1
|
Sarkisian KI, Yang JL, Marshall C, Stanczyk FZ. Allopregnanolone in the pathogenesis of the psychiatric comorbidities of polycystic ovarian syndrome. J Steroid Biochem Mol Biol 2025; 250:106719. [PMID: 40064425 DOI: 10.1016/j.jsbmb.2025.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/18/2025]
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrine disorder affecting 10-15 % of women of reproductive age, with significant implications for both physical and mental health. Several recent research studies have examined the connection between PCOS and psychiatric disorders; however, the mechanism linking the two is not fully understood. Allopregnanolone is a neurosteroid that modulates GABAA receptors and is naturally affected by the pathophysiology of PCOS. It is thought to play a role in mood disorders, including premenstrual dysphoric disorder and postpartum depression. Recent research has begun to focus on the relationship between PCOS and allopregnanolone. A literature review was conducted using databases, including PubMed, MEDLINE, and Cochrane Library. Keywords included "PCOS," "psychiatric disorders," "allopregnanolone," and "neurosteroids." Articles were selected based on relevance to psychiatric implications of PCOS, with a focus on high-quality, original research studies. Quality assessment of the sources was informed using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) Handbook criteria. The literature review revealed a growing body of evidence suggesting a strong association between PCOS and an increased risk of psychiatric disorders, particularly depression, anxiety, and mood disorders. The role of allopregnanolone, a neurosteroid, was identified as an important factor in this relationship, with some studies indicating its potential impact on mood regulation in PCOS patients. There is a dire need for clinicians to consider the mental health implications of PCOS during diagnosis and management. The integration of psychiatric screening in PCOS management could lead to earlier detection and improved outcomes. Future research should focus on the therapeutic potential of allopregnanolone and other neurosteroids in treating psychiatric disorders associated with PCOS.
Collapse
Affiliation(s)
- Karis I Sarkisian
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; University of California, Berkeley, United States.
| | - Jane L Yang
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Frank Z Stanczyk
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Soyama F, Motomura T, Takemura K. Molecular Shape-Preserving Au Electrode for Progesterone Detection. SENSORS (BASEL, SWITZERLAND) 2025; 25:1620. [PMID: 40096471 PMCID: PMC11902543 DOI: 10.3390/s25051620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Quantifying progesterone levels in the body is an important indicator of early pregnancy and health. Molecular shape-preserving electrodes have garnered attention in electrochemical biosensors because they can detect targets without the need for expensive enzymes or antibodies. However, some of the currently used methods typically have low electrode durability. Here, progesterone, for which antibodies are typically expensive, was used to develop a molecular shape-preserving electrode using Au to enhance its long-term stability. The physical properties of the electrodes were characterized using scanning electron microscopy (SEM), the electrochemical surface area (ECSA), and cyclic voltammetry (CV). The specific structure of the electrode demonstrated an electrochemical double layer comparable to that of a smooth Au electrode, confirming its high durability. The detection performance was assessed using CV, square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). The current response to progesterone increased in a concentration-dependent manner, but decreased from the saturated state owing to electrodeposition on the surface. Additionally, electrochemical impedance measurements showed high selectivity compared with hormones with similar structures. The fabricated molecular shape-preserving electrode exhibits an excellent durability, stability, and detection performance, confirming its suitability for long-term use. These findings pave the way to new possibilities for electrode fabrication.
Collapse
Affiliation(s)
- Fukuto Soyama
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-Machi, Tosu, Saga 841-0052, Japan; (F.S.); (T.M.)
- Health Functional Molecular Science Course, Graduate School of Advanced Health Sciences, Saga University, 1 Honjo-Machi, Saga 840-8502, Japan
| | - Taisei Motomura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-Machi, Tosu, Saga 841-0052, Japan; (F.S.); (T.M.)
| | - Kenshin Takemura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-Machi, Tosu, Saga 841-0052, Japan; (F.S.); (T.M.)
| |
Collapse
|
3
|
Pace L, Markovic D, Buyalos R, Bril F, Azziz R. Economic Burden of Endometrial Cancer Associated With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2024; 110:e168-e176. [PMID: 39106216 DOI: 10.1210/clinem/dgae527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-aged females, and women with PCOS are at increased risk for endometrial cancer (EndoCA), the most common gynecological malignancy. OBJECTIVE Our study sought to assess the economic burden associated with EndoCA in PCOS. METHOD Using PRISMA systematic review guidelines, we evaluated studies on EndoCA rates in patients with PCOS. Excluded studies were reviews and case reports, those with nonhuman subjects, without controls, without full text available, or reporting solely on other conditions. Selected studies were assessed for quality using the Newcastle-Ottawa Scale. Meta-analysis used DerSimonian-Laird random effects model to assess pooled risk ratio (RR). Excess cost was assessed in US dollars (USD). RESULT Of 98 studies screened, 9 were included. Pooled RR for EndoCA in PCOS was 3.46 (95% CI, 2.28-5.23), P ≤ .001. In the United States, prevalence of EndoCA in patients with PCOS in 2020 was 1.712%, compared with a baseline estimated prevalence in all women of 0.489%. The excess prevalence of EndoCA attributable to PCOS was 1.223%, approximately 98 348 affected women. A population attributable fraction of EndoCA for PCOS was 24.4%. Given estimated costs of EndoCA exceeding $1.9 billion (in 2023 USD), the economic burden of EndoCA attributable to PCOS exceeds $467 million/year. CONCLUSION The excess annual US healthcare cost for EndoCA attributable to PCOS exceeds $467 million/year (2023 USD). Although a concerning morbidity of PCOS, it is notable that the economic burden of EndoCA attributable to the disorder represents only a small fraction of its total healthcare burden.
Collapse
Affiliation(s)
- Lauren Pace
- Department of Ob/Gyn, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Daniela Markovic
- Division of General Internal Medicine and Health Services Research, The David Geffen School of Medicine, UCLA, Los Angeles, CA 90024, USA
| | - Richard Buyalos
- Department of Ob/Gyn, The David Geffen School of Medicine, UCLA, Los Angeles, CA 90024, USA
| | - Fernando Bril
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ricardo Azziz
- Department of Ob/Gyn, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ob/Gyn and Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Yang Y, Cheng J, Liu C, Zhang X, Ma N, Zhou Z, Lu W, Wu C. Gut microbiota in women with polycystic ovary syndrome: an individual based analysis of publicly available data. EClinicalMedicine 2024; 77:102884. [PMID: 39469535 PMCID: PMC11513668 DOI: 10.1016/j.eclinm.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) represents a prevalent endocrine disorder affecting numerous females worldwide. Dysbiosis of gut microbiota has been linked to the occurrence of PCOS; however, research into the characteristics of gut microbiota in PCOS patients, especially those from different regions and with different testosterone level, remains limited. Additionally, it is still unclear whether gut microbiota helps to distinguish different PCOS subtypes. Methods We searched four electronic databases (PubMed, Web of Science, Cochrane Library, and ClinicalTrials.gov) from Jan 1, 2010 to May 1, 2024. This combined analysis included studies providing the raw data of gut microbiota in PCOS patients. We reanalyzed the characteristics of gut microbiota in PCOS patients from different regions and with different testosterone level. Findings Fourteen publications satisfying the inclusion criteria were included in the combined analysis. Based on data from 948 individuals, we found alpha-diversity was not significantly different between PCOS and healthy control (HC) groups. However, gut microbiota composition was distinct in PCOS patients compared with healthy individuals. Specifically, Fusobacterium, Ruminococcus_gnavus_group, and Escherichia-Shigella increased, while Dysosmobacter, Schaedlerella, Merdimonas, Clostridiisalibacter, Flintibacter et al. decreased in PCOS women. Regionally, Alistipes was enriched in primarily European patients, while Blautia and Roseburia were more abundant in Chinese patients. Subtype analysis revealed that the gut microbiota of PCOS patients with higher testosterone level (PCOS-HT) differed significantly from those with lower testosterone level (PCOS-LT). Prevotella, Blautia, Dialister, Ruminococcus_torques_group and UCG-002 were enhanced in PCOS-HT patients, while Alistipes, Dysosmobacter, Phocaeicola and Faecalibacterium were diminished. Importantly, a set of eight genera effectively differentiated PCOS-HT patients from PCOS-LT patients with an AUC of 0.95. Interpretation This systematic anatomization of gut microbiota revealed the microbial characteristics of PCOS patients, particularly those with different testosterone level, thus laying the foundations for further research into pathogenesis of PCOS, and the development of effective diagnostic, treatment, and intervention strategies. Funding This work was supported by the National Natural Science Foundation of China (No. 81973217, 82260304), the Hainan Province Clinical Medical Center (QWYH202175), and the Specific Research Fund of The Innovation Platform for Academicians of Hainan Province (YSPTZX202311).
Collapse
Affiliation(s)
- Yanan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiale Cheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chongyuan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaopo Zhang
- School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Ning Ma
- Reproductive Medical Center, Hainan Woman and Children's Medical Center, Haikou 570206, China
| | - Zhi Zhou
- Reproductive Medical Center, Hainan Woman and Children's Medical Center, Haikou 570206, China
| | - Weiying Lu
- Reproductive Medical Center, Hainan Woman and Children's Medical Center, Haikou 570206, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, China
| |
Collapse
|
5
|
Zhang W, Zhang J, Xue H, Chen X, Li M, Chen S, Li Z, Sechi LA, Wang Q, Capobianco G, Lei X. Nicotinamide Mononucleotide Improves Endometrial Homeostasis in a Rat Model of Polycystic Ovary Syndrome by Decreasing Insulin Resistance and Regulating the Glylytic Pathway. Mol Nutr Food Res 2024; 68:e2400340. [PMID: 39420767 DOI: 10.1002/mnfr.202400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Indexed: 10/19/2024]
Abstract
SCOPE Polycystic ovary syndrome (PCOS) is a common endocrine disorder that can lead to insulin resistance (IR) and dysregulation of glucose metabolism, resulting in an imbalance in the endometrial environment, which is unfavorable for embryo implantation of PCOS. This study aims to investigate whether nicotinamide mononucleotide (NMN) improves the stability of the endometrium in a rat model of PCOS and identifies whether it is related to reduce IR and increase glycolysis levels and its potential signaling pathway. METHODS AND RESULTS Female Sprague-Dawley (SD) rats are fed letrozole and a high-fat diet (HFD) to form the PCOS model, then the model rats are treated with or without NMN. It randomly divided into control, PCOS, and PCOS-NMN groups according to the feeding and treating method. Compared with the PCOS group, the regular estrous cycles are restored, the serum androgen (p<0.01) and fasting insulin levels (p<0.05) are reduced, and endometrial morphology (p<0.05) is improved in NMN-PCOS group. Furthermore, NMN inhibits endometrial cell apoptosis, improves endometrial decidualization transition, reduces IR, restores the expression of glycolysis rate-limiting enzymes, and activates the PI3K/AKT pathway in the uterus. CONCLUSIONS These results suggest that NMN enhances endometrial tissue homeostasis by decreasing uterine IR and regulating the glycolysis through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Wenhui Zhang
- Gynecology & Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Jiaming Zhang
- Gynecology & Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Haoxuan Xue
- Gynecology & Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Chen
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Meixiang Li
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Shenghua Chen
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515041, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
- Unit of Microbiology and Virology, AOU Sassari, Sassari, 07100, Italy
| | - Qian Wang
- Gynecology & Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515041, China
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
- Gynecologic and Obstetric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Giampiero Capobianco
- Gynecologic and Obstetric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Xiaocan Lei
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
6
|
Ye W, Xia S, Xie T, Ye H, Yang Y, Sun Y, Cai J, Luo X, Zhou L, Song Y. Klotho accelerates the progression of polycystic ovary syndrome through promoting granulosa cell apoptosis and inflammation†. Biol Reprod 2024; 111:625-639. [PMID: 38874314 DOI: 10.1093/biolre/ioae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The morbidity of polycystic ovary syndrome (PCOS) is in highly increasing rate nowadays. PCOS not only affects the fertility in women, but also threatens the health of whole life. Hence, to find the prognostic risk factors is of great value. However, the effective predictors in clinical practice of PCOS are still in blackness. In this study, we found Klotho (KL) was increased in follicular fluid (FF) and primary luteinized granulosa cells (GCs) from PCOS patients with hyperandrogenism. Furthermore, we found follicular KL was negatively correlated with numbers of mature oocytes, and positively correlated with serum testosterone, LH, and LH/FSH levels menstrual cycle and number of total antral follicles in PCOS patients. In primary luteinized GCs, the increased KL was accompanied with upregulation of cell apoptosis and inflammation-related genes. In ovaries of PCOS mice and cultured human KGN cell line, KL was up-regulated and accompanied by apoptosis, inflammation, and mitochondrial dysfunction. Therefore, our findings suggest new mechanisms for granulosa cell injury and revealed to target inhibit KL maybe a new therapeutic strategy for treatment of PCOS.
Collapse
Affiliation(s)
- Wenting Ye
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyu Xia
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiyun Ye
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Sun
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Jing Cai
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Xiaoqing Luo
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| |
Collapse
|
7
|
Zeng X, Yang C. Correlation analysis of BMI with ovulation effect and clinical pregnancy rate in patients with polycystic ovary syndrome. Am J Transl Res 2024; 16:4174-4181. [PMID: 39262693 PMCID: PMC11384404 DOI: 10.62347/kyes1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVES The study was designed to investigate the correlation between body mass index (BMI) along with both ovulation effect and clinical pregnancy rate in patients with polycystic ovary syndrome (PCOS), as well as to analyze the factors influencing the clinical pregnancy rate. METHODS In the retrospective study, data from 122 patients were collected. The patients were classified into three groups based on their pre-pregnancy BMI: normal weight, overweight group, and obese group. The analysis focused on examining the ovulation indicators, ovulation rates, and clinical pregnancy rates across different groups. Furthermore, both univariate and multivariate analyses were conducted to identify factors influencing the clinical pregnancy rate. RESULTS The obese group exhibited significantly higher fasting plasma glucose (FPG) levels compared to the overweight and normal-weight groups (P<0.0001); but no significant difference was found between the overweight and normal-weight groups (P>0.05). Both the obese and overweight groups had elevated levels of low-density lipoprotein cholesterol (LDL-C) compared to the normal-weight group (P<0.0001), with no significant difference between the obese and overweight groups (P>0.05). The obese group exhibited significantly lower levels of high-density lipoprotein cholesterol (HDL-C) compared to the normal-weight group (P<0.05); but no significant difference in HDL-C levels was observed between the overweight and normal-weight groups (P>0.05). Both the overweight group and obese group showed notably higher endometrial thickness and diameter of mature follicles than the normal weight group (P<0.05), as well as notably fewer mature follicles (P<0.05). Furthermore, the obese group demonstrated a significantly lower number of mature follicles compared to the overweight group (P<0.05). Conversely, the diameter of mature follicles was found to be significantly higher in the obese group than in the overweight group (P<0.05). The endometrial thickness showed a positive correlation with BMI (r=0.657, P<0.001), while the number of mature follicles exhibited a negative correlation with BMI (r=-0.547, P<0.001). Additionally, the diameter of mature follicles demonstrated a positive correlation with BMI (r=0.681, P<0.001). Relatively high BMI, advanced maternal age, and elevated FPG were identified as independent risk factors associated with low clinical pregnancy rate in patients with PCOS. CONCLUSIONS Relatively high BMI, advanced maternal age, and elevated FPG are independent risk factors associated with a decreased likelihood of achieving clinical pregnancy in patients. Therefore, in clinical practice, assisting obese patients in weight reduction to maintain a BMI within the normal range of 18.5-23.9 kg/m2 and lowering blood glucose levels can contribute to better pregnancy outcomes.
Collapse
Affiliation(s)
- Xiaoqiong Zeng
- Department of Gynecology and Reproductive and Gynecological Endocrinology, Changde Maternal and Child Health Care Hospital Changde 415000, Hunan, China
| | - Chao Yang
- Department of Gynecology and Reproductive and Gynecological Endocrinology, Changde Maternal and Child Health Care Hospital Changde 415000, Hunan, China
| |
Collapse
|
8
|
Li X, Wang Y, Wang J, Zhou J, Wang J. Diagnostic significance and predictive efficiency of metabolic risk score for fertility-sparing treatment in patients with atypical endometrial hyperplasia and early endometrial carcinoma. J Gynecol Oncol 2024; 35:e42. [PMID: 38282259 PMCID: PMC11262899 DOI: 10.3802/jgo.2024.35.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVE This study aims to assess the impact of the metabolic risk score (MRS) on time to achieve complete remission (CR) of fertility-sparing treatments for atypical endometrial hyperplasia (AEH) and early endometrial cancer (EC) patients. METHODS Univariate and multivariate cox analyses were employed to identify independent risk factors affecting the time to CR with patients at our center. These factors were subsequently incorporated into receiver operator characteristic curve analysis and decision curve analysis to assess the predictive accuracy of time to CR. Additionally, Kaplan-Meier analysis was utilized to determine the cumulative CR rate for patients. RESULTS The 173 patients who achieved CR following fertility preservation treatment (FPT) were categorized into three subgroups based on their time to CR (<6, 6-9, >9 months). Body mass index (hazard ratio [HR]=0.20; 95% confidence interval [CI]=0.03, 0.38; p=0.026), MRS (HR=0.31; 95% CI=0.09, 0.52; p=0.005), insulin resistance (HR=1.83; 95% CI=0.05, 3.60; p=0.045), menstruation regularity (HR=3.77; 95% CI=1.91, 5.64; p=0.001), polycystic ovary syndrome (HR=-2.16; 95% CI=-4.03, -0.28; p=0.025), and histological type (HR=0.36; 95% CI=0.10, 0.62; p=0.005) were identified as risk factors for time to CR, with MRS being the independent risk factor (HR=0.29; 95% CI=0.02, 0.56; p=0.021). The inclusion of MRS significantly enhanced the predictive accuracy of time to CR (area under the curve [AUC]=0.789 for Model 1, AUC=0.862 for Model 2, p=0.032). Kaplan-Meier survival curves revealed significant differences in the cumulative CR rate among different risk groups. CONCLUSION MRS emerges as a novel evaluation system that substantially enhances the predictive accuracy for the time to achieve CR in AEH and early EC patients seeking fertility preservation.
Collapse
Affiliation(s)
- Xingchen Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Yiqin Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Jiaqi Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Jingyi Zhou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
9
|
Lessey BA, Dong A, Deaton JL, Angress D, Savaris RF, Walker SJ. Inflammatory Changes after Medical Suppression of Suspected Endometriosis for Implantation Failure: Preliminary Results. Int J Mol Sci 2024; 25:6852. [PMID: 38999962 PMCID: PMC11241468 DOI: 10.3390/ijms25136852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024] Open
Abstract
Unexplained euploid embryo transfer failure (UEETF) is a frustrating and unanswered conundrum accounting for 30 to 50% of failures in in vitro fertilization using preimplantation genetic testing for aneuploidy (PGT-A). Endometriosis is thought by many to account for most of such losses and menstrual suppression or surgery prior to the next transfer has been reported to be beneficial. In this study, we performed endometrial biopsy in a subset of women with UEETF, testing for the oncogene BCL6 and the histone deacetylase SIRT1. We compared 205 PGT-A cycles outcomes and provide those results following treatment with GnRH agonist versus controls (no treatment). Based on these and previous promising results, we next performed a pilot randomized controlled trial comparing the orally active GnRH antagonist, elagolix, to oral contraceptive pill (OCP) suppression for 2 months before the next euploid embryo transfer, and monitored inflammation and miRNA expression in blood, before and after treatment. These studies support a role for endometriosis in UEETF and suggest that medical suppression of suspected disease with GnRH antagonist prior to the next transfer could improve success rates and address underlying inflammatory and epigenetic changes associated with UEETF.
Collapse
Affiliation(s)
- Bruce A. Lessey
- Department of OBGYN, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157, USA; (A.D.); (J.L.D.)
| | - Allan Dong
- Department of OBGYN, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157, USA; (A.D.); (J.L.D.)
| | - Jeffrey L. Deaton
- Department of OBGYN, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157, USA; (A.D.); (J.L.D.)
| | | | - Ricardo F. Savaris
- Department of OBGYN, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil;
| | - Stephen J. Walker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA;
| |
Collapse
|
10
|
Grzesiak M, Herian M, Kamińska K, Ajersch P. Insight into vitamin D 3 action within the ovary-Basic and clinical aspects. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:99-130. [PMID: 39059995 DOI: 10.1016/bs.apcsb.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Vitamin D3 is a fat-soluble secosteroid predominantly synthesized in the skin or delivered with a diet. Nevertheless, recently it is considered more as a hormone than a vitamin due to its pleiotropic function within the organism ensured by widely distributed vitamin D receptors and metabolic enzymes. Besides the main role in calcium and phosphorus homeostasis, vitamin D3 was shown to regulate many cellular and metabolic processes in normal and cancerous tissues within the immune system, the cardiovascular system, the respiratory system and the endocrine system. The ovary is an important extraskeletal tissue of vitamin D3 action and local metabolism, indicating its role in the regulation of ovarian functions upon physiological and pathological conditions. This chapter reviews firstly the updated information about vitamin D3 metabolism and triggered intracellular pathways. Furthermore, the basic information about ovarian physiology and several aspects of vitamin D3 effects within the ovary are presented. Finally, the special attention is paid into possible mechanism of vitamin D3 action within ovarian pathologies such as premature ovarian failure, polycystic ovary syndrome, and ovarian cancer, considering its clinical application as alternative therapy.
Collapse
Affiliation(s)
- Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | | | - Kinga Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Paula Ajersch
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Bracho GS, Acosta MV, Altamirano GA, Alcaraz MR, Montemurro M, Culzoni MJ, Rossetti MF, Kass L, Luque EH, Bosquiazzo VL. Uterine histopathology and steroid metabolism in a polycystic ovary syndrome rat model. Mol Cell Endocrinol 2024; 585:112198. [PMID: 38467370 DOI: 10.1016/j.mce.2024.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to investigate uterine lesions, uterine endocrine status and expression of genes involved in uterine differentiation in a rat model of polycystic ovary syndrome (PCOS). The possible involvement of the androgen receptor (AR) was also investigated. PCOS rats showed an increased incidence of uterine epithelial and glandular lesions and elevated serum testosterone level, which was not detected in uterine tissue. Uterine 17β-estradiol, estrone and progesterone were detected in 100%, 75% and 50% of the animals, respectively. This was associated with a decrease in Star and an increase in Hsd17b2, Srd5a1 and Cyp19a1, suggesting that uterine steroids are not synthesized de novo in PCOS and that alterations in these enzymes may explain the absence of testosterone and low progesterone. In addition, ESR2 decreased and AR increased, suggesting possible steroid receptor crosstalk. Genes associated with uterine differentiation, PTEN and WNT5a, also showed reduced expression. PCOS rats treated with flutamide, an AR antagonist, were similar to PCOS rats in terms of uterine lesions, serum steroid levels, ESR2, PTEN and WNT5a expression. However, testosterone, AR and aromatase levels were similar to control rats, with decreased expression of ESR1 and HOXA10, suggesting that these expressions are AR dependent. Our results suggest that the primary cause of the observed uterine lesions in the PCOS rat model is the altered endocrine status and consequently changes in genes related to uterine differentiation.
Collapse
Affiliation(s)
- Gisela Soledad Bracho
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Química General e Inorgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Virginia Acosta
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela Anahí Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mirta Raquel Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milagros Montemurro
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Julia Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique Hugo Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica Lis Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
12
|
Zhang H, Kong L, Cao Z, Zhu Y, Jiang Y, Wang X, Jiang R, Liu Y, Zhou J, Kang Y, Zhen X, Kong N, Wu M, Yan G, Sun H. EHD1 impaired decidualization of endometrial stromal cells in recurrent implantation failure: role of SENP1 in modulating progesterone receptor signalling†. Biol Reprod 2024; 110:536-547. [PMID: 38011671 DOI: 10.1093/biolre/ioad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023] Open
Abstract
Recurrent implantation failure (RIF) patients exhibit poor endometrial receptivity and abnormal decidualization with reduced effectiveness and exposure to progesterone, which is an intractable clinical problem. However, the associated molecular mechanisms remain elusive. We found that EH domain containing 1 (EHD1) expression was abnormally elevated in RIF and linked to aberrant endometrial decidualization. Here we show that EHD1 overexpressed in human endometrial stromal cells significantly inhibited progesterone receptor (PGR) transcriptional activity and the responsiveness to progesterone. No significant changes were observed in PGR mRNA levels, while a significant decrease in progesterone receptor B (PRB) protein level. Indeed, EHD1 binds to the PRB protein, with the K388 site crucial for this interaction. Overexpression of EHD1 promotes the SUMOylation and ubiquitination of PRB, leading to the degradation of the PRB protein. Supplementation with the de-SUMOylated protease SENP1 ameliorated EHD1-repressed PRB transcriptional activity. To establish a functional link between EHD1 and the PGR signalling pathway, sg-EHD1 were utilized to suppress EHD1 expression in HESCs from RIF patients. A significant increase in the expression of prolactin and insulin-like growth factor-binding protein 1 was detected by interfering with the EHD1. In conclusion, we demonstrated that abnormally high expression of EHD1 in endometrial stromal cells attenuated the activity of PRB associated with progesterone resistance in a subset of women with RIF.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Liping Kong
- Nanjing Vocational Health College, Nanjing, China
| | - Zhiwen Cao
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yinchun Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yue Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaoying Wang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yu Kang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Min Wu
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Matsuyama S, Whiteside S, Li SY. Implantation and Decidualization in PCOS: Unraveling the Complexities of Pregnancy. Int J Mol Sci 2024; 25:1203. [PMID: 38256276 PMCID: PMC10816633 DOI: 10.3390/ijms25021203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder in women of reproductive age, affecting 5-15% globally with a large proportion undiagnosed. This review explores the multifaceted nature of PCOS and its impact on pregnancy, including challenges in fertility due to hormonal imbalances and insulin resistance. Despite restoring ovulation pharmacologically, women with PCOS face lower pregnancy rates and higher risks of implantation failure and miscarriage. Our review focuses on the complexities of hormonal and metabolic imbalances that impair endometrial receptivity and decidualization in PCOS. Disrupted estrogen signaling, reduced integrity of endometrial epithelial tight junctions, and insulin resistance impair the window of endometrial receptivity. Furthermore, progesterone resistance adversely affects decidualization. Our review also examines the roles of various immune cells and inflammatory processes in the endometrium, contributing to the condition's reproductive challenges. Lastly, we discuss the use of rodent models in understanding PCOS, particularly those induced by hormonal interventions, offering insights into the syndrome's impact on pregnancy and potential treatments. This comprehensive review underscores the need for advanced understanding and treatment strategies to address the reproductive complications associated with PCOS, emphasizing its intricate interplay of hormonal, metabolic, and immune factors.
Collapse
Affiliation(s)
| | | | - Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.M.); (S.W.)
| |
Collapse
|
14
|
Zhou J, Qiu X, Chen X, Ma S, Chen Z, Wang R, Tian Y, Jiang Y, Fan L, Wang J. Comprehensive Analysis of Gut Microbiota Alteration in the Patients and Animal Models with Polycystic Ovary Syndrome. J Microbiol 2023; 61:821-836. [PMID: 37824034 DOI: 10.1007/s12275-023-00079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common disease of endocrine-metabolic disorder, and its etiology remains largely unknown. The gut microbiota is possibly involved in PCOS, while the association remains unclear. The comprehensive analysis combining gut microbiota with PCOS typical symptoms was performed to analyze the role of gut microbiota in PCOS in this study. The clinical patients and letrozole-induced animal models were determined on PCOS indexes and gut microbiota, and fecal microbiota transplantation (FMT) was conducted. Results indicated that the animal models displayed typical PCOS symptoms, including disordered estrous cycles, elevated testosterone levels, and ovarian morphological change; meanwhile, the symptoms were improved after FMT. Furthermore, the microbial diversity exhibited disordered, and the abundance of the genus Ruminococcus and Lactobacillus showed a consistent trend in PCOS rats and patients. The microbiota diversity and several key genera were restored subjected to FMT, and correlation analysis also supported relevant conclusions. Moreover, LEfSe analysis showed that Gemmiger, Flexispira, and Eubacterium were overrepresented in PCOS groups. Overall, the results indicate the involvement of gut microbiota in PCOS and its possible alleviation of endocrinal and reproductive dysfunctions through several special bacteria taxa, which can function as the biomarker or potential target for diagnosis and treatment. These results can provide the new insights for treatment and prevention strategies of PCOS.
Collapse
Affiliation(s)
- Jing Zhou
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
- Department of Obstetrics and Gynecology, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Xuemei Qiu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
- Medical Microbiology of Department, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Xuejing Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Sihan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Zhaoyang Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Ruzhe Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Ying Tian
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Yufan Jiang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Li Fan
- Department of Obstetrics and Gynecology, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| | - Jingjie Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- Medical Microbiology of Department, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
- College of Pharmacy, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| |
Collapse
|
15
|
Amin SN, Asali F, Aolymat I, Abuquteish D, Abu Al Karsaneh O, El Gazzar WB, Shaltout SA, Alabdallat YJ, Elberry DA, Kamar SS, Hosny SA, Mehesen MN, Rashed LA, Farag AM, ShamsEldeen AM. Comparing MitoQ10 and heat therapy: Evaluating mechanisms and therapeutic potential for polycystic ovary syndrome induced by circadian rhythm disruption. Chronobiol Int 2023; 40:1004-1027. [PMID: 37548004 DOI: 10.1080/07420528.2023.2241902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/12/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Environmental factors, such as sleep restriction, contribute to polycystic ovary syndrome (PCOS) by causing hyperinsulinemia, hyperandrogenism, insulin resistance, and oligo- or anovulation. This study aimed to evaluate the effects of circadian rhythm disruption on reproductive and metabolic functions and investigate the potential therapeutic benefits of MitoQ10 and hot tub therapy (HTT). Sixty female rats were divided into six groups: control, MitoQ10, HTT, and three groups with PCOS induced by continuous light exposure(L/L). The reproductive, endocrine, and structural manifestations ofL/L-induced PCOS were confirmed by serum biochemical measurements, ultrasound evaluation of ovarian size, and vaginal smear examination at week 14. Subsequently, the rats were divided into the L/L (untreated), L/L+MitoQ10-treated, andL/L+HTT-treated groups. At the end of week 22, all rats were sacrificed. Treatmentwith MitoQ10 or HTT partially reversed the reproductive, endocrine, and structural features of PCOS, leading to a decreased amplitude of isolated uterine contractions, ovarian cystic changes and size, and endometrial thickness. Furthermore, both interventions improved the elevated serum levels of anti-Mullerian hormone (AMH), kisspeptin, Fibulin-1, A disintegrin and metalloproteinase with thrombospondin motifs 19 (ADAMTS-19), lipid profile, homeostatic model assessment for insulin resistance (HOMA-IR), oxidative stress markers, androgen receptors (AR) and their transcription target genes, FKBP52 immunostaining in ovarian tissues, and uterine estrogen receptor alpha (ER-α) and PRimmunostaining. In conclusion, MitoQ10 supplementation and HTT demonstrated the potential for ameliorating metabolic, reproductive, and structural perturbations associated with PCOS induced by circadian rhythm disruption. These findings suggest a potential therapeutic role for these interventions in managing PCOS in women.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fida Asali
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa 13133, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Dua Abuquteish
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa 13133, Jordan
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Centre, Amman, Jordan
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa 13133, Jordan
| | - Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sherif Ahmed Shaltout
- Department of Pharmacology, Public Health, and Clinical Skills, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Dalia Azmy Elberry
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samaa Samir Kamar
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Histology, Armed Forces College of Medicine, Cairo, Egypt
| | - Sara Adel Hosny
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Histology and Cell Biology, Faculty of Medicine, Nahda University, Beni Suef, Egypt
| | - Marwa Nagi Mehesen
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Asmaa Mohammed ShamsEldeen
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Physiology, Faculty of Medicine, October 6 University, Cairo, Egypt
| |
Collapse
|
16
|
Yaprak E, Şükür YE, Özmen B, Sönmezer M, Berker B, Atabekoğlu C, Aytaç R. Endometrial compaction is associated with the increased live birth rate in artificial frozen-thawed embryo transfer cycles. HUM FERTIL 2023; 26:550-556. [PMID: 34405774 DOI: 10.1080/14647273.2021.1966703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
We aimed to assess the effect of endometrial compaction on the live birth rate in frozen-thawed embryo transfer (FET) cycles and to investigate the parameters associated with compaction. FET cycles performed in a tertiary care infertility centre between May 2013 and October 2019 were reviewed retrospectively. The decremental change of endometrial thickness between the end of oestrogen phase and ET day was defined as endometrial compaction. The primary outcome measure was endometrial compaction, and the secondary outcome was the live birth rate. Among all, 89 had endometrial compaction and 194 did not. The live birth rate was significantly higher in the compaction group (23.6 vs. 13.4%, respectively; p = 0.039). Multivariate logistic regression analysis revealed that in FET cycles with artificial endometrial preparation, the chance for live birth was significantly higher in cycles with endometrial compaction [OR: 3.133, 95% confidence interval (CI) 1.104-8.892; p = 0.032] when adjusted for age, stage of the embryo, and endometrial thickness at the end of the oestrogen phase. According to receiver operating characteristic (ROC) curve analysis the sensitivity and specificity of 9.25 mm endometrial thickness at the end of oestrogen phase were 76.4 and 58.8%, respectively (area under the curve: 0.701, 95% CI 0.640-0.763; p < 0.001) to predict endometrial compaction.
Collapse
Affiliation(s)
- Esra Yaprak
- Department of Obstetrics and Gynecology, Ankara University School of Medicine, Ankara, Turkey
| | - Yavuz Emre Şükür
- Department of Obstetrics and Gynecology, Ankara University School of Medicine, Ankara, Turkey
| | - Batuhan Özmen
- Department of Obstetrics and Gynecology, Ankara University School of Medicine, Ankara, Turkey
| | - Murat Sönmezer
- Department of Obstetrics and Gynecology, Ankara University School of Medicine, Ankara, Turkey
| | - Bülent Berker
- Department of Obstetrics and Gynecology, Ankara University School of Medicine, Ankara, Turkey
| | - Cem Atabekoğlu
- Department of Obstetrics and Gynecology, Ankara University School of Medicine, Ankara, Turkey
| | - Ruşen Aytaç
- Department of Obstetrics and Gynecology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Yang J, Wang E, Jiang M, Tan Y, Yao F, Sun C, Pan L, Gao L, Yao J. Integrated fecal microbiota and metabolomics analysis of the orlistat intervention effect on polycystic ovary syndrome rats induced by letrozole combined with a high-fat diet. J Ovarian Res 2023; 16:109. [PMID: 37277785 DOI: 10.1186/s13048-023-01193-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND This study aimed to compare the characteristics of the gut microbiota and their metabolite profiles between polycystic ovary syndrome (PCOS) and orlistat-treated PCOS rats (ORL-PCOS), which could help to better understand the underlying mechanism of the effect of orlistat on PCOS. METHODS PCOS rat models were established using letrozole combined with a high-fat diet. Ten rats were randomly selected as a PCOS control group (PCOS). The other three groups (n = 10/group) were additionally supplemented with different doses of orlistat (low, medium, high). Then, fecal samples of the PCOS and ORL-PCOS groups were analysed by 16S rRNA gene sequencing and untargeted metabolomics. Blood samples were collected to detect serum sex hormones and lipids. RESULTS The results showed that orlistat attenuated the body weight gain, decreased the levels of T, LH, the LH/FSH ratio, TC, TG and LDL-C; increased the level of E2; and improved estrous cycle disorder in PCOS rats. The bacterial richness and diversity of the gut microbiota in the ORL-PCOS group were higher than those in the PCOS group. The ratio of Firmicutes to Bacteroidetes was decreased with orlistat treatment. Moreover, orlistat treatment led to a significant decrease in the relative abundance of Ruminococcaceae and Lactobacillaceae, and increases in the abundances of Muribaculaceae and Bacteroidaceae. Metabolic analysis identified 216 differential fecal metabolites in total and 6 enriched KEGG pathways between the two groups, including steroid hormone biosynthesis, neuroactive ligand-receptor interaction and vitamin digestion and absorption. Steroid hormone biosynthesis was the pathway with the most significant enrichment. The correlations between the gut microbiota and differential metabolites were calculated, which may provide a basis for understanding the composition and function of microbial communities. CONCLUSIONS Our data suggested that orlistat exerts a PCOS treatment effect, which may be mediated by modifying the structure and composition of the gut microbiota, as well as the metabolite profiles of PCOS rats.
Collapse
Affiliation(s)
- Jianmei Yang
- Department of Pediatric Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Enli Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Mingmin Jiang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Yujun Tan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Fangfang Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276006, Shandong, China.
| |
Collapse
|
18
|
Luo M, Chen Y, Pan X, Chen H, Fan L, Wen Y. E. coli Nissle 1917 ameliorates mitochondrial injury of granulosa cells in polycystic ovary syndrome through promoting gut immune factor IL-22 via gut microbiota and microbial metabolism. Front Immunol 2023; 14:1137089. [PMID: 37275915 PMCID: PMC10235540 DOI: 10.3389/fimmu.2023.1137089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Objective Gut microbiota and its metabolites have regulatory effects on PCOS related ovarian dysfunction and insulin resistance. Escherichia coli Nissle 1917 (EcN) is a genetically controlled probiotic with an excellent human safety record for improving gut microbiome metabolic disorders and immune system disorders. Here we focused to explore the application and effect of probiotic EcN on the gut microbiota-metabolism-IL-22-mitochondrial damage axis in PCOS. Methods PCOS mice were constructed with dehydroepiandrosterone (DHEA) and treated with EcN, FMT or IL-22 inhibitors. Clinically control and PCOS subjects were included for further analysis. Serum and follicular fluid supernatant levels of sex hormones, insulin, glucose, cholesterol, and inflammatory factors were detected by ELISA and biochemical reagents. The pathological changes of ovarian tissues were observed by HE staining. The JC-1 level and COX4 gene expression in granulosa cells was detected by ELISA and RT-qPCR. The expressions of progesterone receptor A (PR-A), LC3II/I, Beclin1, p62 and CytC were detected by western blot. The number of autophagosomes in granulosa cells was observed by electron microscopy. 16S rRNA and LC-MS/MS were used to analyze the changes of gut microbiota and metabolism. Results EcN promoted the recovery of sex hormone levels and ovarian tissue morphology, promoted the expression of IL-22, COX4 and PR-A in granulosa cells, and inhibited mitophagy in PCOS mice. EcN decreased the number of gut microbiota, and significantly increased the abundance of Adlercreutzia, Allobaculum, Escherichia-Shigella and Ileibacterium in PCOS mice. EcN improved metabolic disorders in PCOS mice by improving Amino sugar and nucleotide sugar metabolism pathways. IL-22 was positively associated with Ileibacterium, Adlercreutzia and Progesterone, negatively associated with RF39, Luteinizing hormone, Testosterone, N-Acetylglucosamin, L-Fucose and N-Acetylmannosamin. FMT reconfirmed that EcN ameliorated mitochondrial damage in granulosa cells of PCOS mice by gut microbiota, but this process was blocked by IL-22 inhibitor. Clinical trials have further demonstrated reduced IL-22 levels and mitochondrial damage in granulosa cells in PCOS patients. Conclusion EcN improved IL-22 level and mitochondrial damage of granulosa cells in PCOS mice by promoting the recovery of sex hormone levels and ovarian tissue morphology, inhibiting the amount of gut microbiota, and promoting amino sugar and nucleotide sugar metabolism.
Collapse
|
19
|
Zhong X, Li Y, Liang W, Hu Q, Zeng A, Ding M, Chen D, Xie M. Clinical and metabolic characteristics of endometrial lesions in polycystic ovary syndrome at reproductive age. BMC Womens Health 2023; 23:236. [PMID: 37149578 PMCID: PMC10164315 DOI: 10.1186/s12905-023-02339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/08/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND We aimed to explore the clinical and metabolic characteristics in polycystic ovary syndrome (PCOS) patients with different endometrial lesions. METHODS 234 PCOS patients who underwent hysteroscopy and endometrial biopsy were categorized into four groups: (1) normal endometrium (control group, n = 98), (2) endometrial polyp (EP group, n = 92), (3) endometrial hyperplasia (EH group, n = 33), (4) endometrial cancer (EC group, n = 11). Serum sex hormone levels, 75 g oral glucose tolerance test, insulin release test, fasting plasma lipid, complete blood count and coagulation parameters were measured and analyzed. RESULTS Body mass index and triglyceride level of the EH group were higher while average menstrual cycle length was longer in comparison with the control and EP group. Sex hormone-binding globulin (SHBG) and high density lipoprotein were lower in the EH group than that in the control group. 36% of the patients in the EH group suggested obesity, higher than the other three groups. Using multivariant regression analysis, patients with free androgen index > 5 had higher risk of EH (OR 5.70; 95% CI 1.05-31.01), while metformin appeared to be a protective factor for EH (OR 0.12; 95% CI 0.02-0.80). Metformin and hormones (oral contraceptives or progestogen) were shown to be protective factors for EP (OR 0.09; 95% CI 0.02-0.42; OR 0.10; 95% CI 0.02-0.56). Hormones therapy appeared to be a protective factor for EC (OR 0.05; 95% CI 0.01-0.39). CONCLUSION Obesity, prolonged menstrual cycle, decreased SHBG, and dyslipidemia are risk factors for EH in patients with PCOS. Oral contraceptives, progestogen and metformin are recommended for prevention and treatment of endometrial lesions in PCOS patients.
Collapse
Affiliation(s)
- Xiaozhu Zhong
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yang Li
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Weiying Liang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiyue Hu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Anqi Zeng
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Miao Ding
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Dongmei Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Meiqing Xie
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
20
|
Hu M, Zhang Y, Lu Y, Han J, Guo T, Cui P, Brännström M, Shao LR, Billig H. Regulatory mechanisms of HMGB1 and its receptors in polycystic ovary syndrome-driven gravid uterine inflammation. FEBS J 2023; 290:1874-1906. [PMID: 36380688 PMCID: PMC10952262 DOI: 10.1111/febs.16678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
High-mobility group box 1 (HMGB1) is critical for inflammatory homeostasis and successful pregnancy, and there is a strong association among elevated levels of HMGB1, polycystic ovary syndrome (PCOS), chronic inflammation and pregnancy loss. However, the mechanisms responsible for PCOS-driven regulation of uterine HMGB1 and its candidate receptors [toll-like receptor (TLR) 2 and 4] and inflammatory responses during pregnancy remain unclear. In this study, we found a gestational stage-dependent decrease in uterine HMGB1 and TLR4 protein abundance in rats during normal pregnancy. We demonstrated that increased expression of HMGB1, TLR2 and TLR4 proteins was associated with activation of inflammation-related signalling pathways in the gravid uterus exposed to 5α-dihydrotestosterone and insulin, mimicking the clinical features (hyperandrogenism and insulin resistance) of PCOS and this elevation was completely inhibited by treatment with the androgen receptor (AR) antagonist flutamide. Interestingly, acute exposure to lipopolysaccharide suppressed HMGB1, TLR4 and inflammation-related protein abundance but did not affect androgen levels or AR expression in the gravid uterus with viable fetuses. Furthermore, immunohistochemical analysis revealed that, in addition to being localized predominately in the nuclear compartment, HMGB1 immunoreactivity was also detected in the cytoplasm in the PCOS-like rat uterus, PCOS endometrium and pregnant rat uterus with haemorrhagic and resorbed fetuses, possibly via activation of nuclear factor κB signalling. These results suggest that both AR-dependent and AR-independent mechanisms contribute to the modulation of HMGB1/TLR2/TLR4-mediated uterine inflammation. We propose that the elevation of HMGB1 and its receptors and disruption of the pro-/anti-inflammatory balance in the gravid uterus may participate in the pathophysiology of PCOS-associated pregnancy loss.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Yaxing Lu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
| | - Jing Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Tingting Guo
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and GynecologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineChina
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| |
Collapse
|
21
|
Roger J, Xie F, Costello J, Tang A, Liu J, Oskotsky T, Woldemariam S, Kosti I, Le B, Snyder MP, Giudice LC, Torgerson D, Shaw GM, Stevenson DK, Rajkovic A, Glymour MM, Aghaeepour N, Cakmak H, Lathi RB, Sirota M. Leveraging electronic health records to identify risk factors for recurrent pregnancy loss across two medical centers: a case-control study. RESEARCH SQUARE 2023:rs.3.rs-2631220. [PMID: 36993325 PMCID: PMC10055527 DOI: 10.21203/rs.3.rs-2631220/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Recurrent pregnancy loss (RPL), defined as 2 or more pregnancy losses, affects 5-6% of ever-pregnant individuals. Approximately half of these cases have no identifiable explanation. To generate hypotheses about RPL etiologies, we implemented a case-control study comparing the history of over 1,600 diagnoses between RPL and live-birth patients, leveraging the University of California San Francisco (UCSF) and Stanford University electronic health record databases. In total, our study included 8,496 RPL (UCSF: 3,840, Stanford: 4,656) and 53,278 Control (UCSF: 17,259, Stanford: 36,019) patients. Menstrual abnormalities and infertility-associated diagnoses were significantly positively associated with RPL in both medical centers. Age-stratified analysis revealed that the majority of RPL-associated diagnoses had higher odds ratios for patients <35 compared with 35+ patients. While Stanford results were sensitive to control for healthcare utilization, UCSF results were stable across analyses with and without utilization. Intersecting significant results between medical centers was an effective filter to identify associations that are robust across center-specific utilization patterns.
Collapse
Affiliation(s)
- Jacquelyn Roger
- Bakar Computational Health Sciences Institute, University of California San Francisco
| | - Feng Xie
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University
- Department of Pediatrics, Stanford University
- Department of Biomedical Data Science, Stanford University
| | - Jean Costello
- Bakar Computational Health Sciences Institute, University of California San Francisco
| | - Alice Tang
- Bakar Computational Health Sciences Institute, University of California San Francisco
| | - Jay Liu
- Bakar Computational Health Sciences Institute, University of California San Francisco
| | - Tomiko Oskotsky
- Bakar Computational Health Sciences Institute, University of California San Francisco
| | - Sarah Woldemariam
- Bakar Computational Health Sciences Institute, University of California San Francisco
| | - Idit Kosti
- Bakar Computational Health Sciences Institute, University of California San Francisco
| | - Brian Le
- Bakar Computational Health Sciences Institute, University of California San Francisco
| | | | - Linda C. Giudice
- Department of Obstetrics and Gynecology, University of California San Francisco
| | - Dara Torgerson
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | | | | | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco
- Institute of Human Genetics, University of California San Francisco
| | - M. Maria Glymour
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University
- Department of Pediatrics, Stanford University
- Department of Biomedical Data Science, Stanford University
| | - Hakan Cakmak
- Department of Obstetrics and Gynecology, University of California San Francisco
| | - Ruth B. Lathi
- Department of Obstetrics and Gynecology, Stanford University
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco
| |
Collapse
|
22
|
Orazov MR, Mikhaleva LM, Mullina IA. Endometrial hyperplasia and progesterone resistance: a complex relationship. RUDN JOURNAL OF MEDICINE 2023. [DOI: 10.22363/2313-0245-2023-27-1-65-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The endometrium is one of the most dynamic tissues that constantly undergoes changes during the menstrual cycle in women of the reproductive period. All these processes take place mainly under the influence of steroid hormones that are produced in the woman’s body. However, it is important to remember that throughout life the endometrial tissue undergoes changes under the influence of various factors that lead to imbalances in hormonal regulation. All these changes can lead to the development of endometrial hyperplasia, which has a high risk of both recurrence and malignization. Over the past few decades, the incidence of endometrial cancer has increased in many countries. This trend is thought to be related to the increasing prevalence of obesity, as well as to changing female reproductive patterns. Although there are currently no well-established screening programmers for endometrial cancer, endometrial hyperplasia is a recognized precursor, and its detection provides an opportunity for prevention. Studying the pathogenesis and risk factors will give a great advantage in the future to prevent possible complications. At this point, the activity and inhibition of the different hormone isoforms can lead to different hyperplastic processes. The management of patients depends on many factors: age, species, reproductive potential and other factors. Therefore, a comprehensive approach to treatment is always necessary. In recent years, interest in the study of endometrial hyperplasia has increased dramatically due to the increase in endometrial cancer. Therefore, the issue of early diagnosis and prevention is most urgent in modern gynecology and requires further study. This review reflects the current understanding of the disruption of progesterone signaling mechanisms in endometrial hyperplasia according to domestic and foreign literature.
Collapse
|
23
|
Pu H, Wen X, Luo D, Guo Z. Regulation of progesterone receptor expression in endometriosis, endometrial cancer, and breast cancer by estrogen, polymorphisms, transcription factors, epigenetic alterations, and ubiquitin-proteasome system. J Steroid Biochem Mol Biol 2023; 227:106199. [PMID: 36191723 DOI: 10.1016/j.jsbmb.2022.106199] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
The uterus and breasts are hormone-responsive tissues. Progesterone and estradiol regulate gonadotropin secretion, prepare the endometrium for implantation, maintain pregnancy, and regulate the differentiation of breast tissue. Dysregulation of these hormones causes endometriosis, endometrial cancer, and breast cancer, damaging the physical and mental health of women. Emerging evidence has shown that progesterone resistance or elevated progesterone activity is the primary hormonal substrate of these diseases. Since progesterone acts through its specific nuclear receptor, the abnormal expression of the progesterone receptor (PR) dysregulates progesterone function. This review discusses the regulatory mechanisms of PR expression in patients with endometriosis, and endometrial or breast cancer, including estrogen, polymorphisms, transcription factors, epigenetics, and the ubiquitin-proteasome system. (1) Estrogen promotes the expression of PRA (a PR isoform) mRNA and protein through the interaction of estrogen receptors (ERs) and Sp1 with half-ERE/Sp1 binding sites. ERs also affect the binding of Sp1 and Sp1 sites to promote the expression of PRB (another PR isoform)(2) PR polymorphisms, mainly PROGINS and + 331 G/A polymorphism, regulate PR expression by affecting DNA methylation and transcription factor binding. (3) The influence of epigenetic alterations on PR expression occurs through DNA methylation, histone modification, and microRNA. (4) As one of the main protein degradation pathways in vivo, the ubiquitin-proteasome system (UPS) regulates PR expression by participating in protein degradation. These mechanisms may provide new molecular targets for diagnosing and treating endometriosis, endometrial, and breast cancer.
Collapse
Affiliation(s)
- Huijie Pu
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaosha Wen
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - DiXian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Guangdong 518000, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
24
|
Dhadhal S, Nampoothiri L. Decoding the molecular cascade of embryonic-uterine modulators in pregnancy loss of PCOS mother- an "in vivo" study. Reprod Biol Endocrinol 2022; 20:165. [PMID: 36476384 PMCID: PMC9727897 DOI: 10.1186/s12958-022-01041-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome is associated with an increased rate of spontaneous abortion/early pregnancy loss and pups delivered to PCOS animals were abnormal. Currently, assisted reproductive technology has been used to help numerous infertile couples to have their babies. However, there is a low implantation rate after the transfer of embryos. Till now, it could not be concluded whether the reduced pregnancy rates observed were due to abnormal embryos or endometrial modification. Further, transgenic mouse models have been used to find out the molecular deficits behind early pregnancy complications. But, the deletion of crucial genes could lead to systemic deficiencies/embryonic lethality. Also, pregnancy is a complex process with overlapping expression patterns making it challenging to mimic their stage-specific role. Therefore, the motive of the current study was to investigate the probable molecular cascade to decipher the early pregnancy loss in the letrozole-induced PCOS mouse model. METHODS PCOS was induced in mice by oral administration of letrozole daily for 21 days. Following, the pregnancy was established and animals were sacrificed on the day 6th of pregnancy. Animals were assessed for early pregnancy loss, hormonal profile, mRNA expression of steroid receptors (Ar, Pr, Esr1/2), decidualization markers (Hox10/11a), adhesion markers (Itgavb3, Itga4b1), matrix metalloproteinases and their endogenous inhibitor (Mmp2/9, Timp1/2) and key mediators of LIF/STAT pathway (Lif, Lifr, gp130, stat3) were analyzed in the embryo implanted region of the uterus. Morphological changes in ovaries and implanted regions of the uterus were assessed. RESULTS Mice treated with letrozole demonstrated significant increases in testosterone levels along with a decline in progesterone levels as compared to control animals. PCOS animals also exhibited decreased fertility index and disrupted ovarian and embryo-containing uterus histopathology. Altered gene expression of the steroid receptors and reduced expression of Hox10a, integrins, Mmp9, Timp1/3, Gp130 & Stat3 was observed in the implanted region of the uterus of PCOS animals. CONCLUSION Our results reveal that majority of the molecular markers alteration in the establishment of early pregnancy could be due to the aberrant progesterone signaling in the embryonic-uterine tissue of PCOS animals, which further translates into poor fetal outcomes as observed in the current study and in several IVF patients.
Collapse
Affiliation(s)
- Shivani Dhadhal
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Laxmipriya Nampoothiri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
25
|
Mutlu L, Manavella DD, Gullo G, McNamara B, Santin AD, Patrizio P. Endometrial Cancer in Reproductive Age: Fertility-Sparing Approach and Reproductive Outcomes. Cancers (Basel) 2022; 14:cancers14215187. [PMID: 36358604 PMCID: PMC9656291 DOI: 10.3390/cancers14215187] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in developed countries and approximately 7% of the women with endometrial cancer are below the age of 45. Management of endometrial cancer in young women who desire to maintain fertility presents a unique set of challenges since the standard surgical treatment based on hysterectomy and salpingo-oophorectomy is often not compatible with the patient's goals. A fertility-preserving approach can be considered in selected patients with early stage and low-grade endometrial cancer. An increasing amount of data suggest that oncologic outcomes are not compromised if a conservative approach is utilized with close monitoring until childbearing is completed. If a fertility-preserving approach is not possible, assisted reproductive technologies can assist patients in achieving their fertility goals.
Collapse
Affiliation(s)
- Levent Mutlu
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Diego D. Manavella
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Giuseppe Gullo
- IVF Unit AOOR Villa Sofia Cervello, 90146 Palermo, Italy
| | - Blair McNamara
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Alessandro D. Santin
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Pasquale Patrizio
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-689-8003
| |
Collapse
|
26
|
Pangath M, Unnikrishnan L, Throwba PH, Vasudevan K, Jayaraman S, Li M, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. The Epigenetic Correlation among Ovarian Cancer, Endometriosis and PCOS: A Review. Crit Rev Oncol Hematol 2022; 180:103852. [DOI: 10.1016/j.critrevonc.2022.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
|
27
|
Ding Y, Fan Y, Li X, Wang Y, Wang J, Tian L. Metabolic syndrome is an independent risk factor for time to complete remission of fertility-sparing treatment in atypical endometrial hyperplasia and early endometrial carcinoma patients. Reprod Biol Endocrinol 2022; 20:134. [PMID: 36064542 PMCID: PMC9442985 DOI: 10.1186/s12958-022-01006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Fertility-sparing treatment of atypical endometrial hyperplasia (AEH) and early endometrial carcinoma (EC) patients has recently emerged important social health topic. This study is designed to explore the risk factors for time to complete remission (CR) of fertility-sparing treatment in woman with AEH and early EC. METHODS A retrospective study was designed with clinical data from 106 patients admitted between January 2012 to December 2019. Univariate and multivariate logistic analysis were used to explore independent risk factors for time to CR. These factors were employed in receiver operator characteristic (ROC) curve and the decision curve analysis (DCA) to evaluate predictive accuracy of time to CR. Stratified analysis and interactive analysis was also performed for more in-depth perspective. RESULTS Univariate analysis showed that fasting blood glucose levels (FBG, OR = 1.6, 95%CI: 0.6-2.5, P = 0.020), metabolic syndrome (MetS, OR = 3.0, 95%CI: 1.1-5.0, P = 0.003), and polycystic ovary syndrome (PCOS, OR = 2.0, 95%CI: 0.5-3.4, P = 0.009) were associated with time to CR. Among these factors, multivariate analysis confirmed MetS (OR = 3.1, 95%CI: 1.0-5.2, P = 0.005) was an independent risk factor. The area under the ROC curve (AUC) of MetS was higher than FBG and PCOS (AUC = 0.723 vs 0.612 and 0.692). The AUC of FBG combined with PCOS was 0.779, and it was improved to 0.840 when MetS was included (P < 0.05). Additionally, MetS played different roles in time to CR in various groups. Moreover, we found high-density lipoprotein (HDL) and MetS had an interactive effect for time to CR. CONCLUSION MetS is an independent risk factor for time to CR and should be taken seriously in fertility-sparing management of AEH and early EC patients.
Collapse
Affiliation(s)
- Yingqiao Ding
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Yuan Fan
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Xingchen Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Yiqin Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Li Tian
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
28
|
Guo X, Xu Y, Sun J, Wang Q, Kong H, Zhong Z. Exploring the Mechanism of Wenshen Huatan Quyu Decotion for PCOS Based on Network Pharmacology and Molecular Docking Verification. Stem Cells Int 2022; 2022:3299091. [PMID: 36071733 PMCID: PMC9441343 DOI: 10.1155/2022/3299091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To identify the active chemical in Wenshen Huatan Quyu Decotion (WHQD) and to explore its possible network interactions with the polycystic ovary syndrome (PCOS). Methods The Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP) and the Bioinformatics Analysis Tool for Molecular Mechanisms in Chinese Medicine (BATMAN-TCM) were used to decompose compound formulations, detect active chemicals and their corresponding target genes, and then convert them into UniProt gene symbols. Meanwhile, PCOS-related target genes were collected from GeneCards to construct a protein-protein interaction (PPI) network, which was further analyzed by STRING online database. Gene Ontology (GO) functional analysis was also performed afterwards to construct the component-target gene-disease network to visualize the correlation between WHQD and PCOS. We then performed an in silico molecular docking study to validate the predicted relationships. Results WHQD consists of 14 single drugs containing a total of 67 chemical components. 216 genes were predicted as possible targets. 123 of the 216 target genes overlapped with PCOS. GO annotation analysis revealed that 1968 genes were associated with biological processes, 145 with molecular functions, and 71 with cellular components. KEGG analysis revealed 146 pathways involved PPI, and chemical-target gene-disease networks suggest that PGR, AR, ADRB2, IL-6, MAPK1/8, ESR1/2, CHRM3, RXRA, PPARG, BCL2/BAX, GABRA1, and NR3C2 may be key genes for the pharmacological effects of WHQD on PCOS. Molecular docking analysis confirmed that hydrogen bonding was the main interaction between WHQD and its targets. Conclusion WHQD exerts its pharmacological effects by improving insulin sensitivity, subfertility, and hormonal imbalance, increasing ovulation rates, which in turn may increase pregnancy rates in patients with significant efficacy.
Collapse
Affiliation(s)
- Xin Guo
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yunyi Xu
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Obstetrics and Gynecology, The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, China
| | - Juan Sun
- Center for Reproductive Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Qianqian Wang
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Haibo Kong
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Zixing Zhong
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
29
|
Zhang J, Xin X, Zhang H, Zhu Y, Ye Y, Li D. The Efficacy of Chinese Herbal Medicine in Animal Models of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4892215. [PMID: 35996403 PMCID: PMC9392647 DOI: 10.1155/2022/4892215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 12/30/2022]
Abstract
Objective This study aimed to evaluate the efficacy of Chinese herbal medicine (CHM) on ovarian mass, weight, sex hormone disorders, and insulin resistance in animal models of polycystic ovary syndrome (PCOS). Methods This systematic review and meta-analysis was conducted through a comprehensive search in three databases to find studies testing CHM in animal models of PCOS. Two researchers independently reviewed the retrieval, extraction, and quality assessment of the dataset. The pooled effects were calculated using random-effect models; heterogeneity was explored through subgroup analysis; and stability was assessed through sensitivity analysis. In addition, publication bias was assessed using the Egger's bias test. Results Fifteen studies with twelve mice and 463 rats published from 2016 to 2021 met the inclusion criteria. The results of primary outcomes revealed that CHM therapy was significantly different with control animals in ovarian mass and testosterone (SMD, -1.01 (95% CI, -1.58, -1.45); SMD, -1.62 (95% CI, -2.07, -1.16), respectively). The secondary outcomes as well showed an overall positive effect of CHM compared with control animals in weight (SMD, -1.02 (95% CI, -1.39, -0.65)), follicle-stimulating hormone (FSH) (SMD, 0.58 (95% CI, 0.19, 0.97)), luteinizing hormone (LH) (SMD, -0.94 [95% CI, -1.25, -0.64)), homeostasis model assessment-insulin resistance (HOMA-IR) (SMD, -1.24 (95% CI, -1.57, -0.92)). Subgroup analyses indicated that PCOS induction drug, formula composition, random allocation, and assessment of model establishment were relevant factors that influenced the effects of interventions. The stability of the meta-analysis was showed robust through sensitivity analysis. The publication bias was substantial. Conclusions Administration with CHM revealed a statistically positive effect on ovarian mass, weight, sex hormone disorders, and insulin resistance. Moreover, these data call for further high-quality studies investigating the underlying mechanism in more depth.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xiyan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Haolin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yutian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
30
|
Li J, Jiang X, Li C, Che H, Ling L, Wei Z. Proteomic alteration of endometrial tissues during secretion in polycystic ovary syndrome may affect endometrial receptivity. Clin Proteomics 2022; 19:19. [PMID: 35643455 PMCID: PMC9145147 DOI: 10.1186/s12014-022-09353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractEmbryo implantation is a complex developmental process that requires coordinated interactions among the embryo, endometrium, and the microenvironment of endometrium factors. Even though the impaired endometrial receptivity of patients with polycystic ovary syndrome (PCOS) is known, understanding of endometrial receptivity is limited. A proteomics study in three patients with PCOS and 3 fertile women was performed to understand the impaired endometrial receptivity in patients with PCOS during luteal phases. Through isobaric tags for relative and absolute quantitation (iTRAQ) analyses, we identified 232 unique proteins involved in the metabolism, inflammation, and cell adhesion molecules. Finally, our results suggested that energy metabolism can affect embryo implantation, whereas inflammation and cell adhesion molecules can affect both endometrial conversion and receptivity. Our results showed that endometrial receptive damage in patients with PCOS is not a single factor. It is caused by many proteins, pathways, systems, and abnormalities, which interact with each other and make endometrial receptive research more difficult.
Collapse
|
31
|
Liu J, Zhao Y, Chen L, Li R, Ning Y, Zhu X. Role of metformin in functional endometrial hyperplasia and polycystic ovary syndrome involves the regulation of MEG3/miR‑223/GLUT4 and SNHG20/miR‑4486/GLUT4 signaling. Mol Med Rep 2022; 26:218. [PMID: 35552758 PMCID: PMC9175273 DOI: 10.3892/mmr.2022.12734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Metformin (MET) can effectively treat endometrial hyperplasia (EH), and the expression of glucose transporter type 4 insulin-responsive (GLUT4) is closely associated with the development of EH. The present study aimed to verify the effect of MET in functional EH and polycystic ovary syndrome (PCOS). H&E staining was performed to analyze the severity of EH, and immunohistochemistry was performed to evaluate the expression of GLUT4 in the endometrium of PCOS rats. Reverse transcription-quantitative PCR was used to calculate the expression of long non-coding (lnc)RNA-maternally expressed gene 3 (MEG3), lncRNA-small nucleolar RNA host gene 20 (SNHG20), GLUT4 mRNA, microRNA (miR)-223 and miR-4486. Sequence analysis and luciferase assays were performed to explore the regulatory relationship among certain lncRNAs, miRNAs and target genes. EH in PCOS rats was efficiently inhibited by MET administration. The increased expression of GLUT4 in PCOS rats was attenuated by MET treatment. Moreover, the expression levels of lncRNA-MEG3 and lncRNA-SNHG20 were significantly inhibited in the endometrium of PCOS rats. MET treatment also showed remarkable efficiency in restoring the expression of lncRNA-MEG3 and lncRNA-SNHG20. Meanwhile, the expression levels of miR-223 and miR-4486 were notably elevated in the endometrium of PCOS rats, while MET treatment reduced the expression of miR-223 and miR-4486 in PCOS rats. Furthermore, a luciferase assay confirmed the inhibitory relationship between miR-223 and lncRNA-MEG3/GLUT4 expression, as well as between miR-4486 and lncRNA-SNHG20/GLUT4 expression. GLUT4 knockdown restored the decreased viability of HCC-94 cells induced by overexpression of lncRNA-MEG3. To conclude, MET exhibited a therapeutic effect in the treatment of EH by modulating the lncRNA-MEG3/miR-223/GLUT4 and lncRNA-SNHG20/miR-4486/GLUT4 signaling pathways. This work provides mechanistic insight into the development of EH.
Collapse
Affiliation(s)
- Jie Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yangchun Zhao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Long Chen
- PCR Laboratory, Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Ruilan Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yumei Ning
- Department of Gynecology, Zhejiang Maternal and Child Health and Reproductive Health Center, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiuzhi Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
32
|
Kangasniemi MH, Komsi EK, Rossi HR, Liakka A, Khatun M, Chen JC, Paulson M, Hirschberg AL, Arffman RK, Piltonen TT. Artificial intelligence deep learning model assessment of leukocyte counts and proliferation in endometrium from women with and without polycystic ovary syndrome. F&S SCIENCE 2022; 3:174-186. [PMID: 35560015 DOI: 10.1016/j.xfss.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To study whether artificial intelligence (AI) technology can be used to discern quantitative differences in endometrial immune cells between cycle phases and between samples from women with polycystic ovary syndrome (PCOS) and non-PCOS controls. Only a few studies have analyzed endometrial histology using AI technology, and especially, studies of the PCOS endometrium are lacking, partly because of the technically challenging analysis and unavailability of well-phenotyped samples. Novel AI technologies can overcome this problem. DESIGN Case-control study. SETTING University hospital-based research laboratory. PATIENT(S) Forty-eight women with PCOS and 43 controls. Proliferative phase samples (26 control and 23 PCOS) and luteinizing hormone (LH) surge timed LH+ 7-9 (10 control and 16 PCOS) and LH+ 10-12 (7 control and 9 PCOS) secretory endometrial samples were collected during 2014-2019. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Endometrial samples were stained with antibodies for CD8+ T cells, CD56+ uterine natural killer cells, CD68+ macrophages, and proliferation marker Ki67. Scanned whole slide images were analyzed with an AI deep learning model. Cycle phase differences in leukocyte counts, proliferation rate, and endometrial thickness were measured within the study populations and between the PCOS and control samples. A subanalysis of anovulatory PCOS samples (n = 11) vs. proliferative phase controls (n = 18) was also performed. RESULT(S) Automated cell counting with a deep learning model performs well for the human endometrium. The leukocyte numbers and proliferation in the endometrium fluctuate with the menstrual cycle. Differences in leukocyte counts were not observed between the whole PCOS population and controls. However, anovulatory women with PCOS presented with a higher number of CD68+ cells in the epithelium (controls vs. PCOS, median [interquartile range], 0.92 [0.75-1.51] vs. 1.97 [1.12-2.68]) and fewer leukocytes in the stroma (CD8%, 3.72 [2.18-4.20] vs. 1.44 [0.77-3.03]; CD56%, 6.36 [4.43-7.43] vs. 2.07 [0.65-4.99]; CD68%, 4.57 [3.92-5.70] vs. 3.07 [1.73-4.59], respectively) compared with the controls. The endometrial thickness and proliferation rate were comparable between the PCOS and control groups in all cycle phases. CONCLUSION(S) Artificial intelligence technology provides a powerful tool for endometrial research because it is objective and can efficiently analyze endometrial compartments separately. Ovulatory endometrium from women with PCOS did not differ remarkably from the controls, which may indicate that gaining ovulatory cycles normalizes the PCOS endometrium and enables normalization of leukocyte environment before implantation. Deviant endometrial leukocyte populations observed in anovulatory women with PCOS could be interrelated with the altered endometrial function observed in these women.
Collapse
Affiliation(s)
- Marika H Kangasniemi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Elina K Komsi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Henna-Riikka Rossi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Annikki Liakka
- Department of Pathology, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Masuma Khatun
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Joseph C Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California
| | - Mariana Paulson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica L Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.
| |
Collapse
|
33
|
Comparison of two endometrial preparation methods for frozen-thawed embryo transfer in anovulatory PCOS patients: impact on miscarriage rate. J Gynecol Obstet Hum Reprod 2022; 51:102399. [PMID: 35489711 DOI: 10.1016/j.jogoh.2022.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE - Some studies have suggested that patients with polycystic ovary syndrome (PCOS) are at high risk of miscarriage. However, this still remains controversial. Several potential factors might explain this association: obesity, hyperinsulinemia and hyperandrogenism. Artificial and stimulated cycles appear to be comparable for endometrial preparation in frozen-thawed embryo transfer (FET) in PCOS patients. Only a few studies have assessed miscarriage rates specifically in PCOS. We have evaluated the impact of endometrial preparation on FET outcomes in anovulatory PCOS patients. METHODS - A retrospective cohort study was conducted at the Lille University Hospital, including 255 FET cycles in 134 PCOS patients between January 2011 and December 2017. PCOS was defined by the presence of at least two of the three Rotterdam's criteria. Patients were under 35 years old. Two endometrial preparation protocol were studied: stimulated cycle (gonadotropins on the second day of the cycle and luteal phase support including natural progesterone 600 mg/day) and artificial cycle (6 mg oral estradiol valerate and 800 mg micronized vaginal progesterone daily). RESULTS - 137 FET were performed under stimulated cycle and 118 FET under artificial cycle. Early pregnancy rates (30% versus 37.3%, p = NS), miscarriage rates (22% versus 25%, p = NS) and live birth rates (23.4% versus 26.3%, p = NS) were similar. CONCLUSIONS - In anovulatory PCOS women, the type of endometrial preparation does not influence FET outcomes, specifically regarding the miscarriage rate.
Collapse
|
34
|
Yoo JY, Kim TH, Shin JH, Marquardt RM, Müller U, Fazleabas AT, Young SL, Lessey BA, Yoon HG, Jeong JW. Loss of MIG-6 results in endometrial progesterone resistance via ERBB2. Nat Commun 2022; 13:1101. [PMID: 35232969 PMCID: PMC8888616 DOI: 10.1038/s41467-022-28608-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/27/2021] [Indexed: 01/17/2023] Open
Abstract
Female subfertility is highly associated with endometriosis. Endometrial progesterone resistance is suggested as a crucial element in the development of endometrial diseases. We report that MIG-6 is downregulated in the endometrium of infertile women with endometriosis and in a non-human primate model of endometriosis. We find ERBB2 overexpression in the endometrium of uterine-specific Mig-6 knockout mice (Pgrcre/+Mig-6f/f; Mig-6d/d). To investigate the effect of ERBB2 targeting on endometrial progesterone resistance, fertility, and endometriosis, we introduce Erbb2 ablation in Mig-6d/d mice (Mig-6d/dErbb2d/d mice). The additional knockout of Erbb2 rescues all phenotypes seen in Mig-6d/d mice. Transcriptomic analysis shows that genes differentially expressed in Mig-6d/d mice revert to their normal expression in Mig-6d/dErbb2d/d mice. Together, our results demonstrate that ERBB2 overexpression in endometrium with MIG-6 deficiency causes endometrial progesterone resistance and a nonreceptive endometrium in endometriosis-related infertility, and ERBB2 targeting reverses these effects. Female subfertility is highly associated with endometriosis. Here the authors show that progesterone-induced MIG-6 is reduced in endometrium of infertile women and non-human primates with endometriosis, and in a mouse model find that Erbb2 is the key mediator of Mig-6 loss induced endometriosis-related infertility.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, Wonju, South Korea
| | - Tae Hoon Kim
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, Guro Hospital, Korea University Medical Center, Seoul, South Korea
| | - Ryan M Marquardt
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jae-Wook Jeong
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
35
|
MacLean JA, Hayashi K. Progesterone Actions and Resistance in Gynecological Disorders. Cells 2022; 11:647. [PMID: 35203298 PMCID: PMC8870180 DOI: 10.3390/cells11040647] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Estrogen and progesterone and their signaling mechanisms are tightly regulated to maintain a normal menstrual cycle and to support a successful pregnancy. The imbalance of estrogen and progesterone disrupts their complex regulatory mechanisms, leading to estrogen dominance and progesterone resistance. Gynecological diseases are heavily associated with dysregulated steroid hormones and can induce chronic pelvic pain, dysmenorrhea, dyspareunia, heavy bleeding, and infertility, which substantially impact the quality of women's lives. Because the menstrual cycle repeatably occurs during reproductive ages with dynamic changes and remodeling of reproductive-related tissues, these alterations can accumulate and induce chronic and recurrent conditions. This review focuses on faulty progesterone signaling mechanisms and cellular responses to progesterone in endometriosis, adenomyosis, leiomyoma (uterine fibroids), polycystic ovary syndrome (PCOS), and endometrial hyperplasia. We also summarize the association with gene mutations and steroid hormone regulation in disease progression as well as current hormonal therapies and the clinical consequences of progesterone resistance.
Collapse
Affiliation(s)
- James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| |
Collapse
|
36
|
He Y, Mei L, Wang L, Li X, Zhao J, Zhang H, Chen W, Wang G. Lactiplantibacillus plantarum CCFM1019 attenuate polycystic ovary syndrome through butyrate dependent gut-brain mechanism. Food Funct 2022; 13:1380-1392. [PMID: 35044398 DOI: 10.1039/d1fo01744f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder that affects women of reproductive age. The gut microbiota has been shown to play a vital role in the pathogenesis of PCOS. Agents that target microbes in the gut may be promising therapeutic strategies for PCOS. Herein, a letrozole-induced PCOS model was used to test five Lactiplantibacillus plantarum strains for their ability to alleviate PCOS symptoms and their effect on the gut-brain axis. Lp. plantarum CCFM1019 attenuated the pathological changes in the ovaries and restored testosterone and luteinising hormone levels. However, metabolic disorders induced by letrozole treatment were not significantly reversed by these strains. Meanwhile, alteration of gut microbial diversity and enrichment of the short-chain fatty acid producers Lachnospira and Ruminococcus_2 were observed after Lp. plantarum CCFM1019 intervention. Compared with letrozole-treated rats, those treated with Lp. plantarum CCFM1019 exhibited higher butyrate and polypeptide YY levels, possibly due to the regulation of G protein-coupled receptor 41 expression. These results demonstrated that Lp. plantarum CCFM1019 attenuated letrozole-induced PCOS symptoms in rats. A butyrate-dependent gut-brain mechanism may be involved in this protective effect.
Collapse
Affiliation(s)
- Yufeng He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Liya Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Luyao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| |
Collapse
|
37
|
Xue Z, Li J, Feng J, Han H, Zhao J, Zhang J, Han Y, Wu X, Zhang Y. Research Progress on the Mechanism Between Polycystic Ovary Syndrome and Abnormal Endometrium. Front Physiol 2022; 12:788772. [PMID: 34975540 PMCID: PMC8718643 DOI: 10.3389/fphys.2021.788772] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
As a highly dynamic tissue, the endometrium is periodically shed in response to the secretion of estrogen and progesterone. After menarche, the endometrium of healthy women proliferates and differentiates under the action of steroid hormones (e.g., 17β-estradiol and progesterone) that are secreted by the ovaries to provide appropriate conditions for embryo implantation. Polycystic ovary syndrome (PCOS), a prevalent endocrine and metabolic disorder in reproductive-aged women, is usually associated with multiple cysts within the ovaries and excess levels of androgen and is characterized by hirsutism, acne, menstrual irregularity, infertility, and increased risk of insulin resistance. Multiple factors, such as anovulation, endocrine-metabolic abnormalities, and inflammation, can disrupt the endometrium in PCOS patients and can lead to endometrial hyperplasia, pregnancy complications, or even cancer. Despite many recent studies, the relationship between PCOS and abnormal endometrial function is still not fully understood. In this review, we investigate the correlation of PCOS patient endometrium with anovulation, hyperandrogenemia, insulin resistance, progesterone resistance, and inflammatory cytokines, aiming to provide a theoretical basis for the treatment of disorders caused by endometrial dysfunction in PCOS patients.
Collapse
Affiliation(s)
- Zhu Xue
- The graduate school, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Juanli Li
- The graduate school, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiaxing Feng
- The graduate school, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Han Han
- The First Clinical Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Jing Zhao
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Jiao Zhang
- Department of Acupuncture and Moxibustion, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanhua Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuehui Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
38
|
Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next? ACS Pharmacol Transl Sci 2021; 4:1747-1770. [PMID: 34927008 DOI: 10.1021/acsptsci.1c00167] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is accompanied by several complications. Higher prevalence of cancers, cardiovascular diseases, chronic kidney disease (CKD), obesity, osteoporosis, and neurodegenerative diseases has been reported among patients with diabetes. Metformin is the oldest oral antidiabetic drug and can improve coexisting complications of diabetes. Clinical trials and observational studies uncovered that metformin can remarkably prevent or alleviate cardiovascular diseases, obesity, polycystic ovarian syndrome (PCOS), osteoporosis, cancer, periodontitis, neuronal damage and neurodegenerative diseases, inflammation, inflammatory bowel disease (IBD), tuberculosis, and COVID-19. In addition, metformin has been proposed as an antiaging agent. Numerous mechanisms were shown to be involved in the protective effects of metformin. Metformin activates the LKB1/AMPK pathway to interact with several intracellular signaling pathways and molecular mechanisms. The drug modifies the biologic function of NF-κB, PI3K/AKT/mTOR, SIRT1/PGC-1α, NLRP3, ERK, P38 MAPK, Wnt/β-catenin, Nrf2, JNK, and other major molecules in the intracellular signaling network. It also regulates the expression of noncoding RNAs. Thereby, metformin can regulate metabolism, growth, proliferation, inflammation, tumorigenesis, and senescence. Additionally, metformin modulates immune response, autophagy, mitophagy, endoplasmic reticulum (ER) stress, and apoptosis and exerts epigenetic effects. Furthermore, metformin protects against oxidative stress and genomic instability, preserves telomere length, and prevents stem cell exhaustion. In this review, the protective effects of metformin on each disease will be discussed using the results of recent meta-analyses, clinical trials, and observational studies. Thereafter, it will be meticulously explained how metformin reprograms intracellular signaling pathways and alters molecular and cellular interactions to modify the clinical presentations of several diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), 1416753955 Tehran, Iran
| | - Mahan Ala
- School of Dentistry, Golestan University of Medical Sciences (GUMS), 4814565589 Golestan, Iran
| |
Collapse
|
39
|
Koninckx PR, Ussia A, Adamyan L, Gomel V, Martin DC. Peritoneal fluid progesterone and progesterone resistance in superficial endometriosis lesions. Hum Reprod 2021; 37:203-211. [PMID: 34849906 DOI: 10.1093/humrep/deab258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
Peritoneal fluid in ovulatory women is an ovarian exudate with higher estrogen and progesterone concentrations than in plasma. In the follicular phase, progesterone concentrations are as high as plasma concentrations in the luteal phase. After ovulation, estrogen and progesterone concentrations in the peritoneal fluid are 5-10 times higher than in plasma, both in women with and without endometriosis. The histologically proliferative aspect without secretory changes of most superficial subtle lesions is not compatible with the progesterone concentrations in the peritoneal fluid. Therefore, we have to postulate a strong progesterone resistance in these lesions. The mechanism is unclear and might be a peritoneal fluid effect in women with predisposing defects in the endometrium, or isolated endometrial glands with progesterone resistance, or subtle lesions originating from the basal endometrium: the latter hypothesis is attractive since in basal endometrium progesterone does not induce secretory changes while progesterone withdrawal, not occurring in peritoneal fluid, is required to resume mitotic activity and proliferation. Hormone concentrations in the peritoneal fluid are an important factor in understanding the medical therapy of endometriosis. The effect of oestro-progestin therapy on superficial endometriosis lesions seems to be a consequence of the decreased estrogen concentrations rather than a direct progestin effect. In conclusion, the peritoneal fluid, being a secretion product of the ovarian follicule, deserves more attention in the pathophysiology and treatment of endometriosis.
Collapse
Affiliation(s)
- Philippe R Koninckx
- Obstetrics and Gynecology, Latifa Hospital, Dubai, United Arab Emirates.,Prof Emeritus OBGYN, KULeuven, Leuven, Belgium.,University of Oxford-Hon Consultant, Obstetrics and Gynaecology, Oxford, UK.,Gemelli hospitals, Obstetrics and Gynecology, University Cattolica, Roma, Italy.,Moscow State University, Obstetrics and gynecology, Moscow, Russia.,Gruppo Italo Belga, Obstetrics and Gynecology, Villa Del Rosario Rome, Rome, Italy
| | - Anastasia Ussia
- Gemelli hospitals, Obstetrics and Gynecology, University Cattolica, Roma, Italy.,Gruppo Italo Belga, Obstetrics and Gynecology, Villa Del Rosario Rome, Rome, Italy
| | - Leila Adamyan
- Department of Operative Gynecology, Federal State Budget Institution V. I. Kulakov Research Centre for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia; Department of Reproductive Medicine and Surgery, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Victor Gomel
- Department of Obstetrics and Gynecology, University of British Columbia, Women's Hospital, Vancouver, British Columbia, Canada
| | - Dan C Martin
- Professor Emeritus, University of Tennessee Health Science Centre, Memphis, TN, USA.,Institutional Review Board, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
40
|
Hu M, Zhang Y, Ma S, Li J, Wang X, Liang M, Sferruzzi-Perri AN, Wu X, Ma H, Brännström M, Shao LR, Billig H. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome. Mol Hum Reprod 2021; 27:gaab067. [PMID: 34850077 DOI: 10.1093/molehr/gaab067] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
The mechanisms that link hyperandrogenism and insulin (INS) resistance (HAIR) to the increased miscarriage rate in women with polycystic ovary syndrome (PCOS) remain elusive. Previous studies demonstrate that increased uterine and placental ferroptosis is associated with oxidative stress-induced fetal loss in a pre-clinical PCOS-like rat model. Here, we investigated the efficacy and molecular mechanism of action of the antioxidant N-acetylcysteine (NAC) in reversing gravid uterine and placental ferroptosis in pregnant rats exposed to 5α-dihydrotestosterone (DHT) and INS. Molecular and histological analyses showed that NAC attenuated DHT and INS-induced uterine ferroptosis, including dose-dependent increases in anti-ferroptosis gene content. Changes in other molecular factors after NAC treatment were also observed in the placenta exposed to DHT and INS, such as increased glutathione peroxidase 4 protein level. Furthermore, increased apoptosis-inducing factor mitochondria-associated 2 mRNA expression was seen in the placenta but not in the uterus. Additionally, NAC was not sufficient to rescue DHT + INS-induced mitochondria-morphological abnormalities in the uterus, whereas the same treatment partially reversed such abnormalities in the placenta. Finally, we demonstrated that NAC selectively normalized uterine leukemia inhibitory factor, osteopontin/secreted phosphoprotein 1, progesterone receptor, homeobox A11 mRNA expression and placental estrogen-related receptor beta and trophoblast-specific protein alpha mRNA expression. Collectively, our data provide insight into how NAC exerts beneficial effects on differentially attenuating gravid uterine and placental ferroptosis in a PCOS-like rat model with fetal loss. These results indicate that exogenous administration of NAC represents a potential therapeutic strategy in the treatment of HAIR-induced uterine and placental dysfunction.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuting Ma
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Juanli Li
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengmeng Liang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Bai X, Zheng L, Li D, Xu Y. Research progress of endometrial receptivity in patients with polycystic ovary syndrome: a systematic review. Reprod Biol Endocrinol 2021; 19:122. [PMID: 34362377 PMCID: PMC8344130 DOI: 10.1186/s12958-021-00802-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a neuroendocrine heterogeneous disease that frequently occurs in women of reproductive age, causing serious damage to the fertility, quality of life, and physical and mental health of patients. The current studies have proved that satisfactory endometrial receptivity is one of the conditions that must be met during the process of spermatovum position, adhesion and invasion, as well as the subsequent blastocyst division and embryo development. Women with PCOS may suffer a series of pathological processes such as changes in the expression levels of hormones and related receptors, imbalances in the proportion of miscellaneous cytokines, insulin resistance, low-grade chronic inflammation and endometrial morphological changes, which will damage endometrial receptivity from various aspects and obstruct fertilized egg nidation and embryonic development, thus causing adverse reproductive health events including infertility and abortion. This article reviews the research progress about characteristics and related influencing factors of endometrial receptivity in PCOS patients.
Collapse
Affiliation(s)
- Xuechun Bai
- The Second Hospital of Jilin University, Jilin Province Changchun City, China
| | - Lianwen Zheng
- The Second Hospital of Jilin University, Jilin Province Changchun City, China
| | - Dandan Li
- The Second Hospital of Jilin University, Jilin Province Changchun City, China
| | - Ying Xu
- The Second Hospital of Jilin University, Jilin Province Changchun City, China
| |
Collapse
|
42
|
Ayas B, Kırmızıkan S, Kocaman A, Avcı B. The effects of metformin treatment on the ovaries and uterus of offspring. Gynecol Endocrinol 2021; 37:624-628. [PMID: 32930027 DOI: 10.1080/09513590.2020.1819002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE The aim of this study is to investigate the effects of metformin treatment at different dosage levels on the ovaries and uteruses of rat offspring in the course of the intrauterine period. METHODS Saline, metformin (100 mg/kg/day), and metformin (200 mg/kg/day) were administered via oral gavage between the 6th and 15th days of gestation to the 9 pregnant rats (n = 3/group). After birth, 5 female offspring were separated from each group and perfused on the 60th day of postnatal development. The cortex and medulla volumes of the ovaries, the thicknesses of epithelium and endometrium of the uteruses and the total oocyte number density were estimated. In addition, the estradiol levels in blood samples were measured by the ELISA method. RESULTS There were no statistically significant differences among the groups regarding the number of oocytes, the volumes of ovarian cortex, medulla, primary and secondary follicles (p > .05). In comparison with the control group, the volume of the tertiary follicle, the thickness of the uterus epithelium, and the estradiol level were significantly decreased in Metformin 200 group (p < .05). CONCLUSIONS The gestational exposure to high dose metformin may result in decreased estradiol production and subsequently decreased endometrial thickness of offspring rats.
Collapse
Affiliation(s)
- Bülent Ayas
- Faculty of Medicine, Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| | - Seda Kırmızıkan
- Faculty of Medicine, Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| | - Adem Kocaman
- Faculty of Medicine, Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avcı
- Faculty of Medicine, Department of Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
43
|
Dinsdale NL, Crespi BJ. Endometriosis and polycystic ovary syndrome are diametric disorders. Evol Appl 2021; 14:1693-1715. [PMID: 34295358 PMCID: PMC8288001 DOI: 10.1111/eva.13244] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/15/2022] Open
Abstract
Evolutionary and comparative approaches can yield novel insights into human adaptation and disease. Endometriosis and polycystic ovary syndrome (PCOS) each affect up to 10% of women and significantly reduce the health, fertility, and quality of life of those affected. PCOS and endometriosis have yet to be considered as related to one another, although both conditions involve alterations to prenatal testosterone levels and atypical functioning of the hypothalamic-pituitary-gonadal (HPG) axis. Here, we propose and evaluate the novel hypothesis that endometriosis and PCOS represent extreme and diametric (opposite) outcomes of variation in HPG axis development and activity, with endometriosis mediated in notable part by low prenatal and postnatal testosterone, while PCOS is mediated by high prenatal testosterone. This diametric disorder hypothesis predicts that, for characteristics shaped by the HPG axis, including hormonal profiles, reproductive physiology, life-history traits, and body morphology, women with PCOS and women with endometriosis will manifest opposite phenotypes. To evaluate these predictions, we review and synthesize existing evidence from developmental biology, endocrinology, physiology, life history, and epidemiology. The hypothesis of diametric phenotypes between endometriosis and PCOS is strongly supported across these diverse fields of research. Furthermore, the contrasts between endometriosis and PCOS in humans parallel differences among nonhuman animals in effects of low versus high prenatal testosterone on female reproductive traits. These findings suggest that PCOS and endometriosis represent maladaptive extremes of both female life-history variation and expression of sexually dimorphic female reproductive traits. The diametric disorder hypothesis for endometriosis and PCOS provides novel, unifying, proximate, and evolutionary explanations for endometriosis risk, synthesizes diverse lines of research concerning the two most common female reproductive disorders, and generates future avenues of research for improving the quality of life and health of women.
Collapse
Affiliation(s)
| | - Bernard J. Crespi
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
44
|
Zhang Y, Hu M, Yang F, Zhang Y, Ma S, Zhang D, Wang X, Sferruzzi-Perri AN, Wu X, Brännström M, Shao LR, Billig H. Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. J Mol Med (Berl) 2021; 99:1427-1446. [PMID: 34180022 PMCID: PMC8455403 DOI: 10.1007/s00109-021-02104-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
Abstract In this study, we show that during normal rat pregnancy, there is a gestational stage-dependent decrease in androgen receptor (AR) abundance in the gravid uterus and that this is correlated with the differential expression of endometrial receptivity and decidualization genes during early and mid-gestation. In contrast, exposure to 5α-dihydrotestosterone (DHT) and insulin (INS) or DHT alone significantly increased AR protein levels in the uterus in association with the aberrant expression of endometrial receptivity and decidualization genes, as well as disrupted implantation. Next, we assessed the functional relevance of the androgen-AR axis in the uterus for reproductive outcomes by treating normal pregnant rats and pregnant rats exposed to DHT and INS with the anti-androgen flutamide. We found that AR blockage using flutamide largely attenuated the DHT and INS-induced maternal endocrine, metabolic, and fertility impairments in pregnant rats in association with suppressed induction of uterine AR protein abundance and androgen-regulated response protein and normalized expression of several endometrial receptivity and decidualization genes. Further, blockade of AR normalized the expression of the mitochondrial biogenesis marker Nrf1 and the mitochondrial functional proteins Complexes I and II, VDAC, and PHB1. However, flutamide treatment did not rescue the compromised mitochondrial structure resulting from co-exposure to DHT and INS. These results demonstrate that functional AR protein is an important factor for gravid uterine function. Impairments in the uterine androgen-AR axis are accompanied by decreased endometrial receptivity, decidualization, and mitochondrial dysfunction, which might contribute to abnormal implantation in pregnant PCOS patients with compromised pregnancy outcomes and subfertility. Key messages The proper regulation of uterine androgen receptor (AR) contributes to a
normal pregnancy process, whereas the aberrant regulation of uterine AR might
be linked to polycystic ovary syndrome (PCOS)-induced pregnancy-related
complications. In the current study, we found that during normal rat pregnancy there is
a stage-dependent decrease in AR abundance in the gravid uterus and that this
is correlated with the differential expression of the endometrial receptivity
and decidualization genes Spp1, Prl, Igfbp1,
and Hbegf. Pregnant rats exposed to 5α-dihydrotestosterone (DHT) and insulin (INS)
or to DHT alone show elevated uterine AR protein abundance and implantation
failure related to the aberrant expression of genes involved in endometrial
receptivity and decidualization in early to mid-gestation. Treatment with the anti-androgen flutamide, starting from
pre-implantation, effectively prevents DHT + INS-induced defects in endometrial
receptivity and decidualization gene expression, restores uterine mitochondrial
homeostasis, and increases the pregnancy rate and the numbers of viable
fetuses. This study adds to our understanding of the mechanisms underlying poor
pregnancy outcomes in PCOS patients and the possible therapeutic use of
anti-androgens, including flutamide, after spontaneous conception.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02104-z.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, 510120, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yizhuo Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuting Ma
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Dongqi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| |
Collapse
|
45
|
Zhang Z, Sang M, Liu S, Shao J, Cai Y. Differential expression of long non-coding RNA Regulator of reprogramming and its molecular mechanisms in polycystic ovary syndrome. J Ovarian Res 2021; 14:79. [PMID: 34148561 PMCID: PMC8215827 DOI: 10.1186/s13048-021-00829-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common endocrine disease in women of reproductive age. Multiple studies have shown that long non-coding RNAs (lncRNA) and microRNAs (miRNA) play a role in PCOS. This study aimed to explore the role and molecular mechanism of lncRNA -Regulator of reprogramming (lncROR) in PCOS. Results Expression level of lncROR in PCOS patients was up-regulated, while level of miR-206 was down-regulated in comparison with control group (P < 0.001). Logistics regression analysis showed that lncROR and miR-206 were independent predictors of PCOS. The ROC curve showed that lncROR had a high diagnostic value for PCOS with an AUC value of 0.893. Pearson correlation coefficient indicated that the expression level of miR-206 was negatively correlated with the level of lncROR. CCK-8 assay and apoptosis assay revealed that downregulation of lncROR up-regulated the expression of miR-206, thereby inhibiting cell proliferation and promoting cell apoptosis. However, silencing the expression of miR-206 reversed the above effects caused by down-regulation of lncROR expression. Luciferase reporter gene assay suggested that there was a target relationship between lncROR and miR-206. VEGF was proved to be the target gene of miR-206. Conclusions Highly expressed lncROR indirectly up-regulated the expression of VEGF by down-regulating the expression of miR-206, thereby promoting the proliferation of KGN cells and inhibiting apoptosis, and further promoting the development of PCOS.
Collapse
Affiliation(s)
- Zhihong Zhang
- Department of Obstetrics and Gynecology, General Hospital of Daqing Oilfield, Daqing, 163000, Heilongjiang, China
| | - Min Sang
- Gynecology Clinic, The First Hospital of Harbin, No.151 Diduan Street, Heilongjiang, 150010, Harbin, China.
| | - Siqin Liu
- Laboratory Department, General Hospital of Daqing Oilfield, Daqing, 163000, Heilongjiang, China
| | - Jing Shao
- Department of Obstetrics and Gynecology, General Hospital of Daqing Oilfield, Daqing, 163000, Heilongjiang, China
| | - Yunjiang Cai
- Department of Psychology, Harbin Medical Univercity (Daqing), Daqing, 163319, Heilongjiang, China
| |
Collapse
|
46
|
Ohara M, Yoshida-Komiya H, Ono-Okutsu M, Yamaguchi-Ito A, Takahashi T, Fujimori K. Metformin reduces androgen receptor and upregulates homeobox A10 expression in uterine endometrium in women with polycystic ovary syndrome. Reprod Biol Endocrinol 2021; 19:77. [PMID: 34053455 PMCID: PMC8165781 DOI: 10.1186/s12958-021-00765-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) causes anovulation and is associated with a reduced clinical pregnancy rate. Metformin, which is widely used for treating PCOS, can lead to successful pregnancy by restoring the ovulation cycle and possibly improving endometrial abnormality during the implantation period. However, the mechanism by which metformin improves endometrial abnormality remains unknown. Women with PCOS have an aberrant expression of steroid hormone receptors and homeobox A10 (HOXA10), which is essential for embryo implantation in the endometrium. METHODS In this study, we examined whether metformin affects androgen receptor (AR) and HOXA10 expression in PCOS endometrium in vivo and in human endometrial cell lines in vitro. Expression of AR and HOXA10 was evaluated by immunohistochemistry, fluorescent immunocytochemistry, and western blot analysis. RESULTS AR expression was localized in both epithelial and stromal cells; however, HOXA10 expression was limited to only stromal cells in this study. In women with PCOS, 3 months after metformin treatment, the expression of AR was reduced in epithelial and stromal cells in comparison to their levels before treatment. In contrast, HOXA10 expression in the stromal cells with metformin treatment increased in comparison to its level before treatment. Further, we showed that metformin counteracted the testosterone-induced AR expression in both Ishikawa cells and human endometrial stromal cells (HESCs); whereas, metformin partly restored the testosterone-reduced HOXA10 expression in HESCs in vitro. CONCLUSIONS Our results suggest that metformin may have a direct effect on the abnormal endometrial environment of androgen excess in women with PCOS. TRIAL REGISTRATION The study was approved by the Ethical Committee of Fukushima Medical University (approval no. 504, approval date. July 6, 2006), and written informed consent was obtained from all patients. https://www.fmu.ac.jp/univ/sangaku/rinri.html.
Collapse
Affiliation(s)
- Miki Ohara
- Department of Obstetrics and Gynecology, Fukushima Medical University, School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hiromi Yoshida-Komiya
- Center for Gender Specific Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Miho Ono-Okutsu
- Department of Obstetrics and Gynecology, Fukushima Medical University, School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Akiko Yamaguchi-Ito
- Department of Obstetrics and Gynecology, Fukushima Medical University, School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Toshifumi Takahashi
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| |
Collapse
|
47
|
He Y, Wang Q, Li X, Wang G, Zhao J, Zhang H, Chen W. Lactic acid bacteria alleviate polycystic ovarian syndrome by regulating sex hormone related gut microbiota. Food Funct 2021; 11:5192-5204. [PMID: 32441726 DOI: 10.1039/c9fo02554e] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a common endocrine disease across the world. Because gut microbiota play a key role in the pathogenesis of PCOS, probiotics may alleviate PCOS symptoms through the regulation of intestinal flora. The effects of 8 lactic acid bacterial strains on PCOS were investigated. Letrozole was used to produce a PCOS rat model and a 4-week-strain-intervention was performed. Diane-35, as a clinical PCOS treatment medicine, was effective in attenuating rats' reproductive disorders. Lactobacillus plantarum HL2 was protective against ovary pathological changes and restored luteinizing hormone, follicle stimulating hormone and testosterone levels. Bifidobacterium longum HB3 also alleviated ovary abnormalities and decreased testosterone levels. Administration of lactic acid bacteria up-regulated short-chain fatty acid levels. Based on 16S rRNA sequencing, lactic acid bacteria improved letrozole induced gut microbiota dysbiosis with different degrees. Akkermansia, Roseburia, Prevotella, Staphylococcus and Lactobacillus genera were correlated with sex hormone levels. Some of the sex hormone-related gut microbiota were restored by treatment with the strains. These results demonstrated that lactic acid bacteria alleviated PCOS in a rat model by regulating sex hormone related gut microbiota. Modifying gut microbiota by probiotic interventions may thus be a promising therapeutic option for PCOS.
Collapse
Affiliation(s)
- Yufeng He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qianqian Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xiu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China and International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, PR China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China and Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| |
Collapse
|
48
|
Wang L, Luo X, Wang Q, Lv Q, Wu P, Liu W, Chen X. Fertility-preserving treatment outcome in endometrial cancer or atypical hyperplasia patients with polycystic ovary syndrome. J Gynecol Oncol 2021; 32:e70. [PMID: 34132069 PMCID: PMC8362812 DOI: 10.3802/jgo.2021.32.e70] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Objective This study aimed to investigate the impact of polycystic ovary syndrome (PCOS) on fertility-sparing treatment in young patients with atypical endometrial hyperplasia (AEH) or endometrioid endometrial cancer (EEC). Methods A total of 285 patients with EEC (n=76, FIGO stage IA, without myometrium invasion) or AEH (n=209) who received progestin-based fertility-sparing treatment were evaluated retrospectively. Among the 285 patients, 103 (36.1%), including 70 AEH cases and 33 EEC cases, were diagnosed with PCOS. General characteristics, cumulative 16- and 32-week complete response (CR) rate, pregnancy outcome and recurrence were compared between patients with or without PCOS. Results The cumulative 16-week CR rate was lower in the PCOS group than in the non-PCOS group (18.4% vs. 33.8%, p=0.006). Patients with PCOS took longer treatment duration to achieve CR (7.0 months vs. 5.4 months, p=0.006) and shorter time to relapse after CR (9.6 months vs. 17.6 months, p=0.040) compared with non-PCOS group. After adjusting for patient age, body mass index, PCOS, homeostasis model assessment-insulin resistance index, and serum testosterone levels, we found that body mass index ≥25 kg/m2 (HR=0.583; 95% CI=0.365–0.932; p=0.024) and PCOS (HR=0.545; 95% CI=0.324–0.917; p=0.022) were significantly correlated with lower 16-week CR rate. Conclusion PCOS was associated with lower 16-week CR rate, longer treatment duration and shorter recurrence interval in patients with AEH or EEC receiving fertility-preserving treatment.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xuezhen Luo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Qian Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qiaoying Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Pengfei Wu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wei Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
49
|
Nikolakopoulou K, Turco MY. Investigation of infertility using endometrial organoids. Reproduction 2021; 161:R113-R127. [PMID: 33621191 PMCID: PMC8052517 DOI: 10.1530/rep-20-0428] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/23/2021] [Indexed: 12/27/2022]
Abstract
Infertility is a common problem in modern societies with significant socio-psychological implications for women. Therapeutic interventions are often needed which, depending on the cause, can either be medical treatment, surgical procedures or assisted reproductive technology (ART). However, the treatment of infertility is not always successful due to our limited understanding of the preparation of the lining of the uterus, the endometrium, for pregnancy. The endometrium is of central importance for successful reproduction as it is the site of placental implantation providing the interface between the mother and her baby. Due to the dynamic, structural and functional changes the endometrium undergoes throughout the menstrual cycle, it is challenging to study. A major advancement is the establishment of 3D organoid models of the human endometrium to study this dynamic tissue in health and disease. In this review, we describe the changes that the human endometrium undergoes through the different phases of the menstrual cycle in preparation for pregnancy. We discuss defects in the processes of endometrial repair, decidualization and acquisition of receptivity that are associated with infertility. Organoids could be utilized to investigate the underlying cellular and molecular mechanisms occurring in non-pregnant endometrium and early pregnancy. These studies may lead to therapeutic applications that could transform the treatment of reproductive failure.
Collapse
Affiliation(s)
- Konstantina Nikolakopoulou
- Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| |
Collapse
|
50
|
Hu M, Zhang Y, Li X, Cui P, Sferruzzi-Perri AN, Brännström M, Shao LR, Billig H. TLR4-Associated IRF-7 and NFκB Signaling Act as a Molecular Link Between Androgen and Metformin Activities and Cytokine Synthesis in the PCOS Endometrium. J Clin Endocrinol Metab 2021; 106:1022-1040. [PMID: 33382900 DOI: 10.1210/clinem/dgaa951] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/19/2022]
Abstract
CONTEXT Low-grade chronic inflammation is commonly seen in polycystic ovary syndrome (PCOS) patients with elevated levels of inflammatory cytokines in the endometrium. OBJECTIVE This work aimed to increase the limited understanding of the mechanisms underlying cytokine synthesis and increased endometrial inflammation in PCOS patients. METHODS Endometrial biopsy samples were collected from non-PCOS (n = 17) and PCOS (n = 22) patients either during the proliferative phase of the menstrual cycle or with hyperplasia. Endometrial explants were prepared from PCOS patients and underwent pharmacological manipulation in vitro. The expression and localization of toll-like receptor 2 (TLR2)/4, key elements of innate immune signal transduction and nuclear factor κB (NFκB) signaling pathways, and multiple cytokines were comprehensively evaluated by Western blotting, immunohistochemistry, and immunofluorescence in endometrial tissues. RESULTS We demonstrated the distribution of protein expression and localization associated with the significantly increased androgen receptor, TLR2, and TLR4-mediated activation of interferon regulatory factor-7 (IRF-7) and NFκB signaling, cytokine production, and endometrial inflammation in PCOS patients compared to non-PCOS patients with and without endometrial hyperplasia. In vitro experiments showed that 5-dihydrotestosterone (DHT) enhanced androgen receptor, TLR4, IRF-7, and p-NFκB p65 protein expression along with increased interferon α (IFNα) and IFNɣ abundance. The effects of DHT on IRF-7, p-NFκB p65, and IFN abundance were abolished by flutamide, an antiandrogen. Although 17β-estradiol (E2) decreased p-IRF-7 expression with little effect on TLR-mediated IRF7 and NFκB signaling or on cytokine protein levels, exposure to metformin alone or in combination with E2 suppressed interleukin-1 receptor-associated kinase 4 (IRAK4), p-IRF-7, IRF-7, IκB kinase α (IKKα), p-NFκB p65, IFNɣ, and tumor necrosis factor α protein expression. CONCLUSION Cytokine synthesis and increased endometrial inflammation in PCOS patients are coupled to androgen-induced TLR4/IRF-7/NFκB signaling, which is inhibited by metformin treatment.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|