1
|
Gregor A, Malleier M, Auñon-Lopez A, Auernigg-Haselmaier S, König J, Pignitter M, Duszka K. Glutathione Contributes to Caloric Restriction-Triggered Shift in Taurine Homeostasis. Nutrients 2025; 17:777. [PMID: 40077647 PMCID: PMC11901847 DOI: 10.3390/nu17050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Previously, we found that caloric restriction (CR) in mice increases taurine levels by stimulating hepatic synthesis, secretion into the intestine and deconjugation of taurine-conjugated bile acids (BA). Subsequently, in the intestine, taurine conjugates various molecules, including glutathione (GSH). The current study explores the mechanisms behind forming taurine-GSH conjugate and its consequences for taurine, other taurine conjugates, and BA in order to improve understanding of their role in CR. METHODS The non-enzymatic conjugation of taurine and GSH was assessed and the uptake of taurine, GSH, and taurine-GSH was verified in five sections of the small intestine. Levels of taurine, gavaged 13C labeled taurine, taurine conjugates, taurine-GSH, and GSH were measured in various tissues of ad libitum and CR mice. Next, the taurine-related CR phenotype was challenged by applying the inhibitors of taurine transporter (SLC6A6) and GSH-S transferases (GST). RESULTS The CR-related increase in taurine in intestinal mucosa was accompanied by the uptake and distribution of taurine towards selected organs. A unique composition of taurine conjugates characterized each tissue. Although taurine-GSH conjugate could be formed in non-enzymatic reactions, GST activity contributed to taurine-related CR outcomes. Upon SLC6A6 and GST inhibition, the taurine-related parameters were affected mainly in the ileum rather than the liver. Meanwhile, BA levels were somewhat affected by GST inhibition in the ileum and in the liver by SLC6A6 inhibitor. CONCLUSIONS The discovered CR phenotype involves a regulatory network that adjusts taurine and BA homeostasis. GSH supports these processes by conjugating taurine, impacting taurine uptake from the intestine and its availability to form other types of conjugates.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.G.); (M.M.); (S.A.-H.); (J.K.)
| | - Manuel Malleier
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.G.); (M.M.); (S.A.-H.); (J.K.)
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.A.-L.); (M.P.)
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Sandra Auernigg-Haselmaier
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.G.); (M.M.); (S.A.-H.); (J.K.)
| | - Jurgen König
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.G.); (M.M.); (S.A.-H.); (J.K.)
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.A.-L.); (M.P.)
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.G.); (M.M.); (S.A.-H.); (J.K.)
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
2
|
Livengood EJ, Fong RAMV, Pratt AM, Alinskas VO, Van Gorder G, Mezzio M, Mulligan ME, Voura EB. Taurine stimulation of planarian motility: a role for the dopamine receptor pathway. PeerJ 2024; 12:e18671. [PMID: 39655335 PMCID: PMC11627082 DOI: 10.7717/peerj.18671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Taurine, a normal dietary component that is found in many tissues, is considered important for a number of physiological processes. It is thought to play a particular role in eye development and in the maturation of both the muscular and nervous systems, leading to its suggested use as a therapeutic for Alzheimer's and Parkinson's diseases. Taurine increases metabolism and has also been touted as a weight loss aid. Due to its possible benefits to health and development, taurine is added as a supplement to a wide array of products, including infant formula and energy drinks. Despite its pervasive use as a nutritional additive and implied physiological actions, there is little consensus on how taurine functions. This is likely because, mechanistically, taurine has been demonstrated to affect multiple metabolic pathways. Simple models and straightforward assay systems are required to make headway in understanding this complexity. We chose to begin this work using the planarian because these animals have basic, well-understood muscular and nervous systems and are the subjects of many well-tested assays examining how their physiology is influenced by exposure to various environmental, nutritional, and therapeutic agents. We used a simple behavioral assay, the planarian locomotor velocity test (pLmV), to gain insight into the stimulant properties of taurine. Using this assay, we observed that taurine is a mild stimulant that is not affected by sugars or subject to withdrawal. We also provide evidence that taurine makes use of the dopamine D1 receptor to mediate this stimulant effect. Given the pervasiveness of taurine in many commercial products, our findings using the planarian system provide needed insight into the stimulant properties of taurine that should be considered when adding it to the diet.
Collapse
Affiliation(s)
- Elisa J. Livengood
- Division of Environmental and Renewable Resources, State University of New York (SUNY) at Morrisville, Morrisville, New York, United States
| | - Robyn A. M. V. Fong
- Division of Environmental and Renewable Resources, State University of New York (SUNY) at Morrisville, Morrisville, New York, United States
| | - Angela M. Pratt
- Division of Environmental and Renewable Resources, State University of New York (SUNY) at Morrisville, Morrisville, New York, United States
| | - Veronika O. Alinskas
- Division of Environmental and Renewable Resources, State University of New York (SUNY) at Morrisville, Morrisville, New York, United States
| | - Grace Van Gorder
- Division of Environmental and Renewable Resources, State University of New York (SUNY) at Morrisville, Morrisville, New York, United States
| | - Michael Mezzio
- Department of Math and Science, Dominican University, Orangeburg, New York, United States
| | - Margaret E. Mulligan
- Department of Math and Science, Dominican University, Orangeburg, New York, United States
| | - Evelyn B. Voura
- Crouse Neuroscience Institute, Crouse Health at Crouse Hospital, Crouse Medical Practice, Syracuse, New York, United States
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States
| |
Collapse
|
3
|
Subhadra M, Mir DA, Ankita K, Sindunathy M, Kishore HD, Ravichandiran V, Balamurugan K. Exploring diabesity pathophysiology through proteomic analysis using Caenorhabditis elegans. Front Endocrinol (Lausanne) 2024; 15:1383520. [PMID: 39539936 PMCID: PMC11557309 DOI: 10.3389/fendo.2024.1383520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Diabesity, characterized by obesity-driven Type 2 diabetes mellitus (T2DM), arises from intricate genetic and environmental interplays that induce various metabolic disorders. The systemic lipid and glucose homeostasis is controlled by an intricate cross-talk of internal glucose/insulin and fatty acid molecules to maintain a steady state of internal environment. Methods In this study, Caenorhabditis elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients to delve into the mechanistic foundations of diabesity. Various assays were conducted to measure intracellular triglyceride levels, lifespan, pharyngeal pumping rate, oxidative stress indicators, locomotor behavior, and dopamine signaling. Proteomic analysis was also performed to identify differentially regulated proteins and dysregulated KEGG pathways, and microscopy and immunofluorescence staining were employed to assess collagen production and anatomical integrity. Results Worms raised on diets high in glucose and cholesterol exhibited notably increased intracellular triglyceride levels, a decrease in both mean and maximum lifespan, and reduced pharyngeal pumping. The diabesity condition induced oxidative stress, evident from heightened ROS levels and distinct FT-IR spectroscopy patterns revealing lipid and protein alterations. Furthermore, impaired dopamine signaling and diminished locomotors behavior in diabesity-afflicted worms correlated with reduced motility. Through proteomic analysis, differentially regulated proteins encompassing dysregulated KEGG pathways included insulin signaling, Alzheimer's disease, and nicotinic acetylcholine receptor signaling pathways were observed. Moreover, diabesity led to decreased collagen production, resulting in anatomical disruptions validated through microscopy and immunofluorescence staining. Discussion This underscores the impact of diabesity on cellular components and structural integrity in C. elegans, providing insights into diabesity-associated mechanisms.
Collapse
Affiliation(s)
- Malaimegu Subhadra
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Dilawar Ahmad Mir
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Koley Ankita
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Hambram David Kishore
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | | |
Collapse
|
4
|
Thirumaran P, Cornell R, Pocock R. Endogenous fluorescent reporters for heat shock proteins are not detectable after stress induction. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001049. [PMID: 38585202 PMCID: PMC10998075 DOI: 10.17912/micropub.biology.001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) utilise unique unfolded protein response (UPR) mechanisms to maintain cellular proteostasis. Heat shock proteins (HSPs) are UPR chaperones induced by specific stressors to promote protein folding. Previous research has successfully employed transgenic reporters in Caenorhabditis elegans to report HSP induction. However, transgenic reporters are overexpressed and only show promoter regulation and not post-transcriptional regulation. To examine endogenous HSP regulation, we attempted to generate and validate endogenous reporters for mitochondrial ( HSP-60 ) and ER ( HSP-4 ) chaperones. Using CRISPR/Cas9 technology, F2A-GFP-H2B coding DNA was inserted downstream of each HSP gene and stress induction assays conducted to validate these tools. Endogenous reporters were successfully generated for hsp-4 and hsp-60 . However, GFP induction could not be detected with these endogenous reporters upon stress induction, likely due to low level expression.
Collapse
Affiliation(s)
- Priya Thirumaran
- Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Rebecca Cornell
- Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Roger Pocock
- Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Peng M, Zhao S, Hu Y, Zhang L, Zhou T, Wu M, Xu M, Jiang K, Huang Y, Li D, Lun ZR, Wu Z, Shen J. Nitric oxide-induced endoplasmic reticulum stress of Schistosoma japonicum inhibits the worm development in rats. Free Radic Biol Med 2024; 212:295-308. [PMID: 38141890 DOI: 10.1016/j.freeradbiomed.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Schistosomiasis, caused by Schistosoma spp., is a zoonotic parasitic disease affecting human health. Rattus norvegicus (rats) are a non-permissive host of Schistosoma, in which the worms cannot mature and cause typical egg granuloma. We previously demonstrated that inherent high levels of nitric oxide (NO), produced by inducible NO synthase (iNOS), is a key molecule in blocking the development of S. japonicum in rats. To further explore the mechanism of NO inhibiting S. japonicum development in rats, we performed S-nitrosocysteine proteomics of S. japonicum collected from infected rats and mice. The results suggested that S. japonicum in rats may have undergone endoplasmic reticulum (ER) stress. Interestingly, we found that the ER of S. japonicum in rats showed marked damage, while the ER of the worm in iNOS-/- rats and mice were relatively normal. Moreover, the expression of ER stress markers in S. japonicum from WT rats was significantly increased, compared with S. japonicum from iNOS-/- rats and mice. Using the NO donor sodium nitroprusside in vitro, we demonstrated that NO could induce ER stress in S. japonicum in a dose-dependent manner, and the NO-induced ER stress in S. japonicum could be inhibited by ER stress inhibitor 4-Phenyl butyric acid. We further verified that inhibiting ER stress of S. japonicum in rats promoted parasite development and survival. Furthermore, we demonstrated that NO-induced ER stress of S. japonicum was related to the efflux of Ca2+ from ER and the impairment of mitochondrial function. Collectively, these findings show that high levels of NO in rats could induce ER stress in S. japonicum by promoting the efflux of Ca2+ from ER and damaging the mitochondrial function, which block the worm development. Thus, this study further clarifies the mechanism of anti-schistosome in rats and provides potential strategies for drug development against schistosomiasis and other parasitosis.
Collapse
Affiliation(s)
- Mei Peng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China; Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Siyu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Yunyi Hu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Lichao Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Tao Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Meiyining Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Kefeng Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Yun Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Zhao-Rong Lun
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Jia Shen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Gregor A, Pignitter M, Fahrngruber C, Bayer S, Somoza V, König J, Duszka K. Caloric restriction increases levels of taurine in the intestine and stimulates taurine uptake by conjugation to glutathione. J Nutr Biochem 2021; 96:108781. [PMID: 34022385 DOI: 10.1016/j.jnutbio.2021.108781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Our previous study indicated increased levels of taurine-conjugated bile acids (BA) in the intestine content of mice submitted to caloric restriction (CR). In the current project, we found increased levels of free taurine and taurine conjugates, including glutathione (GSH)-taurine, in CR compared to ad libitum fed animals in the mucosa along the intestine but not in the liver. The levels of free GSH were decreased in the intestine of CR compared to ad libitum fed mice. However, the levels of oxidized GSH were not affected and were complemented by the lack of changes in the antioxidative parameters. Glutathione-S transferases (GST) enzymatic activity was increased as was the expression of GST genes along the gastrointestinal tract of CR mice. In the CR intestine, addition of GSH to taurine solution enhanced taurine uptake. Accordingly, the expression of taurine transporter (TauT) was increased in the ileum of CR animals and the levels of free and BA-conjugated taurine were lower in the feces of CR compared to ad libitum fed mice. Fittingly, BA- and GSH-conjugated taurine levels were increased in the plasma of CR mice, however, free taurine remained unaffected. We conclude that CR-triggered production and release of taurine-conjugated BA in the intestine results in increased levels of free taurine what stimulates GST to conjugate and enhance uptake of taurine from the intestine.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | | | - Sebastian Bayer
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria; Leibniz-Institut for Food Systems Biology, Technical University of Munich, Freising, Germany
| | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Mateo-Fernández M, Valenzuela-Gómez F, Font R, Del Río-Celestino M, Merinas-Amo T, Alonso-Moraga Á. In Vivo and In Vitro Assays Evaluating the Biological Activity of Taurine, Glucose and Energetic Beverages. Molecules 2021; 26:2198. [PMID: 33920365 PMCID: PMC8069289 DOI: 10.3390/molecules26082198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.
Collapse
Affiliation(s)
- Marcos Mateo-Fernández
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| | | | - Rafael Font
- Agri-Food Laboratory, Avda. Menéndez Pidal, s/n, 14080 Córdoba, Spain; (R.F.); (M.D.R.-C.)
| | | | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| |
Collapse
|
8
|
Taylor SKB, Minhas MH, Tong J, Selvaganapathy PR, Mishra RK, Gupta BP. C. elegans electrotaxis behavior is modulated by heat shock response and unfolded protein response signaling pathways. Sci Rep 2021; 11:3115. [PMID: 33542359 PMCID: PMC7862228 DOI: 10.1038/s41598-021-82466-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
The nematode C. elegans is a leading model to investigate the mechanisms of stress-induced behavioral changes coupled with biochemical mechanisms. Our group has previously characterized C. elegans behavior using a microfluidic-based electrotaxis device, and showed that worms display directional motion in the presence of a mild electric field. In this study, we describe the effects of various forms of genetic and environmental stress on the electrotactic movement of animals. Using exposure to chemicals, such as paraquat and tunicamycin, as well as mitochondrial and endoplasmic reticulum (ER) unfolded protein response (UPR) mutants, we demonstrate that chronic stress causes abnormal movement. Additionally, we report that pqe-1 (human RNA exonuclease 1 homolog) is necessary for the maintenance of multiple stress response signaling and electrotaxis behavior of animals. Further, exposure of C. elegans to several environmental stress-inducing conditions revealed that while chronic heat and dietary restriction caused electrotaxis speed deficits due to prolonged stress, daily exercise had a beneficial effect on the animals, likely due to improved muscle health and transient activation of UPR. Overall, these data demonstrate that the electrotaxis behavior of worms is susceptible to cytosolic, mitochondrial, and ER stress, and that multiple stress response pathways contribute to its preservation in the face of stressful stimuli.
Collapse
Affiliation(s)
- Shane K. B. Taylor
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - Muhammad H. Minhas
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - Justin Tong
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| | - P. Ravi Selvaganapathy
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, ON Canada
| | - Ram K. Mishra
- grid.25073.330000 0004 1936 8227Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON Canada
| | - Bhagwati P. Gupta
- grid.25073.330000 0004 1936 8227Department of Biology, McMaster University, Hamilton, ON Canada
| |
Collapse
|
9
|
Van Assche R, Borghgraef C, Vaneyck J, Dumoulin M, Schoofs L, Temmerman L. In vitro aggregating β-lactamase-polyQ chimeras do not induce toxic effects in an in vivo Caenorhabditis elegans model. J Negat Results Biomed 2017; 16:14. [PMID: 28830560 PMCID: PMC5568214 DOI: 10.1186/s12952-017-0080-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A series of human diseases are caused by the misfolding and aggregation of specific proteins or peptides into amyloid fibrils; nine of these diseases, referred to as polyglutamine diseases, are associated with proteins carrying an expanded polyglutamine (polyQ) region. While the presence of this latter is thought to be the determinant factor for the development of polyQ diseases, the non-polyQ regions of the host proteins are thought to play a significant modulating role. METHOD In order to better understand the role of non-polyQ regions, the toxic effects of model proteins bearing different polyQ regions (containing up to 79 residues) embedded at two distinct locations within the β-lactamase (BlaP) host enzyme were evaluated in Caenorhabditis elegans. This small organism can be advantageous for the validation of in vitro findings, as it provides a multicellular context yet avoids the typical complexity of common studies relying on vertebrate models. Several phenotypic assays were performed in order to screen for potential toxic effects of the different BlaP-polyQ proteins. RESULTS Despite the significant in vitro aggregation of BlaP-polyQ proteins with long polyQ regions, none of the BlaP-polyQ chimeras aggregated in the generated transgenic in vivo models. CONCLUSION The absence of a toxic effect of the expression of BlaP-polyQ chimeras may find its cause in biochemical mechanisms present in vivo to cope with protein aggregation (e.g. presence of chaperones) or in C. elegans' limitations such as its short lifespan. It is plausible that the aggregation propensities of the different BlaP chimeras containing embedded polyQ sequences are too low in this in vivo environment to permit their aggregation. These experiments emphasize the need for several comparative and in vivo verification studies of biologically relevant in vitro findings, which reveal both the strengths and limitations of widely used model systems.
Collapse
Affiliation(s)
- Roel Van Assche
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| | - Charline Borghgraef
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| | - Jonathan Vaneyck
- Enzymology and Protein Folding, Center for Protein Engineering, InBioS, Institute of Chemistry, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - Mireille Dumoulin
- Enzymology and Protein Folding, Center for Protein Engineering, InBioS, Institute of Chemistry, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven (University of Leuven), Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Nishizono S, Wang Z, Watanabe Y, Ohata Y, Chiba T. Mechanisms of action of compounds that mimic beneficial effects of calorie restriction such as lifespan extension: Is taurine a promising candidate? ACTA ACUST UNITED AC 2017. [DOI: 10.7600/jpfsm.6.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shoko Nishizono
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University
| | - Zi Wang
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University
| | - Yukari Watanabe
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University
| | - Yoshihisa Ohata
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University
- Institute of Applied Brain Sciences, Waseda University
| |
Collapse
|
11
|
Yu CW, How CM, Liao VHC. Arsenite exposure accelerates aging process regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans. CHEMOSPHERE 2016; 150:632-638. [PMID: 26796881 DOI: 10.1016/j.chemosphere.2016.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Arsenic is a known human carcinogen and high levels of arsenic contamination in food, soils, water, and air are of toxicology concerns. Nowadays, arsenic is still a contaminant of emerging interest, yet the effects of arsenic on aging process have received little attention. In this study, we investigated the effects and the underlying mechanisms of chronic arsenite exposure on the aging process in Caenorhabditis elegans. The results showed that prolonged arsenite exposure caused significantly decreased lifespan compared to non-exposed ones. In addition, arsenite exposure (100 μM) caused significant changes of age-dependent biomarkers, including a decrease of defecation frequency, accumulations of intestinal lipofuscin and lipid peroxidation in an age-dependent manner in C. elegans. Further evidence revealed that intracellular reactive oxygen species (ROS) level was significantly increased in an age-dependent manner upon 100 μM arsenite exposure. Moreover, the mRNA levels of transcriptional makers of aging (hsp-16.1, hsp-16.49, and hsp-70) were increased in aged worms under arsenite exposure (100 μM). Finally, we showed that daf-16 mutant worms were more sensitive to arsenite exposure (100 μM) on lifespan and failed to induce the expression of its target gene sod-3 in aged daf-16 mutant under arsenite exposure (100 μM). Our study demonstrated that chronic arsenite exposure resulted in accelerated aging process in C. elegans. The overproduction of intracellular ROS and the transcription factor DAF-16/FOXO play roles in mediating the accelerated aging process by arsenite exposure in C. elegans. This study implicates a potential ecotoxicological and health risk of arsenic in the environment.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan.
| |
Collapse
|
12
|
Chao CC, Chan P, Kuo CS, Gong CL, Cheng TH, Liu ZM, Shen PC, Huang CC, Leung YM. Protection of differentiated neuronal NG108-15 cells from P2X7 receptor-mediated toxicity by taurine. Pharmacol Rep 2014; 66:576-584. [PMID: 24948057 DOI: 10.1016/j.pharep.2014.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND Strong P2X7 receptor (P2X7R) activation causes Ca(2+) overload and consequent cell death. We previously showed that depletion of Ca(2+) stores and endoplasmic reticulum (ER) stress in differentiated NG108-15 neuronal cells contributed to P2X7R-mediated cytotoxicity. In this work, we assessed whether taurine (2-aminoethanesulfonic acid) could prevent this P2X7R-mediated cytotoxicity in this neuronal cell line. METHODS Cytotoxicity markers were assessed by MTT assay and Western blotting. Cytosolic Ca(2+) and mitochondrial Ca(2+) concentrations were measured microfluorimetrically using fura-2 and rhod-2, respectively. Intracellular reactive oxygen species (ROS) production was assayed by the indicator 2',7'-dichlorodihydrofluorescein diacetate. RESULTS Selective P2X7R agonist BzATP treatment causes neuronal cell death by causing cytosolic Ca(2+) overload, depletion of Ca(2+) stores, endoplasmic reticulum (ER) stress, and caspase-3 activation (cleaved caspase 3). Remarkably, taurine (10mM) pretreatment could prevent P2X7R-mediated neuronal cell death by blocking BzATP-mediated ER stress as determined by phosphorylated eukaryotic translation initiation factor 2α (peIF2α) and C/EBP-homologous protein (CHOP). However, taurine did not block BzATP-induced Ca(2+) overload and depletion of ER Ca(2+) stores. Interestingly, P2X7R activation did not result in mitochondrial Ca(2+) overload, nor did it affect mitochondrial membrane potential. BzATP-induced generation of intracellular reactive oxygen species (ROS) was prevented by taurine. CONCLUSIONS The neuroprotective effect by taurine is attributed to the suppression of P2X7R-mediated ER stress and ROS formation.
Collapse
Affiliation(s)
- Chia-Chia Chao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Paul Chan
- Division of Cardiology, Department of Medicine, Taipei Medical University Wan Fang Hospital, Taipei, Taiwan
| | - Chang-Shin Kuo
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan
| | - Chi-Li Gong
- Department of Physiology, China Medical University, Taichung, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Zhong-Min Liu
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Pei-Chen Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| | - Yuk-Man Leung
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
13
|
Zhang Y, Ren Y, Li S, Hayes JD. Transcription factor Nrf1 is topologically repartitioned across membranes to enable target gene transactivation through its acidic glucose-responsive domains. PLoS One 2014; 9:e93458. [PMID: 24695487 PMCID: PMC3973704 DOI: 10.1371/journal.pone.0093458] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/05/2014] [Indexed: 01/12/2023] Open
Abstract
The membrane-bound Nrf1 transcription factor regulates critical homeostatic and developmental genes. The conserved N-terminal homology box 1 (NHB1) sequence in Nrf1 targets the cap‘n’collar (CNC) basic basic-region leucine zipper (bZIP) factor to the endoplasmic reticulum (ER), but it is unknown how its activity is controlled topologically within membranes. Herein, we report a hitherto unknown mechanism by which the transactivation activity of Nrf1 is controlled through its membrane-topology. Thus after Nrf1 is anchored within ER membranes, its acidic transactivation domains (TADs), including the Asn/Ser/Thr-rich (NST) glycodomain situated between acidic domain 1 (AD1) and AD2, are transiently translocated into the lumen of the ER, where NST is glycosylated in the presence of glucose to yield an inactive 120-kDa Nrf1 glycoprotein. Subsequently, portions of the TADs partially repartition across membranes into the cyto/nucleoplasmic compartments, whereupon an active 95-kDa form of Nrf1 accumulates, a process that is more obvious in glucose-deprived cells and may involve deglycosylation. The repartitioning of Nrf1 out of membranes is monitored within this protein by its acidic-hydrophobic amphipathic glucose-responsive domains, particularly the Neh5L subdomain within AD1. Therefore, the membrane-topological organization of Nrf1 dictates its post-translational modifications (i.e. glycosylation, the putative deglycosylation and selective proteolysis), which together control its ability to transactivate target genes.
Collapse
Affiliation(s)
- Yiguo Zhang
- The NSFC-funded Laboratory of Cell Biochemistry and Gene Regulation, College of Medical Bioengineering and Faculty of Life Sciences, Chongqing University, Chongqing, China
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital & Medical School, University of Dundee, Scotland, United Kingdom
- * E-mail:
| | - Yonggang Ren
- The NSFC-funded Laboratory of Cell Biochemistry and Gene Regulation, College of Medical Bioengineering and Faculty of Life Sciences, Chongqing University, Chongqing, China
| | - Shaojun Li
- The NSFC-funded Laboratory of Cell Biochemistry and Gene Regulation, College of Medical Bioengineering and Faculty of Life Sciences, Chongqing University, Chongqing, China
| | - John D. Hayes
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital & Medical School, University of Dundee, Scotland, United Kingdom
| |
Collapse
|
14
|
Zhang Y, Hayes JD. The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity. Sci Rep 2013; 3:2006. [PMID: 23774320 PMCID: PMC3684815 DOI: 10.1038/srep02006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022] Open
Abstract
The integral membrane-bound Nrf1 transcription factor fulfils important functions in maintaining cellular homeostasis and organ integrity, but how it is controlled vectorially is unknown. Herein, creative use of Gal4-based reporter assays with protease protection assays (GRAPPA), and double fluorescence protease protection (dFPP), reveals that the membrane-topogenic vectorial behaviour of Nrf1 dictates its post-translational modification and transactivation activity. Nrf1 is integrated within endoplasmic reticulum (ER) membranes through its NHB1-associated TM1 in cooperation with other semihydrophobic amphipathic regions. The transactivation domains (TADs) of Nrf1, including its Asn/Ser/Thr-rich (NST) glycodomain, are transiently translocated into the ER lumen, where it is glycosylated in the presence of glucose to become a 120-kDa isoform. Thereafter, the NST-adjoining TADs are partially repartitioned out of membranes into the cyto/nucleoplasmic side, where Nrf1 is subject to deglycosylation and/or proteolysis to generate 95-kDa and 85-kDa isoforms. Therefore, the vectorial process of Nrf1 controls its target gene expression.
Collapse
Affiliation(s)
- Yiguo Zhang
- The NSFC-funded Laboratory of Cell Biochemistry and Gene Regulation, College of Medical Bioengineering and Faculty of Life Sciences, University of Chongqing, Shapingba District, Chongqing, China.
| | | |
Collapse
|
15
|
Kim KS, Ji HI, Yang HI. Taurine may not alleviate hyperglycemia-mediated endoplasmic reticulum stress in human adipocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:395-403. [PMID: 23392949 DOI: 10.1007/978-1-4614-6130-2_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress. Hyperglycemia-induced ER stress has not been studied in adipocyte differentiation and adipokine expression. Taurine has been known to protect the cells against ER stress. This study examined the effect of taurine on ER stress-induced adipocyte differentiation and adipokine expression to explain the therapeutic effect of taurine on diabetes and obesity. To do this, human preadipocytes were differentiated into adipocytes, in the presence or absence of taurine, under ER stress conditions. Changes in adipokine expression in adipocytes stimulated with IL-1β were investigated in the presence or absence of taurine. Human preadipocytes were treated with thapsigargin (10 nM) or high glucose concentrations (100 mM) as ER stress inducers during differentiation into adipocytes. Thapsigargin inhibited the differentiation of adipocytes in a dose-dependent manner, but the high glucose concentration treatment did not. Taurine 100 mM treatment did not block the inhibition of differentiation of preadipcytes into adipocytes. Furthermore, the high glucose concentration treatment inhibited the expression of adiponectin and increased the expression of leptin in human adipocytes. However, taurine treatment did not affect the expression of two adipokines. In conclusion, the therapeutic mechanism of taurine in diabetes and obesity does not appear to occur by alleviating hyperglycemia-mediated ER stress. To clarify the molecular mechanism by which taurine improves diabetic symptoms and obesity in animal models, the protective effect of taurine against hyperglycemia- or overnutrition-mediated ER stress should be further evaluated under various conditions or types of ER stress.
Collapse
Affiliation(s)
- Kyoung Soo Kim
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital, Gangdong-gu, Seoul, Korea.
| | | | | |
Collapse
|
16
|
Increased transsulfuration mediates longevity and dietary restriction in Drosophila. Proc Natl Acad Sci U S A 2011; 108:16831-6. [PMID: 21930912 DOI: 10.1073/pnas.1102008108] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mechanisms through which dietary restriction enhances health and longevity in diverse species are unclear. The transsulfuration pathway (TSP) is a highly conserved mechanism for metabolizing the sulfur-containing amino acids, methionine and cysteine. Here we show that Drosophila cystathionine β-synthase (dCBS), which catalyzes the rate-determining step in the TSP, is a positive regulator of lifespan in Drosophila and that the pathway is required for the effects of diet restriction on animal physiology and lifespan. dCBS activity was up-regulated in flies exposed to reduced nutrient conditions, and ubiquitous or neuron-specific transgenic overexpression of dCBS enhanced longevity in fully fed animals. Inhibition of the TSP abrogated the changes in lifespan, adiposity, and protein content that normally accompany diet restriction. RNAi-mediated knockdown of dCBS also limited lifespan extension by diet. Diet restriction reduced levels of protein translation in Drosophila, and we show that this is largely caused by increased metabolic commitment of methionine cycle intermediates to transsulfuration. However, dietary supplementation of methionine restored normal levels of protein synthesis to restricted animals without affecting lifespan, indicating that global reductions in translation alone are not required for diet-restriction longevity. Our results indicate a mechanism by which dietary restriction influences physiology and aging.
Collapse
|