1
|
Jiang W, Sun W, Peng Y, Xu H, Fan H, Jin X, Xiao Y, Wang Y, Yang P, Shu W, Li J. Single-cell RNA sequencing reveals the intercellular crosstalk and the regulatory landscape of stromal cells during the whole life of the mouse ovary. LIFE MEDICINE 2024; 3:lnae041. [PMID: 39872151 PMCID: PMC11748273 DOI: 10.1093/lifemedi/lnae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/25/2024] [Indexed: 01/29/2025]
Abstract
The heterogeneity of ovarian mesenchymal/stromal cells has just been revealed in both mice and humans. However, it remains unclear about the cellular development trace and the intercellular communication network in the whole life of the ovary. In the study, we integrated ours and published single-cell RNA sequencing data from E11.5 (embryonic day 11.5) until M12 (12-month-old) ovaries to show the dynamics of somatic cells along the developmental timeline. The intercellular crosstalk among somatic cell types was depicted with collagen signaling pathway as the most outgoing signals from stromal cells. We identified mesenchymal progenitor cells (CD24+) as the origin of stromal cells. Although their numbers decreased significantly in adults, the cells served as the major signal sender until ovarian senescence. Moreover, the ovarian injury could activate these stem cells and induce stroma remodeling in the aged ovary. Thus, mesenchymal progenitor cells may represent a new strategy to delay ovarian aging in the future.
Collapse
Affiliation(s)
- Wan Jiang
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Wenya Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| | - Yue Peng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| | - Hao Xu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Haonan Fan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| | - Xin Jin
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women’s Hospital of Jiangnan University, Wuxi 214000, China
| | - Yue Xiao
- The First Affiliated Hospital of Zhejiang University School of Medicine, Center of Reproductive Medicine, Hangzhou 310009, China
| | - Yuxiang Wang
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Pin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
2
|
Wang H, Dwamena A. Olfactory Ecto-Mesenchymal Stem Cells in Modeling and Treating Alzheimer's Disease. Int J Mol Sci 2024; 25:8492. [PMID: 39126059 PMCID: PMC11313019 DOI: 10.3390/ijms25158492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is a condition in the brain that is marked by a gradual and ongoing reduction in memory, thought, and the ability to perform simple tasks. AD has a poor prognosis but no cure yet. Therefore, the need for novel models to study its pathogenesis and therapeutic strategies is evident, as the brain poorly recovers after injury and neurodegenerative diseases and can neither replace dead neurons nor reinnervate target structures. Recently, mesenchymal stem cells (MSCs), particularly those from the human olfactory mucous membrane referred to as the olfactory ecto-MSCs (OE-MSCs), have emerged as a potential avenue to explore in modeling AD and developing therapeutics for the disease due to their lifelong regeneration potency and facile accessibility. This review provides a comprehensive summary of the current literature on isolating OE-MSCs and delves into whether they could be reliable models for studying AD pathogenesis. It also explores whether healthy individual-derived OE-MSCs could be therapeutic agents for the disease. Despite being a promising tool in modeling and developing therapies for AD, some significant issues remain, which are also discussed in the review.
Collapse
Affiliation(s)
- Hongmin Wang
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Science Center, Lubbock, TX 79424, USA;
| | | |
Collapse
|
3
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton. Nat Commun 2023; 14:4587. [PMID: 37524694 PMCID: PMC10390564 DOI: 10.1038/s41467-023-40393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated β-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.
Collapse
Affiliation(s)
- Madison L Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jennifer L Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephanie J Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - David G Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of senolytic therapy in the aged murine skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523760. [PMID: 36711531 PMCID: PMC9882155 DOI: 10.1101/2023.01.12.523760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-βgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie J. Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Chetty S, Yarani R, Swaminathan G, Primavera R, Regmi S, Rai S, Zhong J, Ganguly A, Thakor AS. Umbilical cord mesenchymal stromal cells-from bench to bedside. Front Cell Dev Biol 2022; 10:1006295. [PMID: 36313578 PMCID: PMC9597686 DOI: 10.3389/fcell.2022.1006295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, mesenchymal stromal cells (MSCs) have generated a lot of attention due to their paracrine and immuno-modulatory properties. mesenchymal stromal cells derived from the umbilical cord (UC) are becoming increasingly recognized as having increased therapeutic potential when compared to mesenchymal stromal cells from other sources. The purpose of this review is to provide an overview of the various compartments of umbilical cord tissue from which mesenchymal stromal cells can be isolated, the differences and similarities with respect to their regenerative and immuno-modulatory properties, as well as the single cell transcriptomic profiles of in vitro expanded and freshly isolated umbilical cord-mesenchymal stromal cells. In addition, we discuss the therapeutic potential and biodistribution of umbilical cord-mesenchymal stromal cells following systemic administration while providing an overview of pre-clinical and clinical trials involving umbilical cord-mesenchymal stromal cells and their associated secretome and extracellular vesicles (EVs). The clinical applications of umbilical cord-mesenchymal stromal cells are also discussed, especially in relation to obstacles and potential solutions for their effective translation from bench to bedside.
Collapse
Affiliation(s)
- Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Ganesh Swaminathan
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Sravanthi Rai
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Jim Zhong
- Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| |
Collapse
|
6
|
Al-Dhfyan A, Alaiya A, Al-Mohanna F, Attwa MW, Alasmari AF, Bakheet SA, Korashy HM. Crosstalk Between Aryl Hydrocarbon Receptor (AhR) and BCL-2 Pathways Suggests the Use of AhR Antagonist to Maintain Normal Differentiation State of Mammary Epithelial Cells During BCL-2 Inhibition Therapy. J Adv Res 2022:S2090-1232(22)00234-X. [PMID: 36307019 PMCID: PMC10403657 DOI: 10.1016/j.jare.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Activating the aryl hydrocarbon receptor upon exposure to environmental pollutants promotes development of breast cancer stem cell (CSCs). BCL-2 family proteins protect cancer cells from the apoptotic effects of chemotherapeutic drugs. However, the crosstalk between AhR and the BCL-2 family in CSC development remains uninvestigated. OBJECTIVES This study explored the interaction mechanisms between AhR and BCL-2 in CSC development and chemoresistance. METHODS A quantitative proteomic analysis study was performed as a tool for comparative expression analysis of breast cancer cells treated by AhR agonist. The basal and inducible levels of BCL-2, AhR, and CYP1A1 in vitro breast cancer and epithelial cell lines and in vivo mice animal models were determined by RT-PCR, Western blot analysis, immunofluorescence, flow cytometry, silencing of the target, and immunohistochemistry. In addition, an in silico toxicity study was conducted using DEREK software. RESULTS Activation of the AhR/CYP1A1 pathway in mice increased EpCAMHigh/CD49fLow CD61+ luminal progenitor-like cells in early tumor formation but not in advanced tumors. In parallel, a chemoproteomic study on breast cancer MCF-7 cells revealed that the BCL-2 protein expression was the most upregulated upon AhR activation. The crosstalk between the AhR and BCL-2 pathways in vitro and in vivo modulated the CSCs features and chemoresistance. Interestingly, inhibition of BCL-2 in mice by venetoclax (VCX) increased EpCAMHigh/CD49fLow CD61+ luminal progenitor-like cells, causing inhibition of epithelial lineage markers, disruption of mammary gland branching and induced the epithelial-mesenchymal transition in mammary epithelial cells (MECs). The combined treatment of VCX and AhR antagonists in mice corrected the abnormal differentiation in MECs and protected mammary gland branching and cell identity. CONCLUSIONS This is the first study to report crosstalk between AhR and BCL-2 in breast CSCs and provides the rationale for using a combined treatment of BCL-2 inhibitor and AhR antagonist for more effective cancer prevention and treatment.
Collapse
|
7
|
Lam J, Sung KE, Oh SS. Science-based regulatory considerations for regenerative medicine cellular products. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2021.100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Miressi F, Benslimane N, Favreau F, Rassat M, Richard L, Bourthoumieu S, Laroche C, Magy L, Magdelaine C, Sturtz F, Lia AS, Faye PA. GDAP1 Involvement in Mitochondrial Function and Oxidative Stress, Investigated in a Charcot-Marie-Tooth Model of hiPSCs-Derived Motor Neurons. Biomedicines 2021; 9:biomedicines9080945. [PMID: 34440148 PMCID: PMC8393985 DOI: 10.3390/biomedicines9080945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) gene have been associated with demyelinating and axonal forms of Charcot-Marie-Tooth (CMT) disease, the most frequent hereditary peripheral neuropathy in humans. Previous studies reported the prevalent GDAP1 expression in neural tissues and cells, from animal models. Here, we described the first GDAP1 functional study on human induced-pluripotent stem cells (hiPSCs)-derived motor neurons, obtained from normal subjects and from a CMT2H patient, carrying the GDAP1 homozygous c.581C>G (p.Ser194*) mutation. At mRNA level, we observed that, in normal subjects, GDAP1 is mainly expressed in motor neurons, while it is drastically reduced in the patient’s cells containing a premature termination codon (PTC), probably degraded by the nonsense-mediated mRNA decay (NMD) system. Morphological and functional investigations revealed in the CMT patient’s motor neurons a decrease of cell viability associated to lipid dysfunction and oxidative stress development. Mitochondrion is a key organelle in oxidative stress generation, but it is also mainly involved in energetic metabolism. Thus, in the CMT patient’s motor neurons, mitochondrial cristae defects were observed, even if no deficit in ATP production emerged. This cellular model of hiPSCs-derived motor neurons underlines the role of mitochondrion and oxidative stress in CMT disease and paves the way for new treatment evaluation.
Collapse
Affiliation(s)
- Federica Miressi
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- Correspondence:
| | - Nesrine Benslimane
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Marion Rassat
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
| | - Laurence Richard
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Sylvie Bourthoumieu
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Cytogénétique, F-87000 Limoges, France
| | - Cécile Laroche
- CHU Limoges, Service de Pédiatrie, F-87000 Limoges, France;
- CHU Limoges, Centre de Compétence des Maladies Héréditaires du Métabolisme, F-87000 Limoges, France
| | - Laurent Magy
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Corinne Magdelaine
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Franck Sturtz
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Anne-Sophie Lia
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
- CHU Limoges, Service de Bioinformatique, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| |
Collapse
|
9
|
Search for Novel Plasma Membrane Proteins as Potential Biomarkers in Human Mesenchymal Stem Cells Derived from Dental Pulp, Adipose Tissue, Bone Marrow, and Hair Follicle. J Membr Biol 2021; 254:409-422. [PMID: 34230997 DOI: 10.1007/s00232-021-00190-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
One of the drawbacks preventing the use of mesenchymal stem cells (MSCs) in clinical practice is the heterogeneous nature of their cultures. MSC cultures are not homogeneously formed by the MSCs and may contain non-mesenchymal cell types. Therefore, prior to use in clinics or research, complete characterization of MSCs should be performed to demonstrate the existence or absence of proper stem cell markers, many of which are happened to be cell-surface proteins. Unfortunately, the success of MSC characterization studies is limited due to the low specificity of the currently available cell-surface markers. Therefore, in this study, we aimed to investigate the plasma membrane (PM) proteins of MSCs isolated from human dental pulp (DP), adipose tissue (AT), bone marrow (BM), and hair follicle (HF) with the hope of proposing novel putative specific MSC markers. Differential-velocity centrifugation was used to enrich PM proteins. The isolated proteins were then identified by nLC-MS/MS and subjected to bioinformatics analysis. Proteins that were unique to each MSC type (CD9, CD10, CD63 for DP-MSCs; CD26, CD81, CD201, CD364 for AT-MSCs; Cd49a, CD49d for HF-MSCs; CD49e, CD56, CD92, CD97, CD156b, CD156c, CD220, CD221, CD298, CD315 for BM-MSCs) and common to all four MSC types (CD13, CD29, CD44, CD51, CD59, CD73, CD90) were identified. Uncharacterized proteins that have transmembrane (TM) domains were also detected. Some of the proteins identified in this study were the putative cell-surface markers that might be used for characterization of MSCs.
Collapse
|
10
|
Liu H, Jiang C, La B, Cao M, Ning S, Zhou J, Yan Z, Li C, Cui Y, Ma X, Wang M, Chen L, Yu Y, Chen F, Zhang Y, Wu H, Liu J, Qin L. Human amnion-derived mesenchymal stem cells improved the reproductive function of age-related diminished ovarian reserve in mice through Ampk/FoxO3a signaling pathway. Stem Cell Res Ther 2021; 12:317. [PMID: 34078462 PMCID: PMC8173966 DOI: 10.1186/s13287-021-02382-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Background Age-related diminished ovarian reserve (AR-DOR) reduced the quality of oocytes, resulting in decreased female fertility. Aging is tightly related to abnormal distribution and function of mitochondria, while mitophagy is a major process to maintain normal quality and quantity of mitochondria in cells, especially in oocytes which containing a large number of mitochondria to meet the demand of energy production during oocyte maturation and subsequent embryonic development. Ampk/FoxO3a signaling is crucial in the regulation of mitophagy. It is reported mesenchymal stem cells (MSCs) can improve ovarian function. Here we aim to explore if human amnion-derived mesenchymal stem cells (hAMSCs) are effective in improving ovarian function in AR-DOR mice and whether Ampk/FoxO3a signaling is involved. Methods The AR-DOR model mice were established by 32-week-old mice with 3–8 litters, significantly low serum sex hormone levels and follicle counts. The old mice were divided into 5 treatment groups: normal saline (NS, control), 1% human serum albumin (HSA, resolver), low dose (LD, 5.0 × 106cells/kg), middle dose (MD, 7.5 × 106cells/kg), and high dose (HD, 10.0 × 106cells/kg). The prepared hAMSCs were injected through tail vein. Serum sex hormone level, follicle counts, fertilization rate, gestation rate, little size, apoptosis of granulosa and stromal cells, expression level of Sod2, Ampk, and ratio of phosphorylated FoxO3a to total FoxO3a in ovaries were examined. Results Our results show that after hAMSC transplantation, the ovarian function in AR-DOR mice was significantly improved, meanwhile the apoptosis of granulosa and stromal cells in the ovaries was significantly repressed, the expression level of Ampk and the ratio of phosphorylated FoxO3a to total FoxO3a both were significantly increased, meanwhile increased Sod2 expression was also observed. Conclusion Our results demonstrate hAMSC transplantation via tail-injection can improve ovarian function of AR-DOR mice through Ampk/FoxO3a signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02382-x.
Collapse
Affiliation(s)
- Hanwen Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Boya La
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Meng Cao
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jing Zhou
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chuyu Li
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Meilian Wang
- Department of Obstetrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Li Chen
- Department of Obstetrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuexin Zhang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Huimin Wu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
11
|
González‐Cubero E, González‐Fernández ML, Gutiérrez‐Velasco L, Navarro‐Ramírez E, Villar‐Suárez V. Isolation and characterization of exosomes from adipose tissue-derived mesenchymal stem cells. J Anat 2021; 238:1203-1217. [PMID: 33372709 PMCID: PMC8053584 DOI: 10.1111/joa.13365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the subject of intense research as they are a potential therapeutic tool for several clinical applications. The new MSCs action models are focused on the use of MSC-derived secretome which contains several growth factors, cytokines, microRNAs, and extracellular vesicles such as exosomes. Exosomes have recently emerged as a component with great potential involved as mediators in cellular communication. The isolation and identification of exosomes has made it possible for them to be used in cell-free therapies. The purposes of this study are: (i) to detect exosomes released into adipose-derived MSC conditioned cell culture medium, (ii) to identify exosome morphology, and (iii) to carry out a complete characterization of said exosomes. Moreover, it is aimed at determining which method for exosome isolation would be best to use. Precipitation has been identified as a highly useful method of exosome isolation since it provides higher efficiency and purity values than other methods. A broad characterization of the exosomes present in the MSC-conditioned medium was also carried out. This work fills a gap in the existing literature on bioactive molecules which have attracted a great deal of interest due to their potential use in cellular therapies.
Collapse
Affiliation(s)
- Elsa González‐Cubero
- Department of AnatomyFaculty of Veterinary SciencesUniversity of León‐Universidad de LeónLeónEspaña
| | | | - Laura Gutiérrez‐Velasco
- Department of AnatomyFaculty of Veterinary SciencesUniversity of León‐Universidad de LeónLeónEspaña
| | - Eliezer Navarro‐Ramírez
- Department of AnatomyFaculty of Veterinary SciencesUniversity of León‐Universidad de LeónLeónEspaña
| | - Vega Villar‐Suárez
- Institute of Biomedicine (IBIOMED)University of León‐Universidad de LeónLeónEspaña
| |
Collapse
|
12
|
van de Peppel J, Schaaf GJ, Matos AA, Guo Y, Strini T, Verschoor W, Dudakovic A, van Wijnen AJ, van Leeuwen JPTM. Cell Surface Glycoprotein CD24 Marks Bone Marrow-Derived Human Mesenchymal Stem/Stromal Cells with Reduced Proliferative and Differentiation Capacity In Vitro. Stem Cells Dev 2021; 30:325-336. [PMID: 33593128 DOI: 10.1089/scd.2021.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow-derived mesenchymal stem/stromal cells (BMSCs) are fundamental to bone regenerative therapies, tissue engineering, and postmenopausal osteoporosis. Donor variation among patients, cell heterogeneity, and unpredictable capacity for differentiation reduce effectiveness of BMSCs for regenerative cell therapies. The cell surface glycoprotein CD24 exhibits the most prominent differential expression during osteogenic versus adipogenic differentiation of human BMSCs. Therefore, CD24 may represent a selective biomarker for subpopulations of BMSCs with increased osteoblastic potential. In undifferentiated human BMSCs, CD24 cell surface expression is variable among donors (range: 2%-10%) and increased by two to fourfold upon osteogenic differentiation. Strikingly, FACS sorted CD24pos cells exhibit delayed mineralization and reduced capacity for adipocyte differentiation. RNAseq analysis of CD24pos and CD24neg BMSCs identified a limited number of genes with increased expression in CD24pos cells that are associated with cell adhesion, motility, and extracellular matrix. Downregulated genes are associated with cell cycle regulation, and biological assays revealed that CD24pos cells have reduced proliferation. Hence, expression of the cell surface glycoprotein CD24 identifies a subpopulation of human BMSCs with reduced capacity for proliferation and extracellular matrix mineralization. Functional specialization among BMSCs populations may support their regenerative potential and therapeutic success by accommodating cell activities that promote skeletal tissue formation, homeostasis, and repair.
Collapse
Affiliation(s)
- Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gerben J Schaaf
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Adriana Arruda Matos
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yuan Guo
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tanja Strini
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wenda Verschoor
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Amel Dudakovic
- Department of Orthopedic Surgery, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Orthopedic Surgery, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Johannes P T M van Leeuwen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines 2021; 9:biomedicines9010040. [PMID: 33466493 PMCID: PMC7824911 DOI: 10.3390/biomedicines9010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue resides in specific depots scattered in peripheral or deeper locations all over the body and it enwraps most of the organs. This tissue is always in a dynamic evolution as it must adapt to the metabolic demand and constraints. It exhibits also endocrine functions important to regulate energy homeostasis. This complex organ is composed of depots able to produce opposite functions to monitor energy: the so called white adipose tissue acts to store energy as triglycerides preventing ectopic fat deposition while the brown adipose depots dissipate it. It is composed of many cell types. Different types of adipocytes constitute the mature cells specialized to store or burn energy. Immature adipose progenitors (AP) presenting stem cells properties contribute not only to the maintenance but also to the expansion of this tissue as observed in overweight or obese individuals. They display a high regeneration potential offering a great interest for cell therapy. In this review, we will depict the attributes of the distinct types of adipocytes and their contribution to the function and metabolic features of adipose tissue. We will examine the specific role and properties of distinct depots according to their location. We will consider their cellular heterogeneity to present an updated picture of this sophisticated tissue. We will also introduce new trends pointing out a rational targeting of adipose tissue for medical applications.
Collapse
|
14
|
Plekhova NG, Lyapun IN, Drobot EI, Shevchuk DV, Sinebryukhov SL, Mashtalyar DV, Gnedenkov SV. Functional State of Mesenchymal Stem Cells upon Exposure to Bioactive Coatings on Titanium Alloys. Bull Exp Biol Med 2020; 169:147-156. [PMID: 32488788 DOI: 10.1007/s10517-020-04841-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Bioactive coatings on implants affect osteogenic differentiation of mesenchymal stem cells (MSC). We studied the morphofunctional state of bone marrow MSC cultured on the surface of calcium phosphate coatings on titanium formed by plasma electrolytic oxidation (PEO). The biocompatible properties of the coatings manifested in the absence of the cytotoxic effect on cells. High expression of receptors (CD90, CD29, and CD106), enhanced synthesis of osteocalcin and osteopontin, and changes in surface architectonics of MSC adherent to the samples confirmed osteoinductive properties of the calcium phosphate PEO coating.
Collapse
Affiliation(s)
- N G Plekhova
- Central Research Laboratory, Pacific State Medical University, the Ministry of Health of the Russian Federation, Vladivostok, Russia.
| | - I N Lyapun
- G. P. Somov Research Institute Epidemiology and Microbiology, Vladivostok, Russia
| | - E I Drobot
- G. P. Somov Research Institute Epidemiology and Microbiology, Vladivostok, Russia
| | - D V Shevchuk
- Central Research Laboratory, Pacific State Medical University, the Ministry of Health of the Russian Federation, Vladivostok, Russia
| | - S L Sinebryukhov
- Institute of Chemistry, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok, Russia
| | - D V Mashtalyar
- Institute of Chemistry, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok, Russia
| | - S V Gnedenkov
- Institute of Chemistry, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
15
|
Alhoshani A, Alanazi FE, Alotaibi MR, Attwa MW, Kadi AA, Aldhfyan A, Akhtar S, Hourani S, Agouni A, Zeidan A, Korashy HM. EGFR Inhibitor Gefitinib Induces Cardiotoxicity through the Modulation of Cardiac PTEN/Akt/FoxO3a Pathway and Reactive Metabolites Formation: In Vivo and in Vitro Rat Studies. Chem Res Toxicol 2020; 33:1719-1728. [PMID: 32370496 DOI: 10.1021/acs.chemrestox.0c00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gefitinib (GEF) is a selective inhibitor of the epidermal growth factor receptor (EGFR) used to treat non-small cell lung cancer. Yet, few cases of cardiotoxicity have been reported. However, the role of the PTEN/Akt/FoxO3a pathway, which mediates GEF anticancer activity, in GEF cardiotoxicity remains unclear. For this purpose, in vitro H9c2 cells and in vivo rat cardiomyocytes were utilized as study models. Treatment of H9c2 cells and Sprague-Dawley rats with GEF significantly induced the expression of hypertrophic and apoptotic markers at mRNA and protein levels with an increased plasma level of troponin. This was accompanied by induction of autophagy and mitochondrial dysfunction in H9c2 cells. Inhibition of cardiac EGFR activity and Akt cellular content of in vitro and in vivo rat cardiomyocytes by GEF increased PTEN and FoxO3a gene expression and cellular content. Importantly, treatment of H9c2 cells with PI3K/Akt inhibitor increased PTEN and FoxO3a mRNA expression associated with potentiation of GEF cardiotoxicity. In addition, by using LC-MS/MS, we showed that GEF is metabolized in the rat heart microsomes into one cyanide- and two methoxylamine-adduct reactive metabolites, where their formation was entirely blocked by CYP1A1 inhibitor, α-naphthoflavone. The current study concludes that GEF induces cardiotoxicity through modulating the expression and function of the cardiac PTEN/AKT/FoxO3a pathway and the formation of CYP1A1-mediated reactive metabolites.
Collapse
Affiliation(s)
- Ali Alhoshani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.,Security Forces Hospital Program, P.O. Box 3643, Riyadh 11481, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.,Students' University Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Aldhfyan
- Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sabah Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shireen Hourani
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Asad Zeidan
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
16
|
Rocha A, Leite Y, Silva A, Conde Júnior A, Costa C, Silva G, Bezerra D, Cavalcante M, Feitosa M, Argôlo Neto N, Serakides R, Carvalho M. Immunophenotyping, plasticity tests and nanotagging of stem cells derived from adipose tissue of wild rodent agouti (Dasyprocta prymnolopha). ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
ABSTRACT There is a growing interest in the study of unspecialized mesenchymal stem cells, for there are still some discussions about their in vitro behavior. Regenerative medicine is a science undergoing improvement which develops treatments as cell therapy using somatic stem cells. In several studies, adipose tissue is presented as a source of multipotent adult cells that has several advantages over other tissue sources. This study aimed to characterize and evaluate the tagging of mesenchymal stem cells from the agoutis adipose tissue (Dasyprocta prymonolopha), with fluorescent intracytoplasmic nanocrystals. Fibroblast cells were observed, plastic adherent, with extended self-renewal, ability to form colonies, multipotency by differentiation into three lineages, population CD90 + and CD45 - expression, which issued high red fluorescence after the tagging with fluorescent nanocrystals by different paths and cryopreserved for future use. It is possible to conclude that mesenchymal stem cells from agouti adipose tissue have biological characteristics and in vitro behavior that demonstrate its potential for use in clinical tests.
Collapse
|
17
|
A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci Rep 2019; 9:1761. [PMID: 30741963 PMCID: PMC6370862 DOI: 10.1038/s41598-018-37981-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Human teeth contain a variety of mesenchymal stem cell populations that could be used for cell-based regenerative therapies. However, the isolation and potential use of these cells in the clinics require the extraction of functional teeth, a process that may represent a significant barrier to such treatments. Fibroblasts are highly accessible and might represent a viable alternative to dental stem cells. We thus investigated and compared the in vitro differentiation potential of human dental pulp stem cells (hDPSCs), gingival fibroblasts (hGFs) and foreskin fibroblasts (hFFs). These cell populations were cultured in osteogenic and adipogenic differentiation media, followed by Alizarin Red S and Oil Red O staining to visualize cytodifferentiation. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was performed to assess the expression of markers specific for stem cells (NANOG, OCT-4), osteogenic (RUNX2, ALP, SP7/OSX) and adipogenic (PPAR-γ2, LPL) differentiation. While fibroblasts are more prone towards adipogenic differentiation, hDPSCs exhibit a higher osteogenic potential. These results indicate that although fibroblasts possess a certain mineralization capability, hDPSCs represent the most appropriate cell population for regenerative purposes involving bone and dental tissues.
Collapse
|
18
|
Gauthier-Fisher A, Szaraz P, Librach CL. Pericytes in the Umbilical Cord. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:211-233. [DOI: 10.1007/978-3-030-11093-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Islam SS, Al-Sharif I, Sultan A, Al-Mazrou A, Remmal A, Aboussekhra A. Eugenol potentiates cisplatin anti-cancer activity through inhibition of ALDH-positive breast cancer stem cells and the NF-κB signaling pathway. Mol Carcinog 2017; 57:333-346. [PMID: 29073729 DOI: 10.1002/mc.22758] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/17/2017] [Accepted: 10/23/2017] [Indexed: 01/16/2023]
Abstract
Triple-negative breast tumors are very aggressive and contain relatively high proportion of cancer stem cells, and are resistant to chemotherapeutic drugs including cisplatin. To overcome these limitations, we combined eugenol, a natural polyphenolic molecule, with cisplatin to normalize cisplatin mediated toxicity and potential drug resistance. Interestingly, the combination treatment provided significantly greater cytotoxic and pro-apoptotic effects as compared to treatment with eugenol or cisplatin alone on several triple-negative breast cancer cells both in vitro and in vivo. Furthermore, adding eugenol to cisplatin potentiated the inhibition of breast cancer stem cells by inhibiting ALDH enzyme activity and ALDH-positive tumor initiating cells. We provide also clear evidence that eugenol potentiates cisplatin inhibition of the NF-κB signaling pathway. Indeed, the binding of NF-κB to its cognate binding sites present in the promoters of IL-6 and IL-8 was dramatically reduced, which led to potent down-regulation of the IL-6 and IL-8 cytokines upon combination treatment relative to the single agents. Similar effects were observed on proliferation, inhibition of epithelial-to-mesenchymal transition and stemness markers in tumor xenografts. These results provide strong preclinical justification for combining cisplatin with eugenol as therapeutic approach for triple-negative breast cancers through targeting the resistant ALDH-positive cells and inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Syed S Islam
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ibtehaj Al-Sharif
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahlam Sultan
- Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Amer Al-Mazrou
- Stem Cell Therapy Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Adnane Remmal
- Faculté des Sciences Fès, Laboratoire de Biotechnologie Atlas, Fès, Morocco
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Garcia-Areas R, Libreros S, Simoes M, Castro-Silva C, Gazaniga N, Amat S, Jaczewska J, Keating P, Schilling K, Brito M, Wojcikiewicz EP, Iragavarpu-Charyulu V. Suppression of tumor-derived Semaphorin 7A and genetic ablation of host-derived Semaphorin 7A impairs tumor progression in a murine model of advanced breast carcinoma. Int J Oncol 2017; 51:1395-1404. [PMID: 29048670 PMCID: PMC5642386 DOI: 10.3892/ijo.2017.4144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022] Open
Abstract
Solid tumors can generate a plethora of neurogenesis-related molecules that enhance their growth and metastasis. Among them, we have identified axonal guidance molecule Semaphorin 7A (SEMA7A) in breast cancer. The goal of this study was to determine the therapeutic effect of suppressing SEMA7A levels in the 4T1 murine model of advanced breast carcinoma. We used anti-SEMA7A short hairpin RNA (shRNA) to gene silence SEMA7A in 4T1 mammary tumor cells. When implanted into the mammary fat pads of syngeneic mice, SEMA7A shRNA-expressing 4T1 tumors exhibited decreased growth rates, deferred metastasis and reduced mortality. In vitro, SEMA7A shRNA-expressing 4T1 cells had weakened proliferative, migratory and invasive abilities, and decreased levels of mesenchymal factors. Atomic force microscopy studies showed that SEMA7A shRNA-expressing 4T1 cells had an increase in cell stiffness that corresponded with their decreased malignant potential. Genetic ablation of host-derived SEMA7A further enhanced the antitumor effects of SEMA7A shRNA gene silencing in 4T1 cells. Our preclinical findings demonstrate a critical role for SEMA7A in mediating mammary tumor progression.
Collapse
Affiliation(s)
- R Garcia-Areas
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - S Libreros
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - M Simoes
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - C Castro-Silva
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - N Gazaniga
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - S Amat
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - J Jaczewska
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - P Keating
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - K Schilling
- Lynn Women's Health & Wellness Institute, Boca Raton Regional Hospital, Boca Raton, FL 33431, USA
| | - M Brito
- Department of Pathology, Boca Raton Regional Hospital, Boca Raton, FL 33431, USA
| | - E P Wojcikiewicz
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - V Iragavarpu-Charyulu
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
21
|
|
22
|
Al-Dhfyan A, Alhoshani A, Korashy HM. Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and β-Catenin and Akt activation. Mol Cancer 2017; 16:14. [PMID: 28103884 PMCID: PMC5244521 DOI: 10.1186/s12943-016-0570-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 12/11/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Breast cancer stem cells (CSCs) are small sub-type of the whole cancer cells that drive tumor initiation, progression and metastasis. Recent studies have demonstrated a role for the aryl hydrocarbon receptor (AhR)/cytochrome P4501A1 pathway in CSCs expansion. However, the exact molecular mechanisms remain unclear. METHODS The current study was designed to a) determine the effect of AhR activation and inhibition on breast CSCs development, maintenance, self-renewal, and chemoresistance at the in vitro and in vivo levels and b) explore the role of β-Catenin, PI3K/Akt, and PTEN signaling pathways. To test this hypothesis, CSC characteristics of five human breast cancer cells; SKBR-3, MCF-7, and MDA-MB231, HS587T, and T47D treated with AhR activators or inhibitor were determined using Aldefluor assay, side population, and mammosphere formation. The mRNA, protein expression, cellular content and localization of the target genes were determined by RT-PCR, Western blot analysis, and Immunofluorescence, respectively. At the in vivo level, female Balb/c mice were treated with AhR/CYP1A1 inducer and histopathology changes and Immunohistochemistry examination for target proteins were determined. RESULTS The constitutive mRNA expression and cellular content of CYP1A1 and CYP1B1, AhR-regulated genes, were markedly higher in CSCs more than differentiating non-CSCs of five different human breast cancer cells. Activation of AhR/CYP1A1 in MCF-7 cells by TCDD and DMBA, strong AhR activators, significantly increased CSC-specific markers, mammosphere formation, aldehyde dehydrogenase (ALDH) activity, and percentage of side population (SP) cells, whereas inactivation of AhR/CYP1A1 using chemical inhibitor, α-naphthoflavone (α-NF), or by genetic shRNA knockdown, significantly inhibited the upregulation of ALDH activity and SP cells. Importantly, inactivation of the AhR/CYP1A1 significantly increased sensitization of CSCs to the chemotherapeutic agent doxorubicin. Mechanistically, Induction of AhR/CYP1A1 by TCDD and DMBA was associated with significant increase in β-Catenin mRNA and protein expression, nuclear translocation and its downstream target Cyclin D1, whereas AhR or CYP1A1 knockdown using shRNA dramatically inhibited β-Catenin cellular content and nuclear translocation. This was associated with significant inhibition of PTEN and induction of total and phosphorylated Akt protein expressions. Importantly, inhibition of PI3K/Akt pathway by LY294002 completely blocked the TCDD-induced SP cells expansion. In vivo, IHC staining of mammary gland structures of untreated and DMBA (30 mg/kg, IP)- treated mice, showed tremendous inhibition of PTEN expression accompanied with an increase in the expression p-Akt, β-Catenin and stem cells marker ALDH1. CONCLUSIONS The present study provides the first evidence that AhR/CYP1A1 signaling pathway is controlling breast CSCs proliferation, development, self-renewal and chemoresistance through inhibition of the PTEN and activation of β-Catenin and Akt pathways.
Collapse
Affiliation(s)
- Abdullah Al-Dhfyan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.,Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
23
|
Bharti D, Shivakumar SB, Subbarao RB, Rho GJ. Research Advancements in Porcine Derived Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2016. [PMID: 26201864 PMCID: PMC5403966 DOI: 10.2174/1574888x10666150723145911] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs) before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton’s jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs) have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson’s disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases.
Collapse
Affiliation(s)
| | | | | | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 900 Gazwa, Jinju 660-701, Republic of Korea.
| |
Collapse
|
24
|
Lindsay SL, Barnett SC. Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair? Neurochem Int 2016; 106:101-107. [PMID: 27498150 PMCID: PMC5455984 DOI: 10.1016/j.neuint.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
In recent years there has been a great deal of research within the stem cell field which has led to the definition and classification of a range of stem cells from a plethora of tissues and organs. Stem cells, by classification, are considered to be pluri- or multipotent and have both self-renewal and multi-differentiation capabilities. Presently there is a great deal of interest in stem cells isolated from both embryonic and adult tissues in the hope they hold the therapeutic key to restoring or treating damaged cells in a number of central nervous system (CNS) disorders. In this review we will discuss the role of mesenchymal stromal cells (MSCs) isolated from human olfactory mucosa, with particular emphasis on their potential role as a candidate for transplant mediated repair in the CNS. Since nestin expression defines the entire population of olfactory mucosal derived MSCs, we will compare these cells to a population of neural crest derived nestin positive population of bone marrow-MSCs. Human olfactory mucosa is a new source of mesenchymal stromal cells (MSCs). Some bone marrow MSCs are nestin-positive, neural crest derived and regulate hematopoietic stem cell activation. Human olfactory mucosa contains a population of nestin-positive MSCs that secrete CXCL12 and may have promote CNS repair.
Collapse
Affiliation(s)
- Susan L Lindsay
- Institute of Infection, Inflammation and Immunity, Glial Cell Biology Group, Sir Graeme Davies Building, Room B329, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Inflammation and Immunity, Glial Cell Biology Group, Sir Graeme Davies Building, Room B329, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| |
Collapse
|
25
|
Kato R, Takahashi K. Gene Expression of Semaphorin 7A During Osteogenic Differentiation in Human Dental Follicle Cells. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ryoichi Kato
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo
| | - Kosuke Takahashi
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo
- Research Institute of Oral Science
| |
Collapse
|
26
|
Karaöz E, İnci Ç. Umbilical Cord Tissue and Wharton’s Jelly Mesenchymal Stem Cells Properties and Therapeutic Potentials. PERINATAL TISSUE-DERIVED STEM CELLS 2016. [DOI: 10.1007/978-3-319-46410-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Expression of CD24 in Human Bone Marrow-Derived Mesenchymal Stromal Cells Is Regulated by TGFβ3 and Induces a Myofibroblast-Like Genotype. Stem Cells Int 2015; 2016:1319578. [PMID: 26788063 PMCID: PMC4691640 DOI: 10.1155/2016/1319578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022] Open
Abstract
Human bone marrow-derived stromal cells (hBMSCs) derived from the adult organism hold great promise for diverse settings in regenerative medicine. Therefore a more complete understanding of hBMSC biology to fully exploit the cells' potential for clinical settings is important. The protein CD24 has been reported to be involved in a diverse range of processes such as cancer, adaptive immunity, inflammation, and autoimmune diseases in other cell types. Its expression in hBMSCs, which has not yet been analyzed, may add an important aspect in the understanding of hBMSC biology. The present study therefore analyzes the expression, regulation, and functional implication of the surface protein CD24 in hBMSCs. Methods used are stimulation studies with TGF beta as well as shRNA-mediated knockdown and overexpression of CD24 followed by microarray, immunocytochemistry, and flow cytometric analyses. To our knowledge, we demonstrate for the first time that the expression of CD24 is an inherent property of hBMSCs. Importantly, the data links the upregulation of CD24 to the adoption of a myofibroblast-like gene expression pattern in hBMSCs. We demonstrate that CD24 is an important modulator in transforming growth factor beta 3 (TGFβ3) signaling with a reciprocal regulatory relationship between these two proteins.
Collapse
|
28
|
Sheng G. The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC DEVELOPMENTAL BIOLOGY 2015; 15:44. [PMID: 26589542 PMCID: PMC4654913 DOI: 10.1186/s12861-015-0094-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mesenchymal Stem/Stromal Cells (MSCs) define a population of progenitor cells capable of giving rises to at least three mesodermal lineages in vitro, the chondrocytes, osteoblasts and adipocytes. The validity of MSCs in vivo has been questioned because their existence, either as a homogeneous progenitor cell population or as a stem cell lineage, has been difficult to prove. The wide use of primary MSCs in regenerative and therapeutic applications raises ethical and regulatory concerns in many countries. In contrast to hematopoietic stem cells, a parallel concept which carries an embryological emphasis from its outset, MSCs have attracted little interest among developmental biologists and the embryological basis for their existence, or lack thereof, has not been carefully evaluated. METHODS This article provides a brief, embryological overview of these three mesoderm cell lineages and offers a framework of ontological rationales for the potential existence of MSCs in vivo. RESULTS Emphasis is given to the common somatic lateral plate mesoderm origin of the majority of body's adipose and skeletal tissues and of the major sources used for MSC derivation clinically. Support for the MSC hypothesis also comes from a large body of molecular and lineage analysis data in vivo. CONCLUSIONS It is concluded that despite the lack of a definitive proof, the MSC concept has a firm embryological basis and that advances in MSC research can be facilitated by achieving a better integration with developmental biology.
Collapse
Affiliation(s)
- Guojun Sheng
- Sheng Laboratory, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
29
|
Fong CY, Subramanian A, Biswas A, Bongso A. Freezing of Fresh Wharton's Jelly From Human Umbilical Cords Yields High Post-Thaw Mesenchymal Stem Cell Numbers for Cell-Based Therapies. J Cell Biochem 2015; 117:815-27. [PMID: 26365815 DOI: 10.1002/jcb.25375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 01/02/2023]
Abstract
Some cord blood banks freeze entire pieces of UC (mixed cord, MC) which after post-thaw yields mixed heterogeneous populations of mesenchymal stem cells (MSCs) from all its microanatomical compartments. Freezing of such entire tissues results in sub-optimal post-thaw cell recovery because of poor cryoprotectant diffusion and intracellular ice-formation, heat and water transport issues, and damage to intercellular junctions. To develop a simple method of harvesting pure homogeneous MSCs for cord blood banks, we compared the post-thaw behavior of three groups of frozen UC tissues: (i) freshly harvested WJ without cell separation; (ii) MSCs isolated from WJ (WJSC); and (iii) MC, WJ, and WJSC produced high post-thaw cell survival rates (93.52 ± 6.12% to 90.83 ± 4.51%) and epithelioid monolayers within 24 h in primary culture whereas post-thaw MC explants showed slow growth with mixed epithelioid and fibroblastic cell outgrowths after several days. Viability and proliferation rates of post-thawed WJ and hWJSC were significantly greater than MC. Post-thaw WJ and WJSC produced significantly greater CD24(+) and CD108(+) fluorescence intensities and significantly lower CD40(+) contaminants. Post-thaw WJ and WJSC produced significantly lesser annexin-V-positive and sub-G1 cells and greater degrees of osteogenic and chondrogenic differentiation compared to MC. qRT-PCR analysis of post-thaw MC showed significant decreases in anti-apoptotic gene expression (SURVIVIN, BCL2) and increases in pro-apoptotic (BAX) and cell cycle regulator genes (P53, P21, ROCK 1) compared to WJ and WJSC. We conclude that freezing of fresh WJ is a simple and reliable method of generating large numbers of clinically utilizable MSCs for cell-based therapies.
Collapse
Affiliation(s)
- Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| |
Collapse
|
30
|
Okolicsanyi RK, Camilleri ET, Oikari LE, Yu C, Cool SM, van Wijnen AJ, Griffiths LR, Haupt LM. Human Mesenchymal Stem Cells Retain Multilineage Differentiation Capacity Including Neural Marker Expression after Extended In Vitro Expansion. PLoS One 2015; 10:e0137255. [PMID: 26356539 PMCID: PMC4565666 DOI: 10.1371/journal.pone.0137255] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022] Open
Abstract
The suitability of human mesenchymal stem cells (hMSCs) in regenerative medicine relies on retention of their proliferative expansion potential in conjunction with the ability to differentiate toward multiple lineages. Successful utilisation of these cells in clinical applications linked to tissue regeneration requires consideration of biomarker expression, time in culture and donor age, as well as their ability to differentiate towards mesenchymal (bone, cartilage, fat) or non-mesenchymal (e.g., neural) lineages. To identify potential therapeutic suitability we examined hMSCs after extended expansion including morphological changes, potency (stemness) and multilineage potential. Commercially available hMSC populations were expanded in vitro for > 20 passages, equating to > 60 days and > 50 population doublings. Distinct growth phases (A-C) were observed during serial passaging and cells were characterised for stemness and lineage markers at representative stages (Phase A: P+5, approximately 13 days in culture; Phase B: P+7, approximately 20 days in culture; and Phase C: P+13, approximately 43 days in culture). Cell surface markers, stem cell markers and lineage-specific markers were characterised by FACS, ICC and Q-PCR revealing MSCs maintained their multilineage potential, including neural lineages throughout expansion. Co-expression of multiple lineage markers along with continued CD45 expression in MSCs did not affect completion of osteogenic and adipogenic specification or the formation of neurospheres. Improved standardised isolation and characterisation of MSCs may facilitate the identification of biomarkers to improve therapeutic efficacy to ensure increased reproducibility and routine production of MSCs for therapeutic applications including neural repair.
Collapse
Affiliation(s)
- Rachel K. Okolicsanyi
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emily T. Camilleri
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Lotta E Oikari
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chieh Yu
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Simon M. Cool
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, Singapore, Singapore
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Lyn R. Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M. Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- * E-mail:
| |
Collapse
|
31
|
Subramanian A, Fong CY, Biswas A, Bongso A. Comparative Characterization of Cells from the Various Compartments of the Human Umbilical Cord Shows that the Wharton's Jelly Compartment Provides the Best Source of Clinically Utilizable Mesenchymal Stem Cells. PLoS One 2015; 10:e0127992. [PMID: 26061052 PMCID: PMC4464659 DOI: 10.1371/journal.pone.0127992] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023] Open
Abstract
The human umbilical cord (UC) is an attractive source of mesenchymal stem cells (MSCs) with unique advantages over other MSC sources. They have been isolated from different compartments of the UC but there has been no rigorous comparison to identify the compartment with the best clinical utility. We compared the histology, fresh and cultured cell numbers, morphology, proliferation, viability, stemness characteristics and differentiation potential of cells from the amnion (AM), subamnion (SA), perivascular (PV), Wharton’s jelly (WJ) and mixed cord (MC) of five UCs. The WJ occupied the largest area in the UC from which 4.61 ± 0.57 x 106 /cm fresh cells could be isolated without culture compared to AM, SA, PV and MC that required culture. The WJ and PV had significantly lesser CD40+ non-stem cell contaminants (26-27%) compared to SA, AM and MC (51-70%). Cells from all compartments were proliferative, expressed the typical MSC-CD, HLA, and ESC markers, telomerase, had normal karyotypes and differentiated into adipocyte, chondrocyte and osteocyte lineages. The cells from WJ showed significantly greater CD24+ and CD108+ numbers and fluorescence intensities that discriminate between MSCs and non-stem cell mesenchymal cells, were negative for the fibroblast-specific and activating-proteins (FSP, FAP) and showed greater osteogenic and chondrogenic differentiation potential compared to AM, SA, PV and MC. Cells from the WJ offer the best clinical utility as (i) they have less non-stem cell contaminants (ii) can be generated in large numbers with minimal culture avoiding changes in phenotype, (iii) their derivation is quick and easy to standardize, (iv) they are rich in stemness characteristics and (v) have high differentiation potential. Our results show that when isolating MSCs from the UC, the WJ should be the preferred compartment, and a standardized method of derivation must be used so as to make meaningful comparisons of data between research groups.
Collapse
Affiliation(s)
- Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
- * E-mail:
| |
Collapse
|
32
|
Al-Moghrabi N, Nofel A, Al-Yousef N, Madkhali S, Bin Amer SM, Alaiya A, Shinwari Z, Al-Tweigeri T, Karakas B, Tulbah A, Aboussekhra A. The molecular significance of methylated BRCA1 promoter in white blood cells of cancer-free females. BMC Cancer 2014; 14:830. [PMID: 25403427 PMCID: PMC4289167 DOI: 10.1186/1471-2407-14-830] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND BRCA1 promoter methylation has been detected in DNA from peripheral blood cells of both breast cancer patients and cancer-free females. However, the pathological significance of this epigenetic change in white blood cells (WBC) remains an open question. In this study, we hypothesized that if constitutional BRCA1 methylation reflects an elevated risk for developing breast cancer (BC), WBC that harbor methylated BRCA1 in both cancer-free females and BC patients should exhibit similar molecular changes. METHODS BRCA1 promoter methylation was examined by methylation-specific PCR in WBC from 155 breast cancer patients and 143 cancer-free females. The Human Breast Cancer EpiTect Methyl II Signature PCR Array and The Human Breast Cancer RT2 Profiler™ PCR Array were used to study the methylation status and the expression profile of several breast cancer-related genes, respectively. In addition, we used label-free MS-based technique to study protein expression in plasma. RESULTS We have shown that 14.2% of BC patients and 9.1% of cancer-free females (carriers) harbored methylated BRCA1 promoter in their WBC. Interestingly, 66.7% of patients harbored methylated BRCA1 promoter in both WBC and tumors. Importantly, we have shown the presence of epigenetic changes in 9 other BC-related genes in WBC of both patients and carriers. Additionally, BRCA1 and 15 other important cancer -related genes were found to be differentially expressed in WBC from patients and carriers as compared to controls. Furthermore, we have shown that the carriers exhibited a unique plasma protein pattern different from those of BC patients and controls, with 10 proteins similarly differentially expressed in patients and carriers as compared to controls. CONCLUSIONS The present results suggest the presence of a strong link between aberrant methylation of the BRCA1 promoter in WBC and breast cancer -related molecular changes, which indicate the potential predisposition of the carriers for developing breast cancer. This informs the potential use of the aberrant methylation of BRCA1 promoter in WBC as a powerful non-invasive molecular marker for detecting predisposed individuals at a very early age.
Collapse
Affiliation(s)
- Nisreen Al-Moghrabi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| | - Asmaa Nofel
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| | - Nujoud Al-Yousef
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| | - Safia Madkhali
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| | - Suad M Bin Amer
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| | - Ayodele Alaiya
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| | - Zakia Shinwari
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| | - Taher Al-Tweigeri
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| | - Bedri Karakas
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| | - Asma Tulbah
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, PO BOX 3354, 11211 Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|