1
|
Murphree-Terry M, Keith JD, Oden AM, Birket SE. Spontaneous lung colonization in the cystic fibrosis rat model is linked to gastrointestinal obstruction. mBio 2025; 16:e0388324. [PMID: 40042272 PMCID: PMC11980572 DOI: 10.1128/mbio.03883-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/24/2025] [Indexed: 03/29/2025] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in CFTR protein dysfunction. CFTR dysfunction has multi-organ consequences, leading to dehydrated mucus that is adherent to epithelia. In the lungs, this leads to recalcitrant infections with bacteria such as Pseudomonas aeruginosa. In the gut, mucus-laden feces can adhere to the intestines, resulting in distal intestinal obstruction syndrome (DIOS). There is limited information on how lung colonization and DIOS are correlated in people with CF (pwCF). In this novel work, we describe the development of spontaneous lung colonization of CF pathogens in young (<3 months old) CF rats, preceding the development of DIOS. Once DIOS is established, the lung microbiome becomes predominated by taxa also observed in the feces. Induced infection with P. aeruginosa in the CF rats reflects data found in pwCF, as once CF rats are infected, they retain a higher relative abundance of P. aeruginosa than their healthy agemates. Finally, we found that ivacaftor treatment favors a healthier gut microbiome in CF rats, decreasing the relative abundance of Escherichia coli. These results indicate that the CF rat model is recapitulative of human CF disease with the spontaneous lung colonization of traditional CF pathogens and maintenance of P. aeruginosa after induced infection. Furthermore, these results indicate a possible role for the gut-lung axis in lung colonization and DIOS in CF.IMPORTANCEThese data describe for the first time the development of spontaneous lung colonization in the cystic fibrosis (CF) rat model, a hallmark aspect of human CF disease. We also find that CF rats infected with Pseudomonas aeruginosa maintain higher relative abundance following chronic infection as compared to healthy rats, similar to those is seen in people with CF. Additionally, we describe the possible contribution of the gut-lung axis linking lung health with distal intestinal obstruction syndrome, a relationship largely unexplored in the context of CF.
Collapse
Affiliation(s)
- Mikayla Murphree-Terry
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Johnathan D. Keith
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ashley M. Oden
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Susan E. Birket
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Bollar GE, Keith JD, Stanford DD, Oden AM, Raju SV, Poore TS, Birket SE. Chronic Coinfection with Pseudomonas aeruginosa and Normal Colony Staphylococcus aureus Causes Lung Structural Damage in the Cystic Fibrosis Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:174-187. [PMID: 39476957 PMCID: PMC11773620 DOI: 10.1016/j.ajpath.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/13/2024]
Abstract
Cystic fibrosis (CF) respiratory outcomes are heavily influenced by complications of infection. Pseudomonas aeruginosa and Staphylococcus aureus are the most common colonizers of the cystic fibrosis lung, and frequently overlap to cause chronic and persistent coinfections associated with severe disease. However, the dynamics of P. aeruginosa and S. aureus coinfection and its impacts on the development of CF lung structural damage are poorly understood. Additionally, small colony variants (SCVs) of S. aureus have been associated with P. aeruginosa infections in people with CF, but their role in disease progression is largely unknown. In this work, the CF rat was used to model chronic lung coinfection with P. aeruginosa and S. aureus, using clinically and laboratory-derived normal colony and SCV strains of S. aureus to evaluate the impact of phenotype on clinical outcomes. Rats coinfected with clinically derived S. aureus of both phenotypes experienced increased inflammation in the lung. However, only the combination of P. aeruginosa and clinically normal colony S. aureus led to lung structural decline, including mucus obstruction and bronchiectasis. Regression analyses showed that the damage was associated with a higher burden of P. aeruginosa. These data indicate that chronic coinfection with normal colony S. aureus and P. aeruginosa may support the progression CF lung decline driven by P. aeruginosa, which might be avoided when coinfecting S. aureus exhibits the SCV phenotype.
Collapse
Affiliation(s)
- Gretchen E Bollar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Johnathan D Keith
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Denise D Stanford
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashley M Oden
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - S Vamsee Raju
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - T Spencer Poore
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; Division of Pulmonology and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Susan E Birket
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
3
|
Campbell S, Gerasimidis K, Milling S, Dicker AJ, Hansen R, Langley RJ. The lower airway microbiome in paediatric health and chronic disease. Paediatr Respir Rev 2024; 52:31-43. [PMID: 38538377 DOI: 10.1016/j.prrv.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 12/16/2024]
Abstract
The advent of next generation sequencing has rapidly challenged the paediatric respiratory physician's understanding of lung microbiology and the role of the lung microbiome in host health and disease. In particular, the role of "microbial key players" in paediatric respiratory disease is yet to be fully explained. Accurate profiling of the lung microbiome in children is challenging since the ability to obtain lower airway samples coupled with processing "low-biomass specimens" are both technically difficult. Many studies provide conflicting results. Early microbiota-host relationships may be predictive of the development of chronic respiratory disease but attempts to correlate lower airway microbiota in premature infants and risk of developing bronchopulmonary dysplasia (BPD) have produced mixed results. There are differences in lung microbiota in asthma and cystic fibrosis (CF). The increased abundance of oral taxa in the lungs may (or may not) promote disease processes in asthma and CF. In CF, correlation between microbiota diversity and respiratory decline is commonly observed. When one considers other pathogens beyond the bacterial kingdom, the contribution and interplay of fungi and viruses within the lung microbiome further increase complexity. Similarly, the interaction between microbial communities in different body sites, such as the gut-lung axis, and the influence of environmental factors, including diet, make the co-existence of host and microbes ever more complicated. Future, multi-omics approaches may help uncover novel microbiome-based biomarkers and therapeutic targets in respiratory disease and explain how we can live in harmony with our microbial companions.
Collapse
Affiliation(s)
- S Campbell
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - K Gerasimidis
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - S Milling
- School of Infection & Immunity, University of Glasgow
| | - A J Dicker
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R Hansen
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R J Langley
- Department of Paediatric Respiratory & Sleep Medicine, Royal Hospital for Children, Glasgow; Department of Maternal and Child Health, School of Medicine, Dentistry and Nursing, University of Glasgow.
| |
Collapse
|
4
|
Li J, Huang F, Zhou Y, Huang T, Tong X, Zhang M, Chen J, Zhang Z, Du H, Liu Z, Zhou M, Xiahou Y, Ai H, Chen C, Huang L. Comprehensive lung microbial gene and genome catalogs assist the mechanism survey of Mesomycoplasma hyopneumoniae strains causing pig lung lesions. IMETA 2024; 3:e258. [PMID: 39742304 PMCID: PMC11683470 DOI: 10.1002/imt2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Understanding the community structure of the lower respiratory tract microbiome is crucial for elucidating its roles in respiratory tract diseases. However, there are few studies about this topic due to the difficulty in obtaining microbial samples from both healthy and disease individuals. Here, using 744 high-depth metagenomic sequencing data of lower respiratory tract microbial samples from 675 well-phenotyped pigs, we constructed a lung microbial gene catalog containing the largest scale of 10,031,593 nonredundant genes to date, 44.8% of which are novel. We obtained 356 metagenome-assembled genomes (MAGs) which were further clustered into 256 species-level genome bins with 41.8% being first reported in the current databases. Based on these data sets and through integrated analysis of the isolation of the related bacterial strains, in vitro infection, and RNA sequencing, we identified and confirmed that Mesomycoplasma hyopneumoniae (M. hyopneumoniae) MAG_47 and its adhesion-related virulence factors (VFs) were associated with lung lesions in pigs. Differential expression levels of adhesion- and immunomodulation-related VFs likely determined the heterogenicity of adhesion and pathogenicity among M. hyopneumoniae strains. M. hyopneumoniae adhesion activated several pathways, including nuclear factor kappa-light-chain-enhancer of activated B, mitogen-activated protein kinase, cell apoptosis, T helper 1 and T helper 2 cell differentiation, tumor necrosis factor signaling, interleukin-6/janus kinase 2/signal transducer and activator of transcription signaling, and response to reactive oxygen species, leading to cilium loss, epithelial cell‒cell barrier disruption, and lung tissue lesions. Finally, we observed the similar phylogenetic compositions of the lung microbiome between humans with Mycoplasma pneumoniae and pigs infected with M. hyopneumoniae. The results provided important insights into pig lower respiratory tract microbiome and its relationship with lung health.
Collapse
Affiliation(s)
- Jingquan Li
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Fei Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yunyan Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Tao Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Xinkai Tong
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Mingpeng Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Jiaqi Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zhou Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huipeng Du
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zifeng Liu
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Meng Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yiwen Xiahou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huashui Ai
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
5
|
Leestemaker-Palmer A, Bermudez LE. Mycobacteroides abscessus ability to interact with the host mucosal cells plays an important role in pathogenesis of the infection. Crit Rev Microbiol 2024:1-13. [PMID: 39460453 DOI: 10.1080/1040841x.2024.2418130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens ubiquitous in the environment. Mycobacteroides abscessus is a relatively new pathogen associated with underlying lung chronic pathologies, accounting for most of the pulmonary infections linked to the rapidly growing mycobacteria group. This includes chronic obstructive pulmonary disease, bronchiectasis, or cystic fibrosis. Patient outcomes from M. abscessus infections are poor due to complicated treatments and other factors. Intrinsic drug resistance plays an important role. The M. abscessus toolbox of resistance is varied leading to complex strategies for treatment. Mechanisms include waxy cell walls, drug export mechanisms, and acquired resistance. Many studies have also shown the impact of extracellular DNA found in the biofilm matrix during early infection and its possible advantage in pathogenicity. In this review, we discuss the current knowledge of early infection focusing on biofilm formation, an environmental strategy, and which treatments prevent its formation improving current antibiotic treatment outcomes in preliminary studies.
Collapse
Affiliation(s)
- Amy Leestemaker-Palmer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
6
|
Milczewska J, Syunyaeva Z, Żabińska-Jaroń A, Sands D, Thee S. Changing profile of bacterial infection and microbiome in cystic fibrosis: when to use antibiotics in the era of CFTR-modulator therapy. Eur Respir Rev 2024; 33:240068. [PMID: 39631927 PMCID: PMC11615665 DOI: 10.1183/16000617.0068-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
The advent of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy, especially the triple therapy combining the drugs elexacaftor, tezacaftor, ivacaftor (ETI), has significantly changed the course of the disease in people with cystic fibrosis (pwCF). ETI, which is approved for the majority (80-90%) of pwCF, partially restores CFTR channel function, resulting in improved mucociliary clearance and, consequently, improved lung function, respiratory symptoms and pulmonary exacerbations. The bacterial burden of classical CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus is reduced without reaching eradication in the majority of infected patients. Limited data is available on less common or emerging bacterial pathogens. ETI has a positive effect on the lung microbiome but does not fully restore it to a healthy state. Due to the significant reduction in sputum production under ETI, respiratory samples such as deep-throat swabs are commonly taken, despite their inadequate representation of lower respiratory tract pathogens. Currently, there are still unanswered questions related to this new therapy, such as the clinical impact of infection with cystic fibrosis (CF) pathogens, the value of molecular diagnostic tests, the durability of the effects on respiratory infection and the role of fungal and viral infections. This article reviews the changes in bacterial lung infections and the microbiome in CF to provide evidence for the use of antibiotics in the era of ETI.
Collapse
Affiliation(s)
- Justyna Milczewska
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
- Cystic Fibrosis Centre, Pediatric Hospital, Dziekanow Lesny, Poland
- Joint first authors
| | - Zulfiya Syunyaeva
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Joint first authors
| | | | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
- Cystic Fibrosis Centre, Pediatric Hospital, Dziekanow Lesny, Poland
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Kruk ME, Mehta S, Murray K, Higgins L, Do K, Johnson JE, Wagner R, Wendt CH, O’Connor JB, Harris JK, Laguna TA, Jagtap PD, Griffin TJ. An integrated metaproteomics workflow for studying host-microbe dynamics in bronchoalveolar lavage samples applied to cystic fibrosis disease. mSystems 2024; 9:e0092923. [PMID: 38934598 PMCID: PMC11264604 DOI: 10.1128/msystems.00929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Airway microbiota are known to contribute to lung diseases, such as cystic fibrosis (CF), but their contributions to pathogenesis are still unclear. To improve our understanding of host-microbe interactions, we have developed an integrated analytical and bioinformatic mass spectrometry (MS)-based metaproteomics workflow to analyze clinical bronchoalveolar lavage (BAL) samples from people with airway disease. Proteins from BAL cellular pellets were processed and pooled together in groups categorized by disease status (CF vs. non-CF) and bacterial diversity, based on previously performed small subunit rRNA sequencing data. Proteins from each pooled sample group were digested and subjected to liquid chromatography tandem mass spectrometry (MS/MS). MS/MS spectra were matched to human and bacterial peptide sequences leveraging a bioinformatic workflow using a metagenomics-guided protein sequence database and rigorous evaluation. Label-free quantification revealed differentially abundant human peptides from proteins with known roles in CF, like neutrophil elastase and collagenase, and proteins with lesser-known roles in CF, including apolipoproteins. Differentially abundant bacterial peptides were identified from known CF pathogens (e.g., Pseudomonas), as well as other taxa with potentially novel roles in CF. We used this host-microbe peptide panel for targeted parallel-reaction monitoring validation, demonstrating for the first time an MS-based assay effective for quantifying host-microbe protein dynamics within BAL cells from individual CF patients. Our integrated bioinformatic and analytical workflow combining discovery, verification, and validation should prove useful for diverse studies to characterize microbial contributors in airway diseases. Furthermore, we describe a promising preliminary panel of differentially abundant microbe and host peptide sequences for further study as potential markers of host-microbe relationships in CF disease pathogenesis.IMPORTANCEIdentifying microbial pathogenic contributors and dysregulated human responses in airway disease, such as CF, is critical to understanding disease progression and developing more effective treatments. To this end, characterizing the proteins expressed from bacterial microbes and human host cells during disease progression can provide valuable new insights. We describe here a new method to confidently detect and monitor abundance changes of both microbe and host proteins from challenging BAL samples commonly collected from CF patients. Our method uses both state-of-the art mass spectrometry-based instrumentation to detect proteins present in these samples and customized bioinformatic software tools to analyze the data and characterize detected proteins and their association with CF. We demonstrate the use of this method to characterize microbe and host proteins from individual BAL samples, paving the way for a new approach to understand molecular contributors to CF and other diseases of the airway.
Collapse
Affiliation(s)
- Monica E. Kruk
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Kevin Murray
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, Minnesota, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katherine Do
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - James E. Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reid Wagner
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chris H. Wendt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - John B. O’Connor
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, Seattle, Washington, USA
| | - J. Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Theresa A. Laguna
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
9
|
Rosenboom I, Pust MM, Pirr S, Bakker A, Willers M, Davenport CF, Wiehlmann L, Viemann D, Tümmler B. Longitudinal development of the airway metagenome of preterm very low birth weight infants during the first two years of life. ISME COMMUNICATIONS 2023; 3:75. [PMID: 37474785 PMCID: PMC10359316 DOI: 10.1038/s43705-023-00285-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Preterm birth is accompanied with many complications and requires severe therapeutic regimens at the neonatal intensive care unit. The influence of the above-mentioned factors on the premature-born infants' respiratory metagenome or more generally its maturation is unknown. We therefore applied shotgun metagenome sequencing of oropharyngeal swabs to analyze the airway metagenome development of 24 preterm infants from one week postpartum to 15 months of age. Beta diversity analysis revealed a distinct clustering of airway microbial communities from hospitalized preterms and samples after hospital discharge. At nine and 15 months of age, the preterm infants lost their hospital-acquired individual metagenome signatures towards a common taxonomic structure. However, ecological network analysis and Random Forest classification of cross-sectional data revealed that by this age the preterm infants did not succeed in establishing the uniform and stable bacterial community structures that are characteristic for healthy full-term infants.
Collapse
Affiliation(s)
- Ilona Rosenboom
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marie-Madlen Pust
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sabine Pirr
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Alina Bakker
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Maike Willers
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Colin F Davenport
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Dorothee Viemann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Center for Infection Research, University Würzburg, Würzburg, Germany
| | - Burkhard Tümmler
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Pienkowska K, Pust MM, Gessner M, Gaedcke S, Thavarasa A, Rosenboom I, Morán Losada P, Minso R, Arnold C, Hedtfeld S, Dorda M, Wiehlmann L, Mainz JG, Klockgether J, Tümmler B. The Cystic Fibrosis Upper and Lower Airway Metagenome. Microbiol Spectr 2023; 11:e0363322. [PMID: 36892308 PMCID: PMC10101124 DOI: 10.1128/spectrum.03633-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
The microbial metagenome in cystic fibrosis (CF) airways was investigated by whole-genome shotgun sequencing of total DNA isolated from nasal lavage samples, oropharyngeal swabs, and induced sputum samples collected from 65 individuals with CF aged 7 to 50 years. Each patient harbored a personalized microbial metagenome unique in microbial load and composition, the exception being monocultures of the most common CF pathogens Staphylococcus aureus and Pseudomonas aeruginosa from patients with advanced lung disease. The sampling of the upper airways by nasal lavage uncovered the fungus Malassezia restricta and the bacterium Staphylococcus epidermidis as prominent species. Healthy and CF donors harbored qualitatively and quantitatively different spectra of commensal bacteria in their sputa, even in the absence of any typical CF pathogen. If P. aeruginosa, S. aureus, or Stenotrophomonas maltophilia belonged to the trio of the most abundant species in the CF sputum metagenome, common inhabitants of the respiratory tract of healthy subjects, i.e., Eubacterium sulci, Fusobacterium periodonticum, and Neisseria subflava, were present only in low numbers or not detectable. Random forest analysis identified the numerical ecological parameters of the bacterial community, such as Shannon and Simpson diversity, as the key parameters that globally distinguish sputum samples from CF and healthy donors. IMPORTANCE Cystic fibrosis (CF) is the most common life-limiting monogenetic disease in European populations and is caused by mutations in the CFTR gene. Chronic airway infections with opportunistic pathogens are the major morbidity that determines prognosis and quality of life in most people with CF. We examined the composition of the microbial communities of the oral cavity and upper and lower airways in CF patients across all age groups. From early on, the spectrum of commensals is different in health and CF. Later on, when the common CF pathogens take up residence in the lungs, we observed differential modes of depletion of the commensal microbiota in the presence of S. aureus, P. aeruginosa, S. maltophilia, or combinations thereof. It remains to be seen whether the implementation of lifelong CFTR (cystic fibrosis transmembrane conductance regulator) modulation will change the temporal evolution of the CF airway metagenome.
Collapse
Affiliation(s)
- Katarzyna Pienkowska
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marie-Madlen Pust
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | - Margaux Gessner
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Svenja Gaedcke
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | - Ajith Thavarasa
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ilona Rosenboom
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Patricia Morán Losada
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christin Arnold
- Cystic Fibrosis Center for Children and Adults, Jena University Hospital, Jena, Germany
| | - Silke Hedtfeld
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marie Dorda
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Jochen G. Mainz
- Cystic Fibrosis Center for Children and Adults, Jena University Hospital, Jena, Germany
- Klinik für Kinder- und Jugendmedizin, Medizinische Hochschule Brandenburg, Brandenburg, Germany
| | - Jens Klockgether
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| |
Collapse
|
11
|
Pallenberg ST, Pust MM, Rosenboom I, Hansen G, Wiehlmann L, Dittrich AM, Tümmler B. Impact of Elexacaftor/Tezacaftor/Ivacaftor Therapy on the Cystic Fibrosis Airway Microbial Metagenome. Microbiol Spectr 2022; 10:e0145422. [PMID: 36154176 PMCID: PMC9602284 DOI: 10.1128/spectrum.01454-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/04/2022] [Indexed: 12/31/2022] Open
Abstract
The introduction of mutation-specific combination therapy with the cystic fibrosis transmembrane conductance regulator (CFTR) modulators elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) has substantially improved lung function and quality of life of people with cystic fibrosis (CF). Collecting deep cough swabs and induced sputum, this postapproval study examined the effect of 14- and 50-week treatment with ELX/TEZ/IVA on the airway microbial metagenome of pancreatic- insufficient CF patients aged 12 years and older. Compared to pretreatment, the total bacterial load decreased, the individual species were more evenly distributed in the community, and the individual microbial metagenomes became more similar in their composition. However, the microbial network remained vulnerable to fragmentation. The initial shift of the CF metagenome was attributable to the ELX/TEZ/IVA-mediated gain of CFTR activity followed by a diversification driven by a group of commensals at the 1-year time point that are typical for healthy airways. IMPORTANCE Shotgun metagenome sequencing of respiratory secretions with spike-in controls for normalization demonstrated that 1 year of high-efficient CFTR modulation with elexacaftor/tezacaftor/ivacaftor extensively reduced the bacterial load. Longer observation periods will be necessary to resolve whether the partial reversion of the basic defect that is achieved with ELX/TEZ/IVA is sufficient in the long run to render the CF lungs robust against the recolonization with common opportunistic pathogens.
Collapse
Affiliation(s)
- Sophia T. Pallenberg
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Marie-Madlen Pust
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Ilona Rosenboom
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Hayden HS, Joshi S, Radey MC, Vo AT, Forsberg C, Morgan SJ, Waalkes A, Holmes EA, Klee SM, Emond MJ, Singh PK, Salipante SJ. Genome Capture Sequencing Selectively Enriches Bacterial DNA and Enables Genome-Wide Measurement of Intrastrain Genetic Diversity in Human Infections. mBio 2022; 13:e0142422. [PMID: 36121157 PMCID: PMC9601202 DOI: 10.1128/mbio.01424-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Within-host evolution produces genetic diversity in bacterial strains that cause chronic human infections. However, the lack of facile methods to measure bacterial allelic variation in clinical samples has limited understanding of intrastrain diversity's effects on disease. Here, we report a new method termed genome capture sequencing (GenCap-Seq) in which users inexpensively make hybridization probes from genomic DNA or PCR amplicons to selectively enrich and sequence targeted bacterial DNA from clinical samples containing abundant human or nontarget bacterial DNA. GenCap-Seq enables accurate measurement of allele frequencies over targeted regions and is scalable from specific genes to entire genomes, including the strain-specific accessory genome. The method is effective with samples in which target DNA is rare and inhibitory and DNA-degrading substances are abundant, including human sputum and feces. In proof-of-principle experiments, we used GenCap-Seq to investigate the responses of diversified Pseudomonas aeruginosa populations chronically infecting the lungs of people with cystic fibrosis to in vivo antibiotic exposure, and we found that treatment consistently reduced intrastrain genomic diversity. In addition, analysis of gene-level allele frequency changes suggested that some genes without conventional resistance functions may be important for bacterial fitness during in vivo antibiotic exposure. GenCap-Seq's ability to scalably enrich targeted bacterial DNA from complex samples will enable studies on the effects of intrastrain and intraspecies diversity in human infectious disease. IMPORTANCE Genetic diversity evolves in bacterial strains during human infections and could affect disease manifestations and treatment resistance. However, the extent of diversity present in vivo and its changes over time are difficult to measure by conventional methods. We developed a novel approach, GenCap-Seq, to enrich microbial DNA from complex human samples like sputum and feces for genome-wide measurements of bacterial allelic diversity. The approach is inexpensive, scalable to encompass entire targeted genomes, and works in the presence of abundant untargeted nucleic acids and inhibiting substances. We used GenCap-Seq to investigate in vivo responses of diversified bacterial strains to antibiotic treatment. This method will enable new ideas about the effects of intrastrain diversity on human infections to be tested.
Collapse
Affiliation(s)
- Hillary S. Hayden
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Snehal Joshi
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthew C. Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anh T. Vo
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Cara Forsberg
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sarah J. Morgan
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sara M. Klee
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Pradeep K. Singh
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
13
|
Meoli A, Eickmeier O, Pisi G, Fainardi V, Zielen S, Esposito S. Impact of CFTR Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease. Int J Mol Sci 2022; 23:12421. [PMID: 36293274 PMCID: PMC9604330 DOI: 10.3390/ijms232012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches.
Collapse
Affiliation(s)
- Aniello Meoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Olaf Eickmeier
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Giovanna Pisi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
14
|
Abstract
Chronic (long-lasting) infections are globally a major and rising cause of morbidity and mortality. Unlike typical acute infections, chronic infections are ecologically diverse, characterized by the presence of a polymicrobial mix of opportunistic pathogens and human-associated commensals. To address the challenge of chronic infection microbiomes, we focus on a particularly well-characterized disease, cystic fibrosis (CF), where polymicrobial lung infections persist for decades despite frequent exposure to antibiotics. Epidemiological analyses point to conflicting results on the benefits of antibiotic treatment yet are confounded by the dependency of antibiotic exposures on prior pathogen presence, limiting their ability to draw causal inferences on the relationships between antibiotic exposure and pathogen dynamics. To address this limitation, we develop a synthetic infection microbiome model representing CF metacommunity diversity and benchmark on clinical data. We show that in the absence of antibiotics, replicate microbiome structures in a synthetic sputum medium are highly repeatable and dominated by oral commensals. In contrast, challenge with physiologically relevant antibiotic doses leads to substantial community perturbation characterized by multiple alternate pathogen-dominant states and enrichment of drug-resistant species. These results provide evidence that antibiotics can drive the expansion (via competitive release) of previously rare opportunistic pathogens and offer a path toward microbiome-informed conditional treatment strategies. IMPORTANCE We develop and clinically benchmark an experimental model of the cystic fibrosis (CF) lung infection microbiome to investigate the impacts of antibiotic exposures on chronic, polymicrobial infections. We show that a single experimental model defined by metacommunity data can partially recapitulate the diversity of individual microbiome states observed across a population of people with CF. In the absence of antibiotics, we see highly repeatable community structures, dominated by oral microbes. Under clinically relevant antibiotic exposures, we see diverse and frequently pathogen-dominated communities, and a nonevolutionary enrichment of antimicrobial resistance on the community scale, mediated by competitive release. The results highlight the potential importance of nonevolutionary (community-ecological) processes in driving the growing global crisis of increasing antibiotic resistance.
Collapse
|
15
|
Klosinska K, Reece E, Kenny E, Renwick J. Reducing human DNA bias in cystic fibrosis airway specimens for microbiome analysis. J Microbiol Methods 2022; 200:106540. [PMID: 35853495 DOI: 10.1016/j.mimet.2022.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022]
Abstract
Next generation sequencing (NGS) has transformed our understanding of airway microbiology, however there are methodology limitations that require consideration. The presence of high concentrations of human DNA in clinical specimens can significantly impact sequencing of the microbiome, especially in low biomass samples. Here we compared three different methods (0.025% saponin, NEBNext Microbiome DNA enrichment kit, QIAamp DNA microbiome kit) for the reduction of human DNA from six CF sputum samples and determined the impact on the microbiome detected using 16S rRNA gene sequencing. Human DNA in undepleted CF sputum accounted for 94.3% of the total DNA. Saponin, the NEBNext kit and the QIAamp kit reduced human DNA levels by an average of 38.7%, 61.8% and 94.8%, respectively. None of the depletion methods reduced total bacterial DNA concentrations. QIAamp depletion did not influence taxa richness or alpha diversity however alterations to the core genera were noted following depletion. While all methods reduced human DNA in the CF sputum samples, the QIAamp DNA microbiome kit reduced Human DNA levels significantly while leaving bacterial DNA levels unchanged. Human DNA depletion in low biomass, human DNA-dense CF sputum samples is vital for improving bacterial resolution in the CF airway microbiome.
Collapse
Affiliation(s)
- Karolina Klosinska
- Clinical Microbiology Department, Trinity College Dublin, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland
| | - Emma Reece
- Clinical Microbiology Department, Trinity College Dublin, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland
| | - Elaine Kenny
- ELDA Biotech, Naas, Kildare, Ireland; TrinSeq, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Julie Renwick
- Clinical Microbiology Department, Trinity College Dublin, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
16
|
Pust MM, Tümmler B. Bacterial low-abundant taxa are key determinants of a healthy airway metagenome in the early years of human life. Comput Struct Biotechnol J 2021; 20:175-186. [PMID: 35024091 PMCID: PMC8713036 DOI: 10.1016/j.csbj.2021.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
The default removal of low-abundance (rare) taxa from microbial community analyses may lead to an incomplete picture of the taxonomic and functional microbial potential within the human habitat. Publicly available shotgun metagenomics data of healthy children and children with cystic fibrosis (CF) were reanalysed to study the development of the rare species biosphere, which was here defined by either the 15th, 25th or 35th species abundance percentile. We found that healthy children contained an age-independent network of abundant (core) and rare species with both entities being essential in maintaining the network structure. The protein sequence usage for more than 100 bacterial metabolic pathways differed between the core and rare species biosphere. In CF children, the background structure was underdeveloped and random forest bootstrapping based on all constituents of the early airway metagenome and host-associated factors indicated that rare taxa were the most important variables in deciding whether a child was healthy or suffered from the life-limiting CF disease. Attempts failed to make the age-independent CF network as robust as the healthy structure when an increasing number of bacterial taxa from the healthy network was incorporated into the CF structure by computer-based model simulations. However, the transfer of a key combination of taxa from the healthy to the CF network structure with high species diversity and low species dominance, correlated with a more robust CF network and a topological approximation of CF and healthy graph structures. Rothia mucilaginosa, Streptococci and rare species were essential in improving the underdeveloped CF network.
Collapse
Affiliation(s)
- Marie-Madlen Pust
- Department of Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School (MHH), Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Germany
| | - Burkhard Tümmler
- Corresponding author at: Department of Paediatric Pneumology, Allergology and Neonatology, OE 6710, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
17
|
Hardouin P, Chiron R, Marchandin H, Armengaud J, Grenga L. Metaproteomics to Decipher CF Host-Microbiota Interactions: Overview, Challenges and Future Perspectives. Genes (Basel) 2021; 12:892. [PMID: 34207804 PMCID: PMC8227082 DOI: 10.3390/genes12060892] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, triggering dysfunction of the anion channel in several organs including the lung and gut. The main cause of morbidity and mortality is chronic infection. The microbiota is now included among the additional factors that could contribute to the exacerbation of patient symptoms, to treatment outcome, and more generally to the phenotypic variability observed in CF patients. In recent years, various omics tools have started to shed new light on microbial communities associated with CF and host-microbiota interactions. In this context, proteomics targets the key effectors of the responses from organisms, and thus their phenotypes. Recent advances are promising in terms of gaining insights into the CF microbiota and its relation with the host. This review provides an overview of the contributions made by proteomics and metaproteomics to our knowledge of the complex host-microbiota partnership in CF. Considering the strengths and weaknesses of proteomics-based approaches in profiling the microbiota in the context of other diseases, we illustrate their potential and discuss possible strategies to overcome their limitations in monitoring both the respiratory and intestinal microbiota in sample from patients with CF.
Collapse
Affiliation(s)
- Pauline Hardouin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Université de Montpellier, 30207 Bagnols-sur-Cèze, France;
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France;
| | - Raphael Chiron
- HydroSciences Montpellier, CNRS, IRD, Université de Montpellier, Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, 34093 Montpellier, France;
| | - Hélène Marchandin
- HydroSciences Montpellier, CNRS, IRD, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Nîmes, France;
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France;
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France;
| |
Collapse
|
18
|
Willis JR, Saus E, Iraola-Guzmán S, Cabello-Yeves E, Ksiezopolska E, Cozzuto L, Bejarano LA, Andreu-Somavilla N, Alloza-Trabado M, Blanco A, Puig-Sola A, Broglio E, Carolis C, Ponomarenko J, Hecht J, Gabaldón T. Citizen-science based study of the oral microbiome in Cystic fibrosis and matched controls reveals major differences in diversity and abundance of bacterial and fungal species. J Oral Microbiol 2021; 13:1897328. [PMID: 34104346 PMCID: PMC8143623 DOI: 10.1080/20002297.2021.1897328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: Cystic fibrosis (CF) is an autosomal genetic disease, associated with the production of excessively thick mucosa and with life-threatening chronic lung infections. The microbiota of the oral cavity can act as a reservoir or as a barrier for infectious microorganisms that can colonize the lungs. However, the specific composition of the oral microbiome in CF is poorly understood.Methods: In collaboration with CF associations in Spain, we collected oral rinse samples from 31 CF persons (age range 7-47) and matched controls, and then performed 16S rRNA metabarcoding and high-throughput sequencing, combined with culture and proteomics-based identification of fungi to survey the bacterial and fungal oral microbiome.Results: We found that CF is associated with less diverse oral microbiomes, which were characterized by higher prevalence of Candida albicans and differential abundances of a number of bacterial taxa that have implications in both the connection to lung infections in CF, as well as potential oral health concerns, particularly periodontitis and dental caries.Conclusion: Overall, our study provides a first global snapshot of the oral microbiome in CF. Future studies are required to establish the relationships between the composition of the oral and lung microbiomes in CF.
Collapse
Affiliation(s)
- Jesse R Willis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Cabello-Yeves
- Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Bejarano
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria Andreu-Somavilla
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miriam Alloza-Trabado
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrea Blanco
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Puig-Sola
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elisabetta Broglio
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
19
|
Pust MM, Tümmler B. Identification of core and rare species in metagenome samples based on shotgun metagenomic sequencing, Fourier transforms and spectral comparisons. ISME COMMUNICATIONS 2021; 1:2. [PMID: 37938695 PMCID: PMC9645229 DOI: 10.1038/s43705-021-00010-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 04/27/2023]
Abstract
In shotgun metagenomic sequencing applications, low signal-to-noise ratios may complicate species-level differentiation of genetically similar core species and impede high-confidence detection of rare species. However, core and rare species can take pivotal roles in their habitats and should hence be studied as one entity to gain insights into the total potential of microbial communities in terms of taxonomy and functionality. Here, we offer a solution towards increased species-level specificity, decreased false discovery and omission rates of core and rare species in complex metagenomic samples by introducing the rare species identifier (raspir) tool. The python software is based on discrete Fourier transforms and spectral comparisons of biological and reference frequency signals obtained from real and ideal distributions of short DNA reads mapping towards circular reference genomes. Simulation-based testing of raspir enabled the detection of rare species with genome coverages of less than 0.2%. Species-level differentiation of rare Escherichia coli and Shigella spp., as well as the clear delineation between human Streptococcus spp. was feasible with low false discovery (1.3%) and omission rates (13%). Publicly available human placenta sequencing data were reanalysed with raspir. Raspir was unable to identify placental microbial communities, reinforcing the sterile womb paradigm.
Collapse
Affiliation(s)
- Marie-Madlen Pust
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School (MHH), Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
20
|
Abstract
Cystic fibrosis patients frequently suffer from recurring respiratory infections caused by colonizing pathogenic and commensal bacteria. Although modern therapies can sometimes alleviate respiratory symptoms by ameliorating residual function of the protein responsible for the disorder, management of chronic respiratory infections remains an issue. In cystic fibrosis, dynamic and complex communities of microbial pathogens and commensals can colonize the lung. Cultured isolates from lung sputum reveal high inter- and intraindividual variability in pathogen strains, sequence variants, and phenotypes; disease progression likely depends on the precise combination of infecting lineages. Routine clinical protocols, however, provide a limited overview of the colonizer populations. Therefore, a more comprehensive and precise identification and characterization of infecting lineages could assist in making corresponding decisions on treatment. Here, we describe longitudinal tracking for four cystic fibrosis patients who exhibited extreme clinical phenotypes and, thus, were selected from a pilot cohort of 11 patients with repeated sampling for more than a year. Following metagenomics sequencing of lung sputum, we find that the taxonomic identity of individual colonizer lineages can be easily established. Crucially, even superficially clonal pathogens can be subdivided into multiple sublineages at the sequence level. By tracking individual allelic differences over time, an assembly-free clustering approach allows us to reconstruct multiple lineage-specific genomes with clear structural differences. Our study showcases a culture-independent shotgun metagenomics approach for longitudinal tracking of sublineage pathogen dynamics, opening up the possibility of using such methods to assist in monitoring disease progression through providing high-resolution routine characterization of the cystic fibrosis lung microbiome.
Collapse
|
21
|
Felton E, Burrell A, Chaney H, Sami I, Koumbourlis AC, Freishtat RJ, Crandall KA, Hahn A. Inflammation in children with cystic fibrosis: contribution of bacterial production of long-chain fatty acids. Pediatr Res 2021; 90:99-108. [PMID: 33654282 PMCID: PMC8370878 DOI: 10.1038/s41390-021-01419-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/02/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) affects >70,000 people worldwide, yet the microbiologic trigger for pulmonary exacerbations (PExs) remains unknown. The objective of this study was to identify changes in bacterial metabolic pathways associated with clinical status. METHODS Respiratory samples were collected at hospital admission for PEx, end of intravenous (IV) antibiotic treatment, and follow-up from 27 hospitalized children with CF. Bacterial DNA was extracted and shotgun DNA sequencing was performed. MetaPhlAn2 and HUMAnN2 were used to evaluate bacterial taxonomic and pathway relative abundance, while DESeq2 was used to evaluate differential abundance based on clinical status. RESULTS The mean age of study participants was 10 years; 85% received combination IV antibiotic therapy (beta-lactam plus a second agent). Long-chain fatty acid (LCFA) biosynthesis pathways were upregulated in follow-up samples compared to end of treatment: gondoate (p = 0.012), oleate (p = 0.048), palmitoleate (p = 0.043), and pathways of fatty acid elongation (p = 0.012). Achromobacter xylosoxidans and Escherichia sp. were also more prevalent in follow-up compared to PEx (p < 0.001). CONCLUSIONS LCFAs may be associated with persistent infection of opportunistic pathogens. Future studies should more closely investigate the role of LCFA production by lung bacteria in the transition from baseline wellness to PEx in persons with CF. IMPACT Increased levels of LCFAs are found after IV antibiotic treatment in persons with CF. LCFAs have previously been associated with increased lung inflammation in asthma. This is the first report of LCFAs in the airway of persons with CF. This research provides support that bacterial production of LCFAs may be a contributor to inflammation in persons with CF. Future studies should evaluate LCFAs as predictors of future PExs.
Collapse
Affiliation(s)
- Erin Felton
- grid.253615.60000 0004 1936 9510School of Medicine and Health Sciences, George Washington University, Washington, DC USA
| | - Aszia Burrell
- grid.239560.b0000 0004 0482 1586Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC USA
| | - Hollis Chaney
- grid.253615.60000 0004 1936 9510Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC USA ,grid.239560.b0000 0004 0482 1586Division of Pulmonary and Sleep Medicine, Children’s National Hospital, Washington, DC USA
| | - Iman Sami
- grid.253615.60000 0004 1936 9510Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC USA ,grid.239560.b0000 0004 0482 1586Division of Pulmonary and Sleep Medicine, Children’s National Hospital, Washington, DC USA
| | - Anastassios C. Koumbourlis
- grid.253615.60000 0004 1936 9510Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC USA ,grid.239560.b0000 0004 0482 1586Division of Pulmonary and Sleep Medicine, Children’s National Hospital, Washington, DC USA
| | - Robert J. Freishtat
- grid.239560.b0000 0004 0482 1586Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC USA ,grid.253615.60000 0004 1936 9510Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC USA ,grid.239560.b0000 0004 0482 1586Division of Emergency Medicine, Children’s National Hospital, Washington, DC USA
| | - Keith A. Crandall
- grid.253615.60000 0004 1936 9510Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA. .,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,Division of Infectious Disease, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
22
|
Pust MM, Wiehlmann L, Davenport C, Rudolf I, Dittrich AM, Tümmler B. The human respiratory tract microbial community structures in healthy and cystic fibrosis infants. NPJ Biofilms Microbiomes 2020; 6:61. [PMID: 33319812 PMCID: PMC7738502 DOI: 10.1038/s41522-020-00171-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
The metagenome development of the human respiratory tract was investigated by shotgun metagenome metagenomic sequencing of cough swabs from healthy children and children with cystic fibrosis (CF) between 3 weeks and 6 years of age. A healthy microbial community signature was associated with increased absolute abundances in terms of bacterial–human cell ratios of core and rare species across all age groups, with a higher diversity of rare species and a tightly interconnected species co-occurrence network, in which individual members were found in close proximity to each other and negative correlations were absent. Even without typical CF pathogens, the CF infant co-occurrence network was found to be less stable and prone to fragmentation due to fewer connections between species, a higher number of bridging species and the presence of negative species correlations. Detection of low-abundant DNA of the CF hallmark pathogen Pseudomonas aeruginosa was neither disease- nor age-associated in our cohort. Healthy and CF children come into contact with P. aeruginosa on a regular basis and from early on.
Collapse
Affiliation(s)
- Marie-Madlen Pust
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Colin Davenport
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Isa Rudolf
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
23
|
Massimino L, Lovisa S, Antonio Lamparelli L, Danese S, Ungaro F. Gut eukaryotic virome in colorectal carcinogenesis: Is that a trigger? Comput Struct Biotechnol J 2020; 19:16-28. [PMID: 33363706 PMCID: PMC7750180 DOI: 10.1016/j.csbj.2020.11.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota is composed of bacteria and viruses that might be associated with colorectal cancer (CRC) onset and progression. Indeed, although viral infections have been reported to be the primary trigger in many diseases, the role of eukaryotic viruses populating the gut mucosa during early colorectal carcinogenesis is underinvestigated. Human eukaryotic viruses in the gut were found to induce alterations of the immune homeostasis so that some viral-dependent mechanisms likely able to induce DNA alterations in the bowel wall have been proposed, although no demonstration is available yet. However, thanks to the latest advancements in computational biology and the implementation of the bioinformatic pipelines, the option of establishing a direct causative link between intestinal virome and CRC will be possible soon, hopefully paving the way to innovative therapeutic strategies blocking or reverting the CRC pathogenesis.
Collapse
Affiliation(s)
- Luca Massimino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Sara Lovisa
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Federica Ungaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
24
|
de Almeida OGG, Capizzani CPDC, Tonani L, Grizante Barião PH, da Cunha AF, De Martinis ECP, Torres LAGMM, von Zeska Kress MR. The Lung Microbiome of Three Young Brazilian Patients With Cystic Fibrosis Colonized by Fungi. Front Cell Infect Microbiol 2020; 10:598938. [PMID: 33262957 PMCID: PMC7686462 DOI: 10.3389/fcimb.2020.598938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022] Open
Abstract
Microbial communities infiltrate the respiratory tract of cystic fibrosis patients, where chronic colonization and infection lead to clinical decline. This report aims to provide an overview of the diversity of bacterial and fungal species from the airway secretion of three young CF patients with severe pulmonary disease. The bacterial and fungal microbiomes were investigated by culture isolation, metataxonomics, and metagenomics shotgun. Virulence factors and antibiotic resistance genes were also explored. A. fumigatus was isolated from cultures and identified in high incidence from patient sputum samples. Candida albicans, Penicillium sp., Hanseniaspora sp., Torulaspora delbrueckii, and Talaromyces amestolkiae were isolated sporadically. Metataxonomics and metagenomics detected fungal reads (Saccharomyces cerevisiae, A. fumigatus, and Schizophyllum sp.) in one sputum sample. The main pathogenic bacteria identified were Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, and Achromobacter xylosoxidans. The canonical core CF microbiome is composed of species from the genera Streptococcus, Neisseria, Rothia, Prevotella, and Haemophilus. Thus, the airways of the three young CF patients presented dominant bacterial genera and interindividual variability in microbial community composition and diversity. Additionally, a wide diversity of virulence factors and antibiotic resistance genes were identified in the CF lung microbiomes, which may be linked to the clinical condition of the CF patients. Understanding the microbial community is crucial to improve therapy because it may have the opposite effect, restructuring the pathogenic microbiota. Future studies focusing on the influence of fungi on bacterial diversity and microbial interactions in CF microbiomes will be welcome to fulfill this huge gap of fungal influence on CF physiopathology.
Collapse
Affiliation(s)
- Otávio Guilherme Gonçalves de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carolina Paulino da Costa Capizzani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ludmilla Tonani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Helena Grizante Barião
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Elaine Cristina Pereira De Martinis
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Marcia Regina von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
25
|
Tümmler B. Molecular epidemiology in current times. Environ Microbiol 2020; 22:4909-4918. [PMID: 32945108 DOI: 10.1111/1462-2920.15238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023]
Abstract
Motivated to find options for prevention or intervention, molecular epidemiology aims to identify the host and microbial factors that determine the transmission, manifestation and progression of infectious disease. The genotyping of cultivatable bacterial strains is performed by either anonymous fingerprinting techniques or sequence-based exploration of variable genomic sites. Multilocus sequence typing of housekeeping genes and allele profiling of the core genome have become standard techniques of bacterial strain typing that may be supplemented by whole genome sequencing to explore all single nucleotide variants and/or the composition of the accessory genome. Next, novel protocols to investigate host and microbiome based upon smart third generation sequencing technologies are being developed for an effective surveillance, rapid diagnosis and real-time tracking of infectious diseases.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Clinical Research Group, Clinic for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Nelson MT, Wolter DJ, Eng A, Weiss EJ, Vo AT, Brittnacher MJ, Hayden HS, Ravishankar S, Bautista G, Ratjen A, Blackledge M, McNamara S, Nay L, Majors C, Miller SI, Borenstein E, Simon RH, LiPuma JJ, Hoffman LR. Maintenance tobramycin primarily affects untargeted bacteria in the CF sputum microbiome. Thorax 2020; 75:780-790. [PMID: 32631930 PMCID: PMC7875198 DOI: 10.1136/thoraxjnl-2019-214187] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 01/16/2023]
Abstract
RATIONALE The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments. OBJECTIVES To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics. METHODS AND MEASUREMENTS We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories. MAIN RESULTS CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome. CONCLUSIONS Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.
Collapse
Affiliation(s)
- Maria T Nelson
- Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington, United States
- Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, Washington, United States
| | - Daniel J Wolter
- Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
| | - Alexander Eng
- Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Eli J Weiss
- Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anh T Vo
- Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Hillary S Hayden
- Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sumedha Ravishankar
- Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Gilbert Bautista
- Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anina Ratjen
- Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Sharon McNamara
- Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
| | - Laura Nay
- Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
| | - Cheryl Majors
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel I Miller
- Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States
| | - Elhanan Borenstein
- Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard H Simon
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John J LiPuma
- Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Luke R Hoffman
- Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
- Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
27
|
Tueffers L, Barbosa C, Bobis I, Schubert S, Höppner M, Rühlemann M, Franke A, Rosenstiel P, Friedrichs A, Krenz-Weinreich A, Fickenscher H, Bewig B, Schreiber S, Schulenburg H. Pseudomonas aeruginosa populations in the cystic fibrosis lung lose susceptibility to newly applied β-lactams within 3 days. J Antimicrob Chemother 2020; 74:2916-2925. [PMID: 31355848 DOI: 10.1093/jac/dkz297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic pulmonary infections by Pseudomonas aeruginosa require frequent intravenous antibiotic treatment in cystic fibrosis (CF) patients. Emergence of antimicrobial resistance is common in these patients, which to date has been investigated at long-term intervals only. OBJECTIVES To investigate under close to real-time conditions the dynamics of the response by P. aeruginosa to a single course of antibiotic therapy and the potentially associated rapid spread of antimicrobial resistance, as well as the impact on the airway microbiome. METHODS We investigated a cohort of adult CF patients that were treated with a single course of antimicrobial combination therapy. Using daily sampling during treatment, we quantified the expression of resistance by P. aeruginosa (median of six isolates per daily sample, 347 isolates in total), measured bacterial load by P. aeruginosa-specific quantitative PCR and characterized the airway microbiome with a 16S rRNA-based approach. WGS was performed to reconstruct intrapatient strain phylogenies. RESULTS In two patients, we found rapid and large increases in resistance to meropenem and ceftazidime. Phylogenetic reconstruction of strain relationships revealed that resistance shifts are probably due to de novo evolution and/or the selection of resistant subpopulations. We observed high interindividual variation in the reduction of bacterial load, microbiome composition and antibiotic resistance. CONCLUSIONS We show that CF-associated P. aeruginosa populations can quickly respond to antibiotic therapy and that responses are patient specific. Thus, resistance evolution can be a direct consequence of treatment, and drug efficacy can be lost much faster than usually assumed. The consideration of these patient-specific rapid resistance shifts can help to improve treatment of CF-associated infections, for example by deeper sampling of bacteria for diagnostics, repeated monitoring of pathogen susceptibility and switching between drugs.
Collapse
Affiliation(s)
- Leif Tueffers
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel, Germany
| | - Camilo Barbosa
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel, Germany
| | - Ingrid Bobis
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel Campus, Arnold-Heller-Straße 3, Kiel, Germany
| | - Sabine Schubert
- Institute of Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, Kiel, Germany
| | - Marc Höppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Rosalind-Franklin-Straße 12, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Rosalind-Franklin-Straße 12, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Rosalind-Franklin-Straße 12, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Rosalind-Franklin-Straße 12, Kiel, Germany
| | - Anette Friedrichs
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel Campus, Arnold-Heller-Straße 3, Kiel, Germany
| | | | - Helmut Fickenscher
- Institute of Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, Kiel, Germany
| | - Burkhard Bewig
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel Campus, Arnold-Heller-Straße 3, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel Campus, Arnold-Heller-Straße 3, Kiel, Germany.,Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Rosalind-Franklin-Straße 12, Kiel, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel, Germany
| |
Collapse
|
28
|
Sulaiman I, Schuster S, Segal LN. Perspectives in lung microbiome research. Curr Opin Microbiol 2020; 56:24-29. [PMID: 32623064 DOI: 10.1016/j.mib.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Our understanding of the existence and role of the lung microbiome has grown at a slower pace than other microbiome research areas. This is likely a consequence of the original dogma that the lung was a sterile environment although there are other barriers that are worth discussing. Here we will not be conducting an exhaustive review of the current literature on the lung microbiome, but rather we will focus on what we see as some important challenges that the field needs to face in order to improve our mechanistic understanding of the lung microbiome and its role on human health.
Collapse
Affiliation(s)
- Imran Sulaiman
- Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, New York University School of Medicine, NY, United States
| | - Sheeja Schuster
- Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, New York University School of Medicine, NY, United States
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, New York University School of Medicine, NY, United States.
| |
Collapse
|
29
|
The intestinal virome in children with cystic fibrosis differs from healthy controls. PLoS One 2020; 15:e0233557. [PMID: 32442222 PMCID: PMC7244107 DOI: 10.1371/journal.pone.0233557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal bacterial dysbiosis is evident in children with cystic fibrosis (CF) and intestinal viruses may be contributory, given their influence on bacterial species diversity and biochemical cycles. We performed a prospective, case-control study on children with CF and age and gender matched healthy controls (HC), to investigate the composition and function of intestinal viral communities. Stool samples were enriched for viral DNA and RNA by viral extraction, random amplification and purification before sequencing (Illumina MiSeq). Taxonomic assignment of viruses was performed using Vipie. Functional annotation was performed using Virsorter. Inflammation was measured by calprotectin and M2-pyruvate kinase (M2-PK). Eight CF and eight HC subjects were included (50% male, mean age 6.9 ± 3.0 and 6.4 ± 5.3 years, respectively, p = 0.8). All CF subjects were pancreatic insufficient. Regarding the intestinal virome, no difference in Shannon index between CF and HC was identified. Taxonomy-based beta-diversity (presence-absence Bray-Curtis dissimilarity) was significantly different between CF and HC (R2 = 0.12, p = 0.001). Myoviridae, Faecalibacterium phage FP Taranis and unclassified Gokushovirinae were significantly decreased in CF compared with HC (q<0.05). In children with CF (compared to HC), the relative abundance of genes annotated to (i) a peptidoglycan-binding domain of the peptidoglycan hydrolases (COG3409) was significantly increased (q<0.05) and (ii) capsid protein (F protein) (PF02305.16) was significantly decreased (q<0.05). Picornavirales, Picornaviridae, and Enterovirus were found to positively correlate with weight and BMI (r = 0.84, q = 0.01). Single-stranded DNA viruses negatively correlated with M2-PK (r = -0.86, q = 0.048). Children with CF have an altered intestinal virome compared to well-matched HC, with both taxonomic and predicted functional changes. Further exploration of Faecalibacterium phages, Gokushovirinae and phage lysins are warranted. Intestinal viruses and their functions may have important clinical implications for intestinal inflammation and growth in children with CF, potentially providing novel therapeutic targets.
Collapse
|
30
|
Françoise A, Héry-Arnaud G. The Microbiome in Cystic Fibrosis Pulmonary Disease. Genes (Basel) 2020; 11:E536. [PMID: 32403302 PMCID: PMC7288443 DOI: 10.3390/genes11050536] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease with mutational changes leading to profound dysbiosis, both pulmonary and intestinal, from a very young age. This dysbiosis plays an important role in clinical manifestations, particularly in the lungs, affected by chronic infection. The range of microbiological tools has recently been enriched by metagenomics based on next-generation sequencing (NGS). Currently applied essentially in a gene-targeted manner, metagenomics has enabled very exhaustive description of bacterial communities in the CF lung niche and, to a lesser extent, the fungi. Aided by progress in bioinformatics, this now makes it possible to envisage shotgun sequencing and opens the door to other areas of the microbial world, the virome, and the archaeome, for which almost everything remains to be described in cystic fibrosis. Paradoxically, applying NGS in microbiology has seen a rebirth of bacterial culture, but in an extended manner (culturomics), which has proved to be a perfectly complementary approach to NGS. Animal models have also proved indispensable for validating microbiome pathophysiological hypotheses. Description of pathological microbiomes and correlation with clinical status and therapeutics (antibiotic therapy, cystic fibrosis transmembrane conductance regulator (CFTR) modulators) revealed the richness of microbiome data, enabling description of predictive and follow-up biomarkers. Although monogenic, CF is a multifactorial disease, and both genotype and microbiome profiles are crucial interconnected factors in disease progression. Microbiome-genome interactions are thus important to decipher.
Collapse
Affiliation(s)
- Alice Françoise
- UMR 1078 GGB, University of Brest, Inserm, EFS, F-29200 Brest, France;
| | - Geneviève Héry-Arnaud
- UMR 1078 GGB, University of Brest, Inserm, EFS, F-29200 Brest, France;
- Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent, 29200 Brest, France
| |
Collapse
|
31
|
Hahn A, Whiteson K, Davis TJ, Phan J, Sami I, Koumbourlis AC, Freishtat RJ, Crandall KA, Bean HD. Longitudinal Associations of the Cystic Fibrosis Airway Microbiome and Volatile Metabolites: A Case Study. Front Cell Infect Microbiol 2020; 10:174. [PMID: 32411616 PMCID: PMC7198769 DOI: 10.3389/fcimb.2020.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/01/2020] [Indexed: 01/15/2023] Open
Abstract
The identification of 16S rDNA biomarkers from respiratory samples to describe the continuum of clinical disease states within persons having cystic fibrosis (CF) has remained elusive. We sought to combine 16S, metagenomics, and metabolomics data to describe multiple transitions between clinical disease states in 14 samples collected over a 12-month period in a single person with CF. We hypothesized that each clinical disease state would have a unique combination of bacterial genera and volatile metabolites as a potential signature that could be utilized as a biomarker of clinical disease state. Taxonomy identified by 16S sequencing corroborated clinical culture results, with the majority of the 109 PCR amplicons belonging to the bacteria grown in clinical cultures (Escherichia coli and Staphylococcus aureus). While alpha diversity measures fluctuated across disease states, no significant trends were present. Principle coordinates analysis showed that treatment samples trended toward a different community composition than baseline and exacerbation samples. This was driven by the phylum Bacteroidetes (less abundant in treatment, log2 fold difference -3.29, p = 0.015) and the genus Stenotrophomonas (more abundant in treatment, log2 fold difference 6.26, p = 0.003). Across all sputum samples, 466 distinct volatile metabolites were identified with total intensity varying across clinical disease state. Baseline and exacerbation samples were rather uniform in chemical composition and similar to one another, while treatment samples were highly variable and differed from the other two disease states. When utilizing a combination of the microbiome and metabolome data, we observed associations between samples dominated Staphylococcus and Escherichia and higher relative abundances of alcohols, while samples dominated by Achromobacter correlated with a metabolomics shift toward more oxidized volatiles. However, the microbiome and metabolome data were not tightly correlated; examining both the metagenomics and metabolomics allows for more context to examine changes across clinical disease states. In our study, combining the sputum microbiome and metabolome data revealed stability in the sputum composition through the first exacerbation and treatment episode, and into the second exacerbation. However, the second treatment ushered in a prolonged period of instability, which after three additional exacerbations and treatments culminated in a new lung microbiome and metabolome.
Collapse
Affiliation(s)
- Andrea Hahn
- Division of Infectious Diseases, Children's National Health System, Washington, DC, United States
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Center for Genetic Medicine Research, The Children's Research Institute, Washington, DC, United States
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA, United States
| | - Trenton J. Davis
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Joann Phan
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA, United States
| | - Iman Sami
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, United States
| | - Anastassios C. Koumbourlis
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, United States
| | - Robert J. Freishtat
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Emergency Medicine, Children's National Health System, Washington, DC, United States
| | - Keith A. Crandall
- Computational Biology Institute and Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Heather D. Bean
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
32
|
Nelson MT, Pope CE, Marsh RL, Wolter DJ, Weiss EJ, Hager KR, Vo AT, Brittnacher MJ, Radey MC, Hayden HS, Eng A, Miller SI, Borenstein E, Hoffman LR. Human and Extracellular DNA Depletion for Metagenomic Analysis of Complex Clinical Infection Samples Yields Optimized Viable Microbiome Profiles. Cell Rep 2020; 26:2227-2240.e5. [PMID: 30784601 PMCID: PMC6435281 DOI: 10.1016/j.celrep.2019.01.091] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/20/2018] [Accepted: 01/25/2019] [Indexed: 01/27/2023] Open
Abstract
Metagenomic sequencing is a promising approach for identifying and characterizing organisms and their functional characteristics in complex, polymicrobial infections, such as airway infections in people with cystic fibrosis. These analyses are often hampered, however, by overwhelming quantities of human DNA, yielding only a small proportion of microbial reads for analysis. In addition, many abundant microbes in respiratory samples can produce large quantities of extracellular bacterial DNA originating either from biofilms or dead cells. We describe a method for simultaneously depleting DNA from intact human cells and extracellular DNA (human and bacterial) in sputum, using selective lysis of eukaryotic cells and endonuclease digestion. We show that this method increases microbial sequencing depth and, consequently, both the number of taxa detected and coverage of individual genes such as those involved in antibiotic resistance. This finding underscores the substantial impact of DNA from sources other than live bacteria in micro-biological analyses of complex, chronic infection specimens. Nelson et al. describe a method for reducing both human cellular DNA and extracellular DNA (human and bacterial) in a complex respiratory sample using hypotonic lysis and endonuclease digestion. This method increases effective microbial sequencing depth and minimizes bias introduced into subsequent phylogenetic analysis by bacterial extracellular DNA.
Collapse
Affiliation(s)
- Maria T Nelson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Christopher E Pope
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Robyn L Marsh
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Casuarina, NT 0811, Australia
| | - Daniel J Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Eli J Weiss
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Kyle R Hager
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Anh T Vo
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Mitchell J Brittnacher
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Hillary S Hayden
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Alexander Eng
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Samuel I Miller
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Computer Science and Engineering, University of Washington School of Medicine, Seattle, WA 98105, USA; Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Lucas R Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA.
| |
Collapse
|
33
|
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths in both the USA and the world. Recent research has demonstrated the involvement of the gut microbiota in CRC development and progression. Microbial biomarkers of disease have focused primarily on the bacterial component of the microbiome; however, the viral portion of the microbiome, consisting of both bacteriophages and eukaryotic viruses, together known as the virome, has been lesser studied. Here we review the recent advancements in high-throughput sequencing (HTS) technologies and bioinformatics, which have enabled scientists to better understand how viruses might influence the development of colorectal cancer. We discuss the contemporary findings revealing modulations in the virome and their correlation with CRC development and progression. While a variety of challenges still face viral HTS detection in clinical specimens, we consider herein numerous next steps for future basic and clinical research. Clinicians need to move away from a single infectious agent model for disease etiology by grasping new, more encompassing etiological paradigms, in which communities of various microbial components interact with each other and the host. The reporting and indexing of patient health information, socioeconomic data, and other relevant metadata will enable identification of predictive variables and covariates of viral presence and CRC development. Altogether, the virome has a more profound role in carcinogenesis and cancer progression than once thought, and viruses, specific for either human cells or bacteria, are clinically relevant in understanding CRC pathology, patient prognosis, and treatment development.
Collapse
|
34
|
Dayama G, Priya S, Niccum DE, Khoruts A, Blekhman R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med 2020; 12:12. [PMID: 31992345 PMCID: PMC6988342 DOI: 10.1186/s13073-020-0710-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians. It is caused by mutations in the CFTR gene, leading to poor hydration of mucus and impairment of the respiratory, digestive, and reproductive organ functions. Advancements in medical care have led to markedly increased longevity of patients with cystic fibrosis, but new complications have emerged, such as early onset of colorectal cancer. Although the pathogenesis of colorectal cancer in cystic fibrosis remains unclear, altered host-microbe interactions might play a critical role. To investigate this, we characterized changes in the microbiome and host gene expression in the colonic mucosa of cystic fibrosis patients relative to healthy controls, and identified host gene-microbiome interactions in the colon of cystic fibrosis patients. METHODS We performed RNA-seq on colonic mucosa samples from cystic fibrosis patients and healthy controls to determine differentially expressed host genes. We also performed 16S rRNA sequencing to characterize the colonic mucosal microbiome and identify gut microbes that are differentially abundant between patients and healthy controls. Lastly, we modeled associations between relative abundances of specific bacterial taxa in the gut mucosa and host gene expression. RESULTS We find that 1543 genes, including CFTR, show differential expression in the colon of cystic fibrosis patients compared to healthy controls. These genes are enriched with functions related to gastrointestinal and colorectal cancer, such as metastasis of colorectal cancer, tumor suppression, p53, and mTOR signaling pathways. In addition, patients with cystic fibrosis show decreased gut microbial diversity, decreased abundance of butyrate producing bacteria, such as Ruminococcaceae and Butyricimonas, and increased abundance of other taxa, such as Actinobacteria and Clostridium. An integrative analysis identified colorectal cancer-related genes, including LCN2 and DUOX2, for which gene expression is correlated with the abundance of colorectal cancer-associated bacteria, such as Ruminococcaceae and Veillonella. CONCLUSIONS In addition to characterizing host gene expression and mucosal microbiome in cystic fibrosis patients, our study explored the potential role of host-microbe interactions in the etiology of colorectal cancer in cystic fibrosis. Our results provide biomarkers that may potentially serve as targets for stratifying risk of colorectal cancer in patients with cystic fibrosis.
Collapse
Affiliation(s)
- Gargi Dayama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - David E Niccum
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Khoruts
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
35
|
Pienkowska K, Wiehlmann L, Tümmler B. Metagenome – Inferred bacterial replication rates in cystic fibrosis airways. J Cyst Fibros 2019; 18:653-656. [DOI: 10.1016/j.jcf.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/15/2018] [Accepted: 01/11/2019] [Indexed: 01/23/2023]
|
36
|
Roden L, Görlich D, Omran H, Peters G, Große-Onnebrink J, Kahl BC. A retrospective analysis of the pathogens in the airways of patients with primary ciliary dyskinesia. Respir Med 2019; 156:69-77. [PMID: 31437650 DOI: 10.1016/j.rmed.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Primary ciliary dyskinesia (PCD) is a rare genetically heterogeneous disorder of motile cilia, which leads to recurrent and chronic airway infections. Detailed information about infection causing pathogens is scarce. With this study, we aimed to determine the prevalence and susceptibility of the most common respiratory pathogens in PCD patients retrospectively in a cross-sectional and the dynamics of the microbiological diversity in a longitudinal study. METHODS Microbiological and clinical data of 106 patients between 2010 and 2016 were analysed cross-sectionally and of 28 patients longitudinally. Dynamics in microbiological diversity were assessed by calculating the mean rate of alteration (MRA). RESULTS Haemophilus influenzae was the most common pathogen (n = 41; 38.7%) followed by Staphylococcus aureus (n = 36; 34%), Moraxella catarrhalis (n = 18; 17%) and Pseudomonas aeruginosa (n = 16; 15.1%). Nontuberculous mycobacteria were cultured from two patients (1.9%). H. influenzae was the most prevalent pathogen in children (n = 31; 45.6%), S. aureus in adults (n = 15; 39%). Two patients were infected by methicillin-resistant S. aureus. P. aeruginosa was mostly susceptible to standard antibiotics with highest rates of resistance against fosfomycin (63.6%; 7/11). The culture of P. aeruginosa correlated negatively with age adjusted FEV1% predicted (p = 0.04), while the MRA was positively associated with age (rho 0.411, p = 0.032). DISCUSSION In PCD patients, the prevalence of pathogens differed in children and adults with H. influenzae and S. aureus being the most common pathogens in children, S. aureus and P. aeruginosa in adults, respectively. Unexpectedly, the MRA increased by age.
Collapse
Affiliation(s)
- Lukas Roden
- Institute of Medical Microbiology, University Hospital Münster, Germany.
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University Hospital Münster, Germany.
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Münster, Germany.
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Germany.
| | | | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Germany.
| |
Collapse
|
37
|
Klockgether J, Cramer N, Fischer S, Wiehlmann L, Tümmler B. Long-Term Microevolution of Pseudomonas aeruginosa Differs between Mildly and Severely Affected Cystic Fibrosis Lungs. Am J Respir Cell Mol Biol 2019; 59:246-256. [PMID: 29470920 DOI: 10.1165/rcmb.2017-0356oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic airway infections with Pseudomonas aeruginosa determine morbidity in most individuals with cystic fibrosis (CF). P. aeruginosa may persist for decades in CF lungs, which provides a rare opportunity to study the long-term within-host evolution of a bacterial airway pathogen. In this work, we sought to resolve the genetic adaptation of P. aeruginosa in CF lungs from the onset of colonization until the patient's death or permanent replacement by another P. aeruginosa clone. We followed the microevolution of the first persisting P. aeruginosa clone by whole-genome sequencing of serial isolates from highly divergent clinical courses of airway infection, i.e., a fatal outcome because of respiratory insufficiency within less than 15 years, or a rather normal daily life 25-35 years after acquisition of P. aeruginosa. Nonneutral mutations predominantly emerged in P. aeruginosa genes relevant for protection against and communication with signals from the lung environment, i.e., antibiotic resistance, cell wall components, and two-component systems. Drastic and loss-of-function mutations preferentially happened during the severe courses of infection, and the bacterial lineages of the mild courses more proficiently incorporated extra metabolic genes into their accessory genome. P. aeruginosa followed different evolutionary paths depending on whether the bacterium had taken up residence in a patient with CF and normal or already compromised lung function.
Collapse
Affiliation(s)
- Jens Klockgether
- 1 Clinical Research Group "Molecular Pathology of Cystic Fibrosis," Clinic for Pediatric Pneumology, Allergology and Neonatology, and
| | - Nina Cramer
- 1 Clinical Research Group "Molecular Pathology of Cystic Fibrosis," Clinic for Pediatric Pneumology, Allergology and Neonatology, and
| | - Sebastian Fischer
- 1 Clinical Research Group "Molecular Pathology of Cystic Fibrosis," Clinic for Pediatric Pneumology, Allergology and Neonatology, and
| | - Lutz Wiehlmann
- 1 Clinical Research Group "Molecular Pathology of Cystic Fibrosis," Clinic for Pediatric Pneumology, Allergology and Neonatology, and.,2 Research Core Unit Genomics, Hannover Medical School, Hannover, Germany; and
| | - Burkhard Tümmler
- 1 Clinical Research Group "Molecular Pathology of Cystic Fibrosis," Clinic for Pediatric Pneumology, Allergology and Neonatology, and.,3 Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hannover, Germany
| |
Collapse
|
38
|
Coexistence of Candida species and bacteria in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2019; 38:1071-1077. [PMID: 30739228 PMCID: PMC6520323 DOI: 10.1007/s10096-019-03493-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) patients become colonized by pathogenic bacteria as well as by Candida species. The interplay between different microorganisms may play a key role in the prognosis of CF. The aim of the study was to analyze the coexistence patterns of bacteria and Candida spp. in sputum samples of patients with CF and to compare these patterns with the results of patients with other respiratory disorders (ORD). Sputum samples from 130 patients with CF and 186 patients with ORD were cultured on six different agar plates promoting the growth of bacteria and yeasts. Bacterial and Candida species were identified with MALDI-TOF MS. Pathogenic bacteria were found in 69.2% of the sputum samples of the CF patients, and in 44.1% the patients with ORD. CF patients tended to have growth of Pseudomonas aeruginosa and Staphylococcus aureus in sputum more often than patients with ORD. Overall, there was no difference in the coexistence of pathogenic bacteria and Candida spp. in these patient groups. However, when analyzed at the species level, P. aeruginosa and S. aureus coexisted with Candida spp. more frequently in sputum samples of CF patients compared with patients with ORD. Also, when analyzed according to age, it was shown that the adult (≥ 18 years) CF patients had a higher rate of coexistence of any pathogenic bacteria and Candida spp. than the children with CF and the adult patients with ORD. The rate for colonization with Candida together with pathogenic bacteria is increased in adult patients with CF.
Collapse
|
39
|
Emergence and Within-Host Genetic Evolution of Methicillin-Resistant Staphylococcus aureus Resistant to Linezolid in a Cystic Fibrosis Patient. Antimicrob Agents Chemother 2018; 62:AAC.00720-18. [PMID: 30275089 DOI: 10.1128/aac.00720-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/22/2018] [Indexed: 12/26/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection has increased in recent years among cystic fibrosis (CF) patients. Linezolid (LZD) is one of the antistaphylococcal antibiotics widely used in this context. Although LZD resistance is rare, it has been described as often associated with long-term treatments. Thirteen MRSA strains isolated over 5 years from one CF patient were studied for LZD resistance emergence and subjected to whole-genome sequencing (WGS). Resistance emerged after three 15-day LZD therapeutic regimens over 4 months. It was associated with the mutation of G to T at position 2576 (G2576T) in all 5 rrl copies, along with a very high MIC (>256 mg/liter) and a strong increase in the generation time. Resistant strains isolated during the ensuing LZD therapeutic regimens and until 13 months after LZD stopped harbored only 3 or 4 mutated rrl copies, associated with lower MICs (8 to 32 mg/liter) and low to moderate generation time increases. Despite these differences, whole-genome sequencing allowed us to determine that all isolates, including the susceptible one isolated before LZD treatment, belonged to the same lineage. In conclusion, LZD resistance can emerge rapidly in CF patients and persist without linezolid selective pressure in colonizing MRSA strains belonging to the same lineage.
Collapse
|
40
|
Dittrich AM. [Chronic Pseudomonas aeruginosa airway colonization in cystic fibrosis patients : Prevention concepts]. Internist (Berl) 2018; 58:1133-1141. [PMID: 28963697 DOI: 10.1007/s00108-017-0327-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa (PsA) is a hallmark pathogen of the lung disease in cystic fibrosis (CF) patients. Chronic PsA colonization is a central factor in the course of CF lung disease. PsA contributes considerably to morbidity and mortality, and also has a significant impact on quality of life and the costs of CF treatment. Prevention of chronic colonization has therefore been a major goal in the treatment of CF patients for many years now. In the present article, studies are presented which suggest that prevention of chronic colonization can be achieved. Approaches to prevent chronic PsA colonization are critically evaluated and recommendations for preventative approaches are generated from this discussion.
Collapse
Affiliation(s)
- A-M Dittrich
- Klinik für pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| |
Collapse
|
41
|
Taylor SL, O'Farrell HE, Simpson JL, Yang IA, Rogers GB. The contribution of respiratory microbiome analysis to a treatable traits model of care. Respirology 2018; 24:19-28. [PMID: 30282116 DOI: 10.1111/resp.13411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/13/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022]
Abstract
The composition of the airway microbiome in patients with chronic airway diseases, such as severe asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis and cystic fibrosis (CF), has the potential to inform a precision model of clinical care. Patients with these conditions share overlapping disease characteristics, including airway inflammation and airflow limitation. The clinical management of chronic respiratory conditions is increasingly moving away from a one-size-fits-all model based on primary diagnosis, towards care targeting individual disease traits, and is particularly useful for subgroups of patients who respond poorly to conventional therapies. Respiratory microbiome analysis is an important potential contributor to such a 'treatable traits' approach, providing insight into both microbial drivers of airways disease, and the selective characteristics of the changing lower airway environment. We explore the potential to integrate respiratory microbiome analysis into a treatable traits model of clinical care and provide a practical guide to the application and clinical interpretation of respiratory microbiome analysis.
Collapse
Affiliation(s)
- Steven L Taylor
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hannah E O'Farrell
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Jodie L Simpson
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Geraint B Rogers
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
42
|
High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat Commun 2018; 9:3459. [PMID: 30150613 PMCID: PMC6110831 DOI: 10.1038/s41467-018-05944-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
Life-long bacterial infections in cystic fibrosis (CF) airways constitute an excellent model both for persistent infections and for microbial adaptive evolution in complex dynamic environments. Using high-resolution transcriptomics applied on CF sputum, we profile transcriptional phenotypes of Pseudomonas aeruginosa populations in patho-physiological conditions. Here we show that the soft-core genome of genetically distinct populations, while maintaining transcriptional flexibility, shares a common expression program tied to the lungs environment. We identify genetically independent traits defining P. aeruginosa physiology in vivo, documenting the connection between several previously identified mutations in CF isolates and some of the convergent phenotypes known to develop in later stages of the infection. In addition, our data highlight to what extent this organism can exploit its extensive repertoire of physiological pathways to acclimate to a new niche and suggest how alternative nutrients produced in the lungs may be utilized in unexpected metabolic contexts.
Collapse
|
43
|
Taylor SL, Leong LEX, Mobegi FM, Choo JM, Burr LD, Wesselingh S, Rogers GB. Understanding the impact of antibiotic therapies on the respiratory tract resistome: a novel pooled-template metagenomic sequencing strategy. Multidiscip Respir Med 2018; 13:30. [PMID: 30151191 PMCID: PMC6101085 DOI: 10.1186/s40248-018-0140-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Determining the effects of antimicrobial therapies on airway microbiology at a population-level is essential. Such analysis allows, for example, surveillance of antibiotic-induced changes in pathogen prevalence, the emergence and spread of antibiotic resistance, and the transmission of multi-resistant organisms. However, current analytical strategies for understanding these processes are limited. Culture- and PCR-based assays for specific microbes require the a priori selection of targets, while antibiotic sensitivity testing typically provides no insight into either the molecular basis of resistance, or the carriage of resistance determinants by the wider commensal microbiota. Shotgun metagenomic sequencing provides an alternative approach that allows the microbial composition of clinical samples to be described in detail, including the prevalence of resistance genes and virulence traits. While highly informative, the application of metagenomics to large patient cohorts can be prohibitively expensive. Using sputum samples from a randomised placebo-controlled trial of erythromycin in adults with bronchiectasis, we describe a novel, cost-effective strategy for screening patient cohorts for changes in resistance gene prevalence. By combining metagenomic screening of pooled DNA extracts with validatory quantitative PCR-based analysis of candidate markers in individual samples, we identify population-level changes in the relative abundance of specific macrolide resistance genes. This approach has the potential to provide an important adjunct to current analytical strategies, particularly within the context of antimicrobial clinical trials.
Collapse
Affiliation(s)
- Steven L Taylor
- 1Infection and Immunity, South Australian Health and Medical Research Institute, Adelaide, South Australia Australia.,2SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, South Australia Australia
| | - Lex E X Leong
- 1Infection and Immunity, South Australian Health and Medical Research Institute, Adelaide, South Australia Australia.,2SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, South Australia Australia
| | - Fredrick M Mobegi
- 1Infection and Immunity, South Australian Health and Medical Research Institute, Adelaide, South Australia Australia.,2SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, South Australia Australia
| | - Jocelyn M Choo
- 1Infection and Immunity, South Australian Health and Medical Research Institute, Adelaide, South Australia Australia.,2SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, South Australia Australia
| | - Lucy D Burr
- 3Department of Respiratory Medicine, Mater Health Services, South Brisbane, Queensland, Australia
| | - Steve Wesselingh
- 1Infection and Immunity, South Australian Health and Medical Research Institute, Adelaide, South Australia Australia.,2SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, South Australia Australia
| | - Geraint B Rogers
- 1Infection and Immunity, South Australian Health and Medical Research Institute, Adelaide, South Australia Australia.,2SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, South Australia Australia
| |
Collapse
|
44
|
Sánchez-Bautista A, Rodríguez-Díaz JC, Garcia-Heredia I, Luna-Paredes C, Alcalá-Minagorre PJ. Airway microbiota in patients with paediatric cystic fibrosis: Relationship with clinical status. Enferm Infecc Microbiol Clin 2018; 37:167-171. [PMID: 30827333 DOI: 10.1016/j.eimc.2018.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/08/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION New massive sequencing techniques make it possible to determine the composition of airway microbiota in patients with cystic fibrosis (CF). However, the relationship between the composition of lung microbiome and the clinical status of paediatric patients is still not fully understood. MATERIAL AND METHODS A cross-sectional observational study was conducted on induced sputum samples from children with CF and known mutation in the CFTR gene. The bacterial sequences of the 16SrRNA gene were analyzed and their association with various clinical variables studied. RESULTS Analysis of the 13 samples obtained showed a core microbiome made up of Staphylococcus spp., Streptococcus spp., Rothia spp., Gemella spp. and Granulicatella spp., with a small number of Pseudomonas spp. The cluster of patients with less biodiversity were found to exhibit a greater number of sequences of Staphylococcus spp., mainly Staphylococcus aureus (p 0.009) and a greater degree of lung damage. CONCLUSION An airway microbiome with greater biodiversity may be an indicator of less pronounced disease progression, in which case new therapeutic interventions that prevent reduction in non-pathogenic species of the airway microbiota should be studied.
Collapse
Affiliation(s)
- Antonia Sánchez-Bautista
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Juan Carlos Rodríguez-Díaz
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - Inmaculada Garcia-Heredia
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Carmen Luna-Paredes
- Pediatric Cystic Fibrosis Unit, Department of Pediatrics, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Pedro J Alcalá-Minagorre
- Department of Pediatrics, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
45
|
Hahn A, Bendall ML, Gibson KM, Chaney H, Sami I, Perez GF, Koumbourlis AC, McCaffrey TA, Freishtat RJ, Crandall KA. Benchmark Evaluation of True Single Molecular Sequencing to Determine Cystic Fibrosis Airway Microbiome Diversity. Front Microbiol 2018; 9:1069. [PMID: 29887843 PMCID: PMC5980964 DOI: 10.3389/fmicb.2018.01069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/04/2018] [Indexed: 11/30/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease associated with recurrent lung infections that can lead to morbidity and mortality. The impact of antibiotics for treatment of acute pulmonary exacerbations on the CF airway microbiome remains unclear with prior studies giving conflicting results and being limited by their use of 16S ribosomal RNA sequencing. Our primary objective was to validate the use of true single molecular sequencing (tSMS) and PathoScope in the analysis of the CF airway microbiome. Three control samples were created with differing amounts of Burkholderia cepacia, Pseudomonas aeruginosa, and Prevotella melaninogenica, three common bacteria found in cystic fibrosis lungs. Paired sputa were also obtained from three study participants with CF before and >6 days after initiation of antibiotics. Antibiotic resistant B. cepacia and P. aeruginosa were identified in concurrently obtained respiratory cultures. Direct sequencing was performed using tSMS, and filtered reads were aligned to reference genomes from NCBI using PathoScope and Kraken and unique clade-specific marker genes using MetaPhlAn. A total of 180–518 K of 6–12 million filtered reads were aligned for each sample. Detection of known pathogens in control samples was most successful using PathoScope. In the CF sputa, alpha diversity measures varied based on the alignment method used, but similar trends were found between pre- and post-antibiotic samples. PathoScope outperformed Kraken and MetaPhlAn in our validation study of artificial bacterial community controls and also has advantages over Kraken and MetaPhlAn of being able to determine bacterial strains and the presence of fungal organisms. PathoScope can be confidently used when evaluating metagenomic data to determine CF airway microbiome diversity.
Collapse
Affiliation(s)
- Andrea Hahn
- Division of Infectious Diseases, Children's National Health System, Washington, DC, United States.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Matthew L Bendall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States.,Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Keylie M Gibson
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Hollis Chaney
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, United States
| | - Iman Sami
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, United States
| | - Geovanny F Perez
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, United States
| | - Anastassios C Koumbourlis
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, United States
| | - Timothy A McCaffrey
- Division of Genomic Medicine, The George Washington University, Washington, DC, United States.,Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Robert J Freishtat
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Division of Emergency Medicine, Children's National Health System, Washington, DC, United States
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| |
Collapse
|
46
|
Schäfer J, Griese M, Chandrasekaran R, Chotirmall SH, Hartl D. Pathogenesis, imaging and clinical characteristics of CF and non-CF bronchiectasis. BMC Pulm Med 2018; 18:79. [PMID: 29788954 PMCID: PMC5964733 DOI: 10.1186/s12890-018-0630-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
Bronchiectasis is a common feature of severe inherited and acquired pulmonary disease conditions. Among inherited diseases, cystic fibrosis (CF) is the major disorder associated with bronchiectasis, while acquired conditions frequently featuring bronchiectasis include post-infective bronchiectasis and chronic obstructive pulmonary disease (COPD). Mechanistically, bronchiectasis is driven by a complex interplay of inflammation and infection with neutrophilic inflammation playing a predominant role. The clinical characterization and management of bronchiectasis should involve a precise diagnostic workup, tailored therapeutic strategies and pulmonary imaging that has become an essential tool for the diagnosis and follow-up of bronchiectasis. Prospective future studies are required to optimize the diagnostic and therapeutic management of bronchiectasis, particularly in heterogeneous non-CF bronchiectasis populations.
Collapse
Affiliation(s)
- Jürgen Schäfer
- Department of Radiology, Division of Pediatric Radiology, University of Tübingen, Tübingen, Germany.
| | | | | | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dominik Hartl
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany.,Roche Pharma Research & Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
47
|
Muhlebach MS, Zorn BT, Esther CR, Hatch JE, Murray CP, Turkovic L, Ranganathan SC, Boucher RC, Stick SM, Wolfgang MC. Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children. PLoS Pathog 2018; 14:e1006798. [PMID: 29346420 PMCID: PMC5773228 DOI: 10.1371/journal.ppat.1006798] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
The cystic fibrosis (CF) lung microbiome has been studied in children and adults; however, little is known about its relationship to early disease progression. To better understand the relationship between the lung microbiome and early respiratory disease, we characterized the lower airways microbiome using bronchoalveolar lavage (BAL) samples obtained from clinically stable CF infants and preschoolers who underwent bronchoscopy and chest computed tomography (CT). Cross-sectional samples suggested a progression of the lower airways microbiome with age, beginning with relatively sterile airways in infancy. By age two, bacterial sequences typically associated with the oral cavity dominated lower airways samples in many CF subjects. The presence of an oral-like lower airways microbiome correlated with a significant increase in bacterial density and inflammation. These early changes occurred in many patients, despite the use of antibiotic prophylaxis in our cohort during the first two years of life. The majority of CF subjects older than four harbored a pathogen dominated airway microbiome, which was associated with a further increase in inflammation and the onset of structural lung disease, despite a negligible increase in bacterial density compared to younger patients with an oral-like airway microbiome. Our findings suggest that changes within the CF lower airways microbiome occur during the first years of life and that distinct microbial signatures are associated with the progression of early CF lung disease.
Collapse
Affiliation(s)
- Marianne S. Muhlebach
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bryan T. Zorn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles R. Esther
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph E. Hatch
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Conor P. Murray
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Australia
| | - Lidija Turkovic
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Sarath C. Ranganathan
- Department of Respiratory Medicine, Royal Children’s Hospital, Parkville, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen M. Stick
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Australia
- Department of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Matthew C. Wolfgang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
48
|
Pienkowska K, Wiehlmann L, Tümmler B. Airway microbial metagenomics. Microbes Infect 2017; 20:536-542. [PMID: 29287982 DOI: 10.1016/j.micinf.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 11/17/2022]
Abstract
High-throughput untargeted metagenome sequencing provides information about the composition of the microbial communities of viruses, bacteria, archaea and unicellular eukaryotes in the habitat of interest. This review outlines the sampling, processing, sequencing and bioinformatic analysis of secretions of the respiratory tract and summarizes our current knowledge of the upper and lower human airways metagenome in health and disease.
Collapse
Affiliation(s)
- Katarzyna Pienkowska
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Lutz Wiehlmann
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; Core Unit 'Genomics', Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
49
|
Kahl BC. Staphylococcus aureus and Pseudomonas aeruginosa Respiratory Tract Coinfection—What Can We Learn From Animal Models? J Infect Dis 2017; 217:854-856. [DOI: 10.1093/infdis/jix624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 11/15/2022] Open
Affiliation(s)
- Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Germany
| |
Collapse
|
50
|
Fungal Pathogens in CF Airways: Leave or Treat? Mycopathologia 2017; 183:119-137. [PMID: 28770417 DOI: 10.1007/s11046-017-0184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic airway infection plays an essential role in the progress of cystic fibrosis (CF) lung disease. In the past decades, mainly bacterial pathogens, such as Pseudomonas aeruginosa, have been the focus of researchers and clinicians. However, fungi are frequently detected in CF airways and there is an increasing body of evidence that fungal pathogens might play a role in CF lung disease. Several studies have shown an association of fungi, particularly Aspergillus fumigatus and Candida albicans, with the course of lung disease in CF patients. Mechanistically, in vitro and in vivo studies suggest that an impaired immune response to fungal pathogens in CF airways renders them more susceptible to fungi. However, it remains elusive whether fungi are actively involved in CF lung disease pathologies or whether they rather reflect a dysregulated airway colonization and act as microbial bystanders. A key issue for dissecting the role of fungi in CF lung disease is the distinction of dynamic fungal-host interaction entities, namely colonization, sensitization or infection. This review summarizes key findings on pathophysiological mechanisms and the clinical impact of fungi in CF lung disease.
Collapse
|