1
|
Sariyar S, Sountoulidis A, Hansen JN, Marco Salas S, Mardamshina M, Martinez Casals A, Ballllosera Navarro F, Andrusivova Z, Li X, Czarnewski P, Lundeberg J, Linnarsson S, Nilsson M, Sundström E, Samakovlis C, Lundberg E, Ayoglu B. High-parametric protein maps reveal the spatial organization in early-developing human lung. Nat Commun 2024; 15:9381. [PMID: 39477961 PMCID: PMC11525936 DOI: 10.1038/s41467-024-53752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The respiratory system, including the lungs, is essential for terrestrial life. While recent research has advanced our understanding of lung development, much still relies on animal models and transcriptome analyses. In this study conducted within the Human Developmental Cell Atlas (HDCA) initiative, we describe the protein-level spatiotemporal organization of the lung during the first trimester of human gestation. Using high-parametric tissue imaging with a 30-plex antibody panel, we analyzed human lung samples from 6 to 13 post-conception weeks, generating data from over 2 million cells across five developmental timepoints. We present a resource detailing spatially resolved cell type composition of the developing human lung, including proliferative states, immune cell patterns, spatial arrangement traits, and their temporal evolution. This represents an extensive single-cell resolved protein-level examination of the developing human lung and provides a valuable resource for further research into the developmental roots of human respiratory health and disease.
Collapse
Affiliation(s)
- Sanem Sariyar
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Alexandros Sountoulidis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Niklas Hansen
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sergio Marco Salas
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mariya Mardamshina
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna Martinez Casals
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Frederic Ballllosera Navarro
- Science for Life Laboratory, Solna, Sweden
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zaneta Andrusivova
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Solna, Sweden
- Department of Gene Technology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Christos Samakovlis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Molecular Pneumology, Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Emma Lundberg
- Science for Life Laboratory, Solna, Sweden.
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Burcu Ayoglu
- Science for Life Laboratory, Solna, Sweden.
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
2
|
Savran O, Bønnelykke K, Ulrik CS. Characteristics of Adults With Severe Asthma in Childhood: A 60-Year Follow-Up Study. Chest 2024; 166:676-684. [PMID: 38945358 DOI: 10.1016/j.chest.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Childhood asthma is a prevalent condition with potential impacts on adult life. RESEARCH QUESTION In a 60-year follow-up study of adults with a history of severe childhood asthma, what are the potential differences in characteristics between individuals with persistent asthma and asthma remission in adulthood? STUDY DESIGN AND METHODS Danish adults with a history of childhood asthma and a 4-month stay at an asthma care facility in Kongsberg, Norway (1950-1979) in childhood were included. Recruitment was carried out through social media and personal invitation letters. Participants completed questionnaires and underwent spirometry, bronchial provocation, and bronchodilator reversibility and blood tests. Asthma remission was defined as no use of asthma medication and no asthma symptoms within the past 12 months, with the remaining participants being classified as having current asthma. RESULTS Among 1,394 eligible participants, 232 participants completed the follow-up. Ninety percent had current asthma, of whom 26% reported exacerbations in the past year. Only 16% of all the participants were managed in secondary care. Common comorbidities were allergic rhinitis (60%), hypertension (21%), eczema (16%), and cataract (8%). Compared with participants in remission, participants with persistent asthma showed higher total IgE (P = .03) and both lower FEV1 % predicted (P = .03) and FEV1 to FVC ratio (P < .001), as well as numerically higher fractional exhaled nitric oxide and blood eosinophil count. INTERPRETATION Our 60-year follow-up study of adults with a history of severe childhood asthma revealed that nine of 10 participants still had current asthma. Persistent asthma was associated with lower lung function and higher levels of type 2 inflammatory biomarkers compared with asthma remission.
Collapse
Affiliation(s)
- Osman Savran
- Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark; Copenhagen University Library, Copenhagen, Denmark.
| | - Klaus Bønnelykke
- Institute of Clinical Medicine, University of Copenhagen, Denmark; COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital- Gentofte, Gentofte, Denmark
| | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark; Institute of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Zazara DE, Giannou O, Schepanski S, Pagenkemper M, Giannou AD, Pincus M, Belios I, Bonn S, Muntau AC, Hecher K, Diemert A, Arck PC. Fetal lung growth predicts the risk for early-life respiratory infections and childhood asthma. World J Pediatr 2024; 20:481-495. [PMID: 38261172 PMCID: PMC11136800 DOI: 10.1007/s12519-023-00782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Early-life respiratory infections and asthma are major health burdens during childhood. Markers predicting an increased risk for early-life respiratory diseases are sparse. Here, we identified the predictive value of ultrasound-monitored fetal lung growth for the risk of early-life respiratory infections and asthma. METHODS Fetal lung size was serially assessed at standardized time points by transabdominal ultrasound in pregnant women participating in a pregnancy cohort. Correlations between fetal lung growth and respiratory infections in infancy or early-onset asthma at five years were examined. Machine-learning models relying on extreme gradient boosting regressor or classifier algorithms were developed to predict respiratory infection or asthma risk based on fetal lung growth. For model development and validation, study participants were randomly divided into a training and a testing group, respectively, by the employed algorithm. RESULTS Enhanced fetal lung growth throughout pregnancy predicted a lower early-life respiratory infection risk. Male sex was associated with a higher risk for respiratory infections in infancy. Fetal lung growth could also predict the risk of asthma at five years of age. We designed three machine-learning models to predict the risk and number of infections in infancy as well as the risk of early-onset asthma. The models' R2 values were 0.92, 0.90 and 0.93, respectively, underscoring a high accuracy and agreement between the actual and predicted values. Influential variables included known risk factors and novel predictors, such as ultrasound-monitored fetal lung growth. CONCLUSION Sonographic monitoring of fetal lung growth allows to predict the risk for early-life respiratory infections and asthma.
Collapse
Affiliation(s)
- Dimitra E Zazara
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251, Hamburg, Germany
- University Children's Hospital, UKE, Hamburg, Germany
| | - Olympia Giannou
- Computer Engineering and Informatics Department, Polytechnic School, University of Patras, Patras, Greece
| | - Steven Schepanski
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | | | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, UKE, Hamburg, Germany
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, UKE, Hamburg, Germany
| | - Maike Pincus
- Pediatrics and Pediatric Pneumology Practice, Berlin, Germany
| | - Ioannis Belios
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, ZMNH, UKE, Hamburg, Germany
- Hamburg Center for Translational Immunology, UKE, Hamburg, Germany
| | - Ania C Muntau
- University Children's Hospital, UKE, Hamburg, Germany
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, UKE, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, UKE, Hamburg, Germany
| | - Petra Clara Arck
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251, Hamburg, Germany.
- Hamburg Center for Translational Immunology, UKE, Hamburg, Germany.
| |
Collapse
|
4
|
Williams PJ, Buttery SC, Laverty AA, Hopkinson NS. Lung Disease and Social Justice: Chronic Obstructive Pulmonary Disease as a Manifestation of Structural Violence. Am J Respir Crit Care Med 2024; 209:938-946. [PMID: 38300144 PMCID: PMC11531224 DOI: 10.1164/rccm.202309-1650ci] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/01/2024] [Indexed: 02/02/2024] Open
Abstract
Lung health, the development of lung disease, and how well a person with lung disease is able to live all depend on a wide range of societal factors. These systemic factors that adversely affect people and cause injustice can be thought of as "structural violence." To make the causal processes relating to chronic obstructive pulmonary disease (COPD) more apparent, and the responsibility to interrupt or alleviate them clearer, we have developed a taxonomy to describe this. It contains five domains: 1) avoidable lung harms (processes impacting lung development, processes that disadvantage lung health in particular groups across the life course), 2) diagnostic delay (healthcare factors; norms and attitudes that mean COPD is not diagnosed in a timely way, denying people with COPD effective treatment), 3) inadequate COPD care (ways in which the provision of care for people with COPD falls short of what is needed to ensure they are able to enjoy the best possible health, considered as healthcare resource allocation and norms and attitudes influencing clinical practice), 4) low status of COPD (ways COPD as a condition and people with COPD are held in less regard and considered less of a priority than other comparable health problems), and 5) lack of support (factors that make living with COPD more difficult than it should be, i.e., socioenvironmental factors and factors that promote social isolation). This model has relevance for policymakers, healthcare professionals, and the public as an educational resource to change clinical practices and priorities and stimulate advocacy and activism with the goal of the elimination of COPD.
Collapse
Affiliation(s)
| | | | - Anthony A. Laverty
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, United Kingdom
| | | |
Collapse
|
5
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Yaremenko AV, Pechnikova NA, Porpodis K, Damdoumis S, Aggeli A, Theodora P, Domvri K. Association of Fetal Lung Development Disorders with Adult Diseases: A Comprehensive Review. J Pers Med 2024; 14:368. [PMID: 38672994 PMCID: PMC11051200 DOI: 10.3390/jpm14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal lung development is a crucial and complex process that lays the groundwork for postnatal respiratory health. However, disruptions in this delicate developmental journey can lead to fetal lung development disorders, impacting neonatal outcomes and potentially influencing health outcomes well into adulthood. Recent research has shed light on the intriguing association between fetal lung development disorders and the development of adult diseases. Understanding these links can provide valuable insights into the developmental origins of health and disease, paving the way for targeted preventive measures and clinical interventions. This review article aims to comprehensively explore the association of fetal lung development disorders with adult diseases. We delve into the stages of fetal lung development, examining key factors influencing fetal lung maturation. Subsequently, we investigate specific fetal lung development disorders, such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), congenital diaphragmatic hernia (CDH), and other abnormalities. Furthermore, we explore the potential mechanisms underlying these associations, considering the role of epigenetic modifications, transgenerational effects, and intrauterine environmental factors. Additionally, we examine the epidemiological evidence and clinical findings linking fetal lung development disorders to adult respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and other respiratory ailments. This review provides valuable insights for healthcare professionals and researchers, guiding future investigations and shaping strategies for preventive interventions and long-term care.
Collapse
Affiliation(s)
- Alexey V. Yaremenko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Nadezhda A. Pechnikova
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
- Saint Petersburg Pasteur Institute, Saint Petersburg 197101, Russia
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Savvas Damdoumis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Amalia Aggeli
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
| | - Papamitsou Theodora
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
7
|
Dennery PA, Yao H. Emerging role of cellular senescence in normal lung development and perinatal lung injury. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:10-16. [PMID: 38567372 PMCID: PMC10987039 DOI: 10.1016/j.pccm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cellular senescence is a status of irreversible growth arrest, which can be triggered by the p53/p21cip1 and p16INK4/Rb pathways via intrinsic and external factors. Senescent cells are typically enlarged and flattened, and characterized by numerous molecular features. The latter consists of increased surfaceome, increased residual lysosomal activity at pH 6.0 (manifested by increased activity of senescence-associated beta-galactosidase [SA-β-gal]), senescence-associated mitochondrial dysfunction, cytoplasmic chromatin fragment, nuclear lamin b1 exclusion, telomere-associated foci, and the senescence-associated secretory phenotype. These features vary depending on the stressor leading to senescence and the type of senescence. Cellular senescence plays pivotal roles in organismal aging and in the pathogenesis of aging-related diseases. Interestingly, senescence can also both promote and inhibit wound healing processes. We recently report that senescence as a programmed process contributes to normal lung development. Lung senescence is also observed in Down Syndrome, as well as in premature infants with bronchopulmonary dysplasia and in a hyperoxia-induced rodent model of this disease. Furthermore, this senescence results in neonatal lung injury. In this review, we briefly discuss the molecular features of senescence. We then focus on the emerging role of senescence in normal lung development and in the pathogenesis of bronchopulmonary dysplasia as well as putative signaling pathways driving senescence. Finally, we discuss potential therapeutic approaches targeting senescent cells to prevent perinatal lung diseases.
Collapse
Affiliation(s)
- Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Bhattacharya S, Myers JA, Baker C, Guo M, Danopoulos S, Myers JR, Bandyopadhyay G, Romas ST, Huyck HL, Misra RS, Dutra J, Holden-Wiltse J, McDavid AN, Ashton JM, Al Alam D, Potter SS, Whitsett JA, Xu Y, Pryhuber GS, Mariani TJ. Single-Cell Transcriptomic Profiling Identifies Molecular Phenotypes of Newborn Human Lung Cells. Genes (Basel) 2024; 15:298. [PMID: 38540357 PMCID: PMC10970229 DOI: 10.3390/genes15030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/01/2024] Open
Abstract
While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.
Collapse
Affiliation(s)
- Soumyaroop Bhattacharya
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Jacquelyn A. Myers
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Cameron Baker
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Minzhe Guo
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90024, USA; (S.D.)
| | - Jason R. Myers
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Stephen T. Romas
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Heidie L. Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Ravi S. Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Jennifer Dutra
- Clinical & Translational Science Institute, University of Rochester, Rochester, NY 14642, USA; (J.D.); (J.H.-W.)
| | - Jeanne Holden-Wiltse
- Clinical & Translational Science Institute, University of Rochester, Rochester, NY 14642, USA; (J.D.); (J.H.-W.)
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Andrew N. McDavid
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - John M. Ashton
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90024, USA; (S.D.)
| | - S. Steven Potter
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Jeffrey A. Whitsett
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Yan Xu
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Gloria S. Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Thomas J. Mariani
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| |
Collapse
|
9
|
Moreira A, Tovar M, Smith AM, Lee GC, Meunier JA, Cheema Z, Moreira A, Winter C, Mustafa SB, Seidner S, Findley T, Garcia JGN, Thébaud B, Kwinta P, Ahuja SK. Development of a peripheral blood transcriptomic gene signature to predict bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L76-L87. [PMID: 36472344 PMCID: PMC9829478 DOI: 10.1152/ajplung.00250.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common lung disease of extreme prematurity, yet mechanisms that associate with or identify neonates with increased susceptibility for BPD are largely unknown. Combining artificial intelligence with gene expression data is a novel approach that may assist in better understanding mechanisms underpinning chronic lung disease and in stratifying patients at greater risk for BPD. The objective of this study is to develop an early peripheral blood transcriptomic signature that can predict preterm neonates at risk for developing BPD. Secondary analysis of whole blood microarray data from 97 very low birth weight neonates on day of life 5 was performed. BPD was defined as positive pressure ventilation or oxygen requirement at 28 days of age. Participants were randomly assigned to a training (70%) and testing cohort (30%). Four gene-centric machine learning models were built, and their discriminatory abilities were compared with gestational age or birth weight. This study adheres to the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement. Neonates with BPD (n = 62 subjects) exhibited a lower median gestational age (26.0 wk vs. 30.0 wk, P < 0.01) and birth weight (800 g vs. 1,280 g, P < 0.01) compared with non-BPD neonates. From an initial pool (33,252 genes/patient), 4,523 genes exhibited a false discovery rate (FDR) <1%. The area under the receiver operating characteristic curve (AUC) for predicting BPD utilizing gestational age or birth weight was 87.8% and 87.2%, respectively. The machine learning models, using a combination of five genes, revealed AUCs ranging between 85.8% and 96.1%. Pathways integral to T cell development and differentiation were associated with BPD. A derived five-gene whole blood signature can accurately predict BPD in the first week of life.
Collapse
Affiliation(s)
- Alvaro Moreira
- Department of Pediatrics, Neonatology Regenerative and Precision Medicine Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas
| | - Miriam Tovar
- Department of Pediatrics, Neonatology Regenerative and Precision Medicine Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas
| | - Alisha M Smith
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas
- The Foundation for Advancing Veterans' Health Research, South Texas Veterans Health Care System, San Antonio, Texas
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Grace C Lee
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas
- Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Justin A Meunier
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Zoya Cheema
- Department of Pediatrics, Neonatology Regenerative and Precision Medicine Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas
| | - Axel Moreira
- Division of Critical Care, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Caitlyn Winter
- Department of Pediatrics, Neonatology Regenerative and Precision Medicine Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas
| | - Shamimunisa B Mustafa
- Department of Pediatrics, Neonatology Regenerative and Precision Medicine Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas
| | - Steven Seidner
- Department of Pediatrics, Neonatology Regenerative and Precision Medicine Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas
| | - Tina Findley
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, Texas
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Przemko Kwinta
- Neonatal Intensive Care Unit, Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Sunil K Ahuja
- Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas
- The Foundation for Advancing Veterans' Health Research, South Texas Veterans Health Care System, San Antonio, Texas
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
10
|
Queiroz Almeida D, Paciência I, Moreira C, Cavaleiro Rufo J, Moreira A, Santos AC, Barros H, Ribeiro AI. Green and blue spaces and lung function in the Generation XXI cohort: a life-course approach. Eur Respir J 2022; 60:2103024. [PMID: 35896209 DOI: 10.1183/13993003.03024-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/28/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Exposure to natural environments may affect respiratory health. This study examined the association of exposure to green and blue spaces with lung function in children, and assessed the mediation effect of air pollution and physical activity. METHODS The study used data from the Generation XXI, a population-based birth cohort from the Porto Metropolitan Area (Portugal). Residential Normalised Difference Vegetation Index (NDVI) at different buffers (100, 250 and 500 m), the accessibility to urban green spaces (UGS) within 400 and 800 m and the minimum distance to the nearest UGS and to the nearest blue spaces were assessed at birth, 4, 7 and 10 years of age. Three life-course measures were calculated: averaged exposure, early-life exposure (birth) and exposure trend over time (change in exposure). Forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and forced expiratory flow between 25% and 75% of FVC (FEF25-75%) at 10 years were used as outcomes. To assess associations, linear regression models and path analysis were used. RESULTS This study included 3278 children. The adjusted models showed that increasing the NDVI exposure over time within 100 m of the child's residence was associated with higher values of FEV1 (L) and FEF25-75% (L·s-1) (β 0.01, 95% CI 0.0002-0.03 and β 0.02, 95% CI 0.001-0.05, respectively). No significant associations were observed for the remaining measures of exposure, and no mediation effect was found for pollution or physical activity. CONCLUSION Increasing exposure to greenness at close proximity from residences was associated with improved lung function. While the mechanism remains unknown, this study brings evidence that city greening may improve children's respiratory health.
Collapse
Affiliation(s)
- Diogo Queiroz Almeida
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Unidade de Saúde Pública, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
- Equal contributors
| | - Inês Paciência
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Equal contributors
| | - Carla Moreira
- Cmat - Centre of Mathematics School of Sciences, University of Minho, Braga, Portugal
| | - João Cavaleiro Rufo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - André Moreira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Ana Cristina Santos
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Henrique Barros
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Ana Isabel Ribeiro
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Adgent MA, Gebretsadik T, Elaiho CR, Milne GL, Moore P, Hartman TJ, Cowell W, Alcala CS, Bush N, Davis R, LeWinn KZ, Tylavsky FA, Wright RJ, Carroll KN. The association between prenatal F 2-isoprostanes and child wheeze/asthma and modification by maternal race. Free Radic Biol Med 2022; 189:85-90. [PMID: 35863687 PMCID: PMC9414072 DOI: 10.1016/j.freeradbiomed.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Childhood wheeze, asthma, and allergic rhinitis are common and likely have prenatal origins. Oxidative stress is associated with respiratory disease, but the association of oxidative stress during the prenatal period with development of respiratory and atopic disease in childhood, particularly beyond the infancy period, is unknown. This study aims to investigate associations between prenatal oxidative stress, measured by maternal urinary F2-isoprostanes, and child respiratory outcomes, including effect modification by maternal race. METHODS We prospectively studied Black (n = 717) and White (n = 363) mother-child dyads. We measured F2-isoprostanes in 2nd-trimester urine (ng/mg-creatinine). At approximately age 4, we obtained parent report of provider-diagnosed asthma (ever), current wheeze, current asthma (diagnosis, symptoms and/or medication), and current allergic rhinitis (current defined as previous 12 months). We used multivariable logistic regression to estimate adjusted odds ratios (aOR) and 95% confidence intervals (95%CI) per interquartile range (IQR) increase in F2-isoprostane concentration, controlling for confounders. We examined modification by maternal race using interaction terms. RESULTS The prevalence of provider-diagnosed asthma and current wheeze, asthma and allergic rhinitis was 14%, 19%, 15%, and 24%, respectively. Median (IQR) F2-isoprostane levels were 2.1 (1.6, 2.9) ng/mg-creatinine. Associations between prenatal F2-isoprostanes and provider-diagnosed asthma, current wheeze, and current asthma were modified by maternal race. Results were strongest for current wheeze (aOR [95%CI]: 1.55 [1.16, 2.06] for White; 0.98 [0.78, 1.22] for Black; p-interaction = 0.01). We observed no association between F2-isoprostanes and allergic rhinitis. CONCLUSION Prenatal urinary F2-isoprostanes may be a marker associated with childhood wheeze/asthma in certain populations. Research is needed to understand underlying mechanisms and racial differences.
Collapse
Affiliation(s)
- Margaret A Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cordelia R Elaiho
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul Moore
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Terryl J Hartman
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cecilia S Alcala
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Bush
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Davis
- Center for Biomedical Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaja Z LeWinn
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Frances A Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rosalind J Wright
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kecia N Carroll
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of General Pediatrics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
DeFreitas MJ, Katsoufis CP, Benny M, Young K, Kulandavelu S, Ahn H, Sfakianaki A, Abitbol CL. Educational Review: The Impact of Perinatal Oxidative Stress on the Developing Kidney. Front Pediatr 2022; 10:853722. [PMID: 35844742 PMCID: PMC9279889 DOI: 10.3389/fped.2022.853722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress occurs when there is an imbalance between reactive oxygen species/reactive nitrogen species and antioxidant systems. The interplay between these complex processes is crucial for normal pregnancy and fetal development; however, when oxidative stress predominates, pregnancy related complications and adverse fetal programming such as preterm birth ensues. Understanding how oxidative stress negatively impacts outcomes for the maternal-fetal dyad has allowed for the exploration of antioxidant therapies to prevent and/or mitigate disease progression. In the developing kidney, the negative impact of oxidative stress has also been noted as it relates to the development of hypertension and kidney injury mostly in animal models. Clinical research addressing the implications of oxidative stress in the developing kidney is less developed than that of the neurodevelopmental and respiratory conditions of preterm infants and other vulnerable neonatal groups. Efforts to study the oxidative stress pathway along the continuum of the perinatal period using a team science approach can help to understand the multi-organ dysfunction that the maternal-fetal dyad sustains and guide the investigation of antioxidant therapies to ameliorate the global toxicity. This educational review will provide a comprehensive and multidisciplinary perspective on the impact of oxidative stress during the perinatal period in the development of maternal and fetal/neonatal complications, and implications on developmental programming of accelerated aging and cardiovascular and renal disease for a lifetime.
Collapse
Affiliation(s)
- Marissa J. DeFreitas
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States
- Department of Pediatrics, Batchelor Children’s Research Institute, University of Miami, Miami, FL, United States
| | - Chryso P. Katsoufis
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States
- Department of Pediatrics, Batchelor Children’s Research Institute, University of Miami, Miami, FL, United States
| | - Merline Benny
- Department of Pediatrics, Batchelor Children’s Research Institute, University of Miami, Miami, FL, United States
- Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL, United States
| | - Karen Young
- Department of Pediatrics, Batchelor Children’s Research Institute, University of Miami, Miami, FL, United States
- Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL, United States
| | - Shathiyah Kulandavelu
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Hyunyoung Ahn
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL, United States
| | - Anna Sfakianaki
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL, United States
| | - Carolyn L. Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, United States
- Department of Pediatrics, Batchelor Children’s Research Institute, University of Miami, Miami, FL, United States
| |
Collapse
|
13
|
Pascoe CD, Basu S, Schwartz J, Fonseca M, Kahnamoui S, Jha A, Dolinsky VW, Halayko AJ. Maternal diabetes promotes offspring lung dysfunction and inflammation in a sex-dependent manner. Am J Physiol Lung Cell Mol Physiol 2022; 322:L373-L384. [PMID: 35043678 DOI: 10.1152/ajplung.00425.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Exposure to maternal diabetes is increasingly recognized as a risk factor for chronic respiratory disease in children. It is currently unclear, however, whether maternal diabetes affects the lung health of male and female offspring equally. This study characterizes the sex-specific impact of a murine model of diet-induced gestational diabetes (GDM) on offspring lung function and airway inflammation. Female adult mice are fed a high-fat (45% kcal) diet for 6-weeks prior to mating. Control offspring are from mothers fed a low fat (10% kcal) diet. Offspring were weaned and fed a chow diet until 10-weeks of age, at which point lung function was measured and lung lavage was collected. Male, but not female offspring exposed to GDM had increased lung compliance and reduced lung resistance at baseline. Female offspring exposed to GDM displayed increased methacholine reactivity and elevated levels of pro-inflammatory cytokines (e.g. interleukin (IL)-1β, IL-5, and CXCL1) in lung lavage. Female GDM offspring also displayed elevated abundance of matrix metalloproteinases (MMP) within their airways, namely MMP-3 and MMP-8. These results indicate disparate effects of maternal diabetes on lung health and airway inflammation of male and female offspring exposed to GDM. Female mice may be at greater risk of inflammatory lung conditions, such as asthma, while male offspring display changes that more closely align with models of chronic obstructive pulmonary disease. In conclusion, there are important sex-based differences in the impact of maternal diabetes on offspring lung health that could signal differences in future disease risk.
Collapse
Affiliation(s)
- Christopher D Pascoe
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jacquie Schwartz
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Mario Fonseca
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Shana Kahnamoui
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew John Halayko
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Li Y, Guo Z, Zhang G, Tian X, Li Q, Luo Z. Neonatal Streptococcus Pneumoniae pneumonia induces airway SMMHC expression through HMGB1/TLR4/ERK. Immunol Lett 2021; 240:149-158. [PMID: 34732321 DOI: 10.1016/j.imlet.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/21/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Our previous study showed that neonatal S. pneumoniae pneumonia promoted airway smooth muscle myosin heavy chain (SMMHC) expression and AHR development. Researches demonstrated HMGB1, TLR4 and ERK are involved in smooth muscle contractile protein expression, so we hypothesis that HMGB1/TLR4/ERK pathway participated in airway SMMHC overexpression in neonatal S. pneumoniae pneumonia model. METHOD Neonatal (1-week-old) BALB/c mice were intranasal inoculated with D39 to establish non-lethal S. pneumoniae pneumonia model. TLR4 was inhibited 2 weeks after infection with TLR4 specific inhibitor (TAK-242). Five weeks after infection, the bronchoalveolar lavage fluid (BALF) and lungs of neonatal S. pneumoniae pneumonia and mock infection mice with or without TLR4 inhibition were collected to assess the expressions of HMGB1, TLR4 and p-ERK1/2. Airway Hyperresponsiveness (AHR) of the three groups was determined by whole-body plethysmograph. RESULTS Our results demonstrated that neonatal S. pneumoniae pneumonia promoted HMGB1/TLR4 production, SMMHC expression and AHR development significantly, with ERK1/2 phosphorylation decreased remarkably. TLR4 inhibition after pneumonia significantly increased ERK1/2 phosphorylation, reversed airway SMMHC overexpression and alleviated AHR. CONCLUSION Neonatal S. pneumoniae pneumonia promotes airway SMMHC expression and AHR through HMGB1/TLR4/ERK.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Health and Nutrition, Chongqing 400014, China
| | - Ziyao Guo
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Health and Nutrition, Chongqing 400014, China
| | - Guangli Zhang
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Health and Nutrition, Chongqing 400014, China
| | - Xiaoyin Tian
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Health and Nutrition, Chongqing 400014, China
| | - Qinyuan Li
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Health and Nutrition, Chongqing 400014, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Health and Nutrition, Chongqing 400014, China.
| |
Collapse
|
15
|
Morty RE. World health day observances in November 2021: advocating for adult and pediatric pneumonia, preterm birth, and chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2021; 321:L954-L957. [PMID: 34668426 DOI: 10.1152/ajplung.00423.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Translational Pulmonology and the Translational Lung Research Center Heidelberg, University Hospital Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
16
|
Salimi U, Dummula K, Tucker MH, Dela Cruz CS, Sampath V. Postnatal Sepsis and Bronchopulmonary Dysplasia in Premature Infants: Mechanistic Insights into "New BPD". Am J Respir Cell Mol Biol 2021; 66:137-145. [PMID: 34644520 DOI: 10.1165/rcmb.2021-0353ps] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a debilitating disease in premature infants resulting from lung injury that disrupts alveolar and pulmonary vascular development. Despite the use of lung-protective ventilation and targeted oxygen therapy, BPD rates have not significantly changed over the last decade. Recent evidence suggests that sepsis and conditions initiating the systemic inflammatory response syndrome in preterm infants are key risk factors for BPD. However, the mechanisms by which sepsis-associated systemic inflammation and microbial dissemination program aberrant lung development are not fully understood. Progress has been made within the last 5 years with the inception of animal models allowing mechanistic investigations into neonatal acute lung injury and alveolar remodeling due to endotoxemia and NEC. These recent studies begin to unravel the pathophysiology of early endothelial immune activation via pattern recognition receptors such as Toll Like Receptor 4 and disruption of critical lung developmental processes such as angiogenesis, extracellular matrix deposition, and ultimately alveologenesis. Here we review scientific evidence from preclinical models of neonatal sepsis-induced lung injury to new data emerging from clinical literature.
Collapse
Affiliation(s)
- Umar Salimi
- Yale University, 5755, Pediatrics, New Haven, Connecticut, United States
| | - Krishna Dummula
- Children's Mercy, 4204, Pediatrics, Kansas City, Missouri, United States
| | - Megan H Tucker
- Children's Mercy, 4204, Pediatrics, Kansas City, Missouri, United States
| | - Charles S Dela Cruz
- Yale University, Pulmonary and Critical Care Medicine, New Haven, Connecticut, United States
| | - Venkatesh Sampath
- Children\'s Mercy Hospitals and Clinics, 4204, Pediatrics, Kansas City, Missouri, United States;
| |
Collapse
|
17
|
Misra R, Mulligan JK, Rowland-Jones S, Zemlin M. Editorial: Autoimmunity and Chronic Inflammation in Early Life. Front Immunol 2021; 12:761160. [PMID: 34567015 PMCID: PMC8458802 DOI: 10.3389/fimmu.2021.761160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ravi Misra
- Department of Pediatrics, The University of Rochester Medical Center, Rochester, NY, United States
| | - Jennifer Konopa Mulligan
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Michael Zemlin
- Department for General Pediatrics and Neonatology, Saarland University, Homburg, Germany
| |
Collapse
|
18
|
Mi LL, Zhu Y, Lu HY. A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review). Mol Med Rep 2021; 23:403. [PMID: 33786611 PMCID: PMC8025469 DOI: 10.3892/mmr.2021.12042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) are important innate immune cells that are involved in type 2 inflammation, in both mice and humans. ILC2s are stimulated by factors, including interleukin (IL)-33 and IL-25, and activated ILC2s secrete several cytokines that mediate type 2 immunity by inducing profound changes in physiology, including activation of alternative (M2) macrophages. M2 macrophages possess immune modulatory, phagocytic, tissue repair and remodeling properties, and can regulate ILC2s under infection. The present review summarizes the role of ILC2s as innate cells and M2 macrophages as anti-inflammatory cells, and discusses current literature on their important biological significance. The present review also highlights how the crosstalk between ILC2s and M2 macrophages contributes to lung development, induces pulmonary parasitic expulsion, exacerbates pulmonary viral and fungal infections and allergic airway diseases, and promotes the development of lung diseases, such as pulmonary fibrosis, chronic obstructive pulmonary disease and carcinoma of the lungs.
Collapse
Affiliation(s)
- Lan-Lan Mi
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yue Zhu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
19
|
Gunjak M, Morty RE. World Prematurity Day 2020: “Together for babies born too soon—Caring for the future”. Am J Physiol Lung Cell Mol Physiol 2020; 319:L875-L878. [DOI: 10.1152/ajplung.00482.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Miša Gunjak
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
20
|
Casado F, Morty RE. World health observances in November 2020: adult and pediatric pneumonia, preterm birth, and chronic obstructive pulmonary disease in focus. Am J Physiol Lung Cell Mol Physiol 2020; 319:L854-L858. [PMID: 33050734 DOI: 10.1152/ajplung.00490.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Francisco Casado
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|