-forming efficiency were significantly attenuated in the 3D cultures of primary SftpcL184Q AT2 cells compared to those of WT mice. Podoplanin (PDPN, Alveolar type 1 cell (AT1) marker) expression and transient cell count was significantly increased in SftpcL184Q organoids compared to in the WT mice. The expression levels of CD74, heat shock protein 90 (HSP90), and ribosomal protein S3A1 (RPS3A1) were not significantly different between WT and SftpcL184Q AT2 cells. This study demonstrated that humanized SftpcL184Q mutation regulates AT2 lineage intrinsically. This regulation is independent of CD74, HSP90, and RPS3A1 pathways.
Collapse
Affiliation(s)
- Krishan G. Jain
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (Q.S.Z.)
| | - Yang Liu
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (Q.S.Z.)
| | - Runzhen Zhao
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (Q.S.Z.)
| | - Preeti J. Muire
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
- Department of Orthopedics and Rehabilitation, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
- Infectious Diseases and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA;
- Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Qun Sophia Zang
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (Q.S.Z.)
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Hong-Long Ji
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (Q.S.Z.)
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
- Infectious Diseases and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
9
|
Brudon A, Legendre M, Mageau A, Bermudez J, Bonniaud P, Bouvry D, Cadranel J, Cazes A, Crestani B, Dégot T, Delestrain C, Diesler R, Epaud R, Philippot Q, Théou-Anton N, Kannengiesser C, Ba I, Debray MP, Fanen P, Manali E, Papiris S, Nathan N, Amselem S, Gondouin A, Guillaumot A, Andréjak C, Jouneau S, Beltramo G, Uzunhan Y, Galodé F, Westeel V, Mehdaoui A, Hirschi S, Leroy S, Marchand-Adam S, Nunes H, Picard C, Prévot G, Reynaud-Gaubert M, De Vuyst P, Wemeau L, Defossez G, Zalcman G, Cottin V, Borie R. High risk of lung cancer in surfactant-related gene variant carriers. Eur Respir J 2024; 63:2301809. [PMID: 38575158 PMCID: PMC11063619 DOI: 10.1183/13993003.01809-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Several rare surfactant-related gene (SRG) variants associated with interstitial lung disease are suspected to be associated with lung cancer, but data are missing. We aimed to study the epidemiology and phenotype of lung cancer in an international cohort of SRG variant carriers. METHODS We conducted a cross-sectional study of all adults with SRG variants in the OrphaLung network and compared lung cancer risk with telomere-related gene (TRG) variant carriers. RESULTS We identified 99 SRG adult variant carriers (SFTPA1 (n=18), SFTPA2 (n=31), SFTPC (n=24), ABCA3 (n=14) and NKX2-1 (n=12)), including 20 (20.2%) with lung cancer (SFTPA1 (n=7), SFTPA2 (n=8), SFTPC (n=3), NKX2-1 (n=2) and ABCA3 (n=0)). Among SRG variant carriers, the odds of lung cancer was associated with age (OR 1.04, 95% CI 1.01-1.08), smoking (OR 20.7, 95% CI 6.60-76.2) and SFTPA1/SFTPA2 variants (OR 3.97, 95% CI 1.39-13.2). Adenocarcinoma was the only histological type reported, with programmed death ligand-1 expression ≥1% in tumour cells in three samples. Cancer staging was localised (I/II) in eight (40%) individuals, locally advanced (III) in two (10%) and metastatic (IV) in 10 (50%). We found no somatic variant eligible for targeted therapy. Seven cancers were surgically removed, 10 received systemic therapy, and three received the best supportive care according to their stage and performance status. The median overall survival was 24 months, with stage I/II cancers showing better survival. We identified 233 TRG variant carriers. The comparative risk (subdistribution hazard ratio) for lung cancer in SRG patients versus TRG patients was 18.1 (95% CI 7.1-44.7). CONCLUSIONS The high risk of lung cancer among SRG variant carriers suggests specific screening and diagnostic and therapeutic challenges. The benefit of regular computed tomography scan follow-up should be evaluated.
Collapse
Affiliation(s)
- Alexandre Brudon
- Service d'Oncologie Thoracique, Hôpital Bichat, AP-HP, Institut du Cancer AP-HP Nord, Paris, France
- Université Paris Cité, Inserm CIC-EC 1425, Paris, France
- A. Brudon and M. Legendre contributed equally to this work
| | - Marie Legendre
- UF de Génétique Moléculaire, Hôpital Armand Trousseau, AP-HP, Paris, France
- Sorbonne Université, Inserm UMR-S 933, Maladies Génétiques d'Expression Pédiatrique, Paris, France
- A. Brudon and M. Legendre contributed equally to this work
| | - Arthur Mageau
- Département de Médecine Interne, Hôpital Bichat, AP-HP, Paris, France
- Université Paris Cité, Inserm IAME UMR 1137 Team Descid, Paris, France
| | - Julien Bermudez
- Service de Pneumologie, Centre de Compétences de Maladies Pulmonaires Rares et de Transplantation Pulmonaire, CHU Nord, AP-HM, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Philippe Bonniaud
- Department of Respiratory Diseases and Intensive Care, Reference Constitutive Center for Adult Rare Pulmonary Diseases, Dijon-Bourgogne University Hospital, University of Burgundy, Inserm UMR1231, Dijon, France
| | - Diane Bouvry
- Département de Pneumologie, Hôpital Avicenne, AP-HP, Bobigny, France
- Université Paris 13, Inserm UMR U1272, Bobigny, France
| | - Jacques Cadranel
- Service de Pneumologie et Oncologie Thoracique, DMU APPROCHES, Hôpital Tenon, AP-HP, Paris, France
- Sorbonne Université, GRC04 Theranoscan, Paris, France
| | - Aurélie Cazes
- Département d'Anatomie Pathologique, Hôpital Bichat, AP-HP, Paris, France
- Université Paris Cité, Inserm UMR-S 1152 PHERE, Paris, France
| | - Bruno Crestani
- Université Paris Cité, Inserm UMR-S 1152 PHERE, Paris, France
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France
| | - Tristan Dégot
- Centre de Référence pour les Maladies Respiratoires Rares RespiRare, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Céline Delestrain
- Université de Paris Est Créteil, Inserm IMRB, Créteil, France
- Service de Pneumologie, Centre National Coordinateur de Référence des Pathologies Pulmonaires Rares, ERN-LUNG, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Rémi Diesler
- Université Claude Bernard Lyon 1, Lyon, France
- Département de Génétique, Hôpital Bichat, AP-HP, Institut du Cancer AP-HP Nord, Paris, France
| | - Ralph Epaud
- Centre de Référence pour les Maladies Respiratoires Rares RespiRare, Centre Hospitalier Intercommunal de Créteil, Créteil, France
- Université de Paris Est Créteil, Inserm IMRB, Créteil, France
| | - Quentin Philippot
- Université Paris Cité, Inserm UMR-S 1152 PHERE, Paris, France
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France
| | - Nathalie Théou-Anton
- Université Paris Cité, Paris, France
- Service de Radiologie, Hôpital Bichat, AP-HP, Paris, France
| | - Caroline Kannengiesser
- Département de Génétique, Hôpital Bichat, AP-HP, Institut du Cancer AP-HP Nord, Paris, France
- Université Paris Cité, Paris, France
| | - Ibrahima Ba
- Département de Génétique, Hôpital Bichat, AP-HP, Institut du Cancer AP-HP Nord, Paris, France
- Université Paris Cité, Paris, France
| | - Marie-Pierre Debray
- Université Paris Cité, Paris, France
- Service de Radiologie, Hôpital Bichat, AP-HP, Paris, France
| | - Pascale Fanen
- Université de Paris Est Créteil, Inserm IMRB, Créteil, France
- Service de Radiologie, Hôpital Bichat, AP-HP, Paris, France
| | - Efrosine Manali
- Département de Pneumologie Pédiatrique, Centre de Référence des Maladies Respiratoires Rares RespiRare, Paris, France
| | - Spyros Papiris
- General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nadia Nathan
- Sorbonne Université, Inserm UMR-S 933, Maladies Génétiques d'Expression Pédiatrique, Paris, France
- Service de Pneumologie, Centre des Maladies Pulmonaires Rares, Hôpital de Besançon, Besançon, France
| | - Serge Amselem
- UF de Génétique Moléculaire, Hôpital Armand Trousseau, AP-HP, Paris, France
- Sorbonne Université, Inserm UMR-S 933, Maladies Génétiques d'Expression Pédiatrique, Paris, France
| | - Antoine Gondouin
- Service de Pneumologie, Hôpital de Brabois, Vandoeuvre-les-Nancy, France
| | - Anne Guillaumot
- Respiratory and Intensive Care Unit, University Hospital Amiens, Amiens, France
| | - Claire Andréjak
- EA 4294, AGIR, Jules Verne Picardy University, Amiens, France
- Service de Pneumologie, Centre de Référence Maladies Pulmonaires Rares, Hôpital Pontchaillou, CHU Rennes, Inserm UMR1085 IRSET, Université de Rennes 1, EHESP, Rennes, France
| | - Stephane Jouneau
- Pediatrics Department, Pediatric Pulmonology, CHU Bordeaux, Bordeaux, France
| | - Guillaume Beltramo
- Department of Respiratory Diseases and Intensive Care, Reference Constitutive Center for Adult Rare Pulmonary Diseases, Dijon-Bourgogne University Hospital, University of Burgundy, Inserm UMR1231, Dijon, France
| | - Yurdagul Uzunhan
- Département de Pneumologie, Hôpital Avicenne, AP-HP, Bobigny, France
| | - François Galodé
- Pneumonology and Thoracic Oncology Department, Eure-Seine Hospital Center, Évreux, France
| | - Virginie Westeel
- Service de Pneumologie, Centre des Maladies Pulmonaires Rares, Hôpital de Besançon, Besançon, France
| | - Anas Mehdaoui
- Service de pneumologie, FHU Oncoage, Hôpital Pasteur - CHU Nice, Nice, France
| | - Sandrine Hirschi
- Service de Pneumologie, Groupe de Transplantation Pulmonaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sylvie Leroy
- Université Nice Côte d'Azur, Nice, France
- Service de Pneumologie, Hôpital de Tours, Tours, France
| | - Sylvain Marchand-Adam
- Université de Tours, Inserm U1100, Tours, France
- Service de Pneumologie et de Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Hilario Nunes
- Département de Pneumologie, Hôpital Avicenne, AP-HP, Bobigny, France
- Université Paris 13, Inserm UMR U1272, Bobigny, France
| | - Clément Picard
- Service de Pneumologie, Hôpital Larrey, Toulouse, France
| | | | - Martine Reynaud-Gaubert
- Service de Pneumologie, Centre de Compétences de Maladies Pulmonaires Rares et de Transplantation Pulmonaire, CHU Nord, AP-HM, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Paul De Vuyst
- Service de Pneumologie et Immuno-allergie, Institut Coeur-Poumon, Lille, France
| | | | | | - Gérard Zalcman
- Service d'Oncologie Thoracique, Hôpital Bichat, AP-HP, Institut du Cancer AP-HP Nord, Paris, France
- Université Paris Cité, Inserm CIC-EC 1425, Paris, France
| | - Vincent Cottin
- Service de Pneumologie, Centre National Coordinateur de Référence des Pathologies Pulmonaires Rares, ERN-LUNG, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Raphael Borie
- Université Paris Cité, Inserm UMR-S 1152 PHERE, Paris, France
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France
| |
Collapse
|
10
|
Bernardinello N, Griese M, Borie R, Spagnolo P. Emerging Treatments for Childhood Interstitial Lung Disease. Paediatr Drugs 2024; 26:19-30. [PMID: 37948041 PMCID: PMC10770003 DOI: 10.1007/s40272-023-00603-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Childhood interstitial lung disease (chILD) is a large and heterogeneous group of disorders characterized by diffuse lung parenchymal markings on chest imaging and clinical signs such as dyspnea and hypoxemia from functional impairment. While some children already present in the neonatal period with interstitial lung disease (ILD), others develop ILD during their childhood and adolescence. A timely and accurate diagnosis is essential to gauge treatment and improve prognosis. Supportive care can reduce symptoms and positively influence patients' quality of life; however, there is no cure for many of the chILDs. Current therapeutic options include anti-inflammatory or immunosuppressive drugs. Due to the rarity of the conditions and paucity of research in this field, most treatments are empirical and based on case series, and less than a handful of small, randomized trials have been conducted thus far. A trial on hydroxychloroquine yielded good safety but a much smaller effect size than anticipated. A trial in fibrotic disease with the multitargeted tyrosine kinase inhibitor nintedanib showed similar pharmacokinetics and safety as in adults. The unmet need for the treatment of chILDs remains high. This article summarizes current treatments and explores potential therapeutic options for patients suffering from chILD.
Collapse
Affiliation(s)
- Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via N. Giustiniani n°2, 35128, Padua, Italy
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, German Center for Lung Research (DZL), Ludwig-Maximilians University, Munich, Germany
| | - Raphaël Borie
- Université de Paris, INSERM UMR 1152, Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, Hôpital Bichat-Claude Bernard, AP-HP, 75018, Paris, France
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via N. Giustiniani n°2, 35128, Padua, Italy.
| |
Collapse
|
11
|
Groen K, van der Vis JJ, van Batenburg AA, Kazemier KM, de Bruijn MJ, Stadhouders R, Arp P, Verkerk AJ, Schoemaker AE, de Bie CI, Massink MP, van Beek FT, Grutters JC, Vergouw LJ, van Moorsel CH. A new variant in the ZCCHC8 gene: diverse clinical phenotypes and expression in the lung. ERJ Open Res 2024; 10:00487-2023. [PMID: 38375433 PMCID: PMC10875464 DOI: 10.1183/23120541.00487-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Pulmonary fibrosis is a severe disease which can be familial. A genetic cause can only be found in ∼40% of families. Searching for shared novel genetic variants may aid the discovery of new genetic causes of disease. Methods Whole-exome sequencing was performed in 152 unrelated patients with a suspected genetic cause of pulmonary fibrosis from the St Antonius interstitial lung disease biobank. Variants of interest were selected by filtering for novel, potentially deleterious variants that were present in at least three unrelated pulmonary fibrosis patients. Results The novel c.586G>A p.(E196K) variant in the ZCCHC8 gene was observed in three unrelated patients: two familial patients and one sporadic patient, who was later genealogically linked to one of the families. The variant was identified in nine additional relatives with pulmonary fibrosis and other telomere-related phenotypes, such as pulmonary arterial venous malformations, emphysema, myelodysplastic syndrome, acute myeloid leukaemia and dyskeratosis congenita. One family showed incomplete segregation, with absence of the variant in one pulmonary fibrosis patient who carried a PARN variant. The majority of ZCCHC8 variant carriers showed short telomeres in blood. ZCCHC8 protein was located in different lung cell types, including alveolar type 2 (AT2) pneumocytes, the culprit cells in pulmonary fibrosis. AT2 cells showed telomere shortening and increased DNA damage, which was comparable to patients with sporadic pulmonary fibrosis and those with pulmonary fibrosis carrying a telomere-related gene variant, respectively. Discussion The ZCCHC8 c.586G>A variant confirms the involvement of ZCCHC8 in pulmonary fibrosis and short-telomere syndromes and underlines the importance of including the ZCCHC8 gene in diagnostic gene panels for these diseases.
Collapse
Affiliation(s)
- Karlijn Groen
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Joanne J. van der Vis
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
- Department of Clinical Chemistry, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Aernoud A. van Batenburg
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Karin M. Kazemier
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Arp
- Department of Internal Medicine, Laboratory of Population Genomics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annemieke J.M.H. Verkerk
- Department of Internal Medicine, Laboratory of Population Genomics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Angela E. Schoemaker
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Charlotte I. de Bie
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maarten P.G. Massink
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frouke T. van Beek
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Jan C. Grutters
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Leonie J.M. Vergouw
- Department of Internal Medicine, Laboratory of Population Genomics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Coline H.M. van Moorsel
- Department of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, the Netherlands
| |
Collapse
|
12
|
Yi ES, Wawryko P, Ryu JH. Diagnosis of interstitial lung diseases: from Averill A. Liebow to artificial intelligence. J Pathol Transl Med 2024; 58:1-11. [PMID: 38229429 DOI: 10.4132/jptm.2023.11.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024] Open
Abstract
Histopathologic criteria of usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF) were defined over the years and endorsed by leading organizations decades after Dr. Averill A. Liebow first coined the term UIP in the 1960s as a distinct pathologic pattern of fibrotic interstitial lung disease. Novel technology and recent research on interstitial lung diseases with genetic component shed light on molecular pathogenesis of UIP/IPF. Two antifibrotic agents introduced in the mid-2010s opened a new era of therapeutic approaches to UIP/IPF, albeit contentious issues regarding their efficacy, side effects, and costs. Recently, the concept of progressive pulmonary fibrosis was introduced to acknowledge additional types of progressive fibrosing interstitial lung diseases with the clinical and pathologic phenotypes comparable to those of UIP/IPF. Likewise, some authors have proposed a paradigm shift by considering UIP as a stand-alone diagnostic entity to encompass other fibrosing interstitial lung diseases that manifest a relentless progression as in IPF. These trends signal a pendulum moving toward the tendency of lumping diagnoses, which poses a risk of obscuring potentially important information crucial to both clinical and research purposes. Recent advances in whole slide imaging for digital pathology and artificial intelligence technology could offer an unprecedented opportunity to enhance histopathologic evaluation of interstitial lung diseases. However, current clinical practice trends of moving away from surgical lung biopsies in interstitial lung disease patients may become a limiting factor in this endeavor as it would be difficult to build a large histopathologic database with correlative clinical data required for artificial intelligence models.
Collapse
Affiliation(s)
- Eunhee S Yi
- Division of Anatomic Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Paul Wawryko
- Division of Anatomic Pathology, Mayo Clinic Arizona, Arizona, FL, USA
| | - Jay H Ryu
- Division of Pulmonary and Critical Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| |
Collapse
|
13
|
Lettieri S, Bertuccio FR, del Frate L, Perrotta F, Corsico AG, Stella GM. The Plastic Interplay between Lung Regeneration Phenomena and Fibrotic Evolution: Current Challenges and Novel Therapeutic Perspectives. Int J Mol Sci 2023; 25:547. [PMID: 38203718 PMCID: PMC10779349 DOI: 10.3390/ijms25010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of pulmonary disorders characterized by variable degrees of inflammation, interstitial thickening, and fibrosis leading to distortion of the pulmonary architecture and gas exchange impairment. Among them, idiopathic pulmonary fibrosis (IPF) displays the worst prognosis. The only therapeutic options consist of the two antifibrotic drugs, pirfenidone and nintedanib, which limit fibrosis progression but do not reverse the lung damage. The shift of the pathogenetic paradigm from inflammatory disease to epithelium-derived disease has definitively established the primary role of type II alveolar cells, which lose their epithelial phenotype and acquire a mesenchymal phenotype with production of collagen and extracellular matrix (EMC) deposition. Some predisposing environmental and genetic factors (e.g., smoke, pollution, gastroesophageal reflux, variants of telomere and surfactant genes) leading to accelerated senescence set a pro-fibrogentic microenvironment and contribute to the loss of regenerative properties of type II epithelial cells in response to pathogenic noxae. This review provides a complete overview of the different pathogenetic mechanisms leading to the development of IPF. Then, we summarize the currently approved therapies and the main clinical trials ongoing. Finally, we explore the potentialities offered by agents not only interfering with the processes of fibrosis but also restoring the physiological properties of alveolar regeneration, with a particular focus on potentialities and concerns about cell therapies based on mesenchymal stem cells (MSCs), whose anti-inflammatory and immunomodulant properties have been exploited in other fibrotic diseases, such as graft versus host disease (GVHD) and COVID-19-related ARDS.
Collapse
Affiliation(s)
- Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco R. Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lucia del Frate
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, 80055 Naples, Italy;
| | - Angelo G. Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia M. Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
14
|
Cao Y, Tian S, Geng Y, Zhang L, Zhao Q, Chen J, Li Y, Hu X, Huang J, Ning P. Interactions between CuO NPs and PS: The release of copper ions and oxidative damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166285. [PMID: 37586511 DOI: 10.1016/j.scitotenv.2023.166285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) can adversely affect lung health possibly by inducing oxidative damage through the release of copper ions. However, the migration and transformation processes of CuO NPs in lung lining fluid is still unclear, and there are still conflicting reports of redox reactions involving copper ions. To address this, we examined the release of copper ions from CuO NPs in simulated lung fluid supplemented with pulmonary surfactant (PS), and further analyzed the mechanisms of PS-CuO NPs interactions and the health hazards. The results showed that the phospholipid of PS was adsorbed on the particle surface, which not only induced aggregation of the particles but also provided a reaction environment for the interaction of PS with CuO NPs. PS was able to promote the release of ions from CuO NPs, of which the protein was a key component. Lipid peroxidation, protein destabilization, and disruption of the interfacial chemistry also occurred in the PS-CuO NPs interactions, during which copper ions were present only as divalent cations. Meanwhile, the contribution of the particle surface cannot be neglected in the oxidative damage to the lung caused by CuO NPs. Through reacting with biomolecules, CuO NPs accomplished ion release and induced oxidative damage associated with PS. This research was the first to reveal the mechanism of CuO NPs releasing copper ions and inducing lipid oxidative damage in the presence of PS, which provides a new idea of transition metal-induced health risk in human body.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jie Chen
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
15
|
Ruan T, Lu W, Zeng S, Yue Y, Zhou R, Ying J, Tang Y, Qu Y, Mu D. Cumulative evidence of the genetic association between SP-B C1580T polymorphisms and risk of neonatal respiratory distress syndrome. J Matern Fetal Neonatal Med 2023; 36:2240469. [PMID: 37527966 DOI: 10.1080/14767058.2023.2240469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Objective: Surfactant protein SP-B, an important protein in pulmonary surfactant, is required for the stabilization of surfactant films in the lung and maintenance of postnatal lung function. Although the association between SP-B polymorphisms and the risk of neonatal respiratory distress syndrome (RDS) has been evaluated, the results have been inconsistent. We investigated the association between SP-B polymorphisms and the risk of neonatal RDS.Methods: Relevant studies were systematically searched in PubMed, EMBASE, Web of Science, and Chinese National Knowledge Infrastructure (CNKI) electronic databases until June 2022. Data were collected independently by two reviewers and converted to odds ratios (ORs) with 95% confidence intervals (CIs). Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias assessment were performed using Stata 12.1 software and Review Manager 5.3.Results: Fourteen studies were included. SP-B C1580T polymorphism was significantly associated with neonatal RDS in five genetic models (T vs. C: OR = 0.70, 95% CI 0.57-0.86, I2 = 78%; TT vs. CC: OR = 0.63, 95% CI 0.53-0.86, I2 = 39%; CT vs. CC: OR = 0.65, 95% CI 0.50-0.84, I2 = 54%; TT + CT vs. CC: OR = 0.62, 95% CI 0.49-0.78, I2 = 59%; TT vs. CC + CT: OR = 0.78, 95% CI 0.67-0.91, I2 = 43%). The CT and TT genotypes may decrease the risk of RDS in neonates. Subgroup analyses revealed that the association of SP-B C1580T polymorphism with neonatal RDS was stable, independent of preterm birth and Hardy-Weinberg equilibrium. In addition, the Han Chinese were more likely to be affected by SP-B C1580T polymorphisms than Caucasians and Finnish.Conclusions: Our findings suggest that SP-B C1580T polymorphism may be a protective factor against neonatal RDS.
Collapse
Affiliation(s)
- Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Wenting Lu
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Zeng
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Tang
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
- Ultrasonic Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Klay D, Kazemier KM, van der Vis JJ, Smits HM, Grutters JC, van Moorsel CHM. New Insights via RNA Profiling of Formalin-Fixed Paraffin-Embedded Lung Tissue of Pulmonary Fibrosis Patients. Int J Mol Sci 2023; 24:16748. [PMID: 38069069 PMCID: PMC10706203 DOI: 10.3390/ijms242316748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
In sporadic idiopathic pulmonary fibrosis (sIPF) and pulmonary fibrosis caused by a mutation in telomere (TRG-PF) or surfactant related genes (SRG-PF), there are a number of aberrant cellular processes known that can lead to fibrogenesis. We investigated whether RNA expression of genes involved in these processes differed between sIPF, TRG-PF, and SRG-PF and whether expression levels were associated with survival. RNA expression of 28 genes was measured in lung biopsies of 26 sIPF, 17 TRG-PF, and 6 SRG-PF patients. Significant differences in RNA expression of TGFBR2 (p = 0.02) and SFTPA2 (p = 0.02) were found between sIPF, TRG-PF, and SRG-PF. Patients with low (
Collapse
Affiliation(s)
- Dymph Klay
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Karin M. Kazemier
- Center of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Joanne J. van der Vis
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Department of Clinical Chemistry, ILD Center of Excellence, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Hidde M. Smits
- Center of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jan C. Grutters
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Coline H. M. van Moorsel
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| |
Collapse
|
17
|
Manali ED, Griese M, Papiris SA. Lung transplantation outcome in adult surfactant-related interstitial lung disease: first evidence to move on. ERJ Open Res 2023; 9:00646-2023. [PMID: 38020569 PMCID: PMC10658612 DOI: 10.1183/23120541.00646-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
A new study reports the first evidence to "move on" with lung transplantation in adult surfactant-related fibrotic ILDs. It highlights the need for better genetic characterisation of transplant candidates and cancer screening for these patients. https://bit.ly/3QxG73Z.
Collapse
Affiliation(s)
- Effrosyni D. Manali
- 2nd Pulmonary Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- These authors contributed equally
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
- These authors contributed equally
| | - Spyros A. Papiris
- 2nd Pulmonary Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Desroziers T, Prévot G, Coulomb A, Nau V, Dastot-Le Moal F, Duquesnoy P, Héry M, Le Borgne A, Amselem S, Legendre M, Nathan N. Hypomorphic pathogenic variant in SFTPB leads to adult pulmonary fibrosis. Eur J Hum Genet 2023; 31:1083-1087. [PMID: 37380697 PMCID: PMC10474257 DOI: 10.1038/s41431-023-01413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Biallelic pathogenic variants in the surfactant protein (SP)-B gene (SFTPB) have been associated with fatal forms of interstitial lung diseases (ILD) in newborns and exceptional survival in young children. We herein report the cases of two related adults with pulmonary fibrosis due to a new homozygous SFTPB pathogenic variant, c.582G>A p.(Gln194=). In vitro transcript studies showed that this SFTPB synonymous pathogenic variant induces aberrant splicing leading to three abnormal transcripts with the preservation of the expression of a small proportion of normal SFTPB transcripts. Immunostainings on lung biopsies of the proband showed an almost complete loss of SP-B expression. This hypomorphic splice variant has thus probably allowed the patients' survival to adulthood while inducing an epithelial cell dysfunction leading to ILD. Altogether, this report shows that SFTPB pathogenic variants should be considered in atypical presentations and/or early-onset forms of ILD particularly when a family history is identified.
Collapse
Affiliation(s)
- Tifenn Desroziers
- Inserm UMR_S933, Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne Université, Paris, France
| | - Grégoire Prévot
- Respiratory Medicine, Toulouse University Hospital, Toulouse, France
| | - Aurore Coulomb
- Assistance Publique - Hôpitaux de Paris, Pathology Department, Armand Trousseau Hospital, Sorbonne Université, Paris, France
| | - Valérie Nau
- Assistance Publique - Hôpitaux de Paris, Molecular Genetics Unit, Armand Trousseau Hospital, Sorbonne Université, Paris, France
| | - Florence Dastot-Le Moal
- Assistance Publique - Hôpitaux de Paris, Molecular Genetics Unit, Armand Trousseau Hospital, Sorbonne Université, Paris, France
| | - Philippe Duquesnoy
- Inserm UMR_S933, Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne Université, Paris, France
| | - Mélanie Héry
- Inserm UMR_S933, Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne Université, Paris, France
| | - Aurélie Le Borgne
- Respiratory Medicine, Toulouse University Hospital, Toulouse, France
| | - Serge Amselem
- Inserm UMR_S933, Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne Université, Paris, France
- Assistance Publique - Hôpitaux de Paris, Molecular Genetics Unit, Armand Trousseau Hospital, Sorbonne Université, Paris, France
| | - Marie Legendre
- Inserm UMR_S933, Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne Université, Paris, France
- Assistance Publique - Hôpitaux de Paris, Molecular Genetics Unit, Armand Trousseau Hospital, Sorbonne Université, Paris, France
| | - Nadia Nathan
- Inserm UMR_S933, Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne Université, Paris, France.
- Assistance Publique - Hôpitaux de Paris, Pediatric Pulmonology Department and Reference Center for Rare Lung Diseases RespiRare, Armand Trousseau Hospital, Sorbonne Université, Paris, France.
| |
Collapse
|
19
|
Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019. Microorganisms 2023; 11:2038. [PMID: 37630598 PMCID: PMC10459962 DOI: 10.3390/microorganisms11082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The tyrosine kinase receptors of the TAM family-Tyro3, Axl and Mer-and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Alice Di Tizio
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Barbara Ruaro
- Pulmonology Department, University of Trieste, 34128 Trieste, Italy;
| | - Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Division of Internal Medicine, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
20
|
Stanel SC, Callum J, Rivera-Ortega P. Genetic and environmental factors in interstitial lung diseases: current and future perspectives on early diagnosis of high-risk cohorts. Front Med (Lausanne) 2023; 10:1232655. [PMID: 37601795 PMCID: PMC10435297 DOI: 10.3389/fmed.2023.1232655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Within the wide scope of interstitial lung diseases (ILDs), familial pulmonary fibrosis (FPF) is being increasingly recognized as a specific entity, with earlier onset, faster progression, and suboptimal responses to immunosuppression. FPF is linked to heritable pathogenic variants in telomere-related genes (TRGs), surfactant-related genes (SRGs), telomere shortening (TS), and early cellular senescence. Telomere abnormalities have also been identified in some sporadic cases of fibrotic ILD. Air pollution and other environmental exposures carry additive risk to genetic predisposition in pulmonary fibrosis. We provide a perspective on how these features impact on screening strategies for relatives of FPF patients, interstitial lung abnormalities, ILD multi-disciplinary team (MDT) discussion, and disparities and barriers to genomic testing. We also describe our experience with establishing a familial interstitial pneumonia (FIP) clinic and provide guidance on how to identify patients with telomere dysfunction who would benefit most from genomic testing.
Collapse
Affiliation(s)
- Stefan Cristian Stanel
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jack Callum
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Pilar Rivera-Ortega
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
21
|
Gilbert C, Bennett KM, Brown C, Bush A. Experiences of UK-based adult transition services for interstitial lung disease in childhood: "There's a lot less cushioning". Pediatr Pulmonol 2023. [PMID: 37083202 DOI: 10.1002/ppul.26423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023]
Abstract
Interstitial lung disease in childhood (chILD) is rare and no longer purely a childhood issue as many survive into adulthood, and so have to transition from pediatric to adult healthcare services. Transition is a significant life event that has the potential to impact on physical and mental health outcomes. The European Respiratory Society (ERS) statement on chILD transition highlighted the lack of standardised transition services for chILD transition resulting in a haphazard process. This qualitative study explores how young people and parents in the United Kingdom experienced transition from paediatric to adult healthcare services for chILD. Participants (n = 7) were recruited from chILD patient organisations and online communities. We focused on the experience of transition exploring if there were any information packs or support provided for the transition. Such support may be generic, such as "Ready Steady Go" which provides a systematic approach to transition and disease-specific literature. These latter have not been developed for ILD. Data were analysed by constructivist grounded theory. We present a lived experience of transition with themes of lack of transition preparation and planning, challenges of adapting to adult services, and a changing healthcare scene. Due to the complexity of chILD, parents discussed their need to remain, in part, as an advocate for the young person. Respondents provided recommendations for how transition could be improved along with tips for young people who are new to the transition process, which include educating oneself about the condition, learning medical terminology, and reaching out for support.
Collapse
Affiliation(s)
- Carlee Gilbert
- School of Psychology, Institute for Population Health, University of Liverpool, Liverpool, UK
| | - Kate M Bennett
- School of Psychology, Institute for Population Health, University of Liverpool, Liverpool, UK
| | - Christopher Brown
- School of Psychology, Institute for Population Health, University of Liverpool, Liverpool, UK
| | - Andrew Bush
- Faculty of Medicine, Imperial College, National Heart and Lung Institute, Royal Brompton Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Buschulte K, Cottin V, Wijsenbeek M, Kreuter M, Diesler R. The world of rare interstitial lung diseases. Eur Respir Rev 2023; 32:32/167/220161. [PMID: 36754433 PMCID: PMC9910344 DOI: 10.1183/16000617.0161-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/21/2022] [Indexed: 02/10/2023] Open
Abstract
The world of rare interstitial lung diseases (ILDs) is diverse and complex. Diagnosis and therapy usually pose challenges. This review describes a selection of rare and ultrarare ILDs including pulmonary alveolar proteinosis, pulmonary alveolar microlithiasis and pleuroparenchymal fibroelastosis. In addition, monogenic ILDs or ILDs in congenital syndromes and various multiple cystic lung diseases will be discussed. All these conditions are part of the scope of the European Reference Network on rare respiratory diseases (ERN-LUNG). Epidemiology, pathogenesis, diagnostics and treatment of each disease are presented.
Collapse
Affiliation(s)
- Katharina Buschulte
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), ERN-LUNG, Heidelberg, Germany
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, ERN-LUNG, Lyon, France
| | - Marlies Wijsenbeek
- Center for Interstitial Lung Diseases and Sarcoidosis, Department of Respiratory Medicine, Erasmus MC-University Medical Center, ERN-LUNG, Rotterdam, The Netherlands
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), ERN-LUNG, Heidelberg, Germany
| | - Rémi Diesler
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, ERN-LUNG, Lyon, France
| |
Collapse
|
23
|
Borie R, Kannengiesser C, Antoniou K, Bonella F, Crestani B, Fabre A, Froidure A, Galvin L, Griese M, Grutters JC, Molina-Molina M, Poletti V, Prasse A, Renzoni E, van der Smagt J, van Moorsel CHM. European Respiratory Society statement on familial pulmonary fibrosis. Eur Respir J 2023; 61:13993003.01383-2022. [PMID: 36549714 DOI: 10.1183/13993003.01383-2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Genetic predisposition to pulmonary fibrosis has been confirmed by the discovery of several gene mutations that cause pulmonary fibrosis. Although genetic sequencing of familial pulmonary fibrosis (FPF) cases is embedded in routine clinical practice in several countries, many centres have yet to incorporate genetic sequencing within interstitial lung disease (ILD) services and proper international consensus has not yet been established. An international and multidisciplinary expert Task Force (pulmonologists, geneticists, paediatrician, pathologist, genetic counsellor, patient representative and librarian) reviewed the literature between 1945 and 2022, and reached consensus for all of the following questions: 1) Which patients may benefit from genetic sequencing and clinical counselling? 2) What is known of the natural history of FPF? 3) Which genes are usually tested? 4) What is the evidence for telomere length measurement? 5) What is the role of common genetic variants (polymorphisms) in the diagnostic workup? 6) What are the optimal treatment options for FPF? 7) Which family members are eligible for genetic sequencing? 8) Which clinical screening and follow-up parameters may be considered in family members? Through a robust review of the literature, the Task Force offers a statement on genetic sequencing, clinical management and screening of patients with FPF and their relatives. This proposal may serve as a basis for a prospective evaluation and future international recommendations.
Collapse
Affiliation(s)
- Raphael Borie
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | | | - Katerina Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, European Reference Network (ERN)-LUNG, ILD Core Network, Essen, Germany
| | - Bruno Crestani
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Aurélie Fabre
- Department of Histopathology, St Vincent's University Hospital and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoine Froidure
- Pulmonology Department, Cliniques Universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Liam Galvin
- European Pulmonary Fibrosis Federation, Blackrock, Ireland
| | - Matthias Griese
- Dr von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Jan C Grutters
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, UMC Utrecht, Utrecht, The Netherlands
| | - Maria Molina-Molina
- Interstitial Lung Disease Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat (Barcelona), CIBERES, Barcelona, Spain
| | - Venerino Poletti
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Department of Experimental, Diagnostics and Speciality Medicine, University of Bologna, Bologna, Italy
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Fraunhofer ITEM, Hannover, Germany
| | - Elisabetta Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jasper van der Smagt
- Division of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
24
|
Optimizing Screening for Early Disease Detection in Familial Pulmonary Fibrosis (FLORIS): A Prospective Cohort Study Design. J Clin Med 2023; 12:jcm12020674. [PMID: 36675603 PMCID: PMC9862447 DOI: 10.3390/jcm12020674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Background: Familial pulmonary fibrosis (FPF) can be defined as pulmonary fibrosis in two or more first-degree family members. The first-degree family members of FPF patients are at high risk of developing FPF and are eligible for screening. Reproducible studies investigating risk factors for disease are much needed. Methods: Description of the screening study protocol for a single-center, prospective cohort study; the study will include 200 asymptomatic, first-degree family members of patients with FPF who will undergo three study visits in two years. The primary objective is determining the diagnostic value of parameters for detection of early FPF; the secondary objectives are determining the optimal timing of the screening interval and gaining insight into the natural history of early FPF. The presence of interstitial lung disease (ILD) changes on high-resolution computed tomography of the chest is indicative of preclinical ILD; the changes are determined at baseline. The comparison between the group with and without ILD changes is made for clinical parameters (pulmonary function, presence of digital clubbing, presence of Velcro-like crackles, blood count, liver- and kidney-function testing, patient-reported cough and dyspnea score) and exploratory parameters. Discussion: This study will be the first large-size, prospective, longitudinal cohort study for yearly screening of asymptomatic family members of FPF patients investigating the diagnostic value of parameters, including lung function, to detect early FPF. More effective screening strategies could advance early disease detection.
Collapse
|
25
|
[Interstitial lung diseases in children of genetic origin]. Rev Mal Respir 2023; 40:38-46. [PMID: 36564324 DOI: 10.1016/j.rmr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Interstitial lung diseases in children of genetic origin. Interstitial lung disease (ILD) in children (chILD) encompasses a heterogeneous group of rare respiratory disorders, most of which are chronic and severe. In more and more of these cases, a genetic cause has been identified. As of now, the main mutations have been localized in the genes encoding the surfactant proteins (SP)-C (SFTPC), SP-B (SFTPB), their transporter ATP-binding cassette, family 1, member 3 (ABCA3), transcription factor NK2 homeobox 1 (NKX2-1) and, more rarely, SP-A1 (SFTPA1) or SP-A2 (SFTPA2). Pediatric pulmonary alveolar proteinosis (PAP) is associated with mutations in CSF2RA, CSF2RB, and MARS; more recently, mutations in STING1 and COPA have been associated with specific auto-inflammatory disorders including ILD manifestations. The relationships between the molecular abnormalities and the phenotypic expressions generally remain poorly understood. In the coming years, it is expected that newly identified molecular defects will help to more accurately predict disease courses and to produce individualized targeted therapies.
Collapse
|
26
|
Sutton RM, Bittar HT, Sullivan DI, Silva AG, Bahudhanapati H, Parikh AH, Zhang Y, Gibson K, McDyer JF, Kass DJ, Alder JK. Rare surfactant-related variants in familial and sporadic pulmonary fibrosis. Hum Mutat 2022; 43:2091-2101. [PMID: 36135709 PMCID: PMC9771972 DOI: 10.1002/humu.24476] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
The role of constitutional genetic defects in idiopathic pulmonary fibrosis (IPF) is increasingly appreciated. Monogenic disorders associated with IPF affect two pathways: telomere maintenance, accounting for approximately 10% of all patients with IPF, and surfactant biology, responsible for 1%-3% of cases and often co-occurring with lung cancer. We examined the prevalence of rare variants in five surfactant-related genes, SFTPA1, SFPTA2, SFTPC, ABCA3, and NKX2-1, that were previously linked to lung disease in whole genome sequencing data from 431 patients with IPF. We identified functionally deleterious rare variants in SFTPA2 with a prevalence of 1.3% in individuals with and without a family history of IPF. All individuals had no personal history of lung cancer, but substantial bronchiolar metaplasia was noted on lung explants and biopsies. Five patients had novel missense variants in NKX2-1, but the contribution to disease is unclear. In general, patients were younger and had longer telomeres compared with the majority of patients with IPF suggesting that these features may be useful for identifying this subset of patients in the clinic. These data suggest that SFTPA2 variants may be more common in unselected IPF cohorts and may manifest in the absence of personal/family history of lung cancer or IPF.
Collapse
Affiliation(s)
- Rachel M Sutton
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Humberto Trejo Bittar
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel I Sullivan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Agustin Gil Silva
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Harinath Bahudhanapati
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Anishka H Parikh
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Gibson
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - John F McDyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan K Alder
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
28
|
Klay D, Grutters JC, van der Vis JJ, Platenburg MGJP, Kelder JC, Tromp E, van Moorsel CHM. Progressive Disease With Low Survival in Adult Patients With Pulmonary Fibrosis Carrying Surfactant-Related Gene Mutations: An Observational Study. Chest 2022; 163:870-880. [PMID: 36370864 DOI: 10.1016/j.chest.2022.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In some patients with progressive fibrosing interstitial lung disease (ILD), disease is caused by carriage of a mutation in a surfactant-related gene (SRG) such as SFTPC, SFTPA2, or ABCA3. However, no aggregated data on disease evolution and treatment outcome have been presented for these patients. RESEARCH QUESTION In adult patients with ILD with an SRG mutation, what is the course of lung function after diagnosis and during treatment and the survival in comparison with patients with sporadic idiopathic pulmonary fibrosis (sIPF) and familial pulmonary fibrosis (FPF)? STUDY DESIGN AND METHODS We retrospectively examined the clinical course of a cohort of adults with an SRG mutation by screening 48 patients from 20 families with an SRG mutation for availability of clinical follow-up data. For comparison, 248 patients with FPF and 575 patients with sIPF were included. RESULTS Twenty-three patients with ILD (median age: 45 years; 11 men) with an SRG mutation fulfilled criteria. At diagnosis, patients with an SRG mutation were younger and less often male, but had lower FVC (72% predicted) and diffusing capacity of the lungs for carbon monoxide (46% predicted) compared with patients with FPF or sIPF. In the SRG mutation group, median FVC decline 6 months after diagnosis was -40 mL and median transplant-free survival was 44 months and not different from patients with FPF or sIPF. FVC course was not different among the three cohorts; however, a significantly larger decrease in FVC was found while patients received immunomodulatory or antifibrotic treatment compared with those receiving no treatment. Subsequent analysis in the SRG group showed that patients with a surfactant mutation (n = 7) treated for 6 months with antifibrotic drugs showed stable lung function with a median change in FVC of +40 mL (interquartile range, -40 to 90 mL), whereas patients with an SRG mutation treated with immunomodulatory drugs showed a variable response dependent on the gene involved. INTERPRETATION This study showed that patients with ILD carrying an SRG mutation experience progressive loss of lung function with severely reduced survival despite possible beneficial effects of treatment.
Collapse
Affiliation(s)
- Dymph Klay
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan C Grutters
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, The Netherlands; Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Joanne J van der Vis
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, The Netherlands; Department of Clinical Chemistry, ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Mark G J P Platenburg
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Johannes C Kelder
- Department of Epidemiology and Statistics, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Ellen Tromp
- Department of Epidemiology and Statistics, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Coline H M van Moorsel
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, The Netherlands; Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Towards Treatable Traits for Pulmonary Fibrosis. J Pers Med 2022; 12:jpm12081275. [PMID: 36013224 PMCID: PMC9410230 DOI: 10.3390/jpm12081275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Interstitial lung diseases (ILD) are a heterogeneous group of disorders, of which many have the potential to lead to progressive pulmonary fibrosis. A distinction is usually made between primarily inflammatory ILD and primarily fibrotic ILD. As recent studies show that anti-fibrotic drugs can be beneficial in patients with primarily inflammatory ILD that is characterized by progressive pulmonary fibrosis, treatment decisions have become more complicated. In this perspective, we propose that the ‘treatable trait’ concept, which is based on the recognition of relevant exposures, various treatable phenotypes (disease manifestations) or endotypes (shared molecular mechanisms) within a group of diseases, can be applied to progressive pulmonary fibrosis. These targets for medical intervention can be identified through validated biomarkers and are not necessarily related to specific diagnostic labels. Proposed treatable traits are: cigarette smoking, occupational, allergen or drug exposures, excessive (profibrotic) auto- or alloimmunity, progressive pulmonary fibrosis, pulmonary hypertension, obstructive sleep apnea, tuberculosis, exercise intolerance, exertional hypoxia, and anxiety and depression. There are also several potential traits that have not been associated with relevant outcomes or for which no effective treatment is available at present: air pollution, mechanical stress, viral infections, bacterial burden in the lungs, surfactant-related pulmonary fibrosis, telomere-related pulmonary fibrosis, the rs35705950 MUC5B promoter polymorphism, acute exacerbations, gastro-esophageal reflux, dyspnea, and nocturnal hypoxia. The ‘treatable traits’ concept can be applied in new clinical trials for patients with progressive pulmonary fibrosis and could be used for developing new treatment strategies.
Collapse
|
30
|
Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front Genet 2022; 13:920390. [PMID: 35983412 PMCID: PMC9380816 DOI: 10.3389/fgene.2022.920390] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The same genetic variant found in different individuals can cause a range of diverse phenotypes, from no discernible clinical phenotype to severe disease, even among related individuals. Such variants can be said to display incomplete penetrance, a binary phenomenon where the genotype either causes the expected clinical phenotype or it does not, or they can be said to display variable expressivity, in which the same genotype can cause a wide range of clinical symptoms across a spectrum. Both incomplete penetrance and variable expressivity are thought to be caused by a range of factors, including common variants, variants in regulatory regions, epigenetics, environmental factors, and lifestyle. Many thousands of genetic variants have been identified as the cause of monogenic disorders, mostly determined through small clinical studies, and thus, the penetrance and expressivity of these variants may be overestimated when compared to their effect on the general population. With the wealth of population cohort data currently available, the penetrance and expressivity of such genetic variants can be investigated across a much wider contingent, potentially helping to reclassify variants that were previously thought to be completely penetrant. Research into the penetrance and expressivity of such genetic variants is important for clinical classification, both for determining causative mechanisms of disease in the affected population and for providing accurate risk information through genetic counseling. A genotype-based definition of the causes of rare diseases incorporating information from population cohorts and clinical studies is critical for our understanding of incomplete penetrance and variable expressivity. This review examines our current knowledge of the penetrance and expressivity of genetic variants in rare disease and across populations, as well as looking into the potential causes of the variation seen, including genetic modifiers, mosaicism, and polygenic factors, among others. We also considered the challenges that come with investigating penetrance and expressivity.
Collapse
Affiliation(s)
| | - Caroline F. Wright
- Institute of Biomedical and Clinical Science, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
31
|
Terwiel M, Borie R, Crestani B, Galvin L, Bonella F, Fabre A, Froidure A, Griese M, Grutters JC, Johannson K, Kannengiesser C, Kawano-Dourado L, Molina-Molina M, Prasse A, Renzoni EA, van der Smagt J, Poletti V, Antoniou K, van Moorsel CHM. Genetic testing in interstitial lung disease: An international survey. Respirology 2022; 27:747-757. [PMID: 35652243 DOI: 10.1111/resp.14303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Genetic analysis is emerging for interstitial lung diseases (ILDs); however, ILD practices are not yet standardized. We surveyed patients', relatives' and pulmonologists' experiences and needs on genetic testing in ILD to evaluate the current situation and identify future needs. METHODS A clinical epidemiologist (MT) together with members of the ERS taskforce and representatives of the European Idiopathic Pulmonary Fibrosis and related disorders Federation (EU-IPFF) patient organisation developed a survey for patients, relatives and pulmonologists. Online surveys consisted of questions on five main topics: awareness of hereditary ILD, the provision of information, genetic testing, screening of asymptomatic relatives and clinical impact of genetic analysis in ILD. RESULTS Survey respondents consisted of 458 patients with ILD, 181 patients' relatives and 352 pulmonologists. Most respondents think genetic testing can be useful, particularly for explaining the cause of disease, predicting its course, determining risk for developing disease and the need to test relatives. Informing patients and relatives on genetic analysis is primarily performed by the pulmonologist, but 88% (218) of pulmonologists identify a need for more information and 96% (240) ask for guidelines on genetic testing in ILD. A third of the pulmonologists who would offer genetic testing currently do not offer a genetic test, primarily because they have limited access to genetic tests. Following genetic testing, 72% (171) of pulmonologists may change the diagnostic work-up and 57% (137) may change the therapeutic approach. CONCLUSION This survey shows that there is wide support for implementation of genetic testing in ILD and a high need for information, guidelines and access to testing among patients, their relatives and pulmonologists.
Collapse
Affiliation(s)
- Michelle Terwiel
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Raphael Borie
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France.,INSERM, Unité 1152, Université de Paris, Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France.,INSERM, Unité 1152, Université de Paris, Paris, France
| | - Liam Galvin
- European Idiopathic Pulmonary Fibrosis and Related Disorders Federation, Overijse, Belgium
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Aurelie Fabre
- Department of Histopathology, St Vincent's University Hospital & School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoine Froidure
- Service de Pneumologie, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UC Louvain, Bruxelles, Belgium
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Jan C Grutters
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Kerri Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Caroline Kannengiesser
- INSERM, Unité 1152, Université de Paris, Paris, France.,Laboratoire de Génétique, Hôpital Bichat, APHP, Paris, France
| | - Leticia Kawano-Dourado
- INSERM, Unité 1152, Université de Paris, Paris, France.,Pneumologie, Hôpital Bichat, APHP, Paris, France.,HCOR Research Institute, Hospital do Coracao, Sao Paulo, Brazil
| | - Maria Molina-Molina
- ILD Unit, Respiratory Department, Bellvitge University Hospital-IDIBELL, CIBERES, Barcelona, Spain
| | - Antje Prasse
- Pneumologie, Hannover Hochschule, Hannover, Germany
| | - Elisabetta A Renzoni
- Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Diseases, NHLI, Imperial College, London, UK
| | - Jasper van der Smagt
- Klinische Genetica, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Venerino Poletti
- Department of Diseases of the Thorax, University of Bologna/GB Morgagni Hospital, Forli, Italy
| | - Katerina Antoniou
- Department of Thoracic Medicine, University of Crete, Heraklion, Greece
| | | |
Collapse
|
32
|
Terwiel M, Grutters JC, van Moorsel CHM. Clustering of lung diseases in the family of interstitial lung disease patients. BMC Pulm Med 2022; 22:134. [PMID: 35392870 PMCID: PMC8991662 DOI: 10.1186/s12890-022-01927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background The presence of familial interstitial lung disease (ILD) has been found to predict development of progressive pulmonary fibrosis. However, the role of non-ILD lung diseases in ILD patients’ families has not yet been investigated. We aimed to identify associations between ILDs and non-ILD lung diseases from ILD patients’ self-reported family health history. Methods We analysed questionnaires on family health history of 1164 ILD patients for the occurrence of ILD and non-ILD lung disease in relatives. Logistic regression analysis was used to study associations with diagnosis groups. Results Familial pulmonary fibrosis was reported by 20% of patients with idiopathic pulmonary fibrosis (IPF; OR 9.2, 95% CI 4.7–17.9), and 15% of patients with unclassifiable pulmonary fibrosis (OR 4.1, 95% CI 2.0–8.2). Familial occurrence was reported by 14% of patients with sarcoidosis (OR 3.3, 95% CI 1.9–5.8). Regarding non-ILD lung disease, significantly more patients with IPF (36%) reported lung cancer in their family (OR 2.3, 95% CI 1.4–3.5), and patients with hypersensitivity pneumonitis (18%) mostly reported COPD (OR 2.3, 95% CI 1.3–4.2). Comparison of sporadic and familial ILD patients’ reports showed that emphysema (OR 4.6, 95% CI 1.8–11.6), and lung cancer (OR 2.4, 95% CI 1.2–4.9) were predictive for familial pulmonary fibrosis, particularly when reported both in a family (OR 16.7, 95% CI 3.2–86.6; p < 0.001). Conclusions Our findings provide evidence for clustering of ILD and non-ILD lung diseases in families and show that self-reported emphysema and lung cancer of relatives in this population predicts familial pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01927-x.
Collapse
Affiliation(s)
- Michelle Terwiel
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands.
| | - Jan C Grutters
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands.,Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Coline H M van Moorsel
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands.,Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
33
|
Burgess JK, Harmsen MC. Chronic lung diseases: entangled in extracellular matrix. Eur Respir Rev 2022; 31:31/163/210202. [PMID: 35264410 DOI: 10.1183/16000617.0202-2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix (ECM) is the scaffold that provides structure and support to all organs, including the lung; however, it is also much more than this. The ECM provides biochemical and biomechanical cues to cells that reside or transit through this micro-environment, instructing their responses. The ECM structure and composition changes in chronic lung diseases; how such changes impact disease pathogenesis is not as well understood. Cells bind to the ECM through surface receptors, of which the integrin family is one of the most widely recognised. The signals that cells receive from the ECM regulate their attachment, proliferation, differentiation, inflammatory secretory profile and survival. There is extensive evidence documenting changes in the composition and amount of ECM in diseased lung tissues. However, changes in the topographical arrangement, organisation of the structural fibres and stiffness (or viscoelasticity) of the matrix in which cells are embedded have an undervalued but strong impact on cell phenotype. The ECM in diseased lungs also changes in physical and biomechanical ways that drive cellular responses. The characteristics of these environments alter cell behaviour and potentially orchestrate perpetuation of lung diseases. Future therapies should target ECM remodelling as much as the underlying culprit cells.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, KOLFF Institute - REGENERATE, Groningen, The Netherlands
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, KOLFF Institute - REGENERATE, Groningen, The Netherlands
| |
Collapse
|
34
|
Griese M. Etiologic Classification of Diffuse Parenchymal (Interstitial) Lung Diseases. J Clin Med 2022; 11:jcm11061747. [PMID: 35330072 PMCID: PMC8950114 DOI: 10.3390/jcm11061747] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Interstitial lung diseases (ILD) or diffuse parenchymal lung diseases (DPLD) comprise a large number of disorders. Disease definition and classification allow advanced and personalized judgements on clinical disease, risks for genetic or environmental transmissions, and precision medicine treatments. Registers collect specific rare entities and use ontologies for a precise description of complex phenotypes. Here we present a brief history of ILD classification systems from adult and pediatric pneumology. We center on an etiologic classification, with four main categories: lung-only (native parenchymal) disorders, systemic disease-related disorders, exposure-related disorders, and vascular disorders. Splitting diseases into molecularly defined entities is key for precision medicine and the identification of novel entities. Lumping diseases targeted by similar diagnostic or therapeutic principles is key for clinical practice and register work, as our experience with the European children’s ILD register (chILD-EU) demonstrates. The etiologic classification favored combines pediatric and adult lung diseases in a single system and considers genomics and other -omics as central steps towards the solution of “idiopathic” lung diseases. Future tasks focus on a systems’ medicine approach integrating all data and bringing precision medicine closer to the patients.
Collapse
Affiliation(s)
- Matthias Griese
- Department of Pediatric Pneumology, Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research, Lindwurmstr. 4a, D-80337 Munich, Germany
| |
Collapse
|
35
|
Zhang D, Newton CA. Familial Pulmonary Fibrosis: Genetic Features and Clinical Implications. Chest 2021; 160:1764-1773. [PMID: 34186035 PMCID: PMC8628177 DOI: 10.1016/j.chest.2021.06.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis comprises a wide range of fibrotic lung diseases with unknown pathogenesis and poor prognosis. Familial pulmonary fibrosis (FPF) represents a unique subgroup of patients in which at least one other relative is also affected. Patients with FPF exhibit a wide range of pulmonary fibrosis phenotypes, although idiopathic pulmonary fibrosis is the most common subtype. Despite variable disease manifestations, patients with FPF experience worse survival compared with their counterparts with the sporadic disease form. Therefore, ascertaining a positive family history not only provides prognostic value but should also raise suspicion for the inheritance of an underlying causative genetic variant within kindreds. By focusing on FPF kindreds, rare variants within surfactant metabolism and telomere maintenance genes have been discovered. However, such genetic variation is not solely restricted to FPF, as similar rare variants are found in patients with seemingly sporadic pulmonary fibrosis, further supporting the idea of genetic susceptibility underlying pulmonary fibrosis as a whole. Researchers are beginning to show how the presence of rare variants may inform clinical management, such as informing predisposition risk for yet unaffected relatives as well as informing prognosis and therapeutic strategy for those already affected. Despite these advances, rare variants in surfactant and telomere-related genes only explain the genetic basis in about one-quarter of FPF kindreds. Therefore, research is needed to identify the missing genetic contributors of pulmonary fibrosis, which would not only improve our understanding of disease pathobiology but may offer additional opportunities to improve the health of patients.
Collapse
Affiliation(s)
- David Zhang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center, New York, NY
| | - Chad A Newton
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|