1
|
Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS, Varricchi G, Lambrecht BN, Marone G. Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol 2025:S1933-0219(25)00029-7. [PMID: 40154790 DOI: 10.1016/j.mucimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Our understanding of the airway epithelium's role in driving asthma pathogenesis has evolved over time. From being regarded primarily as a physical barrier that could be damaged via inflammation, the epithelium is now known to actively contribute to asthma development through interactions with the immune system. The airway epithelium contains multiple cell types with specialized functions spanning barrier action, mucociliary clearance, immune cell recruitment, and maintenance of tissue homeostasis. Environmental insults may cause direct or indirect injury to the epithelium leading to impaired barrier function, epithelial remodelling, and increased release of inflammatory mediators. In severe asthma, the epithelial barrier repair process is inhibited and the response to insults is exaggerated, driving downstream inflammation. Genetic and epigenetic mechanisms also maintain dysregulation of the epithelial barrier, adding to disease chronicity. Here, we review the role of the airway epithelium in severe asthma and how targeting the epithelium can contribute to asthma treatment.
Collapse
Affiliation(s)
- Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Bart N Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
2
|
Matera MG, Ora J, Calzetta L, Rogliani P, Cazzola M. Biologics for asthma and risk of pneumonia. J Asthma 2024; 61:905-911. [PMID: 38294705 DOI: 10.1080/02770903.2024.2311236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Modification of the immune system with biologics raises theoretical concerns about the risk of infections but it is still unclear whether currently routinely used biologics in severe asthma may facilitate the development of pneumonia. Therefore, we aimed to determine whether omalizumab, mepolizumab, benralizumab, and dupilumab are associated with pneumonia in a real-world setting. METHODS A retrospective disproportionality analysis was performed using adverse event (AE) reports submitted to FAERS from January 2020 to September 30, 2023. MedDRA was used to identify infections and infestations and then pneumonia cases. ROR and PRR were used to measure disproportionality. RESULTS The percentage of reported cases of pneumonia compared to infections and infestations was highest for mepolizumab (36.8%), followed by omalizumab (32.6%), benralizumab (19.2%) and dupilumab (5.7%). We found a moderate or strong signal for increased risk of pneumonia with mepolizumab (ROR = 3.74, 95%CI 3.50-4.00), omalizumab (ROR = 3.26, 95%CI 3.06-3.49) and benralizumab (ROR = 2.65, 95%CI 2.49-2.83). CONCLUSIONS Mepolizumab, omalizumab and benralizumab, but not dupilumab, were associated with high odds of reporting pneumonia. Our results represent only potential associations between these biologics and pneumonia but not causality. The nature of the FAERS database is such that the cause of the reported events is uncertain. Therefore, we can only roughly estimate the incidence of AEs by the signal strength (ROR value). Nevertheless, although causality could not be assessed, the signal from our study is interesting. We believe it deserves to be further substantiated by real-world studies with robust designs.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital "Fondazione Policlinico Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Division of Respiratory Medicine, University Hospital "Fondazione Policlinico Tor Vergata", Rome, Italy
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
3
|
Gao S, Zheng K, Lou J, Wu Y, Yu F, Weng Q, Wu Y, Li M, Zhu C, Qin Z, Jia R, Ying S, Shen H, Chen Z, Li W. Macrophage Extracellular Traps Suppress Particulate Matter-Induced Airway Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1622-1635. [PMID: 38897538 DOI: 10.1016/j.ajpath.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Accumulating evidence has substantiated the potential of ambient particulate matter (PM) to elicit detrimental health consequences in the respiratory system, notably airway inflammation. Macrophages, a pivotal component of the innate immune system, assume a crucial function in responding to exogenous agents. However, the roles and detailed mechanisms in regulating PM-induced airway inflammation remain unclear. The current study revealed that PM had the ability to stimulate the formation of macrophage extracellular traps (METs) both in vitro and in vivo. This effect was dependent on peptidylarginine deiminase type 4 (PAD4)-mediated histone citrullination. Additionally, reactive oxygen species were involved in the formation of PM-induced METs, in parallel with PAD4. Genetic deletion of PAD4 in macrophages resulted in an up-regulation of inflammatory cytokine expression. Moreover, mice with PAD4-specific knockout in myeloid cells exhibited exacerbated PM-induced airway inflammation. Mechanistically, inhibition of METs suppressed the phagocytic ability in macrophages, leading to airway epithelial injuries and an aggravated PM-induced airway inflammation. The present study demonstrates that METs play a crucial role in promoting the phagocytosis and clearance of PM by macrophages, thereby suppressing airway inflammation. Furthermore, it suggests that activation of METs may represent a novel therapeutic strategy for PM-related airway disorders.
Collapse
Affiliation(s)
- Shenwei Gao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kua Zheng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafei Lou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fangyi Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongnan Qin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruixin Jia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; State Key Lab of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Gai J, Liu L, Zhang X, Guan J, Mao S. Impact of the diseased lung microenvironment on the in vivo fate of inhaled particles. Drug Discov Today 2024; 29:104019. [PMID: 38729235 DOI: 10.1016/j.drudis.2024.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Inhalation drug delivery is superior for local lung disease therapy. However, there are several unique absorption barriers for inhaled drugs to overcome, including limited drug deposition at the target site, mucociliary clearance, pulmonary macrophage phagocytosis, and systemic exposure. Moreover, the respiratory disease state can affect or even destroy the physiology of the lung, thus influencing the in vivo fate of inhaled particles compared with that in healthy lungs. Nevertheless, limited information is available on this effect. Thus, in this review, we present pathological changes of the lung microenvironment under varied respiratory diseases and their influence on the in vivo fate of inhaled particles; such insights could provide a basis for rational inhalation particle design based on specific disease states.
Collapse
Affiliation(s)
- Jiayi Gai
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liu Liu
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
5
|
Wang Y, Huang X, Luo G, Xu Y, Deng X, Lin Y, Wang Z, Zhou S, Wang S, Chen H, Tao T, He L, Yang L, Yang L, Chen Y, Jin Z, He C, Han Z, Zhang X. The aging lung: microenvironment, mechanisms, and diseases. Front Immunol 2024; 15:1383503. [PMID: 38756780 PMCID: PMC11096524 DOI: 10.3389/fimmu.2024.1383503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
With the development of global social economy and the deepening of the aging population, diseases related to aging have received increasing attention. The pathogenesis of many respiratory diseases remains unclear, and lung aging is an independent risk factor for respiratory diseases. The aging mechanism of the lung may be involved in the occurrence and development of respiratory diseases. Aging-induced immune, oxidative stress, inflammation, and telomere changes can directly induce and promote the occurrence and development of lung aging. Meanwhile, the occurrence of lung aging also further aggravates the immune stress and inflammatory response of respiratory diseases; the two mutually affect each other and promote the development of respiratory diseases. Explaining the mechanism and treatment direction of these respiratory diseases from the perspective of lung aging will be a new idea and research field. This review summarizes the changes in pulmonary microenvironment, metabolic mechanisms, and the progression of respiratory diseases associated with aging.
Collapse
Affiliation(s)
- Yanmei Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunying Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiqian Deng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Tao
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Lei He
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Luchuan Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Li Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Chengshi He
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Zhang
- Department of Emergency Medicine Center, Sichuan Province People’s Hospital University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Versi A, Ivan FX, Abdel-Aziz MI, Bates S, Riley J, Baribaud F, Kermani NZ, Montuschi P, Dahlen SE, Djukanovic R, Sterk P, Maitland-Van Der Zee AH, Chotirmall SH, Howarth P, Adcock IM, Chung KF. Haemophilus influenzae and Moraxella catarrhalis in sputum of severe asthma with inflammasome and neutrophil activation. Allergy 2023; 78:2906-2920. [PMID: 37287344 DOI: 10.1111/all.15776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Because of altered airway microbiome in asthma, we analysed the bacterial species in sputum of patients with severe asthma. METHODS Whole genome sequencing was performed on induced sputum from non-smoking (SAn) and current or ex-smoker (SAs/ex) severe asthma patients, mild/moderate asthma (MMA) and healthy controls (HC). Data were analysed by asthma severity, inflammatory status and transcriptome-associated clusters (TACs). RESULTS α-diversity at the species level was lower in SAn and SAs/ex, with an increase in Haemophilus influenzae and Moraxella catarrhalis, and Haemophilus influenzae and Tropheryma whipplei, respectively, compared to HC. In neutrophilic asthma, there was greater abundance of Haemophilus influenzae and Moraxella catarrhalis and in eosinophilic asthma, Tropheryma whipplei was increased. There was a reduction in α-diversity in TAC1 and TAC2 that expressed high levels of Haemophilus influenzae and Tropheryma whipplei, and Haemophilus influenzae and Moraxella catarrhalis, respectively, compared to HC. Sputum neutrophils correlated positively with Moraxella catarrhalis and negatively with Prevotella, Neisseria and Veillonella species and Haemophilus parainfluenzae. Sputum eosinophils correlated positively with Tropheryma whipplei which correlated with pack-years of smoking. α- and β-diversities were stable at one year. CONCLUSIONS Haemophilus influenzae and Moraxella catarrhalis were more abundant in severe neutrophilic asthma and TAC2 linked to inflammasome and neutrophil activation, while Haemophilus influenzae and Tropheryma whipplei were highest in SAs/ex and in TAC1 associated with highest expression of IL-13 type 2 and ILC2 signatures with the abundance of Tropheryma whipplei correlating positively with sputum eosinophils. Whether these bacterial species drive the inflammatory response in asthma needs evaluation.
Collapse
Affiliation(s)
- Ali Versi
- National Heart & Lung Institute & Data Science Institute, Imperial College London, London, UK
| | | | - Mahmoud I Abdel-Aziz
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | | | - John Riley
- Respiratory Therapeutic Unit, GSK, Brentford, UK
| | | | | | - Paolo Montuschi
- Department of Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | - Sven-Erik Dahlen
- Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | - Ratko Djukanovic
- Faculty of Medicine, Southampton University, Southampton, UK
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - Peter Sterk
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Anke H Maitland-Van Der Zee
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Peter Howarth
- Faculty of Medicine, Southampton University, Southampton, UK
| | - Ian M Adcock
- National Heart & Lung Institute & Data Science Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- National Heart & Lung Institute & Data Science Institute, Imperial College London, London, UK
| |
Collapse
|
7
|
Wu D, Wang Y, Hu J, Xu Y, Gong D, Wu P, Dong J, He B, Qian H, Wang G. Rab26 promotes macrophage phagocytosis through regulation of MFN2 trafficking to mitochondria. FEBS J 2023; 290:4023-4039. [PMID: 37060270 DOI: 10.1111/febs.16793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory disorder of the lungs caused by bacterial or viral infection. Timely phagocytosis and clearance of pathogens by macrophages are important in controlling inflammation and alleviating ARDS. However, the precise mechanism of macrophage phagocytosis remains to be explored. Here, we show that the expression of Rab26 is increased in Escherichia coli- or Pseudomonas aeruginosa-stimulated bone marrow-derived macrophages. Knocking out Rab26 reduced phagocytosis and bacterial clearance by macrophages. Rab26 interacts with mitochondrial fusion protein mitofusin-2 (MFN2) and affects mitochondrial reactive oxygen species generation by regulating MFN2 transport. The levels of MFN2 in mitochondria were reduced in Rab26-deficient bone marrow-derived macrophages, and the levels of mitochondrial reactive oxygen species and ATP were significantly decreased. Knocking down MFN2 using small interfering RNA resulted in decreased phagocytosis and killing ability of macrophages. Rab26 knockout reduced phagocytosis and bacterial clearance by macrophages in vivo, significantly increased inflammatory factors, aggravated lung tissue damage, and increased mortality in mice. Our results demonstrate that Rab26 regulates phagocytosis and clearance of bacteria by mediating the transport of MFN2 to mitochondria in macrophages, thus alleviating ARDS in mice and potentially in humans.
Collapse
Affiliation(s)
- Di Wu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yao Wang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junxian Hu
- Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuhang Xu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Daohui Gong
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pengfei Wu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junkang Dong
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Binfeng He
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Pulmonary and Critical Care Medicine Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hang Qian
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guansong Wang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
8
|
Long H, Wu Z. Immunoregulatory effects of Huaier (Trametes robiniophila Murr) and relevant clinical applications. Front Immunol 2023; 14:1147098. [PMID: 37449208 PMCID: PMC10337589 DOI: 10.3389/fimmu.2023.1147098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Huaier (Trametes robiniophila Murr) is a medicinal fungus of traditional Chinese medicine with more than 1000 years of history of clinical application. Its remarkable anticancer activities has led to its application in treating diverse malignancies. In recent years, the immunomodulatory effects of Huaier have been uncovered and proved to be beneficial in a plethora of immune-related diseases including cancer, nephropathy, asthma, etc. In this review, we comprehensively summarized the active components of Huaier, its regulatory activities on multifaceted aspects of the immune system, its application in various clinical settings as well as toxicologic evidence. Based on currently available literature, Huaier possesses broad-spectrum regulatory activities on various components of the innate and adaptive immune system, including macrophages, dendritic cells, natural killer cells, T and B lymphocytes, etc. Versatile immunologic reactions are under the regulation of Huaier from expression of damage-associated molecular patterns, immune cell activation and maturation to cell proliferation, differentiation, antibody production, expression of cytokines and chemokines and terminal intracellular signal transduction. Moreover, some modulatory activities of Huaier might be context-dependent, typically promoting the restoration toward normal physiological status. With excellent efficacy and minimal side effects, we foresee more extensive application of Huaier for treating immune-related disorders.
Collapse
Affiliation(s)
- Hongrong Long
- Department of cardiac function, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongcai Wu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Britt RD, Ruwanpathirana A, Ford ML, Lewis BW. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma. Int J Mol Sci 2023; 24:10451. [PMID: 37445635 PMCID: PMC10341920 DOI: 10.3390/ijms241310451] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogenous chronic inflammatory lung disease with endotypes that manifest different immune system profiles, severity, and responses to current therapies. Regardless of endotype, asthma features increased immune cell infiltration, inflammatory cytokine release, and airway remodeling. Lung macrophages are also heterogenous in that there are separate subsets and, depending on the environment, different effector functions. Lung macrophages are important in recruitment of immune cells such as eosinophils, neutrophils, and monocytes that enhance allergic inflammation and initiate T helper cell responses. Persistent lung remodeling including mucus hypersecretion, increased airway smooth muscle mass, and airway fibrosis contributes to progressive lung function decline that is insensitive to current asthma treatments. Macrophages secrete inflammatory mediators that induce airway inflammation and remodeling. Additionally, lung macrophages are instrumental in protecting against pathogens and play a critical role in resolution of inflammation and return to homeostasis. This review summarizes current literature detailing the roles and existing knowledge gaps for macrophages as key inflammatory orchestrators in asthma pathogenesis. We also raise the idea that modulating inflammatory responses in lung macrophages is important for alleviating asthma.
Collapse
Affiliation(s)
- Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Anushka Ruwanpathirana
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Maria L Ford
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Brandon W Lewis
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| |
Collapse
|
10
|
Mishra AK, Malonia SK. Advancing cellular immunotherapy with macrophages. Life Sci 2023:121857. [PMID: 37307965 DOI: 10.1016/j.lfs.2023.121857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Cell-based immunotherapies have become an exciting avenue for cancer treatment, particularly CAR T cells, which have shown great success in treating hematological malignancies. However, the limited success of T cell-based approaches in treating solid tumors has sparked interest in alternative cell types that could be used for solid tumor immunotherapy. Recent research has pointed to macrophages as a potential solution, given their ability to infiltrate solid tumors, exhibit a strong anti-tumor response, and persist long-term in the tumor microenvironment. Although early attempts with ex-vivo activated macrophage-based therapies failed to translate into clinical success, the field has revolutionized with the recent development of chimeric antigen receptor-expressing macrophages (CAR-M). While CAR-M therapy has reached the clinical trial stage, several challenges still need to be overcome before the therapy can become a reality. Here we review the evolution of macrophage-based cell therapy and evaluate recent studies and developments, emphasizing the potential of macrophages as cellular therapeutics. Furthermore, we also discuss the challenges and opportunities associated with using macrophages as a basis for therapeutic interventions.
Collapse
Affiliation(s)
- Alok K Mishra
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA.
| | - Sunil K Malonia
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
11
|
Dhakal B, Li CMY, Ramezanpour M, Houtak G, Li R, Bouras G, Collela A, Chegeni N, Chataway TK, Drew P, Sallustio BC, Vreugde S, Smith E, Maddern G, Licari G, Fenix K. Proteomic characterisation of perhexiline treatment on THP-1 M1 macrophage differentiation. Front Immunol 2023; 14:1054588. [PMID: 36993962 PMCID: PMC10040681 DOI: 10.3389/fimmu.2023.1054588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundDysregulated inflammation is important in the pathogenesis of many diseases including cancer, allergy, and autoimmunity. Macrophage activation and polarisation are commonly involved in the initiation, maintenance and resolution of inflammation. Perhexiline (PHX), an antianginal drug, has been suggested to modulate macrophage function, but the molecular effects of PHX on macrophages are unknown. In this study we investigated the effect of PHX treatment on macrophage activation and polarization and reveal the underlying proteomic changes induced.MethodsWe used an established protocol to differentiate human THP-1 monocytes into M1 or M2 macrophages involving three distinct, sequential stages (priming, rest, and differentiation). We examined the effect of PHX treatment at each stage on the polarization into either M1 or M2 macrophages using flow cytometry, quantitative polymerase chain reaction (qPCR) and enzyme linked immunosorbent assay (ELISA). Quantitative changes in the proteome were investigated using data independent acquisition mass spectrometry (DIA MS).ResultsPHX treatment promoted M1 macrophage polarization, including increased STAT1 and CCL2 expression and IL-1β secretion. This effect occurred when PHX was added at the differentiation stage of the M1 cultures. Proteomic profiling of PHX treated M1 cultures identified changes in metabolic (fatty acid metabolism, cholesterol homeostasis and oxidative phosphorylation) and immune signalling (Receptor Tyrosine Kinase, Rho GTPase and interferon) pathways.ConclusionThis is the first study to report on the action of PHX on THP-1 macrophage polarization and the associated changes in the proteome of these cells.
Collapse
Affiliation(s)
- Bimala Dhakal
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Celine Man Ying Li
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Mahnaz Ramezanpour
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ghais Houtak
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Runhao Li
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - George Bouras
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Alex Collela
- Flinders Omics Facility, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Nusha Chegeni
- Flinders Omics Facility, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Tim Kennion Chataway
- Flinders Omics Facility, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Paul Drew
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Benedetta C. Sallustio
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah Vreugde
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Eric Smith
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Guy Maddern
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Giovanni Licari
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kevin Fenix
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
- Department of Surgery-Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide, SA, Australia
- *Correspondence: Kevin Fenix,
| |
Collapse
|
12
|
Britt RD, Porter N, Grayson MH, Gowdy KM, Ballinger M, Wada K, Kim HY, Guerau-de-Arellano M. Sterols and immune mechanisms in asthma. J Allergy Clin Immunol 2023; 151:47-59. [PMID: 37138729 PMCID: PMC10151016 DOI: 10.1016/j.jaci.2022.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The field of sterol and oxysterol biology in lung disease has recently gained attention, revealing a unique need for sterol uptake and metabolism in the lung. The presence of cholesterol transport, biosynthesis, and sterol/oxysterol-mediated signaling in immune cells suggests a role in immune regulation. In support of this idea, statin drugs that inhibit the cholesterol biosynthesis rate-limiting step enzyme, hydroxymethyl glutaryl coenzyme A reductase, show immunomodulatory activity in several models of inflammation. Studies in human asthma reveal contradicting results, whereas promising retrospective studies suggest benefits of statins in severe asthma. Here, we provide a timely review by discussing the role of sterols in immune responses in asthma, analytical tools to evaluate the role of sterols in disease, and potential mechanistic pathways and targets relevant to asthma. Our review reveals the importance of sterols in immune processes and highlights the need for further research to solve critical gaps in the field.
Collapse
Affiliation(s)
- Rodney D. Britt
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus
- Department of Pediatrics, The Ohio State University, Columbus
| | - Ned Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville
| | - Mitchell H. Grayson
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, Columbus
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, Wexner Medical Center, Columbus
| | - Megan Ballinger
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, Wexner Medical Center, Columbus
| | - Kara Wada
- Department of Otolaryngology, Wexner Medical Center, Columbus
| | - Hye-Young Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, Columbus
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
- Department of Neuroscience, The Ohio State University, Columbus
| |
Collapse
|
13
|
Venegas Garrido C, Mukherjee M, Bhalla A, Nair P. Airway autoimmunity, asthma exacerbations, and response to biologics. Clin Exp Allergy 2022; 52:1365-1378. [PMID: 35993511 DOI: 10.1111/cea.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 01/26/2023]
Abstract
Biologic therapies in asthma are indicated in severe disease, and they are directed against specific inflammatory modulators that contribute to pathogenesis and severity. Currently approved biologics target T2 cytokines (IgE, IL-5, IL-4/IL-13, and TLSP) and have demonstrated efficacy in clinical outcomes such as exacerbation rate and oral corticosteroid dose reductions, blood and airway eosinophil depletion, and lung function improvement. However, a proportion of these patients may show inadequate responses to biologics, with either initial lack of improvement or clinical and functional worsening after an optimal initial response. Exacerbations while on a biologic may be due to several reasons, including imprecise identification of the dominant effector pathway contributing to severity, additional inflammatory pathways that are not targeted by the biologic, inaccuracies of the biomarker used to guide therapy, inadequate dosing schedules, intercurrent airway infections, anti-drug neutralizing antibodies, and a novel phenomenon of autoimmune responses in the airways interfering with the effectiveness of the monoclonal antibodies. This review, illustrated using case scenarios, describes the underpinnings of airway autoimmune responses in driving exacerbations while patients are being treated with biologics, device a strategy to evaluate such exacerbations, an algorithm to switch between biologics, and perhaps to consider two biologics concurrently.
Collapse
Affiliation(s)
- Carmen Venegas Garrido
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manali Mukherjee
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anurag Bhalla
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Ackland J, Barber C, Heinson A, Azim A, Cleary DW, Christodoulides M, Kurukulaaratchy RJ, Howarth P, Wilkinson TMA, Staples KJ. Nontypeable Haemophilus influenzae infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. Allergy 2022; 77:2961-2973. [PMID: 35570583 PMCID: PMC9796932 DOI: 10.1111/all.15375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Nontypeable Haemophilus influenzae (NTHi) is a respiratory tract pathobiont that chronically colonizes the airways of asthma patients and is associated with severe, neutrophilic disease phenotypes. The mechanism of NTHi airway persistence is not well understood, but accumulating evidence suggests NTHi can persist within host airway immune cells such as macrophages. We hypothesized that NTHi infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. METHODS Bronchoalveolar lavage (BAL) samples from 25 severe asthma patients were assessed by fluorescence in situ hybridisation to quantify NTHi presence. Weighted gene correlation network analysis (WGCNA) was performed on RNASeq data from NTHi-infected monocyte-derived macrophages to identify transcriptomic networks associated with NTHi infection. RESULTS NTHi was detected in 56% of BAL samples (NTHi+) and was associated with longer asthma duration (34 vs 22.5 years, p = .0436) and higher sputum neutrophil proportion (67% vs 25%, p = .0462). WGCNA identified a transcriptomic network of immune-related macrophage genes significantly associated with NTHi infection, including upregulation of T17 inflammatory mediators and neutrophil chemoattractants IL1B, IL8, IL23 and CCL20 (all p < .05). Macrophage network genes SGPP2 (p = .0221), IL1B (p = .0014) and GBP1 (p = .0477) were more highly expressed in NTHi+ BAL and moderately correlated with asthma duration (IL1B; rho = 0.41, p = .041) and lower prebronchodilator FEV1/FVC% (GBP1; rho = -0.43, p = .046 and IL1B; rho = -0.42, p = .055). CONCLUSIONS NTHi persistence with pulmonary macrophages may contribute to chronic airway inflammation and T17 responses in severe asthma, which can lead to decreased lung function and reduced steroid responsiveness. Identifying therapeutic strategies to reduce the burden of NTHi in asthma could improve patient outcomes.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Clair Barber
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Ashley Heinson
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Adnan Azim
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - David W. Cleary
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Myron Christodoulides
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Ramesh J. Kurukulaaratchy
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Peter Howarth
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Tom M. A. Wilkinson
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK,Wessex Investigational Sciences HubUniversity of Southampton Faculty of Medicine, Southampton General HospitalSouthamptonUK
| | - Karl J. Staples
- Clinical and Experimental SciencesUniversity of Southampton Faculty of MedicineSouthamptonUK,NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK,Wessex Investigational Sciences HubUniversity of Southampton Faculty of Medicine, Southampton General HospitalSouthamptonUK
| | | |
Collapse
|
15
|
Mindt BC, DiGiandomenico A. Microbiome Modulation as a Novel Strategy to Treat and Prevent Respiratory Infections. Antibiotics (Basel) 2022; 11:antibiotics11040474. [PMID: 35453224 PMCID: PMC9029693 DOI: 10.3390/antibiotics11040474] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic lower airway disease still represent a major cause of morbidity and mortality on a global scale. With the steady rise of multidrug-resistant respiratory pathogens, such as Pseudomonas aeruginosa and Klebsiella pneumoniae, we are rapidly approaching the advent of a post-antibiotic era. In addition, potentially detrimental novel variants of respiratory viruses continuously emerge with the most prominent recent example being severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To this end, alternative preventive and therapeutic intervention strategies will be critical to combat airway infections in the future. Chronic respiratory diseases are associated with alterations in the lung and gut microbiome, which is thought to contribute to disease progression and increased susceptibility to infection with respiratory pathogens. In this review we will focus on how modulating and harnessing the microbiome may pose a novel strategy to prevent and treat pulmonary infections as well as chronic respiratory disease.
Collapse
|
16
|
Flores-Torres AS, Samarasinghe AE. Impact of Therapeutics on Unified Immunity During Allergic Asthma and Respiratory Infections. FRONTIERS IN ALLERGY 2022; 3:852067. [PMID: 35386652 PMCID: PMC8974821 DOI: 10.3389/falgy.2022.852067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.
Collapse
Affiliation(s)
- Armando S. Flores-Torres
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
Papanicolaou A, Wang H, McQualter J, Aloe C, Selemidis S, Satzke C, Vlahos R, Bozinovski S. House Dust Mite Aeroallergen Suppresses Leukocyte Phagocytosis and Netosis Initiated by Pneumococcal Lung Infection. Front Pharmacol 2022; 13:835848. [PMID: 35273509 PMCID: PMC8902390 DOI: 10.3389/fphar.2022.835848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Asthmatics are highly susceptible to developing lower respiratory tract infections caused by Streptococcus pneumoniae (SPN, the pneumococcus). It has recently emerged that underlying allergic airway disease creates a lung microenvironment that is defective in controlling pneumococcal lung infections. In the present study, we examined how house dust mite (HDM) aeroallergen exposure altered immunity to acute pneumococcal lung infection. Alveolar macrophage (AM) isolated from HDM-exposed mice expressed alternatively activated macrophage (AAM) markers including YM1, FIZZ1, IL-10, and ARG-1. In vivo, prior HDM exposure resulted in accumulation of AAMs in the lungs and 2-log higher bacterial titres in the bronchoalveolar (BAL) fluid of SPN-infected mice (Day 2). Acute pneumococcal infection further increased the expression of IL-10 and ARG1 in the lungs of HDM-exposed mice. Moreover, prior HDM exposure attenuated neutrophil extracellular traps (NETs) formation in the lungs and dsDNA levels in the BAL fluid of SPN-infected mice. In addition, HDM-SPN infected animals had significantly increased BAL fluid cellularity driven by an influx of macrophages/monocytes, neutrophils, and eosinophils. Increased lung inflammation and mucus production was also evident in HDM-sensitised mice following acute pneumococcal infection, which was associated with exacerbated airway hyperresponsiveness. Of note, PCV13 vaccination modestly reduced pneumococcal titres in the BAL fluid of HDM-exposed animals and did not prevent BAL inflammation. Our findings provide new insights on the relationship between pneumococcal lung infections and allergic airways disease, where defective AM phagocytosis and NETosis are implicated in increased susceptibility to pneumococcal infection.
Collapse
Affiliation(s)
| | - Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Christian Aloe
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Translational Microbiology Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
18
|
Thomas ST, Wierenga KA, Pestka JJ, Olive AJ. Fetal Liver-Derived Alveolar-like Macrophages: A Self-Replicating Ex Vivo Model of Alveolar Macrophages for Functional Genetic Studies. Immunohorizons 2022; 6:156-169. [PMID: 35193942 DOI: 10.4049/immunohorizons.2200011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Alveolar macrophages (AMs) are tissue-resident cells in the lungs derived from the fetal liver that maintain lung homeostasis and respond to inhaled stimuli. Although the importance of AMs is undisputed, they remain refractory to standard experimental approaches and high-throughput functional genetics, as they are challenging to isolate and rapidly lose AM properties in standard culture. This limitation hinders our understanding of key regulatory mechanisms that control AM maintenance and function. In this study, we describe the development of a new model, fetal liver-derived alveolar-like macrophages (FLAMs), which maintains cellular morphologies, expression profiles, and functional mechanisms similar to murine AMs. FLAMs combine treatment with two key cytokines for AM maintenance, GM-CSF and TGF-β. We leveraged the long-term stability of FLAMs to develop functional genetic tools using CRISPR-Cas9-mediated gene editing. Targeted editing confirmed the role of AM-specific gene Marco and the IL-1 receptor Il1r1 in modulating the AM response to crystalline silica. Furthermore, a genome-wide knockout library using FLAMs identified novel genes required for surface expression of the AM marker Siglec-F, most notably those related to the peroxisome. Taken together, our results suggest that FLAMs are a stable, self-replicating model of AM function that enables previously impossible global genetic approaches to define the underlying mechanisms of AM maintenance and function.
Collapse
Affiliation(s)
- Sean T Thomas
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing MI
| | - Kathryn A Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - James J Pestka
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing MI.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI; and.,Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | - Andrew J Olive
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing MI;
| |
Collapse
|
19
|
Uddin MB, Sajib EH, Hoque SF, Hassan MM, Ahmed SSU. Macrophages in respiratory system. RECENT ADVANCEMENTS IN MICROBIAL DIVERSITY 2022:299-333. [DOI: 10.1016/b978-0-12-822368-0.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Matsumoto H. Bronchiectasis in severe asthma and asthmatic components in bronchiectasis. Respir Investig 2021; 60:187-196. [PMID: 34924307 DOI: 10.1016/j.resinv.2021.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
Asthma and bronchiectasis are different diseases; however, differentiating them can be difficult because they share several symptomatic and physiological similarities. Approximately 20% of patients with bronchiectasis have eosinophilic inflammation, 34% show wheezing, and 7-46% have comorbid asthma, although comorbidity with severe asthma may be limited as shown in 3.3% of cases of bronchiectasis. Meanwhile, 25-68% of patients with severe asthma have comorbid bronchiectasis, and at least two phenotypes are present in the accompanying bronchiectasis: eosinophilic bronchiectasis and chronic infectious bronchiolitis/bronchiectasis. Recent studies show that type-2-targeted biologics are effective for eosinophilic bronchiectasis and theoretically effective for some of the remaining cases when used before oral corticosteroids. Further studies are needed to identify treatment strategies for severe asthma with comorbid bronchiectasis and vice versa.
Collapse
Affiliation(s)
- Hisako Matsumoto
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, 377-2, Ohno-higashi, Osakasayama City, Osaka, 589-8511, Japan.
| |
Collapse
|
21
|
Grüneboom A, Aust O, Cibir Z, Weber F, Hermann DM, Gunzer M. Imaging innate immunity. Immunol Rev 2021; 306:293-303. [PMID: 34837251 DOI: 10.1111/imr.13048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
Innate immunity is the first line of defense against infectious intruders and also plays a major role in the development of sterile inflammation. Direct microscopic imaging of the involved immune cells, especially neutrophil granulocytes, monocytes, and macrophages, has been performed since more than 150 years, and we still obtain novel insights on a frequent basis. Initially, intravital microscopy was limited to small-sized animal species, which were often invertebrates. In this review, we will discuss recent results on the biology of neutrophils and macrophages that have been obtained using confocal and two-photon microscopy of individual cells or subcellular structures as well as light-sheet microscopy of entire organs. This includes the role of these cells in infection defense and sterile inflammation in mammalian disease models relevant for human patients. We discuss their protective but also disease-enhancing activities during tumor growth and ischemia-reperfusion damage of the heart and brain. Finally, we provide two visions, one experimental and one applied, how our knowledge on the function of innate immune cells might be further enhanced and also be used in novel ways for disease diagnostics in the future.
Collapse
Affiliation(s)
- Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Oliver Aust
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Flora Weber
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany.,Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Abdel-Aziz MI, Vijverberg SJH, Neerincx AH, Brinkman P, Wagener AH, Riley JH, Sousa AR, Bates S, Wagers SS, De Meulder B, Auffray C, Wheelock ÅM, Bansal AT, Caruso M, Chanez P, Uddin M, Corfield J, Horvath I, Krug N, Musial J, Sun K, Shaw DE, Sandström T, Montuschi P, Fowler SJ, Lutter R, Djukanovic R, Howarth P, Skipp P, Sanak M, Adcock IM, Chung KF, Sterk PJ, Kraneveld AD, Maitland-van der Zee PharmD AH. A multi-omics approach to delineate sputum microbiome-associated asthma inflammatory phenotypes. Eur Respir J 2021; 59:13993003.02603-2021. [PMID: 34824056 DOI: 10.1183/13993003.02603-2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 12/06/2022]
Affiliation(s)
- Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands .,Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne H Neerincx
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ariane H Wagener
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John H Riley
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Stewart Bates
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | | | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, United Kingdom
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- Département des Maladies Respiratoires APHM, U1067 INSERM, Aix Marseille Université Marseille, Marseille, France
| | - Mohib Uddin
- AstraZeneca BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Julie Corfield
- AstraZeneca R&D, Mölndal, Sweden.,Areteva R&D, Nottingham, United Kingdom
| | - Ildiko Horvath
- Department of Public Health, Semmelweis University; National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine Hannover, Hannover, Germany
| | - Jacek Musial
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Kai Sun
- Data Science Institute, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Dominick E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Department of Medicine, Respiratory Medicine Unit, Umeå University, Umeå, Sweden
| | - Paolo Montuschi
- Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences, and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Peter Howarth
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences, and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Anke H Maitland-van der Zee PharmD
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | | |
Collapse
|
23
|
Hey J, Paulsen M, Toth R, Weichenhan D, Butz S, Schatterny J, Liebers R, Lutsik P, Plass C, Mall MA. Epigenetic reprogramming of airway macrophages promotes polarization and inflammation in muco-obstructive lung disease. Nat Commun 2021; 12:6520. [PMID: 34764283 PMCID: PMC8586227 DOI: 10.1038/s41467-021-26777-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Lung diseases, such as cystic fibrosis and COPD, are characterized by mucus obstruction and chronic airway inflammation, but their mechanistic link remains poorly understood. Here, we focus on the function of the mucostatic airway microenvironment on epigenetic reprogramming of airway macrophages (AM) and resulting transcriptomic and phenotypical changes. Using a mouse model of muco-obstructive lung disease (Scnn1b-transgenic), we identify epigenetically controlled, differentially regulated pathways and transcription factors involved in inflammatory responses and macrophage polarization. Functionally, AMs from Scnn1b-transgenic mice have reduced efferocytosis and phagocytosis, and excessive inflammatory responses upon lipopolysaccharide challenge, mediated through enhanced Irf1 function and expression. Ex vivo stimulation of wild-type AMs with native mucus impairs efferocytosis and phagocytosis capacities. In addition, mucus induces gene expression changes, comparable with those observed in AMs from Scnn1b-transgenic mice. Our data show that mucostasis induces epigenetic reprogramming of AMs, leading to changes favoring tissue damage and disease progression. Targeting these altered AMs may support therapeutic approaches in patients with muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Joschka Hey
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Ruprecht Karl University of Heidelberg, Heidelberg, Germany ,grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michelle Paulsen
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany. .,Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany. .,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Reka Toth
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Weichenhan
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone Butz
- grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Reinhard Liebers
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.461742.2Present Address: National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Pavlo Lutsik
- grid.7497.d0000 0004 0492 0584Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
| | - Marcus A. Mall
- grid.452624.3Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany ,grid.7468.d0000 0001 2248 7639Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.484013.aBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.452624.3German Center for Lung Research (DZL), Associated Partner, Berlin, Germany
| |
Collapse
|
24
|
Moghbeli K, Valenzi E, Naramore R, Sembrat JC, Chen K, Rojas MM, Wenzel SE, Lafyatis R, Modena B, Weathington NM. β-Agonist exposure preferentially impacts lung macrophage cyclic AMP-related gene expression in asthma and asthma COPD overlap syndrome. Am J Physiol Lung Cell Mol Physiol 2021; 321:L837-L843. [PMID: 34494468 DOI: 10.1152/ajplung.00260.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bronchoalveolar lavage (BAL) samples from Severe Asthma Research Program (SARP) patients display suppression of a module of genes involved in cAMP-signaling pathways (BALcAMP) correlating with severity, therapy, and macrophage constituency. We sought to establish if gene expression changes were specific to macrophages and compared gene expression trends from multiple sources. Datasets included single-cell RNA sequencing (scRNA-seq) from lung specimens including a fatal exacerbation of severe Asthma COPD Overlap Syndrome (ACOS) after intense therapy and controls without lung disease, bulk RNA sequencing from cultured macrophage (THP-1) cells after acute or prolonged β-agonist exposure, SARP datasets, and data from the Immune Modulators of Severe Asthma (IMSA) cohort. THP monocytes suppressed BALcAMP network gene expression after prolonged relative to acute β-agonist exposure, corroborating SARP observations. scRNA-seq from healthy and diseased lung tissue revealed 13 cell populations enriched for macrophages. In severe ACOS, BALcAMP gene network expression scores were decreased in many cell populations, most significantly for macrophage populations (P < 3.9e-111). Natural killer (NK) cells and type II alveolar epithelial cells displayed less robust network suppression (P < 9.2e-8). Alveolar macrophages displayed the most numerous individual genes affected and the highest amplitude of modulation. Key BALcAMP genes demonstrate significantly decreased expression in severe asthmatics in the IMSA cohort. We conclude that suppression of the BALcAMP gene module identified from SARP BAL samples is validated in the IMSA patient cohort with physiological parallels observed in a monocytic cell line and in a severe ACOS patient sample with effects preferentially localizing to macrophages.
Collapse
Affiliation(s)
- Kaveh Moghbeli
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rachel Naramore
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Charles Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kong Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mauricio M Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | - Sally E Wenzel
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Modena
- Allergy & Rheumatology Medical Clinic, Scripps Research Institute, La Jolla, California
| | - Nathaniel M Weathington
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|
26
|
Ackland J, Heinson AI, Cleary DW, Christodoulides M, Wilkinson TMA, Staples KJ. Dual RNASeq Reveals NTHi-Macrophage Transcriptomic Changes During Intracellular Persistence. Front Cell Infect Microbiol 2021; 11:723481. [PMID: 34497778 PMCID: PMC8419319 DOI: 10.3389/fcimb.2021.723481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a pathobiont which chronically colonises the airway of individuals with chronic respiratory disease and is associated with poor clinical outcomes. It is unclear how NTHi persists in the airway, however accumulating evidence suggests that NTHi can invade and persist within macrophages. To better understand the mechanisms of NTHi persistence within macrophages, we developed an in vitro model of NTHi intracellular persistence using human monocyte-derived macrophages (MDM). Dual RNA Sequencing was used to assess MDM and NTHi transcriptomic regulation occurring simultaneously during NTHi persistence. Analysis of the macrophage response to NTHi identified temporally regulated transcriptomic profiles, with a specific 'core' profile displaying conserved expression of genes across time points. Gene list enrichment analysis identified enrichment of immune responses in the core gene set, with KEGG pathway analysis revealing specific enrichment of intracellular immune response pathways. NTHi persistence was facilitated by modulation of bacterial metabolic, stress response and ribosome pathways. Levels of NTHi genes bioC, mepM and dps were differentially expressed by intracellular NTHi compared to planktonic NTHi, indicating that the transcriptomic adaption was distinct between the two different NTHi lifestyles. Overall, this study provides crucial insights into the transcriptomic adaptations facilitating NTHi persistence within macrophages. Targeting these reported pathways with novel therapeutics to reduce NTHi burden in the airway could be an effective treatment strategy given the current antimicrobial resistance crisis and lack of NTHi vaccines.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ashley I Heinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - David W Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Myron Christodoulides
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, Southampton General Hospital, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, Southampton General Hospital, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
27
|
Schuliga M, Read J, Knight DA. Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Res Rev 2021; 70:101405. [PMID: 34242806 DOI: 10.1016/j.arr.2021.101405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Age is a major risk factor for chronic respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and certain phenotypes of asthma. The recent COVID-19 pandemic also highlights the increased susceptibility of the elderly to acute respiratory distress syndrome (ARDS), a diffuse inflammatory lung injury with often long-term effects (ie parenchymal fibrosis). Collectively, these lung conditions are characterized by a pathogenic reparative process that, rather than restoring organ function, contributes to structural and functional tissue decline. In the ageing lung, the homeostatic control of wound healing following challenge or injury has an increased likelihood of being perturbed, increasing susceptibility to disease. This loss of fidelity is a consequence of a diverse range of underlying ageing mechanisms including senescence, mitochondrial dysfunction, proteostatic stress and diminished autophagy that occur within the lung, as well as in other tissues, organs and systems of the body. These ageing pathways are highly interconnected, involving localized and systemic increases in inflammatory mediators and damage associated molecular patterns (DAMPs); along with corresponding changes in immune cell function, metabolism and composition of the pulmonary and gut microbiomes. Here we comprehensively review the roles of ageing mechanisms in the tissue remodeling of lung disease.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Abdel‐Aziz MI, Kermani NZ, Neerincx AH, Vijverberg SJH, Guo Y, Howarth P, Dahlen S, Djukanovic R, Sterk PJ, Kraneveld AD, Maitland‐van der Zee AH, Chung KF, Adcock IM. Association of endopeptidases, involved in SARS-CoV-2 infection, with microbial aggravation in sputum of severe asthma. Allergy 2021; 76:1917-1921. [PMID: 33411967 DOI: 10.1111/all.14731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Mahmoud I. Abdel‐Aziz
- Department of Respiratory Medicine Amsterdam UMCUniversity of Amsterdam Amsterdam The Netherlands
- Department of Clinical Pharmacy Faculty of Pharmacy Assiut University Assiut Egypt
| | | | - Anne H. Neerincx
- Department of Respiratory Medicine Amsterdam UMCUniversity of Amsterdam Amsterdam The Netherlands
| | - Susanne J. H. Vijverberg
- Department of Respiratory Medicine Amsterdam UMCUniversity of Amsterdam Amsterdam The Netherlands
| | - Yike Guo
- Data Science Institute Imperial College London London UK
| | - Peter Howarth
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health University of Southampton Southampton UK
| | - Sven‐Erik Dahlen
- Centre for Allergy Research Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health University of Southampton Southampton UK
| | - Peter J. Sterk
- Department of Respiratory Medicine Amsterdam UMCUniversity of Amsterdam Amsterdam The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology Faculty of Science Utrecht Institute for Pharmaceutical Sciences Utrecht University Utrecht The Netherlands
- Faculty of Veterinary Medicine Institute for Risk Assessment Sciences Utrecht University Utrecht The Netherlands
| | - Anke H. Maitland‐van der Zee
- Department of Respiratory Medicine Amsterdam UMCUniversity of Amsterdam Amsterdam The Netherlands
- Department of Pediatric Respiratory Medicine Emma Children's Hospital Amsterdam UMC Amsterdam The Netherlands
| | - Kian Fan Chung
- National Heart and Lung Institute Imperial College London, and Royal Brompton and Harefield NHS Trust London UK
| | - Ian M. Adcock
- National Heart and Lung Institute Imperial College London and the NIHR Imperial Biomedical Research Centre London UK
| | | |
Collapse
|
29
|
Singh R, Belchamber KBR, Fenwick PS, Chana K, Donaldson G, Wedzicha JA, Barnes PJ, Donnelly LE. Defective monocyte-derived macrophage phagocytosis is associated with exacerbation frequency in COPD. Respir Res 2021; 22:113. [PMID: 33879129 PMCID: PMC8059282 DOI: 10.1186/s12931-021-01718-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lower airway bacterial colonisation (LABC) in COPD patients is associated with increased exacerbation frequency and faster lung function decline. Defective macrophage phagocytosis in COPD drives inflammation, but how defective macrophage function contributes to exacerbations is not clear. This study investigated the association between macrophage phagocytosis and exacerbation frequency, LABC and clinical parameters. METHODS Monocyte-derived macrophages (MDM) were generated from 92 stable COPD patients, and at the onset of exacerbation in 39 patients. Macrophages were exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, then phagocytosis measured by fluorimetry and cytokine release by ELISA. Sputum bacterial colonisation was measured by PCR. RESULTS Phagocytosis of H. influenzae was negatively correlated with exacerbation frequency (r = 0.440, p < 0.01), and was significantly reduced in frequent vs. infrequent exacerbators (1.9 × 103 RFU vs. 2.5 × 103 RFU, p < 0.01). There was no correlation for S. pneumoniae. There was no association between phagocytosis of either bacteria with age, lung function, smoking history or treatment with inhaled corticosteroids, or long-acting bronchodilators. Phagocytosis was not altered during an exacerbation, or in the 2 weeks post-exacerbation. In response to phagocytosis, MDM from exacerbating patients showed increased release of CXCL-8 (p < 0.001) and TNFα (p < 0.01) compared to stable state. CONCLUSION Impaired COPD macrophage phagocytosis of H. influenzae, but not S. pneumoniae is associated with exacerbation frequency, resulting in pro-inflammatory macrophages that may contribute to disease progression. Targeting these frequent exacerbators with drugs that improve macrophage phagocytosis may prove beneficial.
Collapse
Affiliation(s)
- R Singh
- National Heart and Lung Institute, Imperial College London, London, UK
| | - K B R Belchamber
- National Heart and Lung Institute, Imperial College London, London, UK
| | - P S Fenwick
- National Heart and Lung Institute, Imperial College London, London, UK
| | - K Chana
- National Heart and Lung Institute, Imperial College London, London, UK
| | - G Donaldson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - J A Wedzicha
- National Heart and Lung Institute, Imperial College London, London, UK
| | - P J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - L E Donnelly
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
30
|
Hetzel M, Ackermann M, Lachmann N. Beyond "Big Eaters": The Versatile Role of Alveolar Macrophages in Health and Disease. Int J Mol Sci 2021; 22:3308. [PMID: 33804918 PMCID: PMC8036607 DOI: 10.3390/ijms22073308] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
31
|
Chiang AJ, Thanabalasuriar A, Boo CC. Proteomics: An advanced tool to unravel the role of alveolar macrophages in respiratory diseases. Int J Biochem Cell Biol 2021; 134:105966. [PMID: 33677070 DOI: 10.1016/j.biocel.2021.105966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/05/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
As we learn more about chronic lung diseases, we are seeing that an unbalanced immune system plays a key role in disease pathogenesis. Innate immune cells, particularly tissue-resident macrophages, are important navigators of immunity, both during infection and in non-communicable lung disease. In the lung, alveolar macrophages are considered some of the most critical and diverse immune cells, yet despite an array of studies over the years, alveolar macrophages remain poorly understood. In this review, we highlight the importance of alveolar macrophages in health and disease, and discuss how proteomics can be used to elucidate mechanistic information and identify potential targets for therapy development.
Collapse
Affiliation(s)
- Abby J Chiang
- Dynamic Omics, Antibody Discovery and Protein Engineering, R&D AstraZeneca, Gaithersburg, MD 20878, USA
| | | | - Chelsea C Boo
- Dynamic Omics, Antibody Discovery and Protein Engineering, R&D AstraZeneca, Gaithersburg, MD 20878, USA.
| |
Collapse
|
32
|
Tiotiu A, Zounemat Kermani N, Badi Y, Pavlidis S, Hansbro PM, Guo Y, Chung KF, Adcock IM. Sputum macrophage diversity and activation in asthma: Role of severity and inflammatory phenotype. Allergy 2021; 76:775-788. [PMID: 32740964 DOI: 10.1111/all.14535] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Macrophages control innate and acquired immunity, but their role in severe asthma remains ill-defined. We investigated gene signatures of macrophage subtypes in the sputum of 104 asthmatics and 16 healthy volunteers from the U-BIOPRED cohort. METHODS Forty-nine gene signatures (modules) for differentially stimulated macrophages, one to assess lung tissue-resident cells (TR-Mφ) and two for their polarization (classically and alternatively activated macrophages: M1 and M2, respectively) were studied using gene set variation analysis. We calculated enrichment scores (ES) across severity and previously identified asthma transcriptome-associated clusters (TACs). RESULTS Macrophage numbers were significantly decreased in severe asthma compared to mild-moderate asthma and healthy volunteers. The ES for most modules were also significantly reduced in severe asthma except for 3 associated with inflammatory responses driven by TNF and Toll-like receptors via NF-κB, eicosanoid biosynthesis via the lipoxygenase pathway and IL-2 biosynthesis (all P < .01). Sputum macrophage number and the ES for most macrophage signatures were higher in the TAC3 group compared to TAC1 and TAC2 asthmatics. However, a high enrichment was found in TAC1 for 3 modules showing inflammatory pathways linked to Toll-like and TNF receptor activation and arachidonic acid metabolism (P < .001) and in TAC2 for the inflammasome and interferon signalling pathways (P < .001). Data were validated in the ADEPT cohort. Module analysis provides additional information compared to conventional M1 and M2 classification. TR-Mφ were enriched in TAC3 and associated with mitochondrial function. CONCLUSIONS Macrophage activation is attenuated in severe granulocytic asthma highlighting defective innate immunity except for specific subsets characterized by distinct inflammatory pathways.
Collapse
Affiliation(s)
- Angelica Tiotiu
- National Heart and Lung Institute Imperial College London London UK
- Department of Pulmonology University Hospital of Nancy Nancy France
| | | | - Yusef Badi
- National Heart and Lung Institute Imperial College London London UK
- Department of Computing Data Science Institute Imperial College London London UK
| | - Stelios Pavlidis
- National Heart and Lung Institute Imperial College London London UK
- Department of Computing Data Science Institute Imperial College London London UK
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
- Centre for Inflammation Centenary Institute and University of Technology Sydney Sydney NSW Australia
| | - Yi‐Ke Guo
- Department of Computing Data Science Institute Imperial College London London UK
| | - Kian Fan Chung
- National Heart and Lung Institute Imperial College London London UK
| | - Ian M. Adcock
- National Heart and Lung Institute Imperial College London London UK
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | | |
Collapse
|
33
|
Enweasor C, Flayer CH, Haczku A. Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Front Immunol 2021; 12:631092. [PMID: 33717165 PMCID: PMC7952990 DOI: 10.3389/fimmu.2021.631092] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in using biologicals that target Th2 pathways, glucocorticoids form the mainstay of asthma treatment. Asthma morbidity and mortality remain high due to the wide variability of treatment responsiveness and complex clinical phenotypes driven by distinct underlying mechanisms. Emerging evidence suggests that inhalation of the toxic air pollutant, ozone, worsens asthma by impairing glucocorticoid responsiveness. This review discusses the role of oxidative stress in glucocorticoid resistance in asthma. The underlying mechanisms point to a central role of oxidative stress pathways. The primary data source for this review consisted of peer-reviewed publications on the impact of ozone on airway inflammation and glucocorticoid responsiveness indexed in PubMed. Our main search strategy focused on cross-referencing "asthma and glucocorticoid resistance" against "ozone, oxidative stress, alarmins, innate lymphoid, NK and γδ T cells, dendritic cells and alveolar type II epithelial cells, glucocorticoid receptor and transcription factors". Recent work was placed in the context from articles in the last 10 years and older seminal research papers and comprehensive reviews. We excluded papers that did not focus on respiratory injury in the setting of oxidative stress. The pathways discussed here have however wide clinical implications to pathologies associated with inflammation and oxidative stress and in which glucocorticoid treatment is essential.
Collapse
Affiliation(s)
- Chioma Enweasor
- UC Davis Lung Center, University of California, Davis, CA, United States
| | - Cameron H. Flayer
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, United States
| |
Collapse
|
34
|
Bao H, Zhou Q, Li Q, Niu M, Chen S, Yang P, Liu Z, Xia L. Differentially expressed circular RNAs in a murine asthma model. Mol Med Rep 2020; 22:5412-5422. [PMID: 33173985 PMCID: PMC7647044 DOI: 10.3892/mmr.2020.11617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/25/2020] [Indexed: 01/14/2023] Open
Abstract
Allergic asthma is one of the most common allergic diseases; however, the mechanisms underlying its development have yet to be fully elucidated. Although allergic diseases are inheritable, genetic variance alone cannot explain the notable increase in the prevalence of allergic diseases over a short period of time in recent decades. Recently, research focus has been shifting to epigenetic factors, such as non-coding RNAs. Circular RNAs (circRNAs) are involved in the pathogenesis of various diseases. The aim of the present study was to further elucidate the etiology of allergic asthma by analyzing aberrantly expressed circRNAs in a murine asthma model. A mouse model of house dust mite allergen-induced asthma was established, and the qualified libraries were sequenced using next-generation sequencing. The expression levels of circRNAs were validated by reverse transcription-quantitative PCR (RT-qPCR) analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for biological pathway classification and enrichment analysis of the aberrantly expressed circRNAs. In addition, the interaction network of the differentially expressed circRNAs and microRNAs (miRNAs) was constructed using Cytoscape. By next-generation sequencing, a total of 150 circRNAs were revealed to be upregulated and 130 were downregulated in the murine asthma model group compared with in the control group. GO and KEGG analyses demonstrated that the differentially expressed circRNAs were mainly involved in processes such as ‘autoimmune disease’, ‘cell adhesion molecules (CAMs)’ and ‘endocytosis’, among others. The expression levels of six circRNAs, namely three upregulated (circ_0000909, circ_0000629 and circ_0000455) and three downregulated (circ_0001454, circ_0000723 and circ_0001389) circRNAs, were validated by RT-qPCR. In conclusion, the analyses suggested that circRNAs performed critical functions via endocytosis (such as macrophage endocytosis), cell adhesion molecules and lipid metabolism in allergic asthma. The interaction network revealed that certain miRNAs that may serve a role in asthma could be regulated by the differentially expressed circRNAs.
Collapse
Affiliation(s)
- Hui Bao
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Qiuyan Zhou
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Qiuju Li
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Mengmeng Niu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Sanfeng Chen
- Department of Internal Medicine, Aged Care Hospital of Hangzhou, Hangzhou, Zhejiang 310015, P.R. China
| | - Pingchang Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Zhigang Liu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Lixin Xia
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
35
|
Papanicolaou A, Wang H, Satzke C, Vlahos R, Wilson N, Bozinovski S. Novel Therapies for Pneumonia-Associated Severe Asthma Phenotypes. Trends Mol Med 2020; 26:1047-1058. [PMID: 32828703 DOI: 10.1016/j.molmed.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Distinct asthma phenotypes are emerging from well-defined cohort studies and appear to be associated with a history of pneumonia. Asthmatics are more susceptible to infections caused by Streptococcus pneumoniae; however, the mechanisms that underlie defective immunity to this pathogen are still being elucidated. Here, we discuss how alternatively activated macrophages (AAMs) in asthmatics are defective in bacterial phagocytosis and how respiratory viruses disrupt essential host immunity to cause bacterial dispersion deeper into the lungs. We also describe how respiratory pathogens instigate neutrophilic inflammation and amplify type-2 inflammation in asthmatics. Finally, we propose novel dual-acting strategies including granulocyte-colony-stimulating factor receptor (G-CSFR) antagonism and specialised pro-resolving mediators (SPMs) to suppress type-2 and neutrophilic inflammation without compromising pathogen clearance.
Collapse
Affiliation(s)
- Angelica Papanicolaou
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Hao Wang
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Steven Bozinovski
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
36
|
Pai S, Muruganandah V, Kupz A. What lies beneath the airway mucosal barrier? Throwing the spotlight on antigen-presenting cell function in the lower respiratory tract. Clin Transl Immunology 2020; 9:e1158. [PMID: 32714552 PMCID: PMC7376394 DOI: 10.1002/cti2.1158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of respiratory infectious and inflammatory diseases remains a major public health concern. Prevention and management strategies have not kept pace with the increasing incidence of these diseases. The airway mucosa is the most common portal of entry for infectious and inflammatory agents. Therefore, significant benefits would be derived from a detailed understanding of how immune responses regulate the filigree of the airways. Here, the role of different antigen‐presenting cells (APC) in the lower airways and the mechanisms used by pathogens to modulate APC function during infectious disease is reviewed. Features of APC that are unique to the airways and the influence they have on uptake and presentation of antigen to T cells directly in the airways are discussed. Current information on the crucial role that airway APC play in regulating respiratory infection is summarised. We examine the clinical implications of APC dysregulation in the airways on asthma and tuberculosis, two chronic diseases that are the major cause of illness and death in the developed and developing world. A brief overview of emerging therapies that specifically target APC function in the airways is provided.
Collapse
Affiliation(s)
- Saparna Pai
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Visai Muruganandah
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| |
Collapse
|
37
|
Inflammatory macrophage memory in nonsteroidal anti-inflammatory drug-exacerbated respiratory disease. J Allergy Clin Immunol 2020; 147:587-599. [PMID: 32540397 DOI: 10.1016/j.jaci.2020.04.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) is a chronic inflammatory condition, which is driven by an aberrant arachidonic acid metabolism. Macrophages are major producers of arachidonic acid metabolites and subject to metabolic reprogramming, but they have been neglected in N-ERD. OBJECTIVE This study sought to elucidate a potential metabolic and epigenetic macrophage reprogramming in N-ERD. METHODS Transcriptional, metabolic, and lipid mediator profiles in macrophages from patients with N-ERD and healthy controls were assessed by RNA sequencing, Seahorse assays, and LC-MS/MS. Metabolites in nasal lining fluid, sputum, and plasma from patients with N-ERD (n = 15) and healthy individuals (n = 10) were quantified by targeted metabolomics analyses. Genome-wide methylomics were deployed to define epigenetic mechanisms of macrophage reprogramming in N-ERD. RESULTS This study shows that N-ERD monocytes/macrophages exhibit an overall reduction in DNA methylation, aberrant metabolic profiles, and an increased expression of chemokines, indicative of a persistent proinflammatory activation. Differentially methylated regions in N-ERD macrophages included genes involved in chemokine signaling and acylcarnitine metabolism. Acylcarnitines were increased in macrophages, sputum, nasal lining fluid, and plasma of patients with N-ERD. On inflammatory challenge, N-ERD macrophages produced increased levels of acylcarnitines, proinflammatory arachidonic acid metabolites, cytokines, and chemokines as compared to healthy macrophages. CONCLUSIONS Together, these findings decipher a proinflammatory metabolic and epigenetic reprogramming of macrophages in N-ERD.
Collapse
|
38
|
Crimi C, Ferri S, Campisi R, Crimi N. The Link between Asthma and Bronchiectasis: State of the Art. Respiration 2020; 99:463-476. [PMID: 32464625 DOI: 10.1159/000507228] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/09/2020] [Indexed: 11/19/2022] Open
Abstract
The nonrecognition of asthma-associated comorbidities is often responsible for the therapeutic failure and the worsening of symptoms, and it is associated with frequent exacerbations, higher disease severity, and increased health costs. Bronchiectasis, one of the most frequent asthma-associated comorbidities, can increase airways inflammation and exacerbation rates and cause respiratory functional impairment. The aim of this article is to review the interactions between bronchiectasis and asthma, in order to better identify patients in the overlap between the 2 diseases and to select an "ad hoc" therapy. A literature search on PubMed/MEDLINE was performed using the following search terms: bronchiectasis in asthma, the association between asthma and bronchiectasis, comorbidities in asthma, and severe asthma. This review analyzed the following items: incorrect or underestimated diagnosis of asthma and bronchiectasis, prevalence of bronchiectasis in asthma, the impact of bronchiectasis in asthma, radiological imaging features of the 2 diseases, etiopathogenesis, and common causes (such as gastroesophageal reflux disease, immune deficits, chronic rhinosinusitis and allergic bronchopulmonary aspergillosis, and treatment of asthma and bronchiectasis). The concomitant presence of bronchiectasis and asthma should be suspected and investigated in patients with severe asthma, frequent exacerbations, and not responding to standard therapy. This clinical phenotype, characterized by a more severe disease, worse outcomes, and functional decline, must be readily recognized in order to choose the most appropriate therapeutic approach, able to potentially improve the management of bronchial asthma, to prevent the onset of exacerbations as well the functional decline, and to reduce health costs.
Collapse
Affiliation(s)
- Claudia Crimi
- Respiratory Medicine Unit, A.O.U. "Policlinico-Vittorio Emanuele," University of Catania, Catania, Italy,
| | - Sebastian Ferri
- Personalized Medicine, Asthma and Allergy, Humanitas Research Center IRCCS, Rozzano, Italy
| | - Raffaele Campisi
- Respiratory Medicine Unit, A.O.U. "Policlinico-Vittorio Emanuele," University of Catania, Catania, Italy
| | - Nunzio Crimi
- Respiratory Medicine Unit, A.O.U. "Policlinico-Vittorio Emanuele," University of Catania, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
39
|
Abdel-Aziz MI, Brinkman P, Vijverberg SJH, Neerincx AH, Riley JH, Bates S, Hashimoto S, Kermani NZ, Chung KF, Djukanovic R, Dahlén SE, Adcock IM, Howarth PH, Sterk PJ, Kraneveld AD, Maitland-van der Zee AH. Sputum microbiome profiles identify severe asthma phenotypes of relative stability at 12 to 18 months. J Allergy Clin Immunol 2020; 147:123-134. [PMID: 32353491 DOI: 10.1016/j.jaci.2020.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Asthma is a heterogeneous disease characterized by distinct phenotypes with associated microbial dysbiosis. OBJECTIVES Our aim was to identify severe asthma phenotypes based on sputum microbiome profiles and assess their stability after 12 to 18 months. A further aim was to evaluate clusters' robustness after inclusion of an independent cohort of patients with mild-to-moderate asthma. METHODS In this longitudinal multicenter cohort study, sputum samples were collected for microbiome profiling from a subset of the Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes adult patient cohort at baseline and after 12 to 18 months of follow-up. Unsupervised hierarchical clustering was performed by using the Bray-Curtis β-diversity measure of microbial profiles. For internal validation, partitioning around medoids, consensus cluster distribution, bootstrapping, and topological data analysis were applied. Follow-up samples were studied to evaluate within-patient clustering stability in patients with severe asthma. Cluster robustness was evaluated by using an independent cohort of patients with mild-to-moderate asthma. RESULTS Data were available for 100 subjects with severe asthma (median age 55 years; 42% males). Two microbiome-driven clusters were identified; they were characterized by differences in asthma onset, smoking status, residential locations, percentage of blood and/or sputum neutrophils and macrophages, lung spirometry results, and concurrent asthma medications (all P values < .05). The cluster 2 patients displayed a commensal-deficient bacterial profile that was associated with worse asthma outcomes than those of the cluster 1 patients. Longitudinal clusters revealed high relative stability after 12 to 18 months in those with severe asthma. Further inclusion of an independent cohort of 24 patients with mild-to-moderate asthma was consistent with the clustering assignments. CONCLUSION Unbiased microbiome-driven clustering revealed 2 distinct robust phenotypes of severe asthma that exhibited relative overtime stability. This suggests that the sputum microbiome may serve as a biomarker for better characterizing asthma phenotypes.
Collapse
Affiliation(s)
- Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne H Neerincx
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John H Riley
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Stewart Bates
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Simone Hashimoto
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Sven-Erik Dahlén
- Centre for Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Peter H Howarth
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Agarwal M, Biswas P, Bhattacharya A, Sinha DK. Reactive oxygen species-mediated cytoplasmic stiffening impairs the phagocytic ability of the macrophage. J Cell Sci 2020; 133:jcs.236471. [PMID: 32005700 DOI: 10.1242/jcs.236471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
The phagocytic ability of macrophages empowers them to enforce innate immunity. RAW264.7, THP-1 and peripheral blood mononuclear cell-derived macrophages display considerable variability with regards to their phagocytic ability. We identify the underlying causes that attenuate the phagocytic abilities of a macrophage. Deformability of the cytoplasm and cortex influences the macrophage's phagocytic ability, and macrophages use the large cell-to-cell variability of their cytoplasmic stiffness to modulate their phagocytic ability. We find that the more-deformable macrophages have a higher phagocytic ability than those that are less deformable. Further, the subcellular spatial variability of cortex stiffness gives rise to more-deformable subdomains on the membrane for pathogen ingestion. We report a previously unknown negative-feedback loop that is triggered by the phagocytic oxidative burst. Macrophages utilize the excess reactive oxygen species to stiffen the cytoplasm, reducing their phagocytic propensity. In organisms, ageing or pathological conditions impair the phagocytic ability of macrophages. Our findings identify the targets that could potentially be utilized for restoring the phagocytic ability of the defunct macrophages.
Collapse
Affiliation(s)
- Mahesh Agarwal
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| | - Parijat Biswas
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| | - Anindita Bhattacharya
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| |
Collapse
|
41
|
Finney LJ, Belchamber KBR, Fenwick PS, Kemp SV, Edwards MR, Mallia P, Donaldson G, Johnston SL, Donnelly LE, Wedzicha JA. Human Rhinovirus Impairs the Innate Immune Response to Bacteria in Alveolar Macrophages in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2020; 199:1496-1507. [PMID: 30562053 DOI: 10.1164/rccm.201806-1095oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rationale: Human rhinovirus (HRV) is a common cause of chronic obstructive pulmonary disease (COPD) exacerbations. Secondary bacterial infection is associated with more severe symptoms and delayed recovery. Alveolar macrophages clear bacteria from the lung and maintain lung homeostasis through cytokine secretion. These processes are defective in COPD. The effect of HRV on macrophage function is unknown. Objectives: To investigate the effect of HRV on phagocytosis and cytokine response to bacteria by alveolar macrophages and monocyte-derived macrophages (MDM) in COPD and healthy control subjects. Methods: Alveolar macrophages were obtained by bronchoscopy and MDM by adherence. Macrophages were exposed to HRV16 (multiplicity of infection 5), polyinosinic:polycytidylic acid (poly I:C) 30 μg/ml, IFN-β 10 μg/ml, IFN-γ 10 μg/ml, or medium control for 24 hours. Phagocytosis of fluorescently labeled Haemophilus influenzae or Streptococcus pneumoniae was assessed by fluorimetry. CXCL8 (IL-8), IL-6, TNF-α (tumor necrosis factor-α), and IL-10 release was measured by ELISA. Measurements and Main Results: HRV significantly impaired phagocytosis of H. influenzae by 23% in MDM (n = 37; P = 0.004) and 18% in alveolar macrophages (n = 20; P < 0.0001) in COPD. HRV also significantly reduced phagocytosis of S. pneumoniae by 33% in COPD MDM (n = 20; P = 0.0192). There was no effect in healthy control subjects. Phagocytosis of H. influenzae was also impaired by poly I:C but not IFN-β or IFN-γ in COPD MDM. HRV significantly reduced cytokine responses to H. influenzae. The IL-10 response to H. influenzae was significantly impaired by poly I:C, IFN-β, and IFN-γ in COPD cells. Conclusions: HRV impairs phagocytosis of bacteria in COPD, which may lead to an outgrowth of bacteria. HRV also impairs cytokine responses to bacteria via the TLR3/IFN pathway, which may prevent resolution of inflammation leading to prolonged exacerbations in COPD.
Collapse
Affiliation(s)
- Lydia J Finney
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Kylie B R Belchamber
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Peter S Fenwick
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Samuel V Kemp
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and.,2 Royal Brompton Hospital, London, United Kingdom
| | - Michael R Edwards
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Patrick Mallia
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Gavin Donaldson
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Sebastian L Johnston
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Louise E Donnelly
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Jadwiga A Wedzicha
- 1 COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
42
|
Belchamber KBR, Donnelly LE. Targeting defective pulmonary innate immunity - A new therapeutic option? Pharmacol Ther 2020; 209:107500. [PMID: 32061706 DOI: 10.1016/j.pharmthera.2020.107500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Chronic pulmonary conditions now account for 1 in 15 deaths in the US and mortality is increasing. Chronic obstructive pulmonary disease (COPD) is due to become the 3rd largest cause of mortality by 2030 and mortality from other respiratory conditions such as asthma, idiopathic pulmonary fibrosis and cystic fibrosis are not reducing. There is an urgent need for novel therapies to address this problem as many of the current strategies targeting inflammation are not sufficient. The innate immune system of the lung is an important defence against invading pathogens, but in many chronic pulmonary diseases, this system mounts an inappropriate response. In COPD, macrophages are increased in number, but fail to clear pathogens correctly and become highly activated. This leads to increased damage and remodelling of the airways. In idiopathic fibrosis, there is a switch of macrophage phenotype to a cell that promotes abnormal repair. Neutrophils also display dysfunction in COPD where aberrant migratory profiles may lead to increased damage to lung tissue and emphysema; while in cystic fibrosis the proteolytic lung environment damages neutrophil receptors leading to ineffective phagocytosis and migration. Targeting the innate immune system to restore 'normal function' could have enormous benefits. Improving phagocytosis of pathogens could reduce exacerbations and hence the associated decline in lung function, and novel therapeutics such as sulforaphane appear to do this in vitro. Other natural products such as resveratrol and derivatives also have anti-inflammatory properties. Statins have traditionally been used to manage cholesterol levels in hypercholesterolaemia, however these molecules also have beneficial effects on the innate immune cells. Statins have been shown to be anti-inflammatory and restore aberrant neutrophil chemotaxis in aged cells. Other possible agents that may be efficacious are senolytics. These compounds include natural products such as quercetin which have anti-inflammatory properties but can also suppress viral replication. As viruses have been shown to suppress phagocytosis of macrophages, it is possible that these compounds could have benefit during viral exacerbations to protect this innate response. These compounds demonstrate that it is possible to address defective innate responses in the lung but a better understanding of the mechanisms driving defective innate immunity in pulmonary disease may lead to improved therapeutics.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
43
|
Michaeloudes C, Bhavsar PK, Mumby S, Xu B, Hui CKM, Chung KF, Adcock IM. Role of Metabolic Reprogramming in Pulmonary Innate Immunity and Its Impact on Lung Diseases. J Innate Immun 2019; 12:31-46. [PMID: 31786568 DOI: 10.1159/000504344] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Lung innate immunity is the first line of defence against inhaled allergens, pathogens and environmental pollutants. Cellular metabolism plays a key role in innate immunity. Catabolic pathways, including glycolysis and fatty acid oxidation (FAO), are interconnected with biosynthetic and redox pathways. Innate immune cell activation and differentiation trigger extensive metabolic changes that are required to support their function. Pro-inflammatory polarisation of macrophages and activation of dendritic cells, mast cells and neutrophils are associated with increased glycolysis and a shift towards the pentose phosphate pathway and fatty acid synthesis. These changes provide the macromolecules required for proliferation and inflammatory mediator production and reactive oxygen species for anti-microbial effects. Conversely, anti-inflammatory macrophages use primarily FAO and oxidative phosphorylation to ensure efficient energy production and redox balance required for prolonged survival. Deregulation of metabolic reprogramming in lung diseases, such as asthma and chronic obstructive pulmonary disease, may contribute to impaired innate immune cell function. Understanding how innate immune cell metabolism is altered in lung disease may lead to identification of new therapeutic targets. This is important as drugs targeting a number of metabolic pathways are already in clinical development for the treatment of other diseases such as cancer.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom,
| | - Pankaj K Bhavsar
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Sharon Mumby
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Bingling Xu
- Respiratory and Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Christopher Kim Ming Hui
- Respiratory and Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kian Fan Chung
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Ian M Adcock
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
44
|
Nie R, Wu Z, Ni J, Zeng F, Yu W, Zhang Y, Kadowaki T, Kashiwazaki H, Teeling JL, Zhou Y. Porphyromonas gingivalis Infection Induces Amyloid-β Accumulation in Monocytes/Macrophages. J Alzheimers Dis 2019; 72:479-494. [DOI: 10.3233/jad-190298] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ran Nie
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Fan Zeng
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Weixian Yu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Yufeng Zhang
- Gerontal Department of Stomatology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tomoko Kadowaki
- Division of Frontier Life Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Jessica L. Teeling
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
45
|
Mejías JC, Roy K. In-vitro and in-vivo characterization of a multi-stage enzyme-responsive nanoparticle-in-microgel pulmonary drug delivery system. J Control Release 2019; 316:393-403. [PMID: 31715279 DOI: 10.1016/j.jconrel.2019.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022]
Abstract
Although the lung is an obvious target for site-specific delivery of many therapeutics for respiratory airway diseases such as asthma, COPD, and cystic fibrosis, novel strategies are needed to avoid key physiologic barriers for efficient delivery and controlled release of therapeutics to the lungs. Specifically, deposition into the deep lung requires particles with a 1-5μm aerodynamic diameter; however, particles with a geometric diameter less than 6μm are rapidly cleared by alveolar macrophages. Additionally, epithelial, endothelial, and fibroblast cells prefer smaller (< 300nm) nanoparticles for efficient endocytosis. Here we address these contradictory design requirements by using a nanoparticle-inside-microgel system (Nano-in-Microgel). Using an improved maleimide-thiol based Michael Addition during (water-in-oil) Emulsion (MADE) method, we fabricated both trypsin-responsive and neutrophil elastase-responsive polymeric Nano-in-Microgel to show the versatility of the system in easily exchanging enzyme-responsive crosslinkers for disease-specific proteases. By varying the initial macromer concentration, from 20 to 50% w/v, the size distribution means ranged from 4-8μm, enzymatic degradation of the microgels is within 30min, and in vitro macrophage phagocytosis is lower for the higher % w/v. We further demonstrated that in vivo lung delivery of the multi-stage carriers through the pulmonary route yields particle retention up to several hours and followed by clearance within in naïve mice. Our results provide a further understanding of how enzymatically-degradable multi-stage polymeric carriers can be used for pulmonary drug delivery.
Collapse
Affiliation(s)
- Joscelyn C Mejías
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
| |
Collapse
|
46
|
Teufelberger AR, Bröker BM, Krysko DV, Bachert C, Krysko O. Staphylococcus aureus Orchestrates Type 2 Airway Diseases. Trends Mol Med 2019; 25:696-707. [PMID: 31176612 DOI: 10.1016/j.molmed.2019.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus persistently colonizes the nostrils of one-third of the population but colonizes the sinus mucosa in up to 90% of patients with nasal polyps, implying a possible role in airway disease. Recent findings give new mechanistic insights into the ability of S. aureus to trigger type 2 inflammatory responses in the upper and lower airways. This novel concept of a S. aureus-driven chronic airway inflammatory disease suggests a new understanding of disease triggers. This article reviews the role of S. aureus in chronic inflammatory airway diseases and discusses possible therapeutic approaches to target S. aureus.
Collapse
Affiliation(s)
- Andrea R Teufelberger
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Dmitri V Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia; Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium.
| |
Collapse
|
47
|
Choi SW, Lee JC, Kim J, Kim JE, Baek MJ, Park SY, Park S, Shin BJ. Prevalence and Risk Factors for Positive Nasal Methicillin-Resistant Staphylococcus aureus Carriage Among Orthopedic Patients in Korea. J Clin Med 2019; 8:jcm8050631. [PMID: 31072048 PMCID: PMC6572060 DOI: 10.3390/jcm8050631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes purulent skin and soft tissue infections as well as other life-threatening diseases. Recent guidelines recommend screening for MRSA at the time of admission. However, few studies have been conducted to determine the prevalence and risk factors for MRSA colonization. A prospective data collection and retrospective analysis was performed. MRSA screening tests were performed using nasal swabs in patients enrolled between January 2017 and July 2018. Demographic data, socio-economic data, medical comorbidities, and other risk factors for MRSA carriage were evaluated among 1577 patients enrolled in the study. The prevalence of MRSA nasal carriage was 7.2%. Univariate regression analysis showed that colonization with MRSA at the time of hospital admission was significantly related to patient age, body mass index, smoking, alcohol, trauma, recent antibiotic use, and route of hospital admission. Multiple logistic regression analysis for the risk factors for positive MRSA nasal carriage showed that being under- or overweight, trauma diagnosis, antibiotic use one month prior to admission, and admission through an emergency department were related to MRSA colonization. This study highlights the importance of a preoperative screening test for patients scheduled to undergo surgery involving implant insertion, particularly those at risk for MRSA.
Collapse
Affiliation(s)
- Sung-Woo Choi
- Department of Orthopedic Surgery, Soonchunhyang University Hospital, College of Medicine, Seoul 04401, Korea.
| | - Jae Chul Lee
- Department of Orthopedic Surgery, Soonchunhyang University Hospital, College of Medicine, Seoul 04401, Korea.
| | - Jahyung Kim
- Department of Orthopedic Surgery, Soonchunhyang University Hospital, College of Medicine, Seoul 04401, Korea.
| | - Ji Eun Kim
- Department of Laboratory Medicine, Soonchunhyang University College of Medicine, Seoul 04401, Korea.
| | - Min Jung Baek
- Department of Obstetrics and Gynecology, Bundang CHA Hospital, Seongnam 13496, Korea.
| | - Se Yoon Park
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Hospital, College of Medicine, Seoul 04401, Korea.
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University College of Medicine, Seoul 04401, Korea.
| | - Byung-Joon Shin
- Department of Orthopedic Surgery, Soonchunhyang University Hospital, College of Medicine, Seoul 04401, Korea.
| |
Collapse
|
48
|
Abstract
The airways are under continuous assault from aerosolized bacteria and oral flora. The bacteria present in the airways and gastrointestinal tract of neonates promote immune maturation and protect against asthma pathogenesis. Later bacterial infections and perturbations to the microbiome can contribute to asthma pathogenesis, persistence, and severity.
Collapse
Affiliation(s)
- Michael Insel
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of Arizona Health Sciences, University of Arizona College of Medicine - Tucson, 1501 North Campbell Avenue, PO Box 245017, Tucson, AZ 85724, USA
| | - Monica Kraft
- Department of Medicine, College of Medicine Tucson, Asthma and Airway Disease Research Center, University of Arizona Health Sciences, University of Arizona College of Medicine - Tucson, 1501 North Campbell Avenue, PO Box 245017, Tucson, AZ 85724, USA.
| |
Collapse
|
49
|
Moore-Lotridge SN, Li Q, Gibson BHY, Martin JT, Hawley GD, Arnold TH, Saito M, Tannouri S, Schwartz HS, Gumina RJ, Cates JMM, Uitto J, Schoenecker JG. Trauma-Induced Nanohydroxyapatite Deposition in Skeletal Muscle is Sufficient to Drive Heterotopic Ossification. Calcif Tissue Int 2019; 104:411-425. [PMID: 30515544 PMCID: PMC6437294 DOI: 10.1007/s00223-018-0502-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/27/2018] [Indexed: 02/05/2023]
Abstract
Heterotopic ossification (HO), or the pathologic formation of bone within soft tissues, is a significant complication following severe injuries as it impairs joint motion and function leading to loss of the ability to perform activities of daily living and pain. While soft tissue injury is a prerequisite of developing HO, the exact molecular pathology leading to trauma-induced HO remains unknown. Through prior investigations aimed at identifying the causative factors of HO, it has been suggested that additional predisposing factors that favor ossification within the injured soft tissues environment are required. Considering that chondrocytes and osteoblasts initiate physiologic bone formation by depositing nanohydroxyapatite crystal into their extracellular environment, we investigated the hypothesis that deposition of nanohydroxyapatite within damaged skeletal muscle is likewise sufficient to predispose skeletal muscle to HO. Using a murine model genetically predisposed to nanohydroxyapatite deposition (ABCC6-deficient mice), we observed that following a focal muscle injury, nanohydroxyapatite was robustly deposited in a gene-dependent manner, yet resolved via macrophage-mediated regression over 28 days post injury. However, if macrophage-mediated regression was inhibited, we observed persistent nanohydroxyapatite that was sufficient to drive the formation of HO in 4/5 mice examined. Together, these results revealed a new paradigm by suggesting the persistent nanohydroxyapatite, referred to clinically as dystrophic calcification, and HO may be stages of a pathologic continuum, and not discrete events. As such, if confirmed clinically, these findings support the use of early therapeutic interventions aimed at preventing nanohydroxyapatite as a strategy to evade HO formation.
Collapse
Affiliation(s)
- Stephanie N Moore-Lotridge
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South Tenth Street, Bluemle Life Sciences Building, Room 450, Philadelphia, PA, 19107, USA
| | - Breanne H Y Gibson
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA
| | - Joseph T Martin
- College of Arts and Science, Vanderbilt University, 301 Kirkland Hall, Nashville, TN, 37240, USA
| | - Gregory D Hawley
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Thomas H Arnold
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, 4202 Doctor's Office Tower, 2200 Children's Way, Nashville, TN, 37232, USA
| | - Masanori Saito
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Sami Tannouri
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South Tenth Street, Bluemle Life Sciences Building, Room 450, Philadelphia, PA, 19107, USA
| | - Herbert S Schwartz
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Richard J Gumina
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Preston Research Building, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Justin M M Cates
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South Tenth Street, Bluemle Life Sciences Building, Room 450, Philadelphia, PA, 19107, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA.
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, 4202 Doctor's Office Tower, 2200 Children's Way, Nashville, TN, 37232, USA.
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA.
- , 2200 Pierce Ave, Robinson Research Building, Rm 454, Nashville, TN, 37232, USA.
| |
Collapse
|
50
|
Erriah M, Pabreja K, Fricker M, Baines KJ, Donnelly LE, Bylund J, Karlsson A, Simpson JL. Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir Res 2019; 20:1. [PMID: 30606211 PMCID: PMC6318889 DOI: 10.1186/s12931-018-0967-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Galectin-3 is a 32 kDa protein secreted by macrophages involved in processes such as cell activation, chemotaxis and phagocytosis. Galectin-3 has previously been shown to improve the ability of airway macrophages to ingest apoptotic cells (efferocytosis) in chronic obstructive pulmonary disease (COPD) and may be of interest in non-eosinophilic asthma (NEA) which is also characterised by impaired efferocytosis. It was hypothesised that the addition of exogenous galectin-3 to monocyte-derived macrophages (MDMs) derived from donors with NEA would enhance their ability to engulf apoptotic granulocytes. METHODS Eligible non-smoking adults with asthma (n = 19), including 7 with NEA and healthy controls (n = 10) underwent a clinical assessment, venepuncture and sputum induction. MDMs were co-cultured with apoptotic granulocytes isolated from healthy donors with or without exogenous recombinant galectin-3 (50 μg/mL) and efferocytosis was assessed by flow cytometry. Galectin-3 expression and localisation in MDMs was visualised by immunofluorescence staining and fluorescence microscopy. Galectin-3, interleukin (IL)-6 and CXCL8 secretion were measured in cell culture supernatants by ELISA and cytometric bead array. RESULTS Baseline efferocytosis (mean (±standard deviation)) was lower in participants with asthma (33.2 (±17.7)%) compared with healthy controls (45.3 (±15.9)%; p = 0.081). Efferocytosis did not differ between the participants with eosinophilic asthma (EA) (31.4 (±19.2)%) and NEA (28.7 (±21.5)%; p = 0.748). Addition of galectin-3 significantly improved efferocytosis in asthma, particularly in NEA (37.8 (±18.1)%) compared with baseline (30.4 (±19.7)%; p = 0.012). Efferocytosis was not associated with any of the clinical outcomes but was negatively correlated with sputum macrophage numbers (Spearman r = - 0.671; p = 0.017). Galectin-3 was diffusely distributed in most MDMs but formed punctate structures in 5% of MDMs. MDM galectin-3 secretion was lower in asthma (9.99 (2.67, 15.48) ng/mL) compared with the healthy controls (20.72 (11.28, 27.89) ng/mL; p = 0.044) while IL-6 and CXCL8 levels were similar. CONCLUSIONS Galectin-3 modulates macrophage function in asthma, indicating a potential role for galectin-3 to reverse impaired efferocytosis in NEA.
Collapse
Affiliation(s)
- Melanie Erriah
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Kavita Pabreja
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Louise E Donnelly
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Karlsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|