1
|
Fayon M, Hill K, Waldron M, Messore B, Riberi L, Svedberg M, Lammertyn E, Fustik S, Gramegna A, Stahl M, Kerpel-Fronius A, Balbi M, Ciet P, Chassagnon G, Ferrero C, Burgel PR, Sutharsan S, Opitz M, Andrinopoulou ER, Dournes G, Maher M, Duckers J, Tiddens H, Sermet I. Guidance for chest-CT in children and adults with cystic fibrosis: A European perspective. Respir Med 2025; 241:108076. [PMID: 40189162 DOI: 10.1016/j.rmed.2025.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
The European Cystic Fibrosis Society-Clinical Trials Network (ECFS-CTN) herein proposes guidance for the use of chest CT-scans for the regular monitoring of lung disease in CF. Statements were completed in a 3-step process: the questions were identified via an anonymous online survey, followed by a comprehensive literature search, and a final Delphi process. The guidance recommends the use of ultra-low dose CT scans (effective radiation dose, 0.08 mSv; equivalent to 2 to 4 chest X-rays), tracking of patients' cumulative radiation and effective communication strategies using "de-medicalized" information for shared decision making. Chest CT scans (with lung volume monitoring) are not recommended systematically in both children and adults. Ultimate responsibility for justifying a chest CT scan lies with the individual professionals directly involved, the final decision being influenced by indications, costs, expertise, available material, resources and/or the patient's values, as well as possible impact on treatment modalities.
Collapse
Affiliation(s)
- Michael Fayon
- CHU Bordeaux, Département de Pédiatrie, CIC-P INSERM 1401 & Université de Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, INSERM U1045, F-33000, Bordeaux, France.
| | - Kate Hill
- European Cystic Fibrosis Society, Karup, Denmark; Northern Ireland Clinical Research Facility, The Wellcome-Wolfson Institute of Experimental Medicine, Queen's University, Lisburn Road, Belfast, Northern Ireland, UK.
| | - Michael Waldron
- Cork Centre for Cystic Fibrosis, Cork University Hospital, University College Cork, Cork, Ireland; HRB Clinical Research Facility, University College Cork, Cork, Ireland; Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Barbara Messore
- AOU San Luigi Gonzaga, Adult CF Centre-Pulmonology Unit, Orbassano, Torino, Italy
| | - Luca Riberi
- AOU San Luigi Gonzaga, Adult CF Centre-Pulmonology Unit, Orbassano, Torino, Italy
| | - Marcus Svedberg
- Department of Pediatrics, Institute of Clinical Science at The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, Queen Silvia's Children Hospital, Gothenburg, Sweden
| | - Elise Lammertyn
- Cystic Fibrosis Europe, Brussels, Belgium and the Belgian CF Association, Brussels, Belgium
| | - Stojka Fustik
- Center for Cystic Fibrosis, University Children's Clinic, Skopje, North Macedonia
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Anna Kerpel-Fronius
- Department of Radiology, National Korányi Institute for Pulmonology, Budapest, Hungary
| | - Maurizio Balbi
- Radiology Unit, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Pierluigi Ciet
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Guillaume Chassagnon
- Department of Radiology, Hôpital Cochin, AP-HP, Université Paris Cité, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Cinzia Ferrero
- AOU Città della Salute e della Scienza di Torino, Regina Margherita Children's Hospital - Pediatric Pulmonology/Pediatric CF Centre, Torino, Italy
| | - Pierre-Régis Burgel
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Centre, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Cité and Institut Cochin, Inserm U1016, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, University Hospital Essen - Ruhrlandklinik, Adult Cystic Fibrosis Center, University of Duisburg-Essen, Essen, Germany
| | - Marcel Opitz
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Gael Dournes
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Michael Maher
- Cork Centre for Cystic Fibrosis, Cork University Hospital, University College Cork, Cork, Ireland; HRB Clinical Research Facility, University College Cork, Cork, Ireland; Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Jamie Duckers
- All Wales Adult CF Centre, Cardiff and Vale University Health Board, Cardiff, UK
| | | | - Isabelle Sermet
- Service de Pneumologie et Allergologie Pédiatriques, Centre de Référence Maladies Rares, Hôpital Necker Enfants Malades, Paris, 75015, France; INSERM U1151, Institut Necker Enfants Malades, Université Paris Cité, Paris, 75743, France; European Reference Network-Lung, Frankfurt, Germany
| |
Collapse
|
2
|
Dournes G, Benlala I, Berger P. 2024 imaging criteria for allergic bronchopulmonary aspergillosis: which diagnostic cut-offs? Are chest radiograph and CT comparable? Eur Respir J 2025; 65:2500089. [PMID: 40180359 DOI: 10.1183/13993003.00089-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Gael Dournes
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Pessac, France
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, CIC 1401, Pessac, France
| | - Ilyes Benlala
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Pessac, France
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, CIC 1401, Pessac, France
| | - Patrick Berger
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, Pessac, France
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, CIC 1401, Pessac, France
| |
Collapse
|
3
|
Horst KK, Zhou Z, Hull NC, Thacker PG, Kassmeyer BA, Johnson MP, Demirel N, Missert AD, Weger K, Yu L. Radiation dose reduction in pediatric computed tomography (CT) using deep convolutional neural network denoising. Clin Radiol 2025; 80:106705. [PMID: 39509751 DOI: 10.1016/j.crad.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024]
Abstract
AIM We evaluated the quality of noncontrast chest computed tomography (CT) for pediatric patients at two dose levels with and without denoising using a deep convolutional neural network (CNN). MATERIALS AND METHODS Forty children underwent noncontrast chest CTs for "chronic cough" using a routine dose (RD) protocol. Images were reconstructed using iterative reconstruction (IR). A validated noise insertion method was used to simulate 20% dose (TD) data for each case. A deep CNN model was trained and validated on 10 cases and then applied to the remaining 30 cases. Three certificate of qualification (CAQ)-certified pediatric radiologists evaluated 30 cases under 4 conditions: (1) RD + IR; (2) RD + CNN; (3) TD + IR; and (4) TD + CNN. Likert scales were used to score subjective image quality (1-5, 5 = excellent) and subjective noise artifact (1-4, 4 = no noise). Images were reviewed for specific findings. RESULTS For the 30 patients evaluated (14 female, mean age: 10.8 years, range: 0.17-17), the mean effective dose was 0.46 ± 0.21 mSv for the original RD exam, with an effective dose of 0.09 mSv for the TD exam. Both RD + CNN (3.6 ± 1.1, p < 0.001) and TD + CNN (3.4 ± 0.9, p = 0.023) had higher image quality than RD + IR (3.1 ± 0.9). Both RD + CNN (3.2 ± 0.9, p-value = <0.001) and TD + CNN (2.9 ± 0.6, p-value = 0.001) showed significantly lower subjective noise artifact scores than RD + IR (2.7 ± 0.7). There was excellent intrareader (RD + IR-RD + CNN: mean κ = 0.96, RD + IR-TD + CNN = 0.96, RD + IR-TD + IR = 0.98) and moderate inter-reader reliability (RD + IR: mean κ = 0.55, RD + CNN = 0.50, TD + CNN = 0.54, TD + IR = 0.57) on all 4 image reconstructions. CONCLUSION CNN denoising outperforms IR as a means of radiation dose reduction in pediatric CT.
Collapse
Affiliation(s)
- K K Horst
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| | - Z Zhou
- Department of Radiology, Mayo Clinic, 200 1(st) St SW, Rochester, MN, 55905, USA
| | - N C Hull
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - P G Thacker
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - B A Kassmeyer
- Department of Biomedical Statistics and Informatics, Mayo Clinic, 200 1(st) St SW, Rochester, MN, 55905, USA
| | - M P Johnson
- Department of Biomedical Statistics and Informatics, Mayo Clinic, 200 1(st) St SW, Rochester, MN, 55905, USA
| | - N Demirel
- Division of Pediatric Pulmonology, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, 200 1(st) St SW, Rochester, MN, 55905, USA
| | - A D Missert
- Department of Radiology, Mayo Clinic, 200 1(st) St SW, Rochester, MN, 55905, USA
| | - K Weger
- Department of Radiology, Mayo Clinic, 200 1(st) St SW, Rochester, MN, 55905, USA
| | - L Yu
- Department of Radiology, Mayo Clinic, 200 1(st) St SW, Rochester, MN, 55905, USA
| |
Collapse
|
4
|
Welsner M, Navel H, Hosch R, Rathsmann P, Stehling F, Mathew A, Sutharsan S, Strassburg S, Westhölter D, Taube C, Zensen S, Schaarschmidt BM, Forsting M, Nensa F, Holtkamp M, Haubold J, Salhöfer L, Opitz M. Opportunistic Screening for Low Bone Mineral Density in Adults with Cystic Fibrosis Using Low-Dose Computed Tomography of the Chest with Artificial Intelligence. J Clin Med 2024; 13:5961. [PMID: 39408020 PMCID: PMC11478210 DOI: 10.3390/jcm13195961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Cystic fibrosis bone disease (CFBD) is a common comorbidity in adult people with cystic fibrosis (pwCF), resulting in an increased risk of bone fractures. This study evaluated the capacity of artificial intelligence (AI)-assisted low-dose chest CT (LDCT) opportunistic screening for detecting low bone mineral density (BMD) in adult pwCF. Methods: In this retrospective single-center study, 65 adult pwCF (mean age 30.1 ± 7.5 years) underwent dual-energy X-ray absorptiometry (DXA) of the lumbar vertebrae L1 to L4 to determine BMD and corresponding z-scores and completed LDCTs of the chest within three months as part of routine clinical care. A fully automated CT-based AI algorithm measured the attenuation values (Hounsfield units [HU]) of the thoracic vertebrae Th9-Th12 and first lumbar vertebra L1. The ability of the algorithm to diagnose CFBD was assessed using receiver operating characteristic (ROC) curves. Results: HU values of Th9 to L1 and DXA-derived BMD and the corresponding z-scores of L1 to L4 showed a strong correlation (all p < 0.05). The area under the curve (AUC) for diagnosing low BMD was highest for L1 (0.796; p = 0.001) and Th11 (0.835; p < 0.001), resulting in a specificity of 84.9% at a sensitivity level of 75%. The HU threshold values for distinguishing normal from low BMD were <197 (L1) and <212 (Th11), respectively. Conclusions: Routine LDCT of the chest with the fully automated AI-guided determination of thoracic and lumbar vertebral attenuation values is a valuable tool for predicting low BMD in adult pwCF, with the best results for Th11 and L1. However, further studies are required to define clear threshold values.
Collapse
Affiliation(s)
- Matthias Welsner
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen-Ruhrlandklinik, University of Duisburg-Essen, 45239 Essen, Germany
| | - Henning Navel
- Department of Electrical Engineering and Applied Natural Sciences, Westphalian University of Applied Sciences, 45897 Gelsenkirchen, Germany
- Institute for Artificial Intelligence in Medicine, University Medicine Essen, 45147 Essen, Germany
| | - Rene Hosch
- Institute for Artificial Intelligence in Medicine, University Medicine Essen, 45147 Essen, Germany
| | - Peter Rathsmann
- Department of Radiology, St. Josef Hospital Werden, University Medicine Essen, 45239 Essen, Germany
| | - Florian Stehling
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Annie Mathew
- Department of Endocrinology, Diabetes and Metabolism, Division of Laboratory Research, University Hospital Essen, 45147 Essen, Germany
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen-Ruhrlandklinik, University of Duisburg-Essen, 45239 Essen, Germany
| | - Svenja Strassburg
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen-Ruhrlandklinik, University of Duisburg-Essen, 45239 Essen, Germany
| | - Dirk Westhölter
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen-Ruhrlandklinik, University of Duisburg-Essen, 45239 Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen-Ruhrlandklinik, University of Duisburg-Essen, 45239 Essen, Germany
| | - Sebastian Zensen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Benedikt M. Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Felix Nensa
- Institute for Artificial Intelligence in Medicine, University Medicine Essen, 45147 Essen, Germany
| | - Mathias Holtkamp
- Institute for Artificial Intelligence in Medicine, University Medicine Essen, 45147 Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Johannes Haubold
- Institute for Artificial Intelligence in Medicine, University Medicine Essen, 45147 Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Luca Salhöfer
- Institute for Artificial Intelligence in Medicine, University Medicine Essen, 45147 Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marcel Opitz
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
5
|
Bugenhagen SM, Grant JCE, Rosenbluth DB, Bhalla S. Update on the Role of Chest Imaging in Cystic Fibrosis. Radiographics 2024; 44:e240008. [PMID: 39172707 DOI: 10.1148/rg.240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Cystic fibrosis is a genetic disease with multisystem involvement and associated morbidity and mortality that are most directly related to progressive lung disease. The hallmark findings of cystic fibrosis in the lungs are chronic inflammation and infection, leading to progressive loss of pulmonary function and often requiring lung transplant. Predominant lung findings include mucous plugging, bronchiectasis, and air trapping, often with associated atelectasis, consolidation, and emphysema; these findings form the basis of several clinical scoring systems that are used for imaging assessment. Recently, there have been major breakthroughs in the pharmacologic management of cystic fibrosis, including highly effective modulator therapies that directly target the underlying cystic fibrosis transmembrane conductance regulator molecular defect, often leading to remarkable improvements in lung function and quality of life with corresponding significant improvements in imaging markers. The authors review current guidelines regarding cystic fibrosis with respect to disease monitoring, identifying complications, and managing advanced lung disease. In addition, they discuss the evolving role of imaging, including current trends, emerging technologies, and proposed updates to imaging guidelines endorsed by international expert committees on cystic fibrosis, which favor increased use of cross-sectional imaging to enable earlier detection of structural changes in early disease and more sensitive detection of acute changes in advanced disease. It is important for radiologists to be familiar with these trends and updates so that they can most effectively assist clinicians in guiding the management of patients with cystic fibrosis in all stages of disease. ©RSNA, 2024.
Collapse
Affiliation(s)
- Scott M Bugenhagen
- From the Mallinckrodt Institute of Radiology (S.M.B, J.C.E.G, S.B.) and Department of Medicine (D.B.R.), Washington University, 660 S Euclid Ave, St. Louis, MO 63110
| | - Jacob C E Grant
- From the Mallinckrodt Institute of Radiology (S.M.B, J.C.E.G, S.B.) and Department of Medicine (D.B.R.), Washington University, 660 S Euclid Ave, St. Louis, MO 63110
| | - Daniel B Rosenbluth
- From the Mallinckrodt Institute of Radiology (S.M.B, J.C.E.G, S.B.) and Department of Medicine (D.B.R.), Washington University, 660 S Euclid Ave, St. Louis, MO 63110
| | - Sanjeev Bhalla
- From the Mallinckrodt Institute of Radiology (S.M.B, J.C.E.G, S.B.) and Department of Medicine (D.B.R.), Washington University, 660 S Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
6
|
Boni A, Cristiani L, Majo F, Ullmann N, Esposito M, Supino MC, Tomà P, Villani A, Musolino AM, Cutrera R. Use of Lung Ultrasound in Cystic Fibrosis: Is It a Valuable Tool? CHILDREN (BASEL, SWITZERLAND) 2024; 11:917. [PMID: 39201852 PMCID: PMC11352880 DOI: 10.3390/children11080917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024]
Abstract
Cystic fibrosis (CF) is a multisystem disorder characterized by progressive respiratory deterioration, significantly impacting both quality of life and survival. Over the years, lung ultrasound (LUS) has emerged as a promising tool in pediatric respiratory due to its safety profile and ease at the bedside. In the era of highly effective CF modulator therapies and improved life expectancy, the use of non-ionizing radiation techniques could become an integral part of CF management, particularly in the pediatric population. The present review explores the potential role of LUS in CF management based on available data, analyzing all publications from January 2015 to January 2024, focusing on two key areas: LUS in CF pulmonary exacerbation and its utility in routine clinical management. Nonetheless, LUS exhibits a robust correlation with computed tomography (CT) scans and serves as an additional, user-friendly imaging modality in CF management, demonstrating high specificity and sensitivity in identification, especially in consolidations and atelectasis in the CF population. Due to its ability, LUS could be an instrument to monitor exacerbations with consolidations and to establish therapy duration and monitor atelectasis over time or their evolution after therapeutic bronchoalveolar lavage. On the basis of our analysis, sufficient data emerged showing a good correlation between LUS score and respiratory function tests. Good sensitivity and specificity of the methodology have been found in rare CF pulmonary complications such as effusion and pneumothorax. Regarding its use in follow-up management, the literature reports a moderate correlation between LUS scores and the type, extent, and CT severity score of bronchiectasis. A future validation of ultrasound scores specifically in CF patients could improve the use of LUS to identify pulmonary exacerbations and monitor disease progression. However, further research is needed to comprehensively establish the role of LUS in the CF population, particularly in elucidating its broader utility and long-term impact on patient care.
Collapse
Affiliation(s)
- Alessandra Boni
- Pneumology and Cystic Fibrosis Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.B.); (N.U.); (R.C.)
| | - Luca Cristiani
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.M.); (M.E.); (A.V.)
| | - Fabio Majo
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.M.); (M.E.); (A.V.)
| | - Nicola Ullmann
- Pneumology and Cystic Fibrosis Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.B.); (N.U.); (R.C.)
| | - Marianna Esposito
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.M.); (M.E.); (A.V.)
| | - Maria Chiara Supino
- Department of Emergency, Admission and General Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Paolo Tomà
- Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Alberto Villani
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.M.); (M.E.); (A.V.)
- Department of Emergency, Admission and General Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Anna Maria Musolino
- Department of Emergency, Admission and General Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Renato Cutrera
- Pneumology and Cystic Fibrosis Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.B.); (N.U.); (R.C.)
| |
Collapse
|
7
|
Buso H, Discardi C, Bez P, Muscianisi F, Ceccato J, Milito C, Firinu D, Landini N, Jones MG, Felice C, Rattazzi M, Scarpa R, Cinetto F. Sarcoidosis versus Granulomatous and Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency: A Comparative Review. Biomedicines 2024; 12:1503. [PMID: 39062076 PMCID: PMC11275071 DOI: 10.3390/biomedicines12071503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcoidosis and Granulomatous and Lymphocytic Interstitial Lung Diseases (GLILD) are two rare entities primarily characterised by the development of Interstitial Lung Disease (ILD) in the context of systemic immune dysregulation. These two conditions partially share the immunological background and pathologic findings, with granuloma as the main common feature. In this narrative review, we performed a careful comparison between sarcoidosis and GLILD, with an overview of their main similarities and differences, starting from a clinical perspective and ending with a deeper look at the immunopathogenesis and possible target therapies. Sarcoidosis occurs in immunocompetent individuals, whereas GLILD occurs in patients affected by common variable immunodeficiency (CVID). Moreover, peculiar extrapulmonary manifestations and radiological and histological features may help distinguish the two diseases. Despite that, common pathogenetic pathways have been suggested and both these disorders can cause progressive impairment of lung function and variable systemic granulomatous and non-granulomatous complications, leading to significant morbidity, reduced quality of life, and survival. Due to the rarity of these conditions and the extreme clinical variability, there are still many open questions concerning their pathogenesis, natural history, and optimal management. However, if studied in parallel, these two entities might benefit from each other, leading to a better understanding of their pathogenesis and to more tailored treatment approaches.
Collapse
Affiliation(s)
- Helena Buso
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Claudia Discardi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Jessica Ceccato
- Haematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padova, 35124 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35131 Padova, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Nicholas Landini
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 YD, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Carla Felice
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| |
Collapse
|
8
|
David M, Benlala I, Bui S, Benkert T, Berger P, Laurent F, Macey J, Dournes G. Longitudinal Evaluation of Bronchial Changes in Cystic Fibrosis Patients Undergoing Elexacaftor/Tezacaftor/Ivacaftor Therapy Using Lung MRI With Ultrashort Echo-Times. J Magn Reson Imaging 2024; 60:116-124. [PMID: 37861357 DOI: 10.1002/jmri.29041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Lung magnetic resonance imaging (MRI) with ultrashort echo-times (UTE-MRI) allows high-resolution and radiation-free imaging of the lung structure in cystic fibrosis (CF). In addition, the combination of elexacaftor/tezacaftor/ivacaftor (ETI) has improved CF clinical outcomes such as need for hospitalization. However, the effect on structural disease still needs longitudinal evaluation at high resolution. PURPOSE To analyze the effects of ETI on lung structural alterations using UTE-MRI, with a focus on bronchiectasis reversibility. STUDY TYPE Retrospective. POPULATION Fifty CF patients (mean age 24.3 ± 9.2; 23 males). FIELD STRENGTH/SEQUENCE 1.5 T, UTE-MRI. ASSESSMENT All subjects completed both UTE-MRI and pulmonary function tests (PFTs) during two annual visits (M0 and M12), and 30 of them completed a CT scan. They initiated ETI treatment after M0 within a maximum of 3 months from the annual examinations. Three observers scored a clinical MRI Bhalla score on UTE-MRI. Bronchiectasis reversibility was defined as a reduction in both outer and inner bronchial dimensions. Correlations were searched between the Bhalla score and PFT such as the forced expiratory volume in 1 second percentage predicted (FEV1%p). STATISTICAL TESTS Comparison was assessed using the paired t-test, correlation using the Spearman correlation test with a significance level of 0.05. Concordance and reproducibility were assessed using intraclass correlation coefficient (ICC). RESULTS There was a significant improvement in MRI Bhalla score after ETI treatment. UTE-MRI demonstrated bronchiectasis reversibility in a subgroup of 18 out of 50 CF patients (36%). These patients with bronchiectasis reversibility were significantly younger, with lower severity of wall thickening but no difference in mucus plugging extent (P = 0.39) was found. The reproducibility of UTE-MRI evaluations was excellent (ICC ≥ 0.95), was concordant with CT scan (N = 30; ICC ≥ 0.90) and significantly correlated to FEV1% at PFT at M0 (N = 50; r = 0.71) and M12 (N = 50; r = 0.72). DATA CONCLUSION UTE-MRI is a reproducible tool for the longitudinal follow-up of CF patients, allowing to quantify the response to ETI and demonstrating the reversibility of some structural alterations such as bronchiectasis in a substantial fraction of this study population. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Mathieu David
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
| | - Ilyes Benlala
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Stephanie Bui
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Patrick Berger
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - François Laurent
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Julie Macey
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Gael Dournes
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), Pessac, France
- Univ. Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| |
Collapse
|
9
|
Burgel PR, Southern KW, Addy C, Battezzati A, Berry C, Bouchara JP, Brokaar E, Brown W, Azevedo P, Durieu I, Ekkelenkamp M, Finlayson F, Forton J, Gardecki J, Hodkova P, Hong G, Lowdon J, Madge S, Martin C, McKone E, Munck A, Ooi CY, Perrem L, Piper A, Prayle A, Ratjen F, Rosenfeld M, Sanders DB, Schwarz C, Taccetti G, Wainwright C, West NE, Wilschanski M, Bevan A, Castellani C, Drevinek P, Gartner S, Gramegna A, Lammertyn E, Landau EEC, Plant BJ, Smyth AR, van Koningsbruggen-Rietschel S, Middleton PG. Standards for the care of people with cystic fibrosis (CF); recognising and addressing CF health issues. J Cyst Fibros 2024; 23:187-202. [PMID: 38233247 DOI: 10.1016/j.jcf.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
This is the third in a series of four papers updating the European Cystic Fibrosis Society (ECFS) standards for the care of people with CF. This paper focuses on recognising and addressing CF health issues. The guidance was produced with wide stakeholder engagement, including people from the CF community, using an evidence-based framework. Authors contributed sections, and summary statements which were reviewed by a Delphi consultation. Monitoring and treating airway infection, inflammation and pulmonary exacerbations remains important, despite the widespread availability of CFTR modulators and their accompanying health improvements. Extrapulmonary CF-specific health issues persist, such as diabetes, liver disease, bone disease, stones and other renal issues, and intestinal obstruction. These health issues require multidisciplinary care with input from the relevant specialists. Cancer is more common in people with CF compared to the general population, and requires regular screening. The CF life journey requires mental and emotional adaptation to psychosocial and physical challenges, with support from the CF team and the CF psychologist. This is particularly important when life gets challenging, with disease progression requiring increased treatments, breathing support and potentially transplantation. Planning for end of life remains a necessary aspect of care and should be discussed openly, honestly, with sensitivity and compassion for the person with CF and their family. CF teams should proactively recognise and address CF-specific health issues, and support mental and emotional wellbeing while accompanying people with CF and their families on their life journey.
Collapse
Affiliation(s)
- Pierre-Régis Burgel
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Institut Cochin, Inserm U1016, Université Paris-Cité, Paris, France
| | - Kevin W Southern
- Department of Women's and Children's Health, Institute in the Park, Alder Hey Children's Hospital, University of Liverpool, Eaton Road, Liverpool L12 2AP, UK.
| | - Charlotte Addy
- All Wales Adult Cystic Fibrosis Centre, University Hospital Llandough, Cardiff and Vale University Health Board, Cardiff, UK
| | - Alberto Battezzati
- Clinical Nutrition Unit, Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, and ICANS-DIS, Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Claire Berry
- Department of Nutrition and Dietetics, Alder Hey Children's NHS Trust, Liverpool, UK
| | - Jean-Philippe Bouchara
- University of Brest, Fungal Respiratory Infections Research Unit, SFR ICAT, University of Angers, Angers, France
| | - Edwin Brokaar
- Department of Pharmacy, Haga Teaching Hospital, The Hague, the Netherlands
| | - Whitney Brown
- Cystic Fibrosis Foundation, Inova Fairfax Hospital, Bethesda, Maryland, USA, Falls Church, VA, USA
| | - Pilar Azevedo
- Cystic Fibrosis Reference Centre-Centro, Hospitalar Universitário Lisboa Norte, Portugal
| | - Isabelle Durieu
- Cystic Fibrosis Reference Center (Constitutif), Service de médecine interne et de pathologie vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France; ERN-Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Miquel Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Felicity Finlayson
- Department of Respiratory Medicine, The Alfred Hospital, Melbourne, Australia
| | | | - Johanna Gardecki
- CF Centre at Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pavla Hodkova
- CF Center at University Hospital Motol, Prague, Czech Republic
| | - Gina Hong
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacqueline Lowdon
- Clinical Specialist Paediatric Cystic Fibrosis Dietitian, Leeds Children's Hospital, UK
| | - Su Madge
- Royal Brompton Hospital, Part of Guys and StThomas's Hospital, London, UK
| | - Clémence Martin
- Institut Cochin, Inserm U1016, Université Paris-Cité and National Reference Center for Cystic Fibrosis, Hôpital Cochin AP-HP, ERN-Lung CF Network, Paris 75014, France
| | - Edward McKone
- St.Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Anne Munck
- Hospital Necker Enfants-Malades, AP-HP, CF Centre, Université Paris Descartes, Paris, France
| | - Chee Y Ooi
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine & Health, Department of Gastroenterology, Sydney Children's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Lucy Perrem
- Department of Respiratory Medicine, Children's Health Ireland, Dublin, Ireland
| | - Amanda Piper
- Central Clinical School, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Andrew Prayle
- Child Health, Lifespan and Population Health & Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Pediatrics and Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Margaret Rosenfeld
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA, USA
| | - Don B Sanders
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carsten Schwarz
- Division Cystic Fibrosis, CF Center, Clinic Westbrandenburg, HMU-Health and Medical University, Potsdam, Germany
| | - Giovanni Taccetti
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, Italy
| | | | - Natalie E West
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Wilschanski
- Pediatric Gastroenterology Unit, CF Center, Hadassah Medical Center, Jerusalem, Israel
| | - Amanda Bevan
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, Genova 16147, Italy
| | - Pavel Drevinek
- Department of Medical Microbiology, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Silvia Gartner
- Cystic Fibrosis Unit and Pediatric Pulmonology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, Respiratory Unit and Adult Cystic Fibrosis Center, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elise Lammertyn
- Cystic Fibrosis Europe, Brussels, Belgium and the Belgian CF Association, Brussels, Belgium
| | - Eddie Edwina C Landau
- The Graub CF Center, Pulmonary Institute, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Barry J Plant
- Cork Centre for Cystic Fibrosis (3CF), Cork University Hospital, University College Cork, Ireland
| | - Alan R Smyth
- School of Medicine, Dentistry and Biomedical Sciences, Belfast and NIHR Nottingham Biomedical Research Centre, Queens University Belfast, Nottingham, UK
| | | | - Peter G Middleton
- Westmead Clinical School, Department Respiratory & Sleep Medicine, Westmead Hospital, University of Sydney and CITRICA, Westmead, Australia
| |
Collapse
|
10
|
Benlala I, Klaar R, Gaass T, Macey J, Bui S, Senneville BDD, Berger P, Laurent F, Dournes G, Dinkel J. Non-Contrast-Enhanced Functional Lung MRI to Evaluate Treatment Response of Allergic Bronchopulmonary Aspergillosis in Patients With Cystic Fibrosis: A Pilot Study. J Magn Reson Imaging 2024; 59:909-919. [PMID: 37265441 DOI: 10.1002/jmri.28844] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) in cystic fibrosis (CF) patients is associated with severe lung damage and requires specific therapeutic management. Repeated imaging is recommended to both diagnose and follow-up response to treatment of ABPA in CF. However, high risk of cumulative radiation exposure requires evaluation of free-radiation techniques in the follow-up of CF patients with ABPA. PURPOSE To evaluate whether Fourier decomposition (FD) functional lung MRI can detect response to treatment of ABPA in CF patients. STUDY TYPE Retrospective longitudinal. POPULATION Twelve patients (7M, median-age:14 years) with CF and ABPA with pre- and post-treatment MRI. FIELD STRENGTH/SEQUENCE 2D-balanced-steady-state free-precession (bSSFP) sequence with FD at 1.5T. ASSESSMENT Ventilation-weighted (V) and perfusion-weighted (Q) maps were obtained after FD processing of 2D-coronal bSSFP time-resolved images acquired before and 3-9 months after treatment. Defects extent was assessed on the functional maps using a qualitative semi-quantitative score (0 = absence/negligible, 1 = <50%, 2 = >50%). Mean and coefficient of variation (CV) of the ventilation signal-intensity (VSI) and the perfusion signal-intensity (QSI) were calculated. Measurements were performed independently by three readers and averaged. Inter-reader reproducibility of the measurements was assessed. Pulmonary function tests (PFTs) were performed within 1 week of both MRI studies as markers of the airflow-limitation severity. STATISTICAL TESTS Comparisons of medians were performed using the paired Wilcoxon-test. Reproducibility was assessed using intraclass correlation coefficient (ICC). Correlations between MRI and PFT parameters were assessed using the Spearman-test (rho correlation-coefficient). A P-value <0.05 was considered as significant. RESULTS Defects extent on both V and Q maps showed a significant reduction after ABPA treatment (4.25 vs. 1.92 for V-defect-score and 5 vs. 2.75 for Q-defect-score). VSI_mean was significantly increased after treatment (280 vs. 167). Qualitative analyses reproducibility showed an ICC > 0.90, while the ICCs of the quantitative measurements was almost perfect (>0.99). Changes in VSI_cv and QSI_cv before and after treatment correlated inversely with changes of FEV1%p (rho = -0.68 for both). DATA CONCLUSION Non-contrast-enhanced FD lung MRI has potential to reproducibly assess response to treatment of ABPA in CF patients and correlates with PFT obstructive parameters. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Ilyes Benlala
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
| | - Rabea Klaar
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gaass
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Julie Macey
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | - Stéphanie Bui
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | | | - Patrick Berger
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | - François Laurent
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | - Gael Dournes
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- CHU Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
11
|
O’Regan PW, Stevens NE, Logan N, Ryan DJ, Maher MM. Paediatric Thoracic Imaging in Cystic Fibrosis in the Era of Cystic Fibrosis Transmembrane Conductance Regulator Modulation. CHILDREN (BASEL, SWITZERLAND) 2024; 11:256. [PMID: 38397368 PMCID: PMC10888261 DOI: 10.3390/children11020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Cystic fibrosis (CF) is one of the most common progressive life-shortening genetic conditions worldwide. Ground-breaking translational research has generated therapies that target the primary cystic fibrosis transmembrane conductance regulator (CFTR) defect, known as CFTR modulators. A crucial aspect of paediatric CF disease is the development and progression of irreversible respiratory disease in the absence of clinical symptoms. Accurate thoracic diagnostics have an important role to play in this regard. Chest radiographs are non-specific and insensitive in the context of subtle changes in early CF disease, with computed tomography (CT) providing increased sensitivity. Recent advancements in imaging hardware and software have allowed thoracic CTs to be acquired in paediatric patients at radiation doses approaching that of a chest radiograph. CFTR modulators slow the progression of CF, reduce the frequency of exacerbations and extend life expectancy. In conjunction with advances in CT imaging techniques, low-dose thorax CT will establish a central position in the routine care of children with CF. International guidelines regarding the choice of modality and timing of thoracic imaging in children with CF are lagging behind these rapid technological advances. The continued progress of personalised medicine in the form of CFTR modulators will promote the emergence of personalised radiological diagnostics.
Collapse
Affiliation(s)
- Patrick W. O’Regan
- Department of Radiology, Cork University Hospital, T12 DC4A Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, T12 AK54 Cork, Ireland
| | - Niamh E. Stevens
- Department of Surgery, Mercy University Hospital, T12 WE28 Cork, Ireland
| | - Niamh Logan
- Department of Medicine, Mercy University Hospital, T12 WE28 Cork, Ireland
| | - David J. Ryan
- Department of Radiology, Cork University Hospital, T12 DC4A Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, T12 AK54 Cork, Ireland
| | - Michael M. Maher
- Department of Radiology, Cork University Hospital, T12 DC4A Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, T12 AK54 Cork, Ireland
| |
Collapse
|
12
|
Liszewski MC, Ciet P, Winant AJ, Lee EY. Magnetic Resonance Imaging of Pediatric Lungs and Airways: New Paradigm for Practical Daily Clinical Use. J Thorac Imaging 2024; 39:57-66. [PMID: 37015830 DOI: 10.1097/rti.0000000000000707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Disorders of the lungs and airways are among the most common indications for diagnostic imaging in infants and children. Traditionally, chest radiograph has been the first-line imaging test for detecting these disorders and when cross-sectional imaging is necessary, computed tomography (CT) has typically been the next step. However, due to concerns about the potentially harmful effects of ionizing radiation, pediatric imaging in general has begun to shift away from CT toward magnetic resonance imaging (MRI) as a preferred modality. Several unique technical challenges of chest MRI, including motion artifact from respiratory and cardiac motion as well as low signal-to-noise ratios secondary to relatively low proton density in the lung have slowed this shift in thoracic imaging. However, technical advances in MRI in recent years, including developments in non-Cartesian MRI data sampling methods such as radial, spiral, and PROPELLER imaging and the development of ultrashort TE and zero TE sequences that render CT-like high-quality imaging with minimal motion artifact have allowed for a shift to MRI for evaluation of lung and large airways in centers with specialized expertise. This article presents a practical approach for radiologists in current practice to begin to consider MRI for evaluation of the pediatric lung and large airways and begin to implement it in their practices. The current role for MRI in the evaluation of disorders of the pediatric lung and large airways is reviewed, and example cases are presented. Challenges for MRI of the lung and large airways in children are discussed, practical tips for patient preparation including sedation are described, and imaging techniques suitable for current clinical practice are presented.
Collapse
Affiliation(s)
- Mark C Liszewski
- Departments of Radiology and Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Pierluigi Ciet
- Departments of Radiology and Nuclear Medicine
- Pediatric Respiratory Medicine, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology, University Hospital of Cagliari, Cagliari, Italy
| | - Abbey J Winant
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Edward Y Lee
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Paggi R, Giannessi C, Zantonelli G, Moroni C, Cozzi D, Cavigli E, Bartalesi F, Miele V, Bartoloni A, Mencarini J. Magnetic resonance in nontuberculous mycobacteria pulmonary disease: A new approach. Respir Med 2023; 220:107449. [PMID: 37981245 DOI: 10.1016/j.rmed.2023.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Affiliation(s)
- Riccardo Paggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Caterina Giannessi
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Giulia Zantonelli
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Chiara Moroni
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Diletta Cozzi
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Edoardo Cavigli
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Filippo Bartalesi
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Jessica Mencarini
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
14
|
Tagliati C, Pantano S, Lanni G, Battista D, Cerimele F, Collini F, Rebonato A, Esposito R, Marcucci M, Fogante M, Argalia G, Lanza C, Ripani P. Radiological and clinical evaluation of triple combination modulating therapy effectiveness in adult patients with cystic fibrosis. META-RADIOLOGY 2023; 1:100025. [DOI: 10.1016/j.metrad.2023.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Bayat S, Wild J, Winkler T. Lung functional imaging. Breathe (Sheff) 2023; 19:220272. [PMID: 38020338 PMCID: PMC10644108 DOI: 10.1183/20734735.0272-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary functional imaging modalities such as computed tomography, magnetic resonance imaging and nuclear imaging can quantitatively assess regional lung functional parameters and their distributions. These include ventilation, perfusion, gas exchange at the microvascular level and biomechanical properties, among other variables. This review describes the rationale, strengths and limitations of the various imaging modalities employed for lung functional imaging. It also aims to explain some of the most commonly measured parameters of regional lung function. A brief review of evidence on the role and utility of lung functional imaging in early diagnosis, accurate lung functional characterisation, disease phenotyping and advancing the understanding of disease mechanisms in major respiratory disorders is provided.
Collapse
Affiliation(s)
- Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, STROBE Laboratory, INSERM UA07, Grenoble, France
| | - Jim Wild
- POLARIS, Imaging Group, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Sheahan KP, O'Mahony AT, Morrissy D, Ibrahim H, Crowley C, Waldron MG, Sokol-Randell D, McMahon A, Maher MM, O'Connor OJ, Plant BJ. Replacing Plain Radiograph with ultra-low dose CT thorax in cystic fibrosis (CF) in the era of CFTR modulation and its impact on cumulative effective dose. J Cyst Fibros 2023; 22:715-721. [PMID: 37400300 DOI: 10.1016/j.jcf.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Medical radiation exposure is of increasing concern in patients with cystic fibrosis (PWCF) due to improving life expectancy. We aimed to assess and quantify the cumulative effective dose (CED) in PWCF in the context of CFTR-modulator therapy and the advancement of dose reduction techniques. METHODS We performed a retrospective observational study in a single University CF centre over a 11-year period. We included PWCF, aged over 18 years who exclusively attended our institution. Relevant clinical data (demographics, transplantation history and modulator status) and radiological data (modality, quantity, and radiation exposure measured as CED) were collected. For those on modulator therapy the quantified imaging and radiation data was dichotomised into pre-and-post therapy periods. RESULTS The study included 181 patients: 139 on CFTR modulator therapy, 15 transplant recipients and 27 with neither exposure. 82% of patients received <25 mSv over the study period. Mean study duration was 6.9 ± 2.6 years pre-modulation and 4.2 ± 2.6 years post-modulation. Pre-modulation CT contributed 9.6% of total chest imaging (n = 139/1453) and 70.9% of the total CED. Post-modulation CT use increased contributing 42.7% of chest imaging (n = 444/1039) and comprised 75.8% of CED. Annual CED was 1.55 mSv pre and 1.36 mSv post modulation (p = 0.41). Transplant recipients had an annual CED of 64 ± 36.1mSv. CONCLUSION Chest CT utilisation for PWCF is rising in our institution, replacing chest radiography amidst CFTR-modulation. Despite the increasing use of CT, no significant radiation dose penalty was observed with a reduction in mean annual CED, primarily due to the influence of CT dose reduction strategies.
Collapse
Affiliation(s)
- Kevin P Sheahan
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | | | - David Morrissy
- Cork Centre for Cystic Fibrosis (3CF), Cork University Hospital, Cork Ireland
| | - Hisham Ibrahim
- Cork Centre for Cystic Fibrosis (3CF), Cork University Hospital, Cork Ireland
| | - Claire Crowley
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | | | | | - Aisling McMahon
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Michael M Maher
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Owen J O'Connor
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Barry J Plant
- Cork Centre for Cystic Fibrosis (3CF), Cork University Hospital, Cork Ireland
| |
Collapse
|
17
|
Fainardi V, Skenderaj K, Ciuni A, Milanese G, Deolmi M, Longo F, Spaggiari C, Sverzellati N, Esposito S, Pisi G. Structural changes in lung morphology detected by MRI after modulating therapy with elexacaftor/tezacaftor/ivacaftor in adolescent and adult patients with cystic fibrosis. Respir Med 2023:107328. [PMID: 37321310 DOI: 10.1016/j.rmed.2023.107328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) improves CFTR function in cystic fibrosis (CF) patients homozygous or heterozygous for F508del mutation. The aim of the study was to evaluate the response to ELX/TEZ/IVA treatment both clinically and morphologically in terms of bronchiectasis, bronchial wall thickening, mucus plugging, abscess and consolidations. METHODS We retrospectively collected data from CF patients followed at Parma CF Centre (Italy) treated by ELX/TEZ/IVA between March and November 2021. Post-treatment changes in respiratory function, quality of life, sweat chloride concentration, body mass index, pulmonary exacerbations and lung structure by chest magnetic resonance imaging (MRI) were assessed. T2-and T1-weighted sequences were acquired with a 20 min-long scanning protocol on a 1.5T MRI scanner (Philips Ingenia) without administration of intravenous contrast media. RESULTS 19 patients (32.5 ± 10.2 years) were included in the study. After 6 months of treatment with ELX/TEZ/IVA, MRI showed significant improvements in the morphological score (p < 0.001), with a reduction in bronchial wall thickening (p < 0.001) and mucus plugging (p 0.01). Respiratory function showed significant improvement in predicted FEV1% (58.5 ± 17.5 vs 71.4 ± 20.1, p < 0.001), FVC% (79.0 ± 11.1 vs 88.3 ± 14.4, p < 0.001), FEV1/FVC (0.61 ± 0.16 vs 0.67 ± 0.15, <0.001) and LCI2.5% (17.8 ± 4.3 vs 15.8 ± 4.1 p < 0.005). Significant improvement was found in body mass index (20.6 ± 2.7 vs 21.9 ± 2.4, p < 0.001), pulmonary exacerbations (2.3 ± 1.3 vs 1.4 ± 1.3 p 0.018) and sweat chloride concentration (96.5 ± 36.6 vs 41.1 ± 16.9, p < 0.001). CONCLUSIONS Our study confirms the efficacy of ELX/TEZ/IVA in CF patients not only from a clinical point of view but also in terms of morphological changes of the lungs.
Collapse
Affiliation(s)
- Valentina Fainardi
- Cystic Fibrosis Unit, Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126, Parma, Italy.
| | - Kaltra Skenderaj
- Cystic Fibrosis Unit, Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126, Parma, Italy.
| | - Andrea Ciuni
- Section of Radiology, Unit of Surgical Sciences, Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| | - Gianluca Milanese
- Section of Radiology, Unit of Surgical Sciences, Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| | - Michela Deolmi
- Cystic Fibrosis Unit, Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126, Parma, Italy.
| | - Francesco Longo
- Respiratory Disease and Lung Function Unit, Azienda Ospedaliero-Universitaria, 43126, Parma, Italy.
| | - Cinzia Spaggiari
- Cystic Fibrosis Unit, Pediatric Clinic, Azienda Ospedaliero-Universitaria, 43126, Parma, Italy.
| | - Nicola Sverzellati
- Section of Radiology, Unit of Surgical Sciences, Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| | - Susanna Esposito
- Cystic Fibrosis Unit, Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126, Parma, Italy.
| | - Giovanna Pisi
- Cystic Fibrosis Unit, Pediatric Clinic, Azienda Ospedaliero-Universitaria, 43126, Parma, Italy.
| |
Collapse
|
18
|
Jaworska J, Buda N, Kwaśniewicz P, Komorowska-Piotrowska A, Sands D. Lung Ultrasound in the Evaluation of Lung Disease Severity in Children with Clinically Stable Cystic Fibrosis: A Prospective Cross-Sectional Study. J Clin Med 2023; 12:jcm12093086. [PMID: 37176526 PMCID: PMC10179222 DOI: 10.3390/jcm12093086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
With the increasing longevity of cystic fibrosis (CF), there is a growing need to minimise exposure to ionising radiation in patients who undergo regular imaging tests while monitoring the course of the lung disease. This study aimed to define the role of lung ultrasounds (LUS) in the evaluation of lung disease severity in children with clinically stable CF. LUS was performed on 131 patients aged 5 weeks to 18 years (study group) and in 32 healthy children of an equivalent age range (control group). Additionally, an interobserver study was performed on 38 patients from the study group. In CF patients, the following ultrasound signs were identified: I-lines; Z-lines; single, numerous and confluent B-lines; Am-lines; small and major consolidations; pleural line abnormalities and small amounts of pleural fluid. The obtained results were evaluated against an original ultrasound score. LUS results were correlated with the results of chest X-ray (CXR) [very high], pulmonary function tests (PFTs) [high] and microbiological status [significant]. The interobserver study showed very good agreement between investigators. We conclude that LUS is a useful test in the evaluation of CF lung disease severity compared to routinely used methods. With appropriate standardisation, LUS is highly reproducible.
Collapse
Affiliation(s)
- Joanna Jaworska
- Cystic Fibrosis Department, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Natalia Buda
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Piotr Kwaśniewicz
- Department of Diagnostic Imaging, Institute of Mother and Child, 01-211 Warsaw, Poland
| | | | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, 01-211 Warsaw, Poland
| |
Collapse
|
19
|
Gräfe D, Prenzel F, Hirsch FW. Chest magnetic resonance imaging in cystic fibrosis: technique and clinical benefits. Pediatr Radiol 2023; 53:640-648. [PMID: 36372855 PMCID: PMC10027634 DOI: 10.1007/s00247-022-05539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
Abstract
Cystic fibrosis (CF) is one of the most common inherited and life-shortening pulmonary diseases in the Caucasian population. With the widespread introduction of newborn screening and the development of modulator therapy, tremendous advances have been made in recent years both in diagnosis and therapy. Since paediatric CF patients tend to be younger and have lower morbidity, the type of imaging modality that should be used to monitor the disease is often debated. Computed tomography (CT) is sensitive to many pulmonary pathologies, but radiation exposure limits its use, especially in children and adolescents. Conventional pulmonary magnetic resonance imaging (MRI) is a valid alternative to CT and, in most cases, provides sufficient information to guide treatment. Given the expected widespread availability of sequences with ultra-short echo times, there will be even fewer reasons to perform CT for follow-up of patients with CF. This review aims to provide an overview of the process and results of monitoring CF with MRI, particularly for centres not specialising in the disease.
Collapse
Affiliation(s)
- Daniel Gräfe
- Department of Pediatric Radiology, Leipzig University Hospital, Liebigstraße 20a, 04103, Leipzig, Germany.
| | - Freerk Prenzel
- Department of Pediatrics, Leipzig University Hospital, Liebigstraße 20a, 04103, Leipzig, Germany
| | - Franz Wolfgang Hirsch
- Department of Pediatric Radiology, Leipzig University Hospital, Liebigstraße 20a, 04103, Leipzig, Germany
| |
Collapse
|
20
|
Ciet P, Booij R, Dijkshoorn M, van Straten M, Tiddens HAWM. Chest radiography and computed tomography imaging in cystic fibrosis: current challenges and new perspectives. Pediatr Radiol 2023; 53:649-659. [PMID: 36307546 PMCID: PMC10027794 DOI: 10.1007/s00247-022-05522-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022]
Abstract
Imaging plays a pivotal role in the noninvasive assessment of cystic fibrosis (CF)-related lung damage, which remains the main cause of morbidity and mortality in children with CF. The development of new imaging techniques has significantly changed clinical practice, and advances in therapies have posed diagnostic and monitoring challenges. The authors summarise these challenges and offer new perspectives in the use of imaging for children with CF for both clinicians and radiologists. This article focuses on chest radiography and CT, which are the two main radiologic techniques used in most cystic fibrosis centres. Advantages and disadvantages of radiography and CT for imaging in CF are described, with attention to new developments in these techniques, such as the use of artificial intelligence (AI) image analysis strategies to improve the sensitivity of radiography and CT and the introduction of the photon-counting detector CT scanner to increase spatial resolution at no dose expense.
Collapse
Affiliation(s)
- Pierluigi Ciet
- Radiology & Nuclear Medicine Department, Pediatric Radiology Section, Erasmus MC-Sophia Children's Hospital, Room Sb‑1650, Wytemaweg 80, 3015 CN, Rotterdam, South‑Holland, The Netherlands.
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Ronald Booij
- Radiology & Nuclear Medicine Department, Pediatric Radiology Section, Erasmus MC-Sophia Children's Hospital, Room Sb‑1650, Wytemaweg 80, 3015 CN, Rotterdam, South‑Holland, The Netherlands
| | - Marcel Dijkshoorn
- Radiology & Nuclear Medicine Department, Pediatric Radiology Section, Erasmus MC-Sophia Children's Hospital, Room Sb‑1650, Wytemaweg 80, 3015 CN, Rotterdam, South‑Holland, The Netherlands
| | - Marcel van Straten
- Department of Radiology & Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, South-Holland, The Netherlands
| | - Harm A W M Tiddens
- Radiology & Nuclear Medicine Department, Pediatric Radiology Section, Erasmus MC-Sophia Children's Hospital, Room Sb‑1650, Wytemaweg 80, 3015 CN, Rotterdam, South‑Holland, The Netherlands
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Pilot study to determine whether reduced-dose photon-counting detector chest computed tomography can reliably display Brody II score imaging findings for children with cystic fibrosis at radiation doses that approximate radiographs. Pediatr Radiol 2023; 53:1049-1056. [PMID: 36596868 DOI: 10.1007/s00247-022-05574-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND The Brody II score uses chest CT to guide therapeutic changes in children with cystic fibrosis; however, patients and providers are often reticent to undergo chest CT given concerns about radiation. OBJECTIVE We sought to determine the ability of a reduced-dose photon-counting detector (PCD) chest CT protocol to reproducibly display pulmonary disease severity using the Brody II score for children with cystic fibrosis (CF) scanned at radiation doses similar to those of a chest radiograph. MATERIALS AND METHODS Pediatric patients with CF underwent non-contrast reduced-dose chest PCD-CT. Volumetric inspiratory and expiratory scans were obtained without sedation or anesthesia. Three pediatric radiologists with Certificates of Added Qualification scored each scan on an ordinal scale and assigned a Brody II score to grade bronchiectasis, peribronchial thickening, parenchymal opacity, air trapping and mucus plugging. We report image-quality metrics using descriptive statistics. To calculate inter-rater agreement for Brody II scoring, we used the Krippendorff alpha and intraclass correlation coefficient (ICC). RESULTS Fifteen children with CF underwent reduced-dose PCD chest CT in both inspiration and expiration (mean age 8.9 years, range, 2.5-17.5 years; 4 girls). Mean volumetric CT dose index (CTDIvol) was 0.07 ± 0.03 mGy per scan. Mean effective dose was 0.12 ± 0.04 mSv for the total examination. All three readers graded spatial resolution and noise as interpretable on lung windows. The average Brody II score was 12.5 (range 4-19), with moderate inter-reader reliability (ICC of 0.61 [95% CI=0.27, 0.84]). Inter-rater reliability was moderate to substantial for bronchiectasis (0.52), peribronchial thickening (0.55), presence of opacity (0.62) and air trapping (0.70) and poor for mucus plugging (0.09). CONCLUSION Reduced-dose PCD-CT permits diagnostic image quality and reproducible identification of Brody II scoring imaging findings at radiation doses similar to those for chest radiography.
Collapse
|
22
|
Application of deep learning-based super-resolution to T1-weighted postcontrast gradient echo imaging of the chest. LA RADIOLOGIA MEDICA 2023; 128:184-190. [PMID: 36609662 PMCID: PMC9938811 DOI: 10.1007/s11547-022-01587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVES A deep learning-based super-resolution for postcontrast volume-interpolated breath-hold examination (VIBE) of the chest was investigated in this study. Aim was to improve image quality, noise, artifacts and diagnostic confidence without change of acquisition parameters. MATERIALS AND METHODS Fifty patients who received VIBE postcontrast imaging of the chest at 1.5 T were included in this retrospective study. After acquisition of the standard VIBE (VIBES), a novel deep learning-based algorithm and a denoising algorithm were applied, resulting in enhanced images (VIBEDL). Two radiologists qualitatively evaluated both datasets independently, rating sharpness of soft tissue, vessels, bronchial structures, lymph nodes, artifacts, cardiac motion artifacts, noise levels and overall diagnostic confidence, using a Likert scale ranging from 1 to 4. In the presence of lung lesions, the largest lesion was rated regarding sharpness and diagnostic confidence using the same Likert scale as mentioned above. Additionally, the largest diameter of the lesion was measured. RESULTS The sharpness of soft tissue, vessels, bronchial structures and lymph nodes as well as the diagnostic confidence, the extent of artifacts, the extent of cardiac motion artifacts and noise levels were rated superior in VIBEDL (all P < 0.001). There was no significant difference in the diameter or the localization of the largest lung lesion in VIBEDL compared to VIBES. Lesion sharpness as well as detectability was rated significantly better by both readers with VIBEDL (both P < 0.001). CONCLUSION The application of a novel deep learning-based super-resolution approach in T1-weighted VIBE postcontrast imaging resulted in an improvement in image quality, noise levels and diagnostic confidence as well as in a shortened acquisition time.
Collapse
|
23
|
Nontuberculous Mycobacterial Lung Disease in the Patients with Cystic Fibrosis—A Challenging Diagnostic Problem. Diagnostics (Basel) 2022; 12:diagnostics12071514. [PMID: 35885420 PMCID: PMC9316837 DOI: 10.3390/diagnostics12071514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Cystic fibrosis (CF) is an autosomal, recessive genetic disorder, caused by a mutation in the cystic fibrosis transmembrane conductance receptor regulator (CFTR) gene. Dysregulated mucous production, and decreased bronchial mucociliary clearance, results in increased susceptibility to bacterial and fungal infections. Recently, nontuberculous mycobacteria (NTM) infections were identified as an emerging clinical problem in CF patients. Aim: The aim of the present study was to assess the frequency of NTM isolations in CF patients hospitalized in the pulmonary department, serving as a hospital CF center, and to describe challenges concerning the recognition of NTMLD (nontuberculous mycobacterial lung disease) in those patients. Methods: Consecutive CF patients, who were hospitalized due to pulmonary exacerbations (PEX), in a single CF center, between 2010 and 2020, were retrospectively assessed for the presence of NTM in respiratory specimens. Clinical and radiological data were retrospectively reviewed. Results: Positive respiratory specimen cultures for NTM were obtained in 11 out of 151 patients (7%), mean age—35.7 years, mean BMI—20.2 kg/m2, mean FEV1—58.6% pred. Cultures and phenotyping revealed the presence of Mycobacterium avium (M. avium)—in six patients, Mycobacterium chimaera (M. chimaera) in two, Mycobacterium kansasii (M. kansasii)—in one, Mycobacterium abscessus (M. abscessus)—in one, Mycobacterium lentifavum (M. lentiflavum)—in one. Simultaneously, respiratory cultures were positive for fungi in 91% of patients: Candida albicans (C. albicans)—in 82%, Aspergillus fumigatus (A. fumigatus)—in 45%. Clinical signs of NTMLD were non—specific, chest CT indicated NTMLD in five patients only. Conclusion: Due to non-specific clinical presentation, frequent sputum cultures for NTM and analysis of serial chest CT examinations are crucial for NTMLD recognition in CF patients. Further studies concerning the predictive role of fungal pathogens for NTMLD development in CF patients are needed.
Collapse
|
24
|
Ramsey KA, Schultz A. Monitoring disease progression in childhood bronchiectasis. Front Pediatr 2022; 10:1010016. [PMID: 36186641 PMCID: PMC9523123 DOI: 10.3389/fped.2022.1010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Bronchiectasis (not related to cystic fibrosis) is a chronic lung disease caused by a range of etiologies but characterized by abnormal airway dilatation, recurrent respiratory symptoms, impaired quality of life and reduced life expectancy. Patients typically experience episodes of chronic wet cough and recurrent pulmonary exacerbations requiring hospitalization. Early diagnosis and management of childhood bronchiectasis are essential to prevent respiratory decline, optimize quality of life, minimize pulmonary exacerbations, and potentially reverse bronchial disease. Disease monitoring potentially allows for (1) the early detection of acute exacerbations, facilitating timely intervention, (2) tracking the rate of disease progression for prognostic purposes, and (3) quantifying the response to therapies. This narrative review article will discuss methods for monitoring disease progression in children with bronchiectasis, including lung imaging, respiratory function, patient-reported outcomes, respiratory exacerbations, sputum biomarkers, and nutritional outcomes.
Collapse
Affiliation(s)
- Kathryn A Ramsey
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - André Schultz
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Respiratory Medicine, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
25
|
Landini N, Ciet P, Janssens HM, Bertolo S, Ros M, Mattone M, Catalano C, Majo F, Costa S, Gramegna A, Lucca F, Parisi GF, Saba L, Tiddens HAWM, Morana G. Management of respiratory tract exacerbations in people with cystic fibrosis: Focus on imaging. Front Pediatr 2022; 10:1084313. [PMID: 36814432 PMCID: PMC9940849 DOI: 10.3389/fped.2022.1084313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/28/2022] [Indexed: 02/09/2023] Open
Abstract
Respiratory tract exacerbations play a crucial role in progressive lung damage of people with cystic fibrosis, representing a major determinant in the loss of functional lung tissue, quality of life and patient survival. Detection and monitoring of respiratory tract exacerbations are challenging for clinicians, since under- and over-treatment convey several risks for the patient. Although various diagnostic and monitoring tools are available, their implementation is hampered by the current definition of respiratory tract exacerbation, which lacks objective "cut-offs" for clinical and lung function parameters. In particular, the latter shows a large variability, making the current 10% change in spirometry outcomes an unreliable threshold to detect exacerbation. Moreover, spirometry cannot be reliably performed in preschool children and new emerging tools, such as the forced oscillation technique, are still complementary and need more validation. Therefore, lung imaging is a key in providing respiratory tract exacerbation-related structural and functional information. However, imaging encompasses several diagnostic options, each with different advantages and limitations; for instance, conventional chest radiography, the most used radiological technique, may lack sensitivity and specificity in respiratory tract exacerbations diagnosis. Other methods, including computed tomography, positron emission tomography and magnetic resonance imaging, are limited by either radiation safety issues or the need for anesthesia in uncooperative patients. Finally, lung ultrasound has been proposed as a safe bedside option but it is highly operator-dependent and there is no strong evidence of its possible use during respiratory tract exacerbation. This review summarizes the clinical challenges of respiratory tract exacerbations in patients with cystic fibrosis with a special focus on imaging. Firstly, the definition of respiratory tract exacerbation is examined, while diagnostic and monitoring tools are briefly described to set the scene. This is followed by advantages and disadvantages of each imaging technique, concluding with a diagnostic imaging algorithm for disease monitoring during respiratory tract exacerbation in the cystic fibrosis patient.
Collapse
Affiliation(s)
- Nicholas Landini
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, "Sapienza" Rome University, Rome, Italy
| | - Pierluigi Ciet
- Department of Radiology and Nuclear Medicine, Erasmus MC - Sophia, Rotterdam, Netherlands.,Department of Radiology, University Cagliari, Cagliari, Italy.,Department of Pediatrics, division of Respiratory Medicine and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hettie M Janssens
- Department of Pediatrics, division of Respiratory Medicine and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Silvia Bertolo
- Department of Radiology, S. Maria Ca'Foncello Regional Hospital, Treviso, Italy
| | - Mirco Ros
- Department of Pediatrics, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Monica Mattone
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, "Sapienza" Rome University, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, "Sapienza" Rome University, Rome, Italy
| | - Fabio Majo
- Pediatric Pulmonology & Cystic Fibrosis Unit Bambino Gesú Children's Hospital, IRCCS Rome, Rome, Italy
| | - Stefano Costa
- Department of Pediatrics, Gaetano Martino Hospital, Messina, Italy
| | - Andrea Gramegna
- Department of Pathophisiology and Transplantation, University of Milan, Milan, Italy.,Respiratory Disease and Adult Cystic Fibrosis Centre, Internal Medicine Department, IRCCS Ca' Granda, Milan, Italy
| | - Francesca Lucca
- Regional Reference Cystic Fibrosis Center, University Hospital of Verona, Verona, Italy
| | - Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Luca Saba
- Department of Radiology, University Cagliari, Cagliari, Italy
| | - Harm A W M Tiddens
- Department of Radiology and Nuclear Medicine, Erasmus MC - Sophia, Rotterdam, Netherlands.,Department of Pediatrics, division of Respiratory Medicine and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Giovanni Morana
- Department of Radiology, S. Maria Ca'Foncello Regional Hospital, Treviso, Italy
| |
Collapse
|