1
|
Zhang L, Fang Y, Shi M, Ren K, Guan X, Younas W, Cheng Y, Zhang W, Wang Y, Xia XQ. Gonadal expression profiles reveal the underlying mechanisms of temperature effects on sex determination in the large-scale loach (Paramisgurnus dabryanus). Anim Reprod Sci 2025; 272:107661. [PMID: 39644765 DOI: 10.1016/j.anireprosci.2024.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
The sex determination mechanism in large-scale loach (Paramisgurnus dabryanus) follows a ZZ/ZW system, with sexual differentiation regulated by both genotypic factors and temperature effects (GSD+TSD), where elevated temperatures result in a higher proportion of males. Currently, research on the sex determination mechanisms in large-scale loach is limited, and the specific gene expression profiles and the role of temperature in influencing sex remain largely unknown. This study investigated the impact of temperature on the sex ratio in cultured populations of the large-scale loach, and then identified a female-specific genetic marker by whole genome sequencing, facilitating the distinguishing of females, males, and pseudo-males within this population. Transcriptomic analysis was subsequently performed on these groups, and the data revealed a similar expression pattern between pseudo-males and true-males. The research combined differential expression analysis with WGCNA to construct a regulatory network of nine sex differentiation-related genes (SDG) (map3k4, trpv4, hsd17b12a, wt1, ar, dmrt1, bcar1, sox9a, cyp17a1), indicating that sex differentiation in large-scale loach is probably driven by the regulation of male-related genes. The transcriptomic analysis suggested that temperature significantly modified the expression of SDG in the ovaries, while in the testes, it predominantly affects metabolism-related pathways. We established a temperature-sensitive gene network in females, based on the correlation between gene expression and temperature, as well as the number of co-regulated genes in female data. We propose that, with increasing temperature, wt1 serves as a central regulator, leading to the down-regulation of foxl2a, cyp19a1a, and the cholesterol biosynthesis-related gene sqlea, ultimately resulting in the development of pseudo-males.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yutong Fang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Mijuan Shi
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Keyi Ren
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xin Guan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Waqar Younas
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingyin Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wanting Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qin Xia
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhang K, Huang X, Wang C, Xu X, Xu X, Dong X, Xiao Q, Bai J, Zhou Y, Liu Z, Deng X, Tang Y, Li S, Hu E, Peng W, Xiong L, Qin Q, Liu S. Unveiling potential sex-determining genes and sex-specific markers in autotetraploid Carassius auratus. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2444-2458. [PMID: 39136860 DOI: 10.1007/s11427-023-2694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/28/2024] [Indexed: 10/22/2024]
Abstract
Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var. (RCC, ♀) × Megalobrama amblycephala (BSB, ♂), containing four sets of RCC chromosomes. However, the molecular mechanism underlying the determination of sex in this species remains largely unknown. Currently, there lacks a full understanding of the molecular mechanisms governing sex determination and specific molecular markers to differentiate sex in this species. In this study, 25,801,677 SNPs (Single-nucleotide polymorphism) and 6,210,306 Indels (insertion-deletion) were obtained from whole-genome resequencing of 100 individuals (including 50 female and 50 male). Further identification confirmed the candidate chromosomes as Chr46B, with the sex-determining region located at Chr46B: 22,500,000-22,800,000 bp. Based on the male-specific insertion (26 bp) within the candidate sex-determining region, a pair of sex-specific molecular markers has been identified. In addition, based on the screening of candidate sex-determining region genes and RT-qPCR validation analysis, ADAM10, AQP9 and tc1a were identified as candidate sex-determining genes. These findings provide a robust foundation for investigating sex determination mechanisms in fish, the evolution of sex chromosomes, and the development of monosex populations.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xidan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaowei Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaoping Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingwen Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jinhai Bai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yue Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhengkun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xinyi Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yan Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Siyang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Enkui Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wanjing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ling Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
- Hunan Yuelu Mountain Science and Technology Co., Ltd., for Aquatic Breeding, Changsha, 410081, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
3
|
Fu Y, Luo L, Wang S, Yu Y, Wang Y, Gao Z. Identification of sex-specific markers using genome re-sequencing in the blunt snout bream (Megalobrama amblycephala). BMC Genomics 2024; 25:963. [PMID: 39407110 PMCID: PMC11481317 DOI: 10.1186/s12864-024-10884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The blunt snout bream (Megalobrama amblycephala) is an important economic freshwater fish in China with tender flesh and high nutritional value. With the cultivation of superior new varieties and the expansion of breeding scale, it becomes imperative to employ sex-control technology to cultivate monosexual populations of M. amblycephala, thereby preventing the deterioration of desirable traits. The development of specific markers capable of accurately identifying the sex of M. amblycephala would facilitate the determination of the genetic sex of the breeding population before gonad maturation, thereby expediting the processes of sex-controlled breeding of M. amblycephala. RESULTS A whole-genome re-sequencing was performed for 116 females and 141 males M. amblycephala collected from nine populations. Seven candidate male-specific sequences were identified through comparative analysis of male and female genomes, which were further compared with the sequencing data of 257 individuals, and finally three male-specific sequences were generated. These three sequences were further validated by PCR amplification in 32 males and 32 females to confirm their potential as male-specific molecular markers for M. amblycephala. One of these markers showed potential applicability in M. pellegrini as well, enabling males to be identified using this specific molecular marker. CONCLUSIONS The study provides a high-efficiency and cost-effective approach for the genetic sex identification in two species of Megalobrama. The developed markers in this study have great potential in facilitating sex-controlled breeding of M. amblycephala and M. pellegrini, while also contributing valuable insights into the underlying mechanisms of fish sex determination.
Collapse
Affiliation(s)
- Yuye Fu
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lifei Luo
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shilong Wang
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Yu
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Wang
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zexia Gao
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
4
|
Wang R, Wang B, Chen A. Application of machine learning in the study of development, behavior, nerve, and genotoxicity of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124473. [PMID: 38945191 DOI: 10.1016/j.envpol.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Machine learning (ML) as a novel model-based approach has been used in studying aquatic toxicology in the environmental field. Zebrafish, as an ideal model organism in aquatic toxicology research, has been widely used to study the toxic effects of various pollutants. However, toxicity testing on organisms may cause significant harm, consume considerable time and resources, and raise ethical concerns. Therefore, ML is used in related research to reduce animal experiments and assist researchers in conducting toxicological research. Although ML techniques have matured in various fields, research on ML-based aquatic toxicology is still in its infancy due to the lack of comprehensive large-scale toxicity databases for environmental pollutants and model organisms. Therefore, to better understand the recent research progress of ML in studying the development, behavior, nerve, and genotoxicity of zebrafish, this review mainly focuses on using ML modeling to assess and predict the toxic effects of zebrafish exposure to different toxic chemicals. Meanwhile, the opportunities and challenges faced by ML in the field of toxicology were analyzed. Finally, suggestions and perspectives were proposed for the toxicity studies of ML on zebrafish in future applications.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, (Guizhou University), Guiyang, Guizhou, 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, (Guizhou University), Guiyang, Guizhou, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
5
|
Jiang G, Xue Y, Arifuzzaman A, Huang X. Identification and characterization of the Dmrt1B gene in the oriental river prawn, Macrobrachium nipponense. Dev Genes Evol 2024; 234:21-32. [PMID: 38616194 DOI: 10.1007/s00427-024-00715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Dmrt (doublesex and mab-3 related transcription factor) is a protein family of transcription factors implicated in sexual regulation. Dmrt proteins are widely conserved and known for their involvement in sex determination and differentiation across species, from invertebrates to humans. In this study, we identified a novel gene with a DM (doublesex/Mab-3)-domain gene in the river prawn, Macrobrachium nipponense, which we named MniDmrt1B due to its similarities and close phylogenetic relationship with Dmrt1B in Macrobrachium rosenbergii. Through amino acid alignments and structural predictions, we observed conservation and identified putative active sites within the DM domain. qRT-PCR analysis revealed that MniDmrt1B exhibited high expression levels in the testis, with consistently higher expression in males compared to females during development. Additionally, similar to other sex-regulated genes, the MniDmrt1B gene exhibited high expression levels during the sex differentiation-sensitive periods in M. nipponense. These results strongly indicated that MniDmrt1B probably plays an important role in testis development and sex differentiation in M. nipponense.
Collapse
Affiliation(s)
- Gang Jiang
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Yucai Xue
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Arifuzzaman Arifuzzaman
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuxiong Huang
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Huang H, Liu Y, Wang Q, Dong C, Dong L, Zhang J, Yang Y, Hao X, Li W, Rosa IF, Doretto LB, Cao X, Shao C. Molecular and Physiological Effects of 17α-methyltestosterone on Sex Differentiation of Black Rockfish, Sebastes schlegelii. Genes (Basel) 2024; 15:605. [PMID: 38790234 PMCID: PMC11120931 DOI: 10.3390/genes15050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
It is widely known that all-female fish production holds economic value for aquaculture. Sebastes schlegelii, a preeminent economic species, exhibits a sex dimorphism, with females surpassing males in growth. In this regard, achieving all-female black rockfish production could significantly enhance breeding profitability. In this study, we utilized the widely used male sex-regulating hormone, 17α-methyltestosterone (MT) at three different concentrations (20, 40, and 60 ppm), to produce pseudomales of S. schlegelii for subsequent all-female offspring breeding. Long-term MT administration severely inhibits the growth of S. schlegelii, while short term had no significant impact. Histological analysis confirmed sex reversal at all MT concentrations; however, both medium and higher MT concentrations impaired testis development. MT also influenced sex steroid hormone levels in pseudomales, suppressing E2 while increasing T and 11-KT levels. In addition, a transcriptome analysis revealed that MT down-regulated ovarian-related genes (cyp19a1a and foxl2) while up-regulating male-related genes (amh) in pseudomales. Furthermore, MT modulated the TGF-β signaling and steroid hormone biosynthesis pathways, indicating its crucial role in S. schlegelii sex differentiation. Therefore, the current study provides a method for achieving sexual reversal using MT in S. schlegelii and offers an initial insight into the underlying mechanism of sexual reversal in this species.
Collapse
Affiliation(s)
- Haijun Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Caichao Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Le Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Jingjing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Yu Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Xiancai Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Weijing Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Ivana F. Rosa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil;
| | - Lucas B. Doretto
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Xuebin Cao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
7
|
Xiao Y, Xiao Z, Liu L, Ma Y, Zhao H, Wu Y, Huang J, Xu P, Liu J, Li J. Innovative approach for high-throughput exploiting sex-specific markers in Japanese parrotfish Oplegnathus fasciatus. Gigascience 2024; 13:giae045. [PMID: 39028586 PMCID: PMC11258905 DOI: 10.1093/gigascience/giae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/21/2024] [Accepted: 06/22/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The use of sex-specific molecular markers has become a prominent method in enhancing fish production and economic value, as well as providing a foundation for understanding the complex molecular mechanisms involved in fish sex determination. Over the past decades, research on male and female sex identification has predominantly employed molecular biology methodologies such as restriction fragment length polymorphism, random amplification of polymorphic DNA, simple sequence repeat, and amplified fragment length polymorphism. The emergence of high-throughput sequencing technologies, particularly Illumina, has led to the utilization of single nucleotide polymorphism and insertion/deletion variants as significant molecular markers for investigating sex identification in fish. The advancement of sex-controlled breeding encounters numerous challenges, including the inefficiency of current methods, intricate experimental protocols, high costs of development, elevated rates of false positives, marker instability, and cumbersome field-testing procedures. Nevertheless, the emergence and swift progress of PacBio high-throughput sequencing technology, characterized by its long-read output capabilities, offers novel opportunities to overcome these obstacles. FINDINGS Utilizing male/female assembled genome information in conjunction with short-read sequencing data survey and long-read PacBio sequencing data, a catalog of large-segment (>100 bp) insertion/deletion genetic variants was generated through a genome-wide variant site-scanning approach with bidirectional comparisons. The sequence tagging sites were ranked based on the long-read depth of the insertion/deletion site, with markers exhibiting lower long-read depth being considered more effective for large-segment deletion variants. Subsequently, a catalog of bulk primers and simulated PCR for the male/female variant loci was developed, incorporating primer design for the target region and electronic PCR (e-PCR) technology. The Japanese parrotfish (Oplegnathus fasciatus), belonging to the Oplegnathidae family within the Centrarchiformes order, holds significant economic value as a rocky reef fish indigenous to East Asia. The criteria for rapid identification of male and female differences in Japanese parrotfish were established through agarose gel electrophoresis, which revealed 2 amplified bands for males and 1 amplified band for females. A high-throughput identification catalog of sex-specific markers was then constructed using this method, resulting in the identification of 3,639 (2,786 INS/853 DEL, ♀ as reference) and 3,672 (2,876 INS/833 DEL, ♂ as reference) markers in conjunction with 1,021 and 894 high-quality genetic sex identification markers, respectively. Sixteen differential loci were randomly chosen from the catalog for validation, with 11 of them meeting the criteria for male/female distinctions. The implementation of cost-effective and efficient technological processes would facilitate the rapid advancement of genetic breeding through expediting the high-throughput development of sex genetic markers for various species. CONCLUSIONS Our study utilized assembled genome information from male and female individuals obtained from PacBio, in addition to data from short-read sequencing data survey and long-read PacBio sequencing data. We extensively employed genome-wide variant site scanning and identification, high-throughput primer design of target regions, and e-PCR batch amplification, along with statistical analysis and ranking of the long-read depth of the variant sites. Through this integrated approach, we successfully compiled a catalog of large insertion/deletion sites (>100 bp) in both male and female Japanese parrotfish.
Collapse
Affiliation(s)
- Yongshuang Xiao
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhizhong Xiao
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Weihai Hao Huigan Marine Biotechnology Co., Weihai, 26449, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd, East Lake High-Tech Zone, Wuhan, 430073, China
| | - Yuting Ma
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Haixia Zhao
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yanduo Wu
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinwei Huang
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pingrui Xu
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jing Liu
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jun Li
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
8
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
9
|
Balogh RE, Csorbai B, Guti C, Keszte S, Urbányi B, Orbán L, Kovács B. Validation of a male-specific DNA marker confirms XX/XY-type sex determination in several Hungarian strains of African catfish (Clarias gariepinus). Theriogenology 2023; 205:106-113. [PMID: 37116410 DOI: 10.1016/j.theriogenology.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
African catfish (Clarias gariepinus) is a promising food fish species with significant potential and growing mass of production in freshwater aquaculture. Male African catfish possess improved production characteristics over females, therefore the use of monosex populations could be advantageous for aquaculture production. However, our knowledge about the sex determination mechanism of this species is still limited and controversial. A previously isolated male-specific DNA marker (CgaY1) was validated using offspring groups from targeted crosses (n = 630) and it was found to predict the sex of 608 individuals correctly (96.43% accuracy). Using the proportion of recombinants, we estimated the average genetic distance between the potential sex determination locus and the sex-specific marker to be 3.57 cM. As an earlier study suggested that both XX/XY and ZZ/ZW systems coexist in this species, we tested the applicability of their putative 'moderately sex-linked loci' and found that no sex-specific amplification could be detected for any of them. In addition, temperature-induced masculinization suggested by others was also tested, but no such effect was detected in our stocks when the published parameters were used for heat treatment. Altogether, our results support an exclusive XX/XY sex determination system in our African catfish stock and indicate a good potential for the future use of this male-specific DNA marker in research and commercial production.
Collapse
Affiliation(s)
- Réka Enikő Balogh
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Csorbai
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Csaba Guti
- The Hungarian National Fishing Association, Budapest, Hungary
| | - Szilvia Keszte
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Béla Urbányi
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - László Orbán
- Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Keszthely, Hungary.
| | - Balázs Kovács
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| |
Collapse
|
10
|
Long X, Charlesworth D, Qi J, Wu R, Chen M, Wang Z, Xu L, Fu H, Zhang X, Chen X, He L, Zheng L, Huang Z, Zhou Q. Independent Evolution of Sex Chromosomes and Male Pregnancy-Related Genes in Two Seahorse Species. Mol Biol Evol 2022; 40:6964685. [PMID: 36578180 PMCID: PMC9851323 DOI: 10.1093/molbev/msac279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Unlike birds and mammals, many teleosts have homomorphic sex chromosomes, and changes in the chromosome carrying the sex-determining locus, termed "turnovers", are common. Recent turnovers allow studies of several interesting questions. One question is whether the new sex-determining regions evolve to become completely non-recombining, and if so, how and why. Another is whether (as predicted) evolutionary changes that benefit one sex accumulate in the newly sex-linked region. To study these questions, we analyzed the genome sequences of two seahorse species of the Syngnathidae, a fish group in which many species evolved a unique structure, the male brood pouch. We find that both seahorse species have XY sex chromosome systems, but their sex chromosome pairs are not homologs, implying that at least one turnover event has occurred. The Y-linked regions occupy 63.9% and 95.1% of the entire sex chromosome of the two species and do not exhibit extensive sequence divergence with their X-linked homologs. We find evidence for occasional recombination between the extant sex chromosomes that may account for their homomorphism. We argue that these Y-linked regions did not evolve by recombination suppression after the turnover, but by the ancestral nature of the low crossover rates in these chromosome regions. With such an ancestral crossover landscape, a turnover can instantly create an extensive Y-linked region. Finally, we test for adaptive evolution of male pouch-related genes after they became Y-linked in the seahorse.
Collapse
Affiliation(s)
- Xin Long
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China,Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou 311100, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| | - Jianfei Qi
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ruiqiong Wu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinxin Chen
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Libin He
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | | | | | - Qi Zhou
- Corresponding authors: E-mails: ; ;
| |
Collapse
|
11
|
Hosseini S, Trakooljul N, Hirschfeld M, Wimmers K, Simianer H, Tetens J, Sharifi AR, Brenig B. Epigenetic Regulation of Phenotypic Sexual Plasticity Inducing Skewed Sex Ratio in Zebrafish. Front Cell Dev Biol 2022; 10:880779. [PMID: 35912111 PMCID: PMC9334531 DOI: 10.3389/fcell.2022.880779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The plasticity of sexual phenotype in response to environmental conditions results in biased sex ratios, and their variation has an effect on population dynamics. Epigenetic modifications can modulate sex ratio variation in species, where sex is determined by genetic and environmental factors. However, the role of epigenetic mechanisms underlying skewed sex ratios is far from being clear and is still an object of debate in evolutionary developmental biology. In this study, we used zebrafish as a model animal to investigate the effect of DNA methylation on sex ratio variation in sex-biased families in response to environmental temperature. Two sex-biased families with a significant difference in sex ratio were selected for genome-wide DNA methylation analysis using reduced representation bisulfite sequencing (RRBS). The results showed significant genome-wide methylation differences between male-biased and female-biased families, with a greater number of methylated CpG sites in testes than ovaries. Likewise, pronounced differences between testes and ovaries were identified within both families, where the male-biased family exhibited a higher number of methylated sites than the female-biased family. The effect of temperature showed more methylated positions in the high incubation temperature than the control temperature. We found differential methylation of many reproduction-related genes (e.g., sox9a, nr5a2, lhx8a, gata4) and genes involved in epigenetic mechanisms (e.g., dnmt3bb.1, dimt1l, hdac11, h1m) in both families. We conclude that epigenetic modifications can influence the sex ratio variation in zebrafish families and may generate skewed sex ratios, which could have a negative consequence for population fitness in species with genotype-environment interaction sex-determining system under rapid environmental changes.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Functional Breeding Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- *Correspondence: Shahrbanou Hosseini, ; Nares Trakooljul,
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Unit, Dummerstorf, Germany
- *Correspondence: Shahrbanou Hosseini, ; Nares Trakooljul,
| | - Marc Hirschfeld
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Unit, Dummerstorf, Germany
| | - Henner Simianer
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
| | - Jens Tetens
- Functional Breeding Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
| | - Bertram Brenig
- Molecular Biology of Livestock and Molecular Diagnostics Group, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| |
Collapse
|
12
|
Yu Y, Chen M, Lu ZY, Liu Y, Li B, Gao ZX, Shen ZG. High-temperature stress will put the thermo-sensitive teleost yellow catfish (Tachysurus fulvidraco) in danger through reducing reproductivity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113638. [PMID: 35597142 DOI: 10.1016/j.ecoenv.2022.113638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Recently, concerns for species that sex differentiation is influenced by temperature in the context of global warming have increased because disrupted operational sex ratios could threaten population maintenance. In contrast, little attention has been given to the reproductive ability of populations that experienced elevated temperatures. In this study, we demonstrated that high temperature (HT) would decrease population size via three different aspects of reproductive ability for the first time. We show that, in a thermo-sensitive teleost yellow catfish, a short period of HT (+3 °C) exposure during the critical period of sex differentiation leads to a different percentage of masculinization of XX genotypic females (1-23%) in wet-lab and natural water bodies. Combining the results of gonadal appearance, histology, sperm parameters, and fertilization rate, we found that XX pseudo-males induced by HT display significantly discounted fertility and reproductive performance compared to XY normal males. We demonstrate that the survival of the XY genotype is lower than XX genotype under environmental stress, including HT, hypoxia, and parasite infection, and the differential survival seems unrelated to male-biased sexual size dimorphism. The mathematical model predicts that the phenotypic female percent will be stabilized at 50% and the population will be sustainably maintained when masculinizing force is less than 0.5, while HT will put the population in danger when the masculinizing force exceeds 0.5. However, when we combine the real-world data of reproductive ability and mathematic model, our results suggest the population size decreases and the long-term survival of the studied species are threatened under the projected pace of increasing temperature. These findings will be useful for understanding the long-term effects of increasing temperature on sex ratio, reproduction and population maintenance in teleost.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zi-Yi Lu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Ya Liu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Bo Li
- Institute of Fisheries, Wuhan Academy of Agricultural Sciences, Wuhan, PR China
| | - Ze-Xia Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
13
|
Du J, Zhou J, Li S, Shao J, Jiang P, Lei C, Song H, Bai J, Han L. Timing of early gonadal differentiation and effects of estradiol-17β treatments on the sex differentiation in Largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:805-815. [PMID: 35416634 DOI: 10.1007/s10695-022-01074-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
In this study, an efficient estradiol-17β (E2)-induced feminization method was established based on the timing of early gonadal differentiation in Largemouth bass (Micropterus salmoides). Histological section results showed that from 20 days post-hatch (dph) to 30 dph, the germ cells gradually differentiated into oogonium and spermatic deferent, respectively. Moreover, female-biased genes Foxl2 and Cyp19a1a were up-regulated to the first peak at 20 dph, while the male-biased genes Dmrt1 were up-regulated to the first peak at 30 dph. These results indicated that the timing of early gonadal differentiation in Largemouth bass was between 20 and 30 dph. Therefore, 15 dph Largemouth bass with a body length of 15.10 ± 0.09 mm were chosen, and four E2-treated diets were set as 0 (E0, control), 50 mg/kg E2 (E50), 100 mg/kg E2 (E100), and 200 mg/kg E2 (E200). After feeding with E2-treated diets for 60 days, female ratios were 55%, 100%, 100%, and 100% in E0, E50, E100, and E200 groups, respectively. No intersex fish were observed in all the groups. However, 30% of females in the E200 group possessed thinner ovaries, with smaller ovary cavity structures and a decreased number of primary oocyte cells than those in other groups. Besides, the Largemouth bass in the E0 group grew more than those in E50, E100, and E200 groups during the E2 treatments period (P < 0.05). In conclusion, our study suggested that 50-100 mg/kg E2-treated diets could effectively induce the feminization of 15 dph Largemouth bass within 60 days duration time, which provided valuable information for the breeding of the all-male Largemouth bass population.
Collapse
Affiliation(s)
- Jinxing Du
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Jiahui Zhou
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Shengjie Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China.
| | - Jiaqi Shao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Peng Jiang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Caixia Lei
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Hongmei Song
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Junjie Bai
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China
| | - Linqiang Han
- Guangdong Liangshi Aquatic Seed Industry Co, Ltd, Foshan, 528100, China
| |
Collapse
|
14
|
Wang C, Chen X, Dai Y, Zhang Y, Sun Y, Cui X. Comparative transcriptome analysis of heat-induced domesticated zebrafish during gonadal differentiation. BMC Genom Data 2022; 23:39. [PMID: 35641933 PMCID: PMC9158171 DOI: 10.1186/s12863-022-01058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The influence of environmental factors, especially temperature, on sex ratio is of great significance to elucidate the mechanism of sex determination. However, the molecular mechanisms by which temperature affects sex determination remains unclear, although a few candidate genes have been found to play a role in the process. In this study, we conducted transcriptome analysis of the effects induced by high temperature on zebrafish during gonad differentiation period. RESULTS Totals of 1171, 1022 and 2921 differentially expressed genes (DEGs) between high temperature and normal temperature were identified at 35, 45 and 60 days post-fertilization (dpf) respectively, revealing that heat shock proteins (HSPs) and DNA methyltransferases (DNMTs) were involved in the heat-exposed sex reversal. The Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway that were enriched in individuals after heat treatment included Fanconi anemia (FA) pathway, cell cycle, oocyte meiosis and homologous recombination. CONCLUSIONS Our study provides the results of comparative transcriptome analyses between high temperature and normal temperature, and reveals that the molecular mechanism of heat-induced masculinization in zebrafish is strongly related to the expression of HSPs and DNMTs and FA pathway during gonad differentiation.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xuhuai Chen
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yu Dai
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yifei Zhang
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yuandong Sun
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xiaojuan Cui
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China. .,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| |
Collapse
|
15
|
Xu S, Zhang S, Zhang W, Liu H, Wang M, Zhong L, Bian W, Chen X. Genome-Wide Identification, Phylogeny, and Expression Profile of the Dmrt (Doublesex and Mab-3 Related Transcription Factor) Gene Family in Channel Catfish ( Ictalurus punctatus). Front Genet 2022; 13:891204. [PMID: 35571040 PMCID: PMC9095985 DOI: 10.3389/fgene.2022.891204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The Dmrt (Doublesex and Mab-3 related transcription factor) gene family is a class of crucial transcription factors characterized by a conserved DM domain related to sex determination and differentiation, which has been systematically described in various teleost fish, but less in channel catfish (Ictalurus punctatus), an important global aquaculture species in the US and China. In this study, seven Dmrt genes from channel catfish genome were identified and analyzed using bioinformatics methods. Seven IpDmrt genes were distributed unevenly across five chromosomes. Synteny analysis revealed that Dmrt1, Dmrt2a, Dmrt2b, Dmrt3, Dmrt4, and Dmrt5 were relatively conserved in teleost fish. Tissue distribution analysis showed that IpDmrt1, IpDmrt2b, IpDmrt5, and IpDmrt6 exhibited sexually dimorphic expression patterns and, among them, IpDmrt1 and IpDmrt6 had high expression levels in the testes, while IpDmrt2b and IpDmrt5 had more significant expression levels in the ovaries than in other tissues. After 17β-estradiol treatment, IpDmrt2b and IpDmrt5 were significantly up regulated, while the expression of IpDmrt1 and IpDmrt6 was significantly repressed in XY channel catfish ovaries compared with XX channel catfish ovaries. The present study provides a comprehensive insight into the Dmrt gene family of channel catfish. The results suggest that IpDmrt1 and IpDmrt6 may play an important role in testis differentiation/development, while IpDmrt2b and IpDmrt5 are critical in ovary development in this species.
Collapse
Affiliation(s)
- Siqi Xu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Shiyong Zhang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Wenping Zhang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Hongyan Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Minghua Wang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Liqiang Zhong
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Wenji Bian
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Xiaohui Chen
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| |
Collapse
|
16
|
Miller DH, Villeneuve DL, Santana-Rodriguez KJ, Ankley GT. A Multidimensional Matrix Model for Predicting the Effects of Male-Biased Sex Ratios on Fish Populations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1066-1077. [PMID: 35020961 PMCID: PMC9586198 DOI: 10.1002/etc.5287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Laboratory experiments have established that exposure to certain endocrine-active substances prior to and/or during the period of sexual differentiation can lead to skewed sex ratios in fish. However, the potential long-term population impact of biased sex ratio depends on multiple factors including the life history of the species and whether the ratio is male or female-biased. In the present study, we describe a novel multidimensional, density-dependent matrix model that analyzes age class-structure of both males and females over time, allowing for the quantitative evaluation of the effects of biased sex ratio on population status. This approach can be used in conjunction with field monitoring efforts and/or laboratory testing to link effects on sex ratio due to chemical and/or nonchemical stressors to adverse outcomes in whole organisms and populations. For demonstration purposes, we applied the model to evaluate population trajectories for fathead minnow (Pimephales promelas) exposed to prochloraz, an aromatase inhibitor, during sexual differentiation. The model also was used to explore the population impact in a more realistic exposure scenario in which both adult and early life stages of fish are exposed concurrently to prochloraz, which, in addition to altering sex ratio during development, can decrease vitellogenin and egg production in adult females. For each exposure scenario, the model was used to analyze total population size, numbers of females and of males, and sex specific recruitment of the F1 generation. The present study illustrates the utility of multidimensional matrix population models for ecological risk assessment in terms of integrating effects across a population of an organism even when chemical effects on individuals are manifested via different pathways depending on life stage. Environ Toxicol Chem 2022;41:1066-1077. Published 2022. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- David H. Miller
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Ann Arbor, Michigan
| | - Daniel L. Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota
| | - Kelvin J. Santana-Rodriguez
- Oak Ridge Institute for Science and Education Participant at the United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota
| | - Gerald T. Ankley
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota
| |
Collapse
|
17
|
Liu Y, Bai S, Wang Y, Li X, Qu J, Han M, Zhai J, Li W, Liu J, Zhang Q. Intensive masculinization caused by chronic heat stress in juvenile Cynoglossus semilaevis: Growth performance, gonadal histology and gene responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113250. [PMID: 35121259 DOI: 10.1016/j.ecoenv.2022.113250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The sea temperature has been observed to chronically increase during the past decades, leaving unpredictable influences to the marine biological resources. Thus, it is of vital significance to study the biological responses of ocean inhabited organisms with the artificially stimulated heat stress environment. Cynoglossus semilaevis provides us with an ideal model to study the influence of chronic heat stress on the sexual differentiation in marine teleosts for its genetic sex determination (GSD) + environmental effected (EE) sex determination system. In this study, the comparative experiment was conducted employing heated seawater (HT group) and ambient seawater (CT group) to cultivate juvenile C. semilaevis respectively. Significant differences were exhibited in growth performance and a delayed germ cell development effect was found in pseudomales formed under chronic heat stress. Using transcriptome analysis, the transcription profile of 55 days post fertilization (dpf) and 100 dpf juveniles' gonads were studied. A total of 47 libraries were constructed with an average mapping rate of 94.63% after assembling. GO and KEGG enrichment were proceeded using DEGs screened out between (1) pseudomale gonads at 55 dpf and 100 dpf in HT and CT group (2) pseudomale and female gonads at 55 dpf and 100 dpf in HT and CT group. Terms and pathways involved in steroid stimulation, reproduction ability, germ cell proliferation et al. were shed light on. The expression pattern of 29 DEGs including amh, hsp90b1, pgr et al. were also provided to supplement the results of functional enrichment. Weighted gene co-expression networks analysis (WGCNA) was constructed and hspb8-like, histone H2A.V were exhibited to play vital roles in the heat-induced masculinization. Our findings facilitate the understanding for transcriptional variations in intensive masculinization cause by chronic heat stress of C. semilaevis and provide referable study of the influences on the teleosts in elevated sea temperature.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Shujun Bai
- Laboratory of Fisheries Oceanography, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Xiaoqi Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jieming Zhai
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
18
|
Lockley EC, Eizaguirre C. Effects of global warming on species with temperature-dependent sex determination: Bridging the gap between empirical research and management. Evol Appl 2021; 14:2361-2377. [PMID: 34745331 PMCID: PMC8549623 DOI: 10.1111/eva.13226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
Global warming could threaten over 400 species with temperature-dependent sex determination (TSD) worldwide, including all species of sea turtle. During embryonic development, rising temperatures might lead to the overproduction of one sex and, in turn, could bias populations' sex ratios to an extent that threatens their persistence. If climate change predictions are correct, and biased sex ratios reduce population viability, species with TSD may go rapidly extinct unless adaptive mechanisms, whether behavioural, physiological or molecular, exist to buffer these temperature-driven effects. Here, we summarize the discovery of the TSD phenomenon and its still elusive evolutionary significance. We then review the molecular pathways underpinning TSD in model species, along with the hormonal mechanisms that interact with temperatures to determine an individual's sex. To illustrate evolutionary mechanisms that can affect sex determination, we focus on sea turtle biology, discussing both the adaptive potential of this threatened TSD taxon, and the risks associated with conservation mismanagement.
Collapse
Affiliation(s)
- Emma C. Lockley
- School of Biological and Chemical SciencesQueen Mary University LondonLondonUK
| | | |
Collapse
|
19
|
Han J, Hu Y, Qi Y, Yuan C, Naeem S, Huang D. High temperature induced masculinization of zebrafish by down-regulation of sox9b and esr1 via DNA methylation. J Environ Sci (China) 2021; 107:160-170. [PMID: 34412779 DOI: 10.1016/j.jes.2021.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 05/15/2023]
Abstract
Elevated temperature could influence the sex differentiation by altering the expression of sex-related genes in fish. However, the underlying mechanisms by which the gene expression is altered remain poorly understood. Here, we aimed to explore the role of DNA methylation in sex differentiation of zebrafish (Danio rerio) in response to elevated temperature. The results showed that high temperature (33°C) exposure of fish from 20 to 30 days post fertilization (dpf), compared to normal temperature (28°C), resulted in male-biased sex ratio and decreased expression of female-related genes including cyp19a1a, sox9b and esr1. Meanwhile, the expressions of DNA methyltransferases dnmt3a1 and dnmt3a2, and the DNA methylation levels in sox9b and esr1 promoter were significantly increased by high temperature, strongly implying that DNA methylation is involved in high temperature-induced masculinization of zebrafish. Co-treatment with 5-aza-2'-deoxycytidine (a DNA methylation inhibitor) attenuated the high temperature-induced masculinizing effect, recovered the expression of esr1 and sox9b, suppressed the transcription of dnmt3a1 and dnmt3a2, and decreased the methylation of esr1 and sox9b promoter, further confirming that DNA methylation plays an important role in high temperature-induced masculinization of zebrafish. Furthermore, the methylation of sox9b promoter decreased the enrichment of transcription factor CREB (cAMP-responsive element binding proteins). Overall, these findings suggest that high temperature induce masculinization of zebrafish by down-regulation of female-related genes via DNA methylation, providing a new insight in understanding the epigenetic mechanism of thermal-mediated sex differentiation in fish.
Collapse
Affiliation(s)
- Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China..
| |
Collapse
|
20
|
Renn SC, Hurd PL. Epigenetic Regulation and Environmental Sex Determination in Cichlid Fishes. Sex Dev 2021; 15:93-107. [PMID: 34433170 PMCID: PMC8440468 DOI: 10.1159/000517197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Studying environmental sex determination (ESD) in cichlids provides a phylogenetic and comparative approach to understand the evolution of the underlying mechanisms, their impact on the evolution of the overlying systems, and the neuroethology of life history strategies. Natural selection normally favors parents who invest equally in the development of male and female offspring, but evolution may favor deviations from this 50:50 ratio when environmental conditions produce an advantage for doing so. Many species of cichlids demonstrate ESD in response to water chemistry (temperature, pH, and oxygen concentration). The relative strengths of and the exact interactions between these factors vary between congeners, demonstrating genetic variation in sensitivity. The presence of sizable proportions of the less common sex towards the environmental extremes in most species strongly suggests the presence of some genetic sex-determining loci acting in parallel with the ESD factors. Sex determination and differentiation in these species does not seem to result in the organization of a final and irreversible sexual fate, so much as a life-long ongoing battle between competing male- and female-determining genetic and hormonal networks governed by epigenetic factors. We discuss what is and is not known about the epigenetic mechanism behind the differentiation of both gonads and sex differences in the brain. Beyond the well-studied tilapia species, the 2 best-studied dwarf cichlid systems showing ESD are the South American genus Apistogramma and the West African genus Pelvicachromis. Both species demonstrate male morphs with alternative reproductive tactics. We discuss the further neuroethology opportunities such systems provide to the study of epigenetics of alternative life history strategies and other behavioral variation.
Collapse
Affiliation(s)
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, CA
- Department of Psychology, University of Alberta, Edmonton, AB, CA
| |
Collapse
|
21
|
Imarazene B, Beille S, Jouanno E, Branthonne A, Thermes V, Thomas M, Herpin A, Rétaux S, Guiguen Y. Primordial Germ Cell Migration and Histological and Molecular Characterization of Gonadal Differentiation in Pachón Cavefish Astyanax mexicanus. Sex Dev 2021; 14:80-98. [PMID: 33691331 DOI: 10.1159/000513378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022] Open
Abstract
The genetic regulatory network governing vertebrate gonadal differentiation appears less conserved than previously thought. Here, we investigated the gonadal development of Astyanax mexicanus Pachón cavefish by looking at primordial germ cells (PGCs) migration and proliferation, gonad histology, and gene expression patterns. We showed that PGCs are first detected at the 80% epiboly stage and then reach the gonadal primordium at 1 day post-fertilization (dpf). However, in contrast to the generally described absence of PGCs proliferation during their migration phase, PGCs number in cavefish doubles between early neurula and 8-9 somites stages. Combining both gonadal histology and vasa (germ cell marker) expression patterns, we observed that ovarian and testicular differentiation occurs around 65 dpf in females and 90 dpf in males, respectively, with an important inter-individual variability. The expression patterns of dmrt1, gsdf, and amh revealed a conserved predominant male expression during cavefish gonadal development, but none of the ovarian differentiation genes, i. e., foxl2a, cyp19a1a, and wnt4b displayed an early sexually dimorphic expression, and surprisingly all these genes exhibited predominant expression in adult testes. Altogether, our results lay the foundation for further research on sex determination and differentiation in A. mexicanus and contribute to the emerging picture that the vertebrate sex differentiation downstream regulatory network is less conserved than previously thought, at least in teleost fishes.
Collapse
Affiliation(s)
- Boudjema Imarazene
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France.,Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Séverine Beille
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Elodie Jouanno
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Adéle Branthonne
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Violette Thermes
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Manon Thomas
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Amaury Herpin
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Yann Guiguen
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France,
| |
Collapse
|
22
|
Huang G, Cao J, Gao F, Liu Z, Lu M, Chen G. R-spondin1 in loach (Misgurnus anguillicaudatus): Identification, characterization, and analysis of its expression patterns and DNA methylation in response to high-temperature stress. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110569. [PMID: 33515787 DOI: 10.1016/j.cbpb.2021.110569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
With a well-understood function in mammals, R-spondin1 (Rspo1) is an important regulator of ovarian development via the Wnt/β-catenin pathway. Rspo1 deficiency causes retardation of ovarian development in XX fish, and increases Rspo1 function induces femininity and sex reversal in XY fish. In this study, Rspo1 was successfully cloned from loach (Misgurnus anguillicaudatus), and its expression profile was analyzed. The full-length cDNA of Misgurnus anguillicaudatus Rspo1 (MaRspo1) comprised 1322 bp and included an open reading frame (ORF) of 795 bp, which encoded a predicted polypeptide measuring 264 amino acids in length. Phylogenetic and gene structure analyses showed a highly conserved sequence of MaRspo1 (identical to the Rspo1 genes of other species), consisting of an N-terminal signal peptide (SP), two furin-like cysteine-rich domains (FU1 and FU2), a thrombospondin type 1 repeat (TSP1) and a C-terminal region. Real-time PCR revealed the female-biased expression profile of MaRspo1, with the highest expression level among tested tissues detected in ovary. Investigation of MaRspo1 expression levels throughout the early development stage (10-60 days post hatching) under three temperature treatments (25 °C, 28 °C, and 31 °C) revealed significantly differential expression of MaRspo1 among the three temperature groups, with decreased MaRspo1 expression in the high-temperature (31 °C) group. The results of DNA methylation analysis indicated that exposure to high temperature during early development can increase the average promoter methylation level of MaRspo1 in both females and males. Taken together, the results of this study provide the basis for the further investigation of the molecular mechanism of Rspo1 in response to temperature.
Collapse
Affiliation(s)
- Guiyun Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China.
| |
Collapse
|
23
|
Driscoll RMH, Faber-Hammond JJ, O'Rourke CF, Hurd PL, Renn SCP. Epigenetic regulation of gonadal and brain aromatase expression in a cichlid fish with environmental sex determination. Gen Comp Endocrinol 2020; 296:113538. [PMID: 32585214 DOI: 10.1016/j.ygcen.2020.113538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022]
Abstract
A fit animal must develop testes or ovaries, with brain and physiology to match. In species with alternative male morphs this coordination of development across tissues operates within sexes as well as between. For Pelvicachromis pulcher, an African cichlid in which early pH exposure influences both sex and alternative male morph, we sequence both copies of aromatase (cyp19a1), a key gene for sex determination. We analyze gene expression and epigenetic state, comparing gonad and brain tissue from females, alternative male morphs, and fry. Relative to brain, we find elevated expression of the A-copy in the ovaries but not testes. Methylation analysis suggests strong epigenetic regulation, with one region specifying sex and another specifying tissue. We find elevated brain expression of the B-copy with no sex or male morph differences. B-copy methylation follows that of the A-copy rather than corresponding to B-copy expression. In 30-day old fry, we see elevated B-copy expression in the head, but we do not see the expected elevated A-copy expression in the trunk that would reflect ovarian development. Interestingly, the A-copy epialleles that distinguish ovaries from testes are among the most explanatory patterns for variation among fry, suggesting epigenetic marking of sex prior to differentiation and thus laying the groundwork for mechanistic studies of epigenetic regulation of sex and morph differentiation.
Collapse
Affiliation(s)
- Rose M H Driscoll
- Department of Biology, Reed College, Portland, OR, USA; Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada; Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland, OR, USA.
| |
Collapse
|
24
|
Hayman ES, Fairgrieve WT, Luckenbach JA. Molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with XX/XY sex determination. Gene 2020; 764:145093. [PMID: 32866588 DOI: 10.1016/j.gene.2020.145093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Phenotypic sex of an organism is determined by molecular changes in the gonads, so-called molecular sex differentiation, which should precede the rise of cellular or anatomical sex-distinguishing features. This study characterized molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with established XX/XY genotypic sex determination. Next generation sequencing was conducted on sablefish ovarian and testicular mRNAs to obtain sequences for transcripts associated with vertebrate sex determination and differentiation and early reproductive development. Gene-specific PCRs were developed to determine the distribution and ontogenetic gonadal expression of transcription, growth, steroidogenic and germline factors, as well as gonadotropin and steroid receptors. Molecular changes associated with sex differentiation were first apparent in both XY- and XX-genotype sablefish at ~ 60 mm in body length and prior to histological signs of sex differentiation. The earliest and most robust markers of testicular differentiation were gsdf, amh, dmrt1, cyp11b, star, sox9a, and fshr. Markedly elevated mRNA levels of several steroidogenesis-related genes and ar2 in differentiating testes suggested that androgens play a role in sablefish testicular differentiation. The earliest markers of ovarian differentiation were cyp19a1a, lhcgr, foxl2, nr0b1, and igf3. Other transcripts such as figla, zp3, and pou5f3 were expressed predominantly in XX-genotype fish and significantly increased with the first appearance and subsequent development of primary oocytes. This study provides valuable insight to the developmental sequence of events associated with gonadal sex differentiation in marine teleosts with XX/XY sex determination. It also implicates particular genes in processes of male and female development and establishes robust molecular markers for phenotypic sex in sablefish, useful for ongoing work related to sex control and reproductive sterilization.
Collapse
Affiliation(s)
- Edward S Hayman
- Ocean Associates Inc., Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - William T Fairgrieve
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
25
|
Fu Y, Xu Z, Wen B, Gao J, Chen Z. Gonad-Specific Transcriptomes Reveal Differential Expression of Gene and miRNA Between Male and Female of the Discus Fish ( Symphysodon aequifasciatus). Front Physiol 2020; 11:754. [PMID: 32848810 PMCID: PMC7431700 DOI: 10.3389/fphys.2020.00754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/11/2020] [Indexed: 01/15/2023] Open
Abstract
The discus fish (Symphysodon aequifasciatus) is an ornamental fish that is well-known around the world. In artificial reproduction, they must be matched by one male and one female, whereas phenotype investigation indicated that there are no significant differences in appearance between males and females, which causes great difficulties in the mating during artificial reproduction. So, it is of great importance to establish artificial sex identification methods for the discus fish. The molecular mechanism of the sexual dimorphism of the discus fish was previously unknown. In this study, we constructed six cDNA libraries from three adult testes and three adult ovaries and performed RNA sequencing for identifying sex-biased candidate genes and microRNAs (miRNAs). A total of 50,082 non-redundant genes (unigenes) were identified, of which 18,570 unigenes were significantly overexpressed in testes, and 11,182 unigenes were significantly overexpressed in ovaries. A total of 551 miRNAs were identified, of which 47 miRNAs were differentially expressed between testes and ovaries. Eight differentially expressed unigenes, seven differentially expressed miRNAs and one non-differential miRNA were validated by quantitative real-time polymerase chain reaction. Twenty-four of these differentially expressed miRNAs and their 15 predicted target genes constituted 41 miRNA–mRNA interaction pairs, and some of vital sex-related metabolic pathways were also identified. These results revealed these differentially expressed genes and miRNAs between ovary and testis might be involved in regulating gonadal development, sex determination, gametogenesis, and physiological function maintenance, and there are complex regulatory networks between genes and miRNAs. It can help us understand the molecular mechanism of the sexual dimorphism and obtain a high-efficiency sex identification method in the artificial reproduction process of the discus fish.
Collapse
Affiliation(s)
- Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Zhe Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Jianzhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Zaizhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
26
|
Fan Z, Zou Y, Liang D, Tan X, Jiao S, Wu Z, Li J, Zhang P, You F. Roles of forkhead box protein L2 (foxl2) during gonad differentiation and maintenance in a fish, the olive flounder (Paralichthys olivaceus). Reprod Fertil Dev 2020; 31:1742-1752. [PMID: 31537253 DOI: 10.1071/rd18233] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
As an important maricultured fish, the olive flounder Paralichthys olivaceus shows sex-dimorphic growth. Thus, the molecular mechanisms involved in sex control in P. olivaceus have attracted researchers' attention. Among the sex-related genes, forkhead box protein L2 (foxl2) exhibits significant sex-dimorphic expression patterns and plays an important role in fish gonad differentiation and development. The present study first investigated the expression levels and promoter methylation dynamics of foxl2 during flounder gonad differentiation under treatments of high temperature and exogenous 17β-oestradiol (E2). During high temperature treatment, the expression of flounder foxl2 may be repressed via maintenance of DNA methylation. Then, flounder with differentiated testis at Stages I-II were treated with exogenous 5ppm E2 or 5ppm E2+150ppm trilostane (TR) to investigate whether exogenous sex hormones could induce flounder sex reversal. The differentiated testis exhibited phenotypic variations of gonadal dysgenesis with upregulation of female-related genes (foxl2 and cytochrome P450 family 19 subfamily A (cyp19a)) and downregulation of male-related genes (cytochrome P450 family 11 subfamily B member 2 (cyp11b2), doublesex- and mab-3 related transcription factor 1 (dmrt1), anti-Mullerian hormone (amh) and SRY-box transcription factor 9 (sox9)). Furthermore, a cotransfection assay of the cells of the flounder Sertoli cell line indicated that Foxl2 was able alone or with nuclear receptor subfamily 5 group A member 2 (Nr5a2) jointly to upregulate expression of cyp19a. Moreover, Foxl2 and Nr5a2 repressed the expression of dmrt1. In summary, Foxl2 may play an important role in ovarian differentiation by maintaining cyp19a expression and antagonising the expression of dmrt1. However, upregulation of foxl2 is not sufficient to induce the sex reversal of differentiated testis.
Collapse
Affiliation(s)
- Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China; and University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing 100049, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Dongdong Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China; and University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing 100049, PR China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China; and Corresponding author.
| |
Collapse
|
27
|
í Kongsstovu S, Dahl HA, Gislason H, Homrum E, Jacobsen JA, Flicek P, Mikalsen S. Identification of male heterogametic sex-determining regions on the Atlantic herring Clupea harengus genome. JOURNAL OF FISH BIOLOGY 2020; 97:190-201. [PMID: 32293027 PMCID: PMC7115899 DOI: 10.1111/jfb.14349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The sex determination system of Atlantic herring Clupea harengus L., a commercially important fish, was investigated. Low coverage whole-genome sequencing of 48 females and 55 males and a genome-wide association study revealed two regions on chromosomes 8 and 21 associated with sex. The genotyping data of the single nucleotide polymorphisms associated with sex showed that 99.4% of the available female genotypes were homozygous, whereas 68.6% of the available male genotypes were heterozygous. This is close to the theoretical expectation of homo/heterozygous distribution at low sequencing coverage when the males are factually heterozygous. This suggested a male heterogametic sex determination system in C. harengus, consistent with other species within the Clupeiformes group. There were 76 protein coding genes on the sex regions but none of these genes were previously reported master sex regulation genes, or obviously related to sex determination. However, many of these genes are expressed in testis or ovary in other species, but the exact genes controlling sex determination in C. harengus could not be identified.
Collapse
Affiliation(s)
- Sunnvør í Kongsstovu
- Amplexa Genetics A/STórshavnFaroe Islands
- Faculty of Science and TechnologyUniversity of the Faroe IslandsTórshavnFaroe Islands
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | | | - Hannes Gislason
- Faculty of Science and TechnologyUniversity of the Faroe IslandsTórshavnFaroe Islands
| | - Eydna Homrum
- Faroe Marine Research InstituteTórshavnFaroe Islands
| | | | - Paul Flicek
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Svein‐Ole Mikalsen
- Faculty of Science and TechnologyUniversity of the Faroe IslandsTórshavnFaroe Islands
| |
Collapse
|
28
|
Molecular identification and expression analysis of foxl2 and sox9b in Oryzias celebensis. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Wang W, Liang S, Zou Y, Wu Z, Wang L, Liu Y, You F. Amh dominant expression in Sertoli cells during the testicular differentiation and development stages in the olive flounder Paralichthys olivaceus. Gene 2020; 755:144906. [PMID: 32554048 DOI: 10.1016/j.gene.2020.144906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
The olive flounder Paralichthys olivaceus, an important marine fish, shows gender differences in growth. The mechanism on its gonadal differentiation direction affected with exogenous factors still needs to be clarified. The anti-Müllerian hormone (amh) gene is involved in fish testicular differentiation and maintenance. The aim of this study was to investigate the expression of the flounder amh in tissues and the gonads. The quantitative expression analysis results showed that it was highly expressed in the testis, especially in the testis at stages I - IV (P < 0.05). Also, amh was detected in Sertoli cells surrounding spermatogonia and peripheral seminiferous lobule of the testis with in situ hybridization (ISH) and immunohistochemistry (IHC). During the differentiation period, the amh expression in the testis of the tamoxifen treatment group (100 ppm) was higher than that in the ovary of the 17β-estradiol (E2, 5 ppm) group, and the expression levels of amh during process of the male differentiation in the tamoxifen group were higher than those in the 17ɑ-methyltestosterone (MT, 5 ppm) group (P < 0.05). ISH results also exhibited that amh was expressed in the somatic cells that surrounded the germ cells of juvenile flounder similar to adult ones. Furthermore, the flounder gonads in the tamoxifen group maintained more germ cells and somatic cells than those in the MT group from 20 to 80 mm total length (TL). Especially, at 60 and 80 mm TL, the numbers of germ and somatic cells in the tamoxifen group were significantly higher than those in the MT group (P < 0.05). In summary, amh might initiate the process of testicular differentiation, and is involved in the early development and maintenance of testis.
Collapse
Affiliation(s)
- Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.
| |
Collapse
|
30
|
He Y, Wu X, Zhu Y, Yang D. Expression Profiles of dmrt1 in Schizothorax kozlovi, and Their Relation to CpG Methylation of Its Promoter and Temperature. Zoolog Sci 2020; 37:140-147. [PMID: 32282145 DOI: 10.2108/zs190054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022]
Abstract
To elucidate the role of dmrt1 in sex differentiation of a teleost fish Schizothorax kozlovi, the full-length sequences of its cDNA and promoter were cloned by rapid amplification of cDNA ends (RACE) and genome walking. The relative mRNA expression levels were determined by quantitative real-time PCR (RT-PCR). The 1095-bp dmrt1 cDNA was predicted to encode a protein of 264 amino acids. It was expressed only in the gonads, and the expression was 17-times higher in the testis than in the ovary. The 1215-bp promoter sequence of dmrt1 was cloned and analyzed to detect sex-related differences in its methylation levels. A significant negative relationship between the dmrt1 expression and CpG methylation of its promoter were found in the testes and ovaries of S. kozlovi. Significant differences in dmrt1 expression levels were also found between the larval and juvenile stages. No significant differences in expression were found during the entire larval stage, and in the individuals among three different temperature groups (10°C, 14°C, and 18°C). Considering that the sex of sampled larval fish cannot be distinguished, correlations between dmrt1 expression and effects of temperature on sex differentiation in S. kozlovi need further study.
Collapse
Affiliation(s)
- Yongfeng He
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China
| | - Xingbing Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China
| | - Yongjiu Zhu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China
| | - Deguo Yang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China,
| |
Collapse
|
31
|
Bizzarri M, Giuliani A, Minini M, Monti N, Cucina A. Constraints Shape Cell Function and Morphology by Canalizing the Developmental Path along the Waddington's Landscape. Bioessays 2020; 42:e1900108. [DOI: 10.1002/bies.201900108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/17/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mariano Bizzarri
- Systems Biology Group Laboratory, Department of Experimental MedicineSapienza University 00161 Rome Italy
| | - Alessandro Giuliani
- Environment and Health DepartmentIstituto Superiore di Sanità 00161 Rome Italy
| | - Mirko Minini
- Systems Biology Group Laboratory, Department of Experimental MedicineSapienza University 00161 Rome Italy
- Department of Surgery “Pietro Valdoni,”Sapienza University of Rome 00161 Rome Italy
| | - Noemi Monti
- Systems Biology Group Laboratory, Department of Experimental MedicineSapienza University 00161 Rome Italy
- Department of Surgery “Pietro Valdoni,”Sapienza University of Rome 00161 Rome Italy
| | - Alessandra Cucina
- Department of Surgery “Pietro Valdoni,”Sapienza University of Rome 00161 Rome Italy
- Azienda Policlinico Umberto I 00161 Rome Italy
| |
Collapse
|
32
|
Ellison A, Zamudio K, Lips K, Muletz‐Wolz C. Temperature‐mediated shifts in salamander transcriptomic responses to the amphibian‐killing fungus. Mol Ecol 2020; 29:325-343. [DOI: 10.1111/mec.15327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Amy Ellison
- School of Natural Sciences Bangor University Bangor UK
| | - Kelly Zamudio
- Department of Ecology & Evolutionary Biology Cornell University Ithaca NY USA
| | - Karen Lips
- Department of Biology University of Maryland College Park MD USA
| | - Carly Muletz‐Wolz
- Department of Biology University of Maryland College Park MD USA
- Center for Conservation Genomics Smithsonian Conservation Biology Institute National Zoological Park Washington DC USA
| |
Collapse
|
33
|
Dong C, Jiang P, Zhang J, Li X, Li S, Bai J, Fan J, Xu P. High-Density Linkage Map and Mapping for Sex and Growth-Related Traits of Largemouth Bass ( Micropterus salmoides). Front Genet 2019; 10:960. [PMID: 31649731 PMCID: PMC6796248 DOI: 10.3389/fgene.2019.00960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
The largemouth bass is an important species, and its culture has risen sharply with the surge in fish aquaculture in China. Due to the lack of selective breeding technology for the largemouth bass, the growth rate and disease resistance are low, its sexual maturation is slow, and other serious problems are contributing to a sharp decline in the safety and quality of largemouth bass products in recent decades. Therefore, comprehensive breeding programs to improve the economic performance and promote the modern industrial development of largemouth bass must be considered a priority. Here, a total of 152 adult largemouth bass, including two parents and 150 progenies, were selected to produce the genetic mapping family. Then, a high-density linkage map was constructed based on restriction site–associated DNA sequencing using 6,917 single-nucleotide polymorphisms (SNPs) located in 24 linkage groups (LGs). The total genetic length of the linkage map was 1,261.96 cM, and the length of each LG varied from 24.72 cM for LG02 to 117.53 cM for LG16, with an average length of 52.58 cM and an average SNP number of 286. Thirteen significant quantitative trait loci (QTLs) for sex determination were located on LG04, LG05, LG08, LG12, LG15, LG21, and LG23. An informative QTL cluster that included six QTLs was detected on LG12. However, one notable QTL, which accounted for 71.48% of the total phenotypic variation, was located in the region of 1.85 cM on LG05. In addition, 32 identified QTLs were related to growth, including body weight, body length, body height, and head length. The QTLs for these growth-related traits are located in 13 LG regions and have little effect on phenotypic variation. This high-density genetic linkage map will enable the fine-mapping of economic traits and support the future genome assembly of the largemouth bass. Additionally, our study will be useful for future selective culture of largemouth bass and could potentially be used in molecular-assisted breeding of largemouth bass for aquaculture.
Collapse
Affiliation(s)
- Chuanju Dong
- Pearl River Fisheries Research Institute, CAFS, Guangzhou, China.,College of Fisheries, Henan Normal University, Xinxiang, China.,Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, CAFS, Guangzhou, China
| | - Peng Jiang
- Pearl River Fisheries Research Institute, CAFS, Guangzhou, China
| | - Jiangfan Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Shengjie Li
- Pearl River Fisheries Research Institute, CAFS, Guangzhou, China.,College of Fisheries, Henan Normal University, Xinxiang, China
| | - Junjie Bai
- Pearl River Fisheries Research Institute, CAFS, Guangzhou, China
| | - Jiajia Fan
- Pearl River Fisheries Research Institute, CAFS, Guangzhou, China
| | - Peng Xu
- College of Fisheries, Henan Normal University, Xinxiang, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
34
|
Huynh TB, Fairgrieve WT, Hayman ES, Lee JSF, Luckenbach JA. Inhibition of ovarian development and instances of sex reversal in genotypic female sablefish (Anoplopoma fimbria) exposed to elevated water temperature. Gen Comp Endocrinol 2019; 279:88-98. [PMID: 30594588 DOI: 10.1016/j.ygcen.2018.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
This study determined high temperature effects on ovarian development in a marine groundfish species, sablefish (Anoplopoma fimbria), with potential application in sex reversal or sterilization for aquaculture. Monosex female (XX-genotype) sablefish larvae (∼30 mm) were randomly divided into three groups and exposed to control (15.6 °C ± 0.8 °C), moderate (20.4 °C ± 0.5 °C), or high (21.7 °C ± 0.5 °C) temperatures for 19 weeks. Treated fish were then tagged and transferred to ambient seawater (11.2 °C ± 2.3 °C) for one year to determine whether temperature effects on reproductive development were maintained post-treatment. Fish were periodically sampled for gonadal histology, gene expression and plasma 17β-estradiol (E2) analyses to assess gonadal development. Short-term (4-week) exposure to elevated temperatures had only minor effects, whereas longer exposure (12-19 weeks) markedly inhibited ovarian development. Fish from the moderate and high treatment groups had significantly less developed ovaries relative to controls, and mRNA levels for germ cell (vasa, zpc) and apoptosis-associated genes (p53, casp8) generally indicated gonadal degeneration. The high treatment group also had significantly reduced plasma E2 levels and elevated gonadal amh gene expression. After one year at ambient temperatures, however, ovaries of moderate and high treatment fish exhibited compensatory recovery and were indistinguishable from controls. Two genotypic females possessing immature testes (neomales) were observed in the high treatment group, indicating sex reversal had occurred (6% rate). These results demonstrate that extreme elevated temperatures may inhibit ovarian development or trigger sex reversal. High temperature treatment is likely not an effective sterilization method but may be preferable for sablefish neomale broodstock production.
Collapse
Affiliation(s)
- Thao B Huynh
- School of Marine and Environmental Affairs, University of Washington, 3710 Brooklyn Ave NE, Seattle, WA 98105, USA
| | - William T Fairgrieve
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Edward S Hayman
- Ocean Associates Inc., Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Jonathan S F Lee
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
35
|
Ribas L, Crespo B, Sánchez-Baizán N, Xavier D, Kuhl H, Rodríguez JM, Díaz N, Boltañá S, MacKenzie S, Morán F, Zanuy S, Gómez A, Piferrer F. Characterization of the European Sea Bass (Dicentrarchus labrax) Gonadal Transcriptome During Sexual Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:359-373. [PMID: 30919121 DOI: 10.1007/s10126-019-09886-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The European sea bass is one of the most important cultured fish in Europe and has a marked sexual growth dimorphism in favor of females. It is a gonochoristic species with polygenic sex determination, where a combination between still undifferentiated genetic factors and environmental temperature determines sex ratios. The molecular mechanisms responsible for gonadal sex differentiation are still unknown. Here, we sampled fish during the gonadal developmental period (110 to 350 days post fertilization, dpf), and performed a comprehensive transcriptomic study by using a species-specific microarray. This analysis uncovered sex-specific gonadal transcriptomic profiles at each stage of development, identifying larger number of differentially expressed genes in ovaries when compared to testis. The expression patterns of 54 reproduction-related genes were analyzed. We found that hsd17β10 is a reliable marker of early ovarian differentiation. Further, three genes, pdgfb, snx1, and nfy, not previously related to fish sex differentiation, were tightly associated with testis development in the sea bass. Regarding signaling pathways, lysine degradation, bladder cancer, and NOD-like receptor signaling were enriched for ovarian development while eight pathways including basal transcription factors and steroid biosynthesis were enriched for testis development. Analysis of the transcription factor abundance showed an earlier increase in females than in males. Our results show that, although many players in the sex differentiation pathways are conserved among species, there are peculiarities in gene expression worth exploring. The genes identified in this study illustrate the diversity of players involved in fish sex differentiation and can become potential biomarkers for the management of sex ratios in the European sea bass and perhaps other cultured species.
Collapse
Affiliation(s)
- L Ribas
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - B Crespo
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
- UCL GOS Institute of Child Health, University College London, London, UK
| | - N Sánchez-Baizán
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - D Xavier
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - H Kuhl
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Ecophysiology and Aquaculture, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - J M Rodríguez
- Spanish National Bioinformatics Institute, Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - N Díaz
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - S Boltañá
- Autonomous University of Barcelona, Barcelona, Spain
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - S MacKenzie
- Autonomous University of Barcelona, Barcelona, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - F Morán
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - S Zanuy
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
| | - A Gómez
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain.
| | - F Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
36
|
Honeycutt JL, Deck CA, Miller SC, Severance ME, Atkins EB, Luckenbach JA, Buckel JA, Daniels HV, Rice JA, Borski RJ, Godwin J. Warmer waters masculinize wild populations of a fish with temperature-dependent sex determination. Sci Rep 2019; 9:6527. [PMID: 31024053 PMCID: PMC6483984 DOI: 10.1038/s41598-019-42944-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 01/03/2023] Open
Abstract
Southern flounder (Paralichthys lethostigma) exhibit environmental sex determination (ESD), where environmental factors can influence phenotypic sex during early juvenile development but only in the presumed XX female genotype. Warm and cold temperatures masculinize fish with mid-range conditions producing at most 50% females. Due to sexually dimorphic growth, southern flounder fisheries are dependent upon larger females. Wild populations could be at risk of masculinization from ESD due to globally increasing water temperatures. We evaluated the effects of habitat and temperature on wild populations of juvenile southern flounder in North Carolina, USA. While northern habitats averaged temperatures near 23 °C and produced the greatest proportion of females, more southerly habitats exhibited warmer temperatures (>27 °C) and consistently produced male-biased sex ratios (up to 94% male). Rearing flounder in the laboratory under temperature regimes mimicking those of natural habitats recapitulated sex ratio differences observed across the wild populations, providing strong evidence that temperature is a key factor influencing sex ratios in nursery habitats. These studies provide evidence of habitat conditions interacting with ESD to affect a key demographic parameter in an economically important fishery. The temperature ranges that yield male-biased sex ratios are within the scope of predicted increases in ocean temperature under climate change.
Collapse
Affiliation(s)
- J L Honeycutt
- North Carolina State University, Department of Biological Sciences, Raleigh, NC, 27695, USA
| | - C A Deck
- North Carolina State University, Department of Biological Sciences, Raleigh, NC, 27695, USA
| | - S C Miller
- North Carolina State University, Department of Applied Ecology, Raleigh, NC, 27695, USA
| | - M E Severance
- North Carolina State University, Department of Biological Sciences, Raleigh, NC, 27695, USA
| | - E B Atkins
- North Carolina State University, Department of Biological Sciences, Raleigh, NC, 27695, USA
| | - J A Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA
| | - J A Buckel
- North Carolina State University, Department of Applied Ecology, Raleigh, NC, 27695, USA
| | - H V Daniels
- North Carolina State University, Department of Applied Ecology, Raleigh, NC, 27695, USA
| | - J A Rice
- North Carolina State University, Department of Applied Ecology, Raleigh, NC, 27695, USA
| | - R J Borski
- North Carolina State University, Department of Biological Sciences, Raleigh, NC, 27695, USA.
| | - J Godwin
- North Carolina State University, Department of Biological Sciences, Raleigh, NC, 27695, USA.
| |
Collapse
|
37
|
Yang Y, Liu Q, Xiao Y, Xu S, Wang X, Yang J, Song Z, You F, Li J. High temperature increases the gsdf expression in masculinization of genetically female Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2019; 274:17-25. [PMID: 30594590 DOI: 10.1016/j.ygcen.2018.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/25/2023]
Abstract
In teleosts, sex is plastic and is influenced by environmental factors. Elevated temperatures have masculinizing effects on the phenotypic sex of certain sensitive species. In this study, we reared genetic XX Japanese flounder at a high temperature (27.5 ± 0.5 °C) and obtained a population of sex-reversal XX males (male ratio, 95.24%). We comparatively analyzed the dynamic characteristics of germ cells and gsdf (gonadal soma-derived factor) expression during sexual differentiation for the experimental (27.5 ± 0.5 °C) and control (18 °C ± 0.5 °C) groups. The results revealed that the germ cell proliferation inhibited and gsdf expression up-regulated in the experimental group, and the gsdf mRNA and proteins expressed in somatic cells that had direct contact with germline stem cells (with Nanos 2 protein expression) including spermatogonia and oogonia by ISH (in situ hybridization) and IHC (immunohistochemistry). In addition, we also overexpressed the gsdf in XX flounders, and the germ cell number of XX flounders bearing gsdf gene significantly decreased and sometimes disappeared completely, which was consistent with the results from high-temperature induction. Therefore, based on all the results, we speculated that the high expression of gsdf might inhibit germ cell proliferation during sex differentiation, and eventually cause sex reversal in the high-temperature induced masculinization of XX Japanese flounder.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qinghua Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Yongshuang Xiao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Shihong Xu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xueying Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jingkun Yang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai 264200, China
| | - Feng You
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
38
|
Giroux M, Gan J, Schlenk D. The effects of bifenthrin and temperature on the endocrinology of juvenile Chinook salmon. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:852-861. [PMID: 30681194 DOI: 10.1002/etc.4372] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/20/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
The San Francisco Bay delta (USA) is experiencing seasonally warmer waters attributable to climate change and receives rainstorm runoff containing pyrethroid pesticides. Chinook salmon (Oncorhynchus tshawytscha) inhabit the affected waterways from hatch through smoltification, and thus juvenile fish may experience both pyrethroid and warmer water exposures. The effects of higher temperatures and pesticide exposure on presmolt Chinook are unknown. To improve understanding of the potential interaction between temperature and pesticide exposure on salmonid development, juvenile alevin and fry were reared in 11, 16.4, and 19 °C freshwater for 11 d and 2 wk, respectively, and exposed to nominal concentrations of 0, 0.15, and 1.5 µg/L bifenthrin for the final 96 h of rearing. Estradiol-17β (E2), testosterone, triiodothyronine, and thyroxine levels were measured in whole-body homogenates using hormone-specific enzyme-linked immunosorbent assays. Brain gonadotropin-releasing hormone receptor (GnRH2), dopamine receptor 2A, and growth hormone 1 (GH1) mRNA levels were measured using quantitative PCR. Results showed significantly decreased survival and condition factors observed with increasing temperature in alevin. Alevin thyroid hormones increased significantly with temperature, but fry thyroid hormones trended toward a decrease at lower temperatures with increasing bifenthrin exposure. There were significant reductions in fry testosterone and E2 at 11 °C with increasing bifenthrin treatments and significant changes in GnRH2 and GH1 gene expression in both alevin and fry, indicating potential disruption of hormonal and signaling pathways. Environ Toxicol Chem 2019;38:852-861. © 2019 SETAC.
Collapse
Affiliation(s)
- Marissa Giroux
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California Riverside, Riverside, California, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, California, USA
| |
Collapse
|
39
|
Sasaki K, Ugajin A, Harano KI. Caste-specific development of the dopaminergic system during metamorphosis in female honey bees. PLoS One 2018; 13:e0206624. [PMID: 30372493 PMCID: PMC6205643 DOI: 10.1371/journal.pone.0206624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/16/2018] [Indexed: 01/02/2023] Open
Abstract
Caste-specific differences in the dopaminergic systems of social insects assist in maintaining caste-specific behavior. To determine how caste differences in the honey bee occur during metamorphosis, a number of comparative analyses between castes were performed including comprehensive quantification of: levels of dopamine and its metabolite in the brain, the gene expression levels of enzymes involved in dopamine biosynthesis and conversion as well as expression levels of dopamine receptors and a dopamine transporter. Dopamine levels standardized to the protein contents of a whole brain at the day of eclosion in queens were 3.6-fold higher than those in workers. Dopamine levels increased until eclosion (7 days) in queens, whereas those in workers increased until 5–6 days before eclosion and then maintained until eclosion (10 days). These caste-specific dopamine dynamics in the brain were supported by the higher expression of genes (Amddc and Amth) encoding enzymes involved in dopamine synthesis in queens. The distribution of cells expressing Amddc in the brain revealed that soma clusters of dopaminergic cells were similar between castes at 7–8 days after pupation, suggesting the upregulation of Amddc expression in some cells in queens rather than addition of cell clusters. In contrast, genes encoding dopamine receptors were downregulated in queens or showed similar expression levels between castes. The expression of genes encoding dopamine transporters did not differ between castes. These results reveal the developmental process of caste-specific dopaminergic systems during metamorphosis in the honey bee, suggesting caste-specific behavior and division of reproduction in this highly eusocial species.
Collapse
Affiliation(s)
- Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
- * E-mail:
| | - Atsushi Ugajin
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Ken-ichi Harano
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
40
|
Shen ZG, Eissa N, Yao H, Xie ZG, Wang HP. Effects of Temperature on the Expression of Two Ovarian Differentiation-Related Genes foxl2 and cyp19a1a. Front Physiol 2018; 9:1208. [PMID: 30356866 PMCID: PMC6190877 DOI: 10.3389/fphys.2018.01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/13/2018] [Indexed: 01/24/2023] Open
Abstract
Exposure to stress induces a series of responses and influences a wide range of biological processes including sex differentiation in fish. The present work investigated the molecular and physiological response to thermal stress throughout the early development stage covering the whole period of sex differentiation of bluegill, Lepomis macrochirus. Larvae were treated using three temperatures, 17, 24, and 32°C from 6 to 90 days posthatching (dph) in 30-L round tanks. There is no significant difference of the sex ratio and survival among the three temperature groups in the geographic population used in this study. Two ovarian differentiation-related genes foxl2 and cyp19a1a were detected at 7 dph suggesting that these genes have already played a role prior to sex differentiation. The expression of foxl2 reached the peak and was thermosensitive just prior to the onset of ovarian differentiation at 27 dph. Histological examination displayed that the proliferation of germ cells and ovarian differentiation were delayed at the low-temperature treatment (17°C) at 97 dph compared with higher temperatures. In conclusion, the water temperature regulates the sex differentiation of bluegill through modulation of the expression of foxl2 and cyp19a1a. A comparative study of the expression profile of sex differentiation-related genes in species will shed light on the evolution of sex-determination mechanisms and the impact of stress on sex differentiation.
Collapse
Affiliation(s)
- Zhi-Gang Shen
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Nour Eissa
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States.,Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hong Yao
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States
| | - Zhi-Gang Xie
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States
| |
Collapse
|
41
|
Zhu YJ, Li XY, Zhang J, Li Z, Ding M, Zhang XJ, Zhou L, Gui JF. Distinct sperm nucleus behaviors between genotypic and temperature-dependent sex determination males are associated with replication and expression-related pathways in a gynogenetic fish. BMC Genomics 2018; 19:437. [PMID: 29866041 PMCID: PMC5987661 DOI: 10.1186/s12864-018-4823-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coexistence and transition of diverse sex determination strategies have been revealed in some ectothermic species, but the variation between males caused by different sex determination strategies and the underlying mechanism remain unclear. Here, we used the gynogenetic gibel carp (Carassius gibelio) with both genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) strategies to illustrate this issue. RESULTS We found out that males of GSD and TSD in gibel carp had similar morphology, testicular histology, sperm structure and sperm vitality. However, when maternal individuals were mated with males of GSD, sperm nucleus swelling and fusing with the female pronucleus were observed in the fertilized eggs. On the contrary, when maternal individuals were mated with males of TSD, sperm nucleus remained in the condensed status throughout the whole process. Subsequently, semen proteomics analysis unveiled that DNA replication and gene expression-related pathways were inhibited in the sperm from males of TSD compared to males of GSD, and most differentially expressed proteins associated with DNA replication, transcription and translation were down-regulated. Moreover, via BrdU incorporation and immunofluorescence detection, male nucleus replication was revealed to be present in the fertilized eggs by the sperm from males of GSD, but absent in the fertilized eggs by the sperm from males of TSD. CONCLUSIONS These findings indicate that DNA replication and gene expression-related pathways are associated with the distinct sperm nucleus development behaviors in fertilized eggs in response to the sperm from males of GSD and TSD. And this study is the first attempt to screen the differences between males determined via GSD and TSD in gynogenetic species, which might give a hint for understanding evolutionary adaption of diverse sex determination mechanisms in unisexual vertebrates.
Collapse
Affiliation(s)
- Yao-Jun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China. .,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
42
|
He Y, Wang X, Wu X, Zhu Y, Yang D. Expression profiles of amh and foxl2 in Schizothorax kozlovi, and their response to temperature during the early developmental stage. J Genet 2018; 97:127-136. [PMID: 29666332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To elucidate the role of amh and foxl2 in sex differentiation of the teleost fish Schizothorax kozlovi, the full-length cDNAs were cloned from the mature testis and ovary by rapid amplification of cDNA ends (RACE), and their relative mRNA expression levels were determined by quantitative real-time polymerase chain reaction among tissues and temperature groups. The complete amh and foxl2 cDNAs of S. kozlovi were 2060 bp and 1750 bp, which encoded 568 and 306 amino acids, respectively. The amh were expressed only in gonads, while foxl2 was expressed in the gills, brain and gonads, both exhibiting relatively high tissue specificity. The amh exhibited sex-specific expression pattern in the gonads. No sex differences in the foxl2 expression were observed in the brain and gonads, but significant sex differences were found in the gills. No significant differences were found in the foxl2 expression, from the larval to the juvenile stage, and also between different temperature groups. However, significant differences were found in the expression levels of amh from the larval (12-63 days posthatching (dph)) to the juvenile stage (190 dph), and also among the 18°C and 10°C groups at 31 dph. This result suggested that amh plays an important role in male sex differentiation of S. kozlovi during the early developmental stage, but no similar effect was observed in foxl2.
Collapse
Affiliation(s)
- Yongfeng He
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, People's Republic of China.
| | | | | | | | | |
Collapse
|
43
|
Expression profiles of amh and foxl2 in Schizothorax kozlovi, and their response to temperature during the early developmental stage. J Genet 2018. [DOI: 10.1007/s12041-018-0889-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Epigenetic control of cyp19a1a expression is critical for high temperature induced Nile tilapia masculinization. J Therm Biol 2017; 69:76-84. [DOI: 10.1016/j.jtherbio.2017.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/11/2017] [Accepted: 06/18/2017] [Indexed: 01/17/2023]
|
45
|
Holt WV. Exploitation of Non-mammalian Model Organisms in Epigenetic Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:155-173. [DOI: 10.1007/978-3-319-62414-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Cai J, Yang W, Chen D, Zhang Y, He Z, Zhang W, Zhang L. Transcriptomic analysis of the differentiating ovary of the protogynous ricefield eel Monopterus albus. BMC Genomics 2017; 18:573. [PMID: 28768496 PMCID: PMC5541746 DOI: 10.1186/s12864-017-3953-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/23/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The ricefield eel is a protogynous hermaphroditic Synbranchiform species that changes sex naturally from female to male, which offers an interesting model for studying gonadal (particularly ovarian) differentiation in vertebrates. In the present study, transcriptome sequencing of the gonad of ricefield eel larvae was performed to explore the molecular mechanisms underlying the ovarian differentiation and development. RESULTS A total of 301,267,988 clean reads were generated from cDNA libraries of gonadal tissues of ricefield eel larvae at 6, 9, 12, and 20 days post hatching (dph), which contained undifferentiated gonads, differentiating ovaries, ovaries with oogonia, and ovaries with meiotic oocytes, respectively. De-novo assembly of all the clean reads generated a total of 265,896 unigenes with a mean size of 720 bp and a N50 of 1107 bp. RT-qPCR analysis of the developmental expression of 13 gonadal development-related functional genes indicated that RNA-seq data are reliable. Transcriptome data suggest that high expression of female development-related genes and low expression of male development-related genes in the early gonads of ricefield eel larvae participate in the cascade of sex differentiation leading to the final female phenotype. The contrasting expression patterns of genes involved in retinoid acid (RA) synthesis and degradation might result in peak production of RA at 12 dph in the gonad of ricefield eel larvae, and induce molecular events responsible for the initiation of meiosis before the meiotic signs could be observed at 20 dph. In addition, only stra6 but not stra8 could be identified in gonadal transcriptome data of ricefield eel larvae, and the expression pattern of stra6 paralleled those of genes involved in RA synthesis, suggesting that stra6 may be a downstream target of RA and play a role in RA metabolism and/or meiotic initiation in the gonad of ricefield eel larvae. CONCLUSIONS The present study depicted the first large-scale RNA sequencing of the gonad of ricefield eel larvae, and identified many important functional genes, GO terms and KEGG pathways involved in gonadal development and germ cell meiosis. Results of the present study will facilitate future study on the ovarian differentiation of ricefield eels and other teleosts as well.
Collapse
Affiliation(s)
- Jinfeng Cai
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dong Chen
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yize Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhi He
- College of Animal Sciences and Technology, Sichuan Agricultural University, Ya'an, 625014, P. R. China
| | - Weimin Zhang
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China. .,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Lihong Zhang
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
47
|
Abstract
Terminologies of ovary development, by somewhat subjective describing and naming main changes of oocytes, have been criticized for confusing and inconsistency of terms and classifications, and the incurred consequences impede communication among researchers. In the present work, we developed regression between ovary development and three ribosome RNA (rRNA) indexes, namely 5S rRNA percent, 18S rRNA percent, and 5S–18S rRNA ratio, using close relationship between volume percent of primary growth stage oocytes or gonadosomatic index and rRNA content, demonstrating species-specific quantification of ovary development can be established in species with either synchronous and asynchronous oogenesis. This approach may be extended to any species with primary growth oocytes, e.g. anurans and reptiles, to predict maturity stages in females. We further confirmed that 5S rRNA percent and 5S/18S rRNA ratio can serve as markers to distinguish sexes unambiguously. A micro-invasive sampling method may be invented for non-lethal prediction of ovary development and sex because only a small amount of ovary sample (<50 mg) is needed for the approach established in the current work. Researchers who work with ovary RNA-seq in these taxa should realize that insufficient depletion of rRNA will probably lead to incorrect quantification of gene expression and inaccurate conclusions.
Collapse
|
48
|
Abstract
Human-mediated secondary contact of recently diverged taxa offers valuable opportunities for studying the evolutionary mechanisms involved in the establishment and maintenance of genetic boundaries between taxa. We used mitochondrial and microsatellite markers to examine a recently introduced population of the spur-thighed tortoise (Testudo graeca) of mixed origin in the Doñana National Park (SW Spain). The earliest records of tortoises in Doñana trace back to the 18th century, but several population reinforcements in the 20th century with animals from Morocco are well-documented. Consequently, different genetic lineages, which represent distinct subspecies, are thought to co-exist there. Our results confirmed the presence of distinct lineages by revealing that tortoises of the subspecies T. g. marokkensis were introduced into a local allochthonous T. g. graeca population. Unexpectedly, T. g. marokkensis haplotypes exclusively appeared in males, and admixture levels were statistically sex-biased toward males. The sex ratio of the population deviated from parity, with males being 2.36-fold more abundant than females. Our results indicated that population reinforcements had a strong effect on the genetic composition of this population and aggravated its sex ratio deviation. We predict that this sex-biased pattern of introgression is ephemeral and advocated to the near loss of T. g. marokkensis haplotypes.
Collapse
|
49
|
High temperatures influence sexual development differentially in male and female tadpoles of the Indian skipper frog, Euphlyctis cyanophlyctis. J Biosci 2017; 42:449-457. [DOI: 10.1007/s12038-017-9689-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Fan Z, Zou Y, Jiao S, Tan X, Wu Z, Liang D, Zhang P, You F. Significant association of cyp19a promoter methylation with environmental factors and gonadal differentiation in olive flounder Paralichthys olivaceus. Comp Biochem Physiol A Mol Integr Physiol 2017; 208:70-79. [DOI: 10.1016/j.cbpa.2017.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
|