1
|
Collins EMD, Silva PTM, Ostrovsky AD, Renninger SL, Tomás AR, Diez Del Corral R, Orger MB. Characterization of Transgenic Lines Labeling Reticulospinal Neurons in Larval Zebrafish. eNeuro 2025; 12:ENEURO.0581-24.2025. [PMID: 40374558 PMCID: PMC12119039 DOI: 10.1523/eneuro.0581-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 05/17/2025] Open
Abstract
From lamprey to monkeys, the organization of the descending control of locomotion is conserved across vertebrates. Reticulospinal neurons (RSNs) form a bottleneck for descending commands, receiving innervation from diencephalic and mesencephalic locomotor centers and providing locomotor drive to spinal motor circuits. Given their optical accessibility in early development, larval zebrafish offer a unique opportunity to study reticulospinal circuitry. In fish, RSNs are few, highly stereotyped, uniquely identifiable, large neurons spanning from the midbrain to the medulla. Classically labeled by tracer dye injections into the spinal cord, recent advances in genetic tools have facilitated the targeted expression of transgenes in diverse brainstem neurons of larval zebrafish. Here, we provide a comparative characterization of four existing and three newly established transgenic lines in larval zebrafish. We determine which identified neurons are consistently labeled and offer projection-specific genetic access to subpopulations of RSNs. We showcase transgenic lines that label most or all RSNs (nefma, adcyap1b ccu96Et ) or subsets of RSNs, including ipsilateral (vsx2, calca ccu75Et ), contralateral (pcp4a ccu97Tg ) or all (tiam2a y264Et ) components of the Mauthner array, or midbrain-only RSNs (s1171tEt). In addition to RSNs, selected transgenic lines (nefma, s1171tEt, calca ccu75Et ) labeled other potential neurons of interest in the brainstem. For those, we performed in situ hybridization to show expression patterns of several excitatory and inhibitory neurotransmitters at larval stages as well as glutamatergic expression patterns in juvenile fish. We provide an overview of transgene expression in the brainstem of larval zebrafish that serves to lay a foundation for future studies in the supraspinal control of locomotion.
Collapse
Affiliation(s)
- Elena M D Collins
- Champalimaud Research, Champalimaud Foundation, Lisbon 1400-038, Portugal
- International Neuroscience Doctoral Program, Champalimaud Foundation, Lisbon 1400-038, Portugal
| | - Pedro T M Silva
- Champalimaud Research, Champalimaud Foundation, Lisbon 1400-038, Portugal
- International Neuroscience Doctoral Program, Champalimaud Foundation, Lisbon 1400-038, Portugal
| | - Aaron D Ostrovsky
- Champalimaud Research, Champalimaud Foundation, Lisbon 1400-038, Portugal
| | - Sabine L Renninger
- Champalimaud Research, Champalimaud Foundation, Lisbon 1400-038, Portugal
| | - Ana R Tomás
- Champalimaud Research, Champalimaud Foundation, Lisbon 1400-038, Portugal
| | | | - Michael B Orger
- Champalimaud Research, Champalimaud Foundation, Lisbon 1400-038, Portugal
| |
Collapse
|
2
|
Donato A, Ritchie FK, Lu L, Wadia M, Martinez-Marmol R, Kaulich E, Sankorrakul K, Lu H, Coakley S, Coulson EJ, Hilliard MA. OSP-1 protects neurons from autophagic cell death induced by acute oxidative stress. Nat Commun 2025; 16:300. [PMID: 39746999 PMCID: PMC11696186 DOI: 10.1038/s41467-024-55105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Oxidative stress, caused by the accumulation of reactive oxygen species (ROS), is a pathological factor in several incurable neurodegenerative conditions as well as in stroke. However, our knowledge of the genetic elements that can be manipulated to protect neurons from oxidative stress-induced cell death is still very limited. Here, using Caenorhabditis elegans as a model system, combined with the optogenetic tool KillerRed to spatially and temporally control ROS generation, we identify a previously uncharacterized gene, oxidative stress protective 1 (osp-1), that protects C. elegans neurons from oxidative damage. Using rodent and human cell cultures, we also show that the protective effect of OSP-1 extends to mammalian cells. Moreover, we demonstrate that OSP-1 functions in a strictly cell-autonomous fashion, and that it localizes to the endoplasmic reticulum (ER) where it has an ER-remodeling function. Finally, we present evidence suggesting that OSP-1 may exert its neuroprotective function by influencing autophagy. Our results point to a potential role of OSP-1 in modulating autophagy, and suggest that overactivation of this cellular process could contribute to neuronal death triggered by oxidative damage.
Collapse
Affiliation(s)
- Alessandra Donato
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Fiona K Ritchie
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Lu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mehershad Wadia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Eva Kaulich
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sean Coakley
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth J Coulson
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Burton AH, Jiao B, Bai Q, Van Laar VS, Wheeler TB, Watkins SC, Bruchez MP, Burton EA. Full-field exposure of larval zebrafish to narrow waveband LED light sources at defined power and energy for optogenetic applications. J Neurosci Methods 2024; 401:110001. [PMID: 37914002 PMCID: PMC10843659 DOI: 10.1016/j.jneumeth.2023.110001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Optogenetic approaches in transparent zebrafish models have provided numerous insights into vertebrate neurobiology. The purpose of this study was to develop methods to activate light-sensitive transgene products simultaneously throughout an entire larval zebrafish. NEW METHOD We developed a LED illumination stand and microcontroller unit to expose zebrafish larvae reproducibly to full field illumination at defined wavelength, power, and energy. RESULTS The LED stand generated a sufficiently flat illumination field to expose multiple larval zebrafish to high power light stimuli uniformly, while avoiding sample bath warming. The controller unit allowed precise automated delivery of predetermined amounts of light energy at calibrated power. We demonstrated the utility of the approach by driving photoconversion of Kaede (398 nm), photodimerization of GAVPO (450 nm), and photoactivation of dL5**/MG2I (661 nm) in neurons throughout the CNS of larval zebrafish. Observed outcomes were influenced by both total light energy and its rate of delivery, highlighting the importance of controlling these variables to obtain reproducible results. COMPARISON WITH EXISTING METHODS Our approach employs inexpensive LED chip arrays to deliver narrow-waveband light with a sufficiently flat illumination field to span multiple larval zebrafish simultaneously. Calibration of light power and energy are built into the workflow. CONCLUSIONS The LED illuminator and controller can be constructed from widely available materials using the drawings, instructions, and software provided. This approach will be useful for multiple optogenetic applications in zebrafish and other models.
Collapse
Affiliation(s)
- Alexander H Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Undergraduate Program in Chemical and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Binxuan Jiao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Tsinghua University Medical School, Beijing, China
| | - Qing Bai
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor S Van Laar
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Travis B Wheeler
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marcel P Bruchez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; Molecular Biosensors and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Edward A Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Hutto RA, Rutter KM, Giarmarco MM, Parker ED, Chambers ZS, Brockerhoff SE. Cone photoreceptors transfer damaged mitochondria to Müller glia. Cell Rep 2023; 42:112115. [PMID: 36795565 PMCID: PMC10425575 DOI: 10.1016/j.celrep.2023.112115] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondria are vital organelles that require sophisticated homeostatic mechanisms for maintenance. Intercellular transfer of damaged mitochondria is a recently identified strategy broadly used to improve cellular health and viability. Here, we investigate mitochondrial homeostasis in the vertebrate cone photoreceptor, the specialized neuron that initiates our daytime and color vision. We find a generalizable response to mitochondrial stress that leads to loss of cristae, displacement of damaged mitochondria from their normal cellular location, initiation of degradation, and transfer to Müller glia cells, a key non-neuronal support cell in the retina. Our findings show transmitophagy from cones to Müller glia as a response to mitochondrial damage. Intercellular transfer of damaged mitochondria represents an outsourcing mechanism that photoreceptors use to support their specialized function.
Collapse
Affiliation(s)
- Rachel A Hutto
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA
| | - Kaitlyn M Rutter
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA
| | | | - Edward D Parker
- Ophthalmology Department, The University of Washington, Seattle, WA 98109, USA
| | - Zachary S Chambers
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA
| | - Susan E Brockerhoff
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA; Ophthalmology Department, The University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Han S, Sims A, Aceto A, Schmidt BF, Bruchez MP, Gurkar AU. A Chemoptogenetic Tool for Spatiotemporal Induction of Oxidative DNA Lesions In Vivo. Genes (Basel) 2023; 14:485. [PMID: 36833412 PMCID: PMC9956269 DOI: 10.3390/genes14020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Oxidative nuclear DNA damage increases in all tissues with age in multiple animal models, as well as in humans. However, the increase in DNA oxidation varies from tissue to tissue, suggesting that certain cells/tissues may be more vulnerable to DNA damage than others. The lack of a tool that can control dosage and spatiotemporal induction of oxidative DNA damage, which accumulates with age, has severely limited our ability to understand how DNA damage drives aging and age-related diseases. To overcome this, here we developed a chemoptogenetic tool that produces 8-oxoguanine (8-oxoG) at DNA in a whole organism, Caenorhabditis elegans. This tool uses di-iodinated malachite green (MG-2I) photosensitizer dye that generates singlet oxygen, 1O2, upon fluorogen activating peptide (FAP) binding and excitation with far-red light. Using our chemoptogenetic tool, we are able to control generation of singlet oxygen ubiquitously or in a tissue-specific manner, including in neurons and muscle cells. To induce oxidative DNA damage, we targeted our chemoptogenetic tool to histone, his-72, that is expressed in all cell types. Our results show that a single exposure to dye and light is able to induce DNA damage, promote embryonic lethality, lead to developmental delay, and significantly reduce lifespan. Our chemoptogenetic tool will now allow us to assess the cell autonomous versus non-cell autonomous role of DNA damage in aging, at an organismal level.
Collapse
Affiliation(s)
- Suhao Han
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA 15219, USA
| | - Austin Sims
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA 15219, USA
| | - Anthony Aceto
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA 15219, USA
| | - Brigitte F. Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Marcel P. Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Aditi U. Gurkar
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA 15219, USA
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
8
|
Brown W, Albright S, Tsang M, Deiters A. Optogenetic Protein Cleavage in Zebrafish Embryos. Chembiochem 2022; 23:e202200297. [PMID: 36196665 DOI: 10.1002/cbic.202200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/01/2022] [Indexed: 01/25/2023]
Abstract
A wide array of optogenetic tools are available that allow for precise spatiotemporal control over cellular processes. These tools are particularly important to zebrafish researchers who take advantage of the embryo's transparency. However, photocleavable optogenetic proteins have not been utilized in zebrafish. We demonstrate successful optical control of protein cleavage in embryos using PhoCl, a photocleavable fluorescent protein. This optogenetic tool offers temporal and spatial control over protein cleavage events, which we demonstrate in light-triggered protein translocation and light-triggered apoptosis.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Savannah Albright
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Romesberg A, Van Houten B. Targeting Mitochondrial Function with Chemoptogenetics. Biomedicines 2022; 10:2459. [PMID: 36289721 PMCID: PMC9599259 DOI: 10.3390/biomedicines10102459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondria are ATP-generating organelles in eukaryotic cells that produce reactive oxygen species (ROS) during oxidative phosphorylation (OXPHOS). Mitochondrial DNA (mtDNA) is packaged within nucleoids and, due to its close proximity to ROS production, endures oxidative base damage. This damage can be repaired by base excision repair (BER) within the mitochondria, or it can be degraded via exonucleases or mitophagy. Persistent mtDNA damage may drive the production of dysfunctional OXPHOS components that generate increased ROS, or OXPHOS components may be directly damaged by ROS, which then can cause more mtDNA damage and create a vicious cycle of ROS production and mitochondrial dysfunction. If mtDNA damage is left unrepaired, mtDNA mutations including deletions can result. The accumulation of mtDNA mutations has been associated with conditions ranging from the aging process to cancer and neurodegenerative conditions, but the sequence of events leading to mtDNA mutations and deletions is yet unknown. Researchers have utilized many systems and agents for generating ROS in mitochondria to observe the downstream effects on mtDNA, ROS, and mitochondrial function; yet, there are various drawbacks to these methodologies that limit their precision. Here, we describe a novel chemoptogenetic approach to target oxidative damage to mitochondria and mtDNA with a high spatial and temporal resolution so that the downstream effects of ROS-induced damage can be measured with a high precision in order to better understand the mechanism of mitochondrial dysfunction in aging, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amy Romesberg
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Labbaf Z, Petratou K, Ermlich L, Backer W, Tarbashevich K, Reichman-Fried M, Luschnig S, Schulte-Merker S, Raz E. A robust and tunable system for targeted cell ablation in developing embryos. Dev Cell 2022; 57:2026-2040.e5. [PMID: 35914525 DOI: 10.1016/j.devcel.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/03/2022]
Abstract
Cell ablation is a key method in the research fields of developmental biology, tissue regeneration, and tissue homeostasis. Eliminating specific cell populations allows for characterizing interactions that control cell differentiation, death, behavior, and spatial organization of cells. Current methodologies for inducing cell death suffer from relatively slow kinetics, making them unsuitable for analyzing rapid events and following primary and immediate consequences of the ablation. To address this, we developed a cell-ablation system that is based on bacterial toxin/anti-toxin proteins and enables rapid and cell-autonomous elimination of specific cell types and organs in zebrafish embryos. A unique feature of this system is that it uses an anti-toxin, which allows for controlling the degree and timing of ablation and the resulting phenotypes. The transgenic zebrafish generated in this work represent a highly efficient tool for cell ablation, and this approach is applicable to other model organisms as demonstrated here for Drosophila.
Collapse
Affiliation(s)
- Zahra Labbaf
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Kleio Petratou
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Münster 48149, Germany
| | - Laura Ermlich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Wilko Backer
- Institute for Integrative Cell Biology and Physiology, University of Münster, Münster 48149, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Michal Reichman-Fried
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Stefan Luschnig
- Institute for Integrative Cell Biology and Physiology, University of Münster, Münster 48149, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Münster 48149, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany.
| |
Collapse
|
11
|
Shkarina K, Hasel de Carvalho E, Santos JC, Ramos S, Leptin M, Broz P. Optogenetic activators of apoptosis, necroptosis, and pyroptosis. J Cell Biol 2022; 221:e202109038. [PMID: 35420640 PMCID: PMC9014795 DOI: 10.1083/jcb.202109038] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Targeted and specific induction of cell death in an individual or groups of cells hold the potential for new insights into the response of tissues or organisms to different forms of death. Here, we report the development of optogenetically controlled cell death effectors (optoCDEs), a novel class of optogenetic tools that enables light-mediated induction of three types of programmed cell death (PCD)-apoptosis, pyroptosis, and necroptosis-using Arabidopsis thaliana photosensitive protein Cryptochrome-2. OptoCDEs enable a rapid and highly specific induction of PCD in human, mouse, and zebrafish cells and are suitable for a wide range of applications, such as sub-lethal cell death induction or precise elimination of single cells or cell populations in vitro and in vivo. As the proof-of-concept, we utilize optoCDEs to assess the differences in neighboring cell responses to apoptotic or necrotic PCD, revealing a new role for shingosine-1-phosphate signaling in regulating the efferocytosis of the apoptotic cell by epithelia.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - José Carlos Santos
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Saray Ramos
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Maria Leptin
- Director’s Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
12
|
Faraj N, Duinkerken BHP, Carroll EC, Giepmans BNG. Microscopic modulation and analysis of islets of Langerhans in living zebrafish larvae. FEBS Lett 2022; 596:2497-2512. [DOI: 10.1002/1873-3468.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Noura Faraj
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - B. H. Peter Duinkerken
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - Elizabeth C. Carroll
- Department of Imaging Physics Delft University of Technology Delft, 2628 CJ The Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| |
Collapse
|
13
|
Geurtzen K, López-Delgado AC, Duseja A, Kurzyukova A, Knopf F. Laser-mediated osteoblast ablation triggers a pro-osteogenic inflammatory response regulated by reactive oxygen species and glucocorticoid signaling in zebrafish. Development 2022; 149:275194. [DOI: 10.1242/dev.199803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/22/2022] [Indexed: 12/31/2022]
Abstract
ABSTRACT
In zebrafish, transgenic labeling approaches, robust regenerative responses and excellent in vivo imaging conditions enable precise characterization of immune cell behavior in response to injury. Here, we monitored osteoblast-immune cell interactions in bone, a tissue which is particularly difficult to in vivo image in tetrapod species. Ablation of individual osteoblasts leads to recruitment of neutrophils and macrophages in varying numbers, depending on the extent of the initial insult, and initiates generation of cathepsin K+ osteoclasts from macrophages. Osteoblast ablation triggers the production of pro-inflammatory cytokines and reactive oxygen species, which are needed for successful macrophage recruitment. Excess glucocorticoid signaling as it occurs during the stress response inhibits macrophage recruitment, maximum speed and changes the macrophage phenotype. Although osteoblast loss is compensated for within a day by contribution of committed osteoblasts, macrophages continue to populate the region. Their presence is required for osteoblasts to fill the lesion site. Our model enables visualization of bone repair after microlesions at single-cell resolution and demonstrates a pro-osteogenic function of tissue-resident macrophages in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Alejandra Cristina López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Ankita Duseja
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- Department of Oncology and Metabolism, Metabolic Bone Centre, Sorby Wing, Northern General Hospital, Sheffield S5 7AU, UK
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- Faculty of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
14
|
Liu J, Wang F, Qin Y, Feng X. Advances in the Genetically Engineered KillerRed for Photodynamic Therapy Applications. Int J Mol Sci 2021; 22:ijms221810130. [PMID: 34576293 PMCID: PMC8468639 DOI: 10.3390/ijms221810130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinical treatment for cancer or non-neoplastic diseases, and the photosensitizers (PSs) are crucial for PDT efficiency. The commonly used chemical PSs, generally produce ROS through the type II reaction that highly relies on the local oxygen concentration. However, the hypoxic tumor microenvironment and unavoidable dark toxicity of PSs greatly restrain the wide application of PDT. The genetically encoded PSs, unlike chemical PSs, can be modified using genetic engineering techniques and targeted to unique cellular compartments, even within a single cell. KillerRed, as a dimeric red fluorescent protein, can be activated by visible light or upconversion luminescence to execute the Type I reaction of PDT, which does not need too much oxygen and surely attract the researchers’ focus. In particular, nanotechnology provides new opportunities for various modifications of KillerRed and versatile delivery strategies. This review more comprehensively outlines the applications of KillerRed, highlighting the fascinating features of KillerRed genes and proteins in the photodynamic systems. Furthermore, the advantages and defects of KillerRed are also discussed, either alone or in combination with other therapies. These overviews may facilitate understanding KillerRed progress in PDT and suggest some emerging potentials to circumvent challenges to improve the efficiency and accuracy of PDT.
Collapse
|
15
|
He L, Huang Z, Huang K, Chen R, Nguyen NT, Wang R, Cai X, Huang Z, Siwko S, Walker JR, Han G, Zhou Y, Jing J. Optogenetic Control of Non-Apoptotic Cell Death. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100424. [PMID: 34540558 PMCID: PMC8438606 DOI: 10.1002/advs.202100424] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/20/2023]
Abstract
Herein, a set of optogenetic tools (designated LiPOP) that enable photoswitchable necroptosis and pyroptosis in live cells with varying kinetics, is introduced. The LiPOP tools allow reconstruction of the key molecular steps involved in these two non-apoptotic cell death pathways by harnessing the power of light. Further, the use of LiPOPs coupled with upconversion nanoparticles or bioluminescence is demonstrated to achieve wireless optogenetic or chemo-optogenetic killing of cancer cells in multiple mouse tumor models. LiPOPs can trigger necroptotic and pyroptotic cell death in cultured prokaryotic or eukaryotic cells and in living animals, and set the stage for studying the role of non-apoptotic cell death pathways during microbial infection and anti-tumor immunity.
Collapse
Affiliation(s)
- Lian He
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zixian Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Kai Huang
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Rui Chen
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Nhung T. Nguyen
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Rui Wang
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Xiaoli Cai
- Center for Epigenetics and Disease PreventionInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zhiquan Huang
- Department of Oral and Maxillofacial SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Stefan Siwko
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | | | - Gang Han
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Yubin Zhou
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyDepartment of Translational Medical SciencesCollege of MedicineTexas A&M UniversityHoustonTX77030USA
| | - Ji Jing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
| |
Collapse
|
16
|
Tsata V, Möllmert S, Schweitzer C, Kolb J, Möckel C, Böhm B, Rosso G, Lange C, Lesche M, Hammer J, Kesavan G, Beis D, Guck J, Brand M, Wehner D. A switch in pdgfrb + cell-derived ECM composition prevents inhibitory scarring and promotes axon regeneration in the zebrafish spinal cord. Dev Cell 2021; 56:509-524.e9. [PMID: 33412105 DOI: 10.1016/j.devcel.2020.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
In mammals, perivascular cell-derived scarring after spinal cord injury impedes axonal regrowth. In contrast, the extracellular matrix (ECM) in the spinal lesion site of zebrafish is permissive and required for axon regeneration. However, the cellular mechanisms underlying this interspecies difference have not been investigated. Here, we show that an injury to the zebrafish spinal cord triggers recruitment of pdgfrb+ myoseptal and perivascular cells in a PDGFR signaling-dependent manner. Interference with pdgfrb+ cell recruitment or depletion of pdgfrb+ cells inhibits axonal regrowth and recovery of locomotor function. Transcriptional profiling and functional experiments reveal that pdgfrb+ cells upregulate expression of axon growth-promoting ECM genes (cthrc1a and col12a1a/b) and concomitantly reduce synthesis of matrix molecules that are detrimental to regeneration (lum and mfap2). Our data demonstrate that a switch in ECM composition is critical for axon regeneration after spinal cord injury and identify the cellular source and components of the growth-promoting lesion ECM.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Stephanie Möllmert
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Christine Schweitzer
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Julia Kolb
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Conrad Möckel
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Benjamin Böhm
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Christian Lange
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Juliane Hammer
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gokul Kesavan
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dimitris Beis
- Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Jochen Guck
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Daniel Wehner
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| |
Collapse
|
17
|
Varady A, Distel M. Non-neuromodulatory Optogenetic Tools in Zebrafish. Front Cell Dev Biol 2020; 8:418. [PMID: 32582702 PMCID: PMC7283495 DOI: 10.3389/fcell.2020.00418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
The zebrafish (Danio rerio) is a popular vertebrate model organism to investigate molecular mechanisms driving development and disease. Due to its transparency at embryonic and larval stages, investigations in the living organism are possible with subcellular resolution using intravital microscopy. The beneficial optical characteristics of zebrafish not only allow for passive observation, but also active manipulation of proteins and cells by light using optogenetic tools. Initially, photosensitive ion channels have been applied for neurobiological studies in zebrafish to dissect complex behaviors on a cellular level. More recently, exciting non-neural optogenetic tools have been established to control gene expression or protein localization and activity, allowing for unprecedented non-invasive and precise manipulation of various aspects of cellular physiology. Zebrafish will likely be a vertebrate model organism at the forefront of in vivo application of non-neural optogenetic tools and pioneering work has already been performed. In this review, we provide an overview of non-neuromodulatory optogenetic tools successfully applied in zebrafish to control gene expression, protein localization, cell signaling, migration and cell ablation.
Collapse
Affiliation(s)
- Adam Varady
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| |
Collapse
|
18
|
Ramaswamy M, Cheng RK, Jesuthasan S. Identification of GABAergic neurons innervating the zebrafish lateral habenula. Eur J Neurosci 2020; 52:3918-3928. [PMID: 32464693 PMCID: PMC7689879 DOI: 10.1111/ejn.14843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/01/2022]
Abstract
Habenula neurons are constantly active. The level of activity affects mood and behaviour, with increased activity in the lateral habenula reflecting exposure to punishment and a switch to passive coping and depression. Here, we identify GABAergic neurons that could reduce activity in the lateral habenula of larval zebrafish. GAD65/67 immunohistochemistry and imaging of gad1b:DsRed transgenic fish suggest the presence of GABAergic terminals in the neuropil and between cell bodies in the lateral habenula. Retrograde tracing with the lipophilic dye DiD suggests that the former derives from the thalamus, while the latter originates from a group of cells in the posterior hypothalamus that are located between the posterior tuberal nucleus and hypothalamic lobes. Two‐photon calcium imaging indicates that blue light causes excitation of thalamic GABAergic neurons and terminals in the neuropil, while a subpopulation of lateral habenula neurons show reduced intracellular calcium levels. Whole‐cell electrophysiological recording indicates that blue light reduces membrane potential of lateral habenula neurons. These observations suggest that GABAergic input from the thalamus may mediate inhibition in the zebrafish lateral habenula. Mechanisms governing release of GABA from the neurons in the posterior hypothalamus, which are likely to be in the tuberomammillary nucleus, remain to be defined.
Collapse
Affiliation(s)
- Mahathi Ramaswamy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore
| |
Collapse
|
19
|
Radical Stress Is More Cytotoxic in the Nucleus than in Other Organelles. Int J Mol Sci 2019; 20:ijms20174147. [PMID: 31450682 PMCID: PMC6747261 DOI: 10.3390/ijms20174147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cells are exposed to reactive oxygen species (ROS) as a by-product of mitochondrial metabolism, especially under hypoxia. ROS are also enzymatically generated at the plasma membrane during inflammation. Radicals cause cellular damage leading to cell death, as they react indiscriminately with surrounding lipids, proteins, and nucleotides. However, ROS are also important for many physiological processes, including signaling, pathogen killing and chemotaxis. The sensitivity of cells to ROS therefore likely depends on the subcellular location of ROS production, but how this affects cell viability is poorly understood. As ROS generation consumes oxygen, and hypoxia-mediated signaling upregulates expression of antioxidant transcription factor Nrf2, it is difficult to discern hypoxic from radical stress. In this study, we developed an optogenetic toolbox for organelle-specific generation of ROS using the photosensitizer protein SuperNova which produces superoxide anion upon excitation with 590 nm light. We fused SuperNova to organelle specific localization signals to induce ROS with high precision. Selective ROS production did not affect cell viability in most organelles except for the nucleus. SuperNova is a promising tool to induce locally targeted ROS production, opening up new possibilities to investigate processes and organelles that are affected by localized ROS production.
Collapse
|
20
|
Jiang C, Li HT, Zhou YM, Wang X, Wang L, Liu ZQ. Cardiac optogenetics: a novel approach to cardiovascular disease therapy. Europace 2019; 20:1741-1749. [PMID: 29253159 DOI: 10.1093/europace/eux345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
Optogenetics is a cell-type specific and high spatial-temporal resolution method that combines genetic encoding of light-sensitive proteins and optical manipulation techniques. Optogenetics technology provides a novel approach for research on cardiac arrhythmia treatment, including pacing, recovering the conduction system, and achieving cardiac resynchronization with precise and low-energy optical control. Photosensitive proteins, which usually act as ion channels, pumps, or receptors, are delivered to target cells, where they respond to light pulses of specific wavelengths, evoke transient flows of transmembrane ion currents, and induce signal transmission. With the development of gene technology, the in vivo efficiency of optogenetics in cardiology has been trialed, and in vitro experiments have been performed to test its potential in cardiac electrophysiology. Challenges for applying optogenetics in large animals and humans include the effectiveness, safety, and long-term expression of photosensitive proteins, unscattered and unattenuated exogenous light stimulation, and the need for implantable miniature light stimulators. Photosensitive proteins, genetic engineering technology, and light equipment are essential for experiments in cardiac optogenetics. Optogenetics may provide an alternative method for evaluating the mechanism of cardiac arrhythmias, testing hypotheses, and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Chan Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hai Tao Li
- Department of Cardiology, Hainan General Hospital, Haikou, PR China
| | - Yong Ming Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zi Qiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
21
|
Antognazza MR, Abdel Aziz I, Lodola F. Use of Exogenous and Endogenous Photomediators as Efficient ROS Modulation Tools: Results and Perspectives for Therapeutic Purposes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2867516. [PMID: 31049131 PMCID: PMC6462332 DOI: 10.1155/2019/2867516] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
Reactive Oxygen Species (ROS) play an essential dual role in living systems. Healthy levels of ROS modulate several signaling pathways, but at the same time, when they exceed normal physiological amounts, they work in the opposite direction, playing pivotal functions in the pathophysiology of multiple severe medical conditions (i.e., cancer, diabetes, neurodegenerative and cardiovascular diseases, and aging). Therefore, the research for methods to detect their levels via light-sensitive fluorescent probes has been extensively studied over the years. However, this is not the only link between light and ROS. In fact, the modulation of ROS mediated by light has been exploited already for a long time. In this review, we report the state of the art, as well as recent developments, in the field of photostimulation of oxidative stress, from photobiomodulation (PBM) mediated by naturally expressed light-sensitive proteins to the most recent optogenetic approaches, and finally, we describe the main methods of exogenous stimulation, in particular highlighting the new insights based on optically driven ROS modulation mediated by polymeric materials.
Collapse
Affiliation(s)
- Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Ilaria Abdel Aziz
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
- Politecnico di Milano, Dipartimento di Fisica, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Francesco Lodola
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| |
Collapse
|
22
|
Jewhurst K, McLaughlin KA. Recovery of the Xenopus laevis heart from ROS-induced stress utilizes conserved pathways of cardiac regeneration. Dev Growth Differ 2019; 61:212-227. [PMID: 30924142 DOI: 10.1111/dgd.12602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 01/22/2023]
Abstract
Urodele amphibians and some fish are capable of regenerating up to a quarter of their heart tissue after cardiac injury. While many anuran amphibians like Xenopus laevis are not capable of such feats, they are able to repair lesser levels of cardiac damage, such as that caused by oxidative stress, to a far greater degree than mammals. Using an optogenetic stress induction model that utilizes the protein KillerRed, we have investigated the extent to which mechanisms of cardiac regeneration are conserved during the restoration of normal heart morphology post oxidative stress in X. laevis tadpoles. We focused particularly on the processes of cardiomyocyte proliferation and dedifferentiation, as well as the pathways that facilitate the regulation of these processes. The cardiac response to KillerRed-induced injury in X. laevis tadpole hearts consists of a phase dominated by indicators of cardiac stress, followed by a repair-like phase with characteristics similar to mechanisms of cardiac regeneration in urodeles and fish. In the latter phase, we found markers associated with partial dedifferentiation and cardiomyocyte proliferation in the injured tadpole heart, which, unlike in regenerating hearts, are not dependent on Notch or retinoic acid signaling. Ultimately, the X. laevis cardiac response to KillerRed-induced oxidative stress shares characteristics with both mammalian and urodele/fish repair mechanisms, but is nonetheless a unique form of recovery, occupying an intermediate place on the spectrum of cardiac regenerative ability. An understanding of how Xenopus repairs cardiac damage can help bridge the gap between mammals and urodeles and contribute to new methods of treating heart disease.
Collapse
Affiliation(s)
- Kyle Jewhurst
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts
| | - Kelly A McLaughlin
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts
| |
Collapse
|
23
|
Hoffmann S, Mullins L, Buckley C, Rider S, Mullins J. Investigating the RAS can be a fishy business: interdisciplinary opportunities using Zebrafish. Clin Sci (Lond) 2018; 132:2469-2481. [PMID: 30518571 PMCID: PMC6279434 DOI: 10.1042/cs20180721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.
Collapse
Affiliation(s)
- Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Linda Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Charlotte Buckley
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Sebastien Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - John Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K.
| |
Collapse
|
24
|
Formella I, Svahn AJ, Radford RAW, Don EK, Cole NJ, Hogan A, Lee A, Chung RS, Morsch M. Real-time visualization of oxidative stress-mediated neurodegeneration of individual spinal motor neurons in vivo. Redox Biol 2018; 19:226-234. [PMID: 30193184 PMCID: PMC6126400 DOI: 10.1016/j.redox.2018.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Generation of reactive oxygen species (ROS) has been shown to be important for many physiological processes, ranging from cell differentiation to apoptosis. With the development of the genetically encoded photosensitiser KillerRed (KR) it is now possible to efficiently produce ROS dose-dependently in a specific cell type upon green light illumination. Zebrafish are the ideal vertebrate animal model for these optogenetic methods because of their transparency and efficient transgenesis. Here we describe a zebrafish model that expresses membrane-targeted KR selectively in motor neurons. We show that KR-activated neurons in the spinal cord undergo stress and cell death after induction of ROS. Using single-cell resolution and time-lapse confocal imaging, we selectively induced neurodegeneration in KR-expressing neurons leading to characteristic signs of apoptosis and cell death. We furthermore illustrate a targeted microglia response to the induction site as part of a physiological response within the zebrafish spinal cord. Our data demonstrate the successful implementation of KR mediated ROS toxicity in motor neurons in vivo and has important implications for studying the effects of ROS in a variety of conditions within the central nervous system, including aging and age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Motor neurons can be targeted for oxidative stress using optogenetics in zebrafish. KillerRed expressing neurons undergo characteristic sequence of neurodegeneration. Targeted neurons show microglial activation as part of the physiological response. ROS toxicity has important implications for mechanisms driving neurodegeneration.
Collapse
Affiliation(s)
- Isabel Formella
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Adam J Svahn
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rowan A W Radford
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emily K Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Nicholas J Cole
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alison Hogan
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Shaw I, Rider S, Mullins J, Hughes J, Péault B. Pericytes in the renal vasculature: roles in health and disease. Nat Rev Nephrol 2018; 14:521-534. [DOI: 10.1038/s41581-018-0032-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
de Abreu MS, Giacomini ACVV, Zanandrea R, Dos Santos BE, Genario R, de Oliveira GG, Friend AJ, Amstislavskaya TG, Kalueff AV. Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology 2018; 92:1-12. [PMID: 29609110 DOI: 10.1016/j.psyneuen.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Despite the high prevalence of neural and immune disorders, their etiology and molecular mechanisms remain poorly understood. As the zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in biomedical research, mounting evidence suggests these fish as a useful tool to study neural and immune mechanisms and their interplay. Here, we discuss zebrafish neuro-immune mechanisms and their pharmacological and genetic modulation, the effect of stress on cytokines, as well as relevant models of microbiota-brain interplay. As many human brain diseases are based on complex interplay between the neural and the immune system, here we discuss zebrafish models, as well as recent successes and challenges, in this rapidly expanding field. We particularly emphasize the growing utility of zebrafish models in translational immunopsychiatry research, as they improve our understanding of pathogenetic neuro-immune interactions, thereby fostering future discovery of potential therapeutic agents.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rodrigo Zanandrea
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | | | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Research Institute of Physiology and Basic Medicine SB RAS, and Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Russian Research Center for Radiology and Surgical Technologies, Pesochny, Russia; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine SB RAS, Novosibirsk, Russia.
| |
Collapse
|
27
|
Leem JW, Kim SR, Choi KH, Kim YL. Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species. NANO CONVERGENCE 2018; 5:8. [PMID: 29607289 PMCID: PMC5862923 DOI: 10.1186/s40580-018-0140-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
The recent advances in photocatalysis have opened a variety of new possibilities for energy and biomedical applications. In particular, plasmonic photocatalysis using hybridization of semiconductor materials and metal nanoparticles has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible or solar light. One critical underlying aspect of photocatalysis is that it generates and releases reactive oxygen species (ROS) as intermediate or final products upon light excitation or activation. Although plasmonic photocatalysis overcomes the limitation of UV irradiation, synthesized metal/semiconductor nanomaterial photocatalysts often bring up biohazardous and environmental issues. In this respect, this review article is centered in identifying natural photosensitizing organic materials that can generate similar types of ROS as those of plasmonic photocatalysis. In particular, we propose the idea of plasmonic photocatalyst-like fluorescent proteins for ROS generation under visible light irradiation. We recapitulate fluorescent proteins that have Type I and Type II photosensitization properties in a comparable manner to plasmonic photocatalysis. Plasmonic photocatalysis and protein photosensitization have not yet been compared systemically in terms of ROS photogeneration under visible light, although the phototoxicity and cytotoxicity of some fluorescent proteins are well recognized. A comprehensive understanding of plasmonic photocatalyst-like fluorescent proteins and their potential advantages will lead us to explore new environmental, biomedical, and defense applications.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Seong-Ryul Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365 Republic of Korea
| | - Kwang-Ho Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365 Republic of Korea
| | - Young L. Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Regenstrief Center for Healthcare Engineering, West Lafayette, IN 47907 USA
- Purdue Quantum Center, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
28
|
Lalonde RL, Akimenko MA. Effects of fin fold mesenchyme ablation on fin development in zebrafish. PLoS One 2018; 13:e0192500. [PMID: 29420592 PMCID: PMC5805328 DOI: 10.1371/journal.pone.0192500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/24/2018] [Indexed: 11/19/2022] Open
Abstract
The evolution of the tetrapod limb involved an expansion and elaboration of the endoskeletal elements, while the fish fin rays were lost. Loss of fin-specific genes, and regulatory changes in key appendicular patterning genes have been identified as mechanisms of limb evolution, however their contributions to cellular organization and tissue differences between fins and limbs remains poorly understood. During early larval fin development, hoxa13a/hoxd13a-expressing fin fold mesenchyme migrate through the median and pectoral fin along actinotrichia fibrils, non-calcified skeletal elements crucial for supporting the fin fold. Fin fold mesenchyme migration defects have previously been proposed as a mechanism of fin dermal bone loss during tetrapod evolution as it has been shown they contribute directly to the fin ray osteoblast population. Using the nitroreductase/metronidazole system, we genetically ablated a subset of hoxa13a/hoxd13a-expressing fin fold mesenchyme to assess its contributions to fin development. Following the ablation of fin fold mesenchyme in larvae, the actinotrichia are unable to remain rigid and the median and pectoral fin folds collapse, resulting in a reduced fin fold size. The remaining cells following ablation are unable to migrate and show decreased actinodin1 mesenchymal reporter activity. Actinodin proteins are crucial structural component of the actinotrichia. Additionally, we show a decrease in hoxa13a, hoxd13a, fgf10a and altered shha, and ptch2 expression during larval fin development. A continuous treatment of metronidazole leads to fin ray defects at 30dpf. Fewer rays are present compared to stage-matched control larvae, and these rays are shorter and less defined. These results suggest the targeted hoxa13a/hoxd13a-expressing mesenchyme contribute to their own successful migration through their contributions to actinotrichia. Furthermore, due to their fate as fin ray osteoblasts, we propose their initial ablation, and subsequent disorganization produces truncated fin dermal bone elements during late larval stages.
Collapse
Affiliation(s)
- Robert L. Lalonde
- Department of Biology, University of Ottawa, 20 Marie-Curie, Ottawa, Ontario, Canada
| | - Marie-Andrée Akimenko
- Department of Biology, University of Ottawa, 20 Marie-Curie, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Auer F, Vagionitis S, Czopka T. Evidence for Myelin Sheath Remodeling in the CNS Revealed by In Vivo Imaging. Curr Biol 2018; 28:549-559.e3. [PMID: 29429620 DOI: 10.1016/j.cub.2018.01.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 11/28/2022]
Abstract
The length of myelin sheaths affects conduction speed along axons and information propagation. It has recently become clear that myelin may be adaptively modified to modulate circuit function, implying that length remodeling of myelin sheaths should occur. However, direct evidence for such events is lacking. We have investigated how myelination patterns are formed, maintained, and remodeled using long-term imaging and myelin ablation in zebrafish. We demonstrate that length differences between myelin sheaths are established by rapid and variable growth within 3 days after their formation, independently of their time of formation, and even along discontinuously myelinated axons. Afterward, sheaths continue extending at similar rates to compensate for overall animal growth. In consequence, once axon myelination patterns are established, they are maintained over long periods of time. We tested whether mature myelin sheaths can remodel by removing individual sheaths from single axons by targeted ablation. Remarkably, extensive changes in sheath length and number occurred, which frequently restored the original myelination pattern. Our results show that axons can control myelin growth and remodeling, and we provide evidence for a homeostatic control of axon myelination patterns by maintenance and remodeling of myelin sheath length, with implications for circuit development, function, and repair.
Collapse
Affiliation(s)
- Franziska Auer
- Institute of Neuronal Cell Biology, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilian University of Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Stavros Vagionitis
- Institute of Neuronal Cell Biology, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Tim Czopka
- Institute of Neuronal Cell Biology, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen Strasse 17, 81377 Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilian University of Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
30
|
García-Lecea M, Gasanov E, Jedrychowska J, Kondrychyn I, Teh C, You MS, Korzh V. Development of Circumventricular Organs in the Mirror of Zebrafish Enhancer-Trap Transgenics. Front Neuroanat 2017; 11:114. [PMID: 29375325 PMCID: PMC5770639 DOI: 10.3389/fnana.2017.00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
The circumventricular organs (CVOs) are small structures lining the cavities of brain ventricular system. They are associated with the semitransparent regions of the blood-brain barrier (BBB). Hence it is thought that CVOs mediate biochemical signaling and cell exchange between the brain and systemic blood. Their classification is still controversial and development not fully understood largely due to an absence of tissue-specific molecular markers. In a search for molecular determinants of CVOs we studied the green fluorescent protein (GFP) expression pattern in several zebrafish enhancer trap transgenics including Gateways (ET33-E20) that has been instrumental in defining the development of choroid plexus. In Gateways the GFP is expressed in regions of the developing brain outside the choroid plexus, which remain to be characterized. The neuroanatomical and histological analysis suggested that some previously unassigned domains of GFP expression may correspond to at least six other CVOs–the organum vasculosum laminae terminalis (OVLT), subfornical organ (SFO), paraventricular organ (PVO), pineal (epiphysis), area postrema (AP) and median eminence (ME). Two other CVOs, parapineal and subcommissural organ (SCO) were detected in other enhancer-trap transgenics. Hence enhancer-trap transgenic lines could be instrumental for developmental studies of CVOs in zebrafish and understanding of the molecular mechanism of disease such a hydrocephalus in human. Their future analysis may shed light on general and specific molecular mechanisms that regulate development of CVOs.
Collapse
Affiliation(s)
- Marta García-Lecea
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Evgeny Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Justyna Jedrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Igor Kondrychyn
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,RIKEN Center for Developmental Biology, Kobe, Japan
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - May-Su You
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
31
|
Cheng RK, Krishnan S, Lin Q, Kibat C, Jesuthasan S. Characterization of a thalamic nucleus mediating habenula responses to changes in ambient illumination. BMC Biol 2017; 15:104. [PMID: 29100543 PMCID: PMC5670518 DOI: 10.1186/s12915-017-0431-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neural activity in the vertebrate habenula is affected by ambient illumination. The nucleus that links photoreceptor activity with the habenula is not well characterized. Here, we describe the location, inputs and potential function of this nucleus in larval zebrafish. RESULTS High-speed calcium imaging shows that light ON and OFF both evoke a rapid response in the dorsal left neuropil of the habenula, indicating preferential targeting of this neuropil by afferents conveying information about ambient illumination. Injection of a lipophilic dye into this neuropil led to bilateral labeling of a nucleus in the anterior thalamus that responds to light ON and OFF, and that receives innervation from the retina and pineal organ. Lesioning the neuropil of this thalamic nucleus reduced the habenula response to light ON and OFF. Optogenetic stimulation of the thalamus with channelrhodopsin-2 caused depolarization in the habenula, while manipulation with anion channelrhodopsins inhibited habenula response to light and disrupted climbing and diving evoked by illumination change. CONCLUSIONS A nucleus in the anterior thalamus of larval zebrafish innervates the dorsal left habenula. This nucleus receives input from the retina and pineal, responds to increase and decrease in ambient illumination, enables habenula responses to change in irradiance, and may function in light-evoked vertical migration.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Seetha Krishnan
- NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, National University of Singapore, Singapore, 117456, Singapore
| | - Qian Lin
- NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, National University of Singapore, Singapore, 117456, Singapore
| | - Caroline Kibat
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore, 138673, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore.
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore, 138673, Singapore.
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
32
|
Icha J, Weber M, Waters JC, Norden C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays 2017; 39. [DOI: 10.1002/bies.201700003] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics; Dresden; Germany
| | - Michael Weber
- Department of Cell Biology; Harvard Medical School; Boston MA USA
| | | | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics; Dresden; Germany
| |
Collapse
|
33
|
Buckley C, Carvalho MT, Young LK, Rider SA, McFadden C, Berlage C, Verdon RF, Taylor JM, Girkin JM, Mullins JJ. Precise spatio-temporal control of rapid optogenetic cell ablation with mem-KillerRed in Zebrafish. Sci Rep 2017; 7:5096. [PMID: 28698677 PMCID: PMC5506062 DOI: 10.1038/s41598-017-05028-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/23/2017] [Indexed: 11/09/2022] Open
Abstract
The ability to kill individual or groups of cells in vivo is important for studying cellular processes and their physiological function. Cell-specific genetically encoded photosensitizing proteins, such as KillerRed, permit spatiotemporal optogenetic ablation with low-power laser light. We report dramatically improved resolution and speed of cell targeting in the zebrafish kidney through the use of a selective plane illumination microscope (SPIM). Furthermore, through the novel incorporation of a Bessel beam into the SPIM imaging arm, we were able to improve on targeting speed and precision. The low diffraction of the Bessel beam coupled with the ability to tightly focus it through a high NA lens allowed precise, rapid targeting of subsets of cells at anatomical depth in live, developing zebrafish kidneys. We demonstrate that these specific targeting strategies significantly increase the speed of optoablation as well as fish survival.
Collapse
Affiliation(s)
- C Buckley
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - M T Carvalho
- Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - L K Young
- Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - S A Rider
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - C McFadden
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - C Berlage
- Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - R F Verdon
- Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - J M Taylor
- School of Physics and Astronomy, University of Glasgow, Kelvin Building, Glasgow, G12 8QQ, UK
| | - J M Girkin
- Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - J J Mullins
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
34
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
35
|
Jiang HN, Li Y, Cui ZJ. Photodynamic Physiology-Photonanomanipulations in Cellular Physiology with Protein Photosensitizers. Front Physiol 2017; 8:191. [PMID: 28421000 PMCID: PMC5378799 DOI: 10.3389/fphys.2017.00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/14/2017] [Indexed: 02/05/2023] Open
Abstract
Singlet oxygen generated in a type II photodynamic action, due to its limited lifetime (1 μs) and reactive distance (<10 nm), could regulate live cell function nanoscopically. The genetically-encoded protein photosensitizers (engineered fluorescent proteins such as KillerRed, TagRFP, and flavin-binding proteins such as miniSOG, Pp2FbFPL30M) could be expressed in a cell type- and/or subcellular organelle-specific manner for targeted protein photo-oxidative activation/desensitization. The newly emerged active illumination technique provides an additional level of specificity. Typical examples of photodynamic activation include permanent activation of G protein-coupled receptor CCK1 and photodynamic activation of ionic channel TRPA1. Protein photosensitizers have been used to photodynamically modulate major cellular functions (such as neurotransmitter release and gene transcription) and animal behavior. Protein photosensitizers are increasingly used in photon-driven nanomanipulation in cell physiology research.
Collapse
Affiliation(s)
| | | | - Zong Jie Cui
- College of Life Science, Institute of Cell Biology, Beijing Normal UniversityBeijing, China
| |
Collapse
|
36
|
Burton CE, Zhou Y, Bai Q, Burton EA. Spectral properties of the zebrafish visual motor response. Neurosci Lett 2017; 646:62-67. [PMID: 28267562 DOI: 10.1016/j.neulet.2017.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 11/19/2022]
Abstract
Larval zebrafish react to changes in ambient illumination with a series of stereotyped motor responses, called the visual motor response (VMR). The VMR has been used widely in zebrafish models to analyze how genetic or environmental manipulations alter neurological function. Prior studies elicited the VMR using white light. In order to elucidate the underlying afferent pathways and to identify light wavelengths that elicit the VMR without also activating optogenetic reagents, we employed calibrated narrow-waveband light sources to analyze the spectral properties of the response. Narrow light wavebands with peaks between 399nm and 632nm triggered the characteristic phases of the VMR, but there were quantitative differences between responses to different light wavelengths at the same irradiant flux density. The O-bend component of the VMR was elicited readily at dark onset following illumination in 399nm or 458nm light, but was less prominent at the transition from 632nm light to dark. Conversely, stable motor activity in light was observed at 458nm, 514nm, and 632nm, but not at 399nm. The differential effect of discrete light wavebands on components of the VMR suggests they are driven by distinct photoreceptor populations. Furthermore, these data enable the selection of light wavebands to drive the VMR in a separate channel to the activation of optogenetic reagents and photosensitizers.
Collapse
Affiliation(s)
| | - Yangzhong Zhou
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Tsinghua University Medical School, Beijing, China
| | - Qing Bai
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Tan SY, Teh C, Ang CY, Li M, Li P, Korzh V, Zhao Y. Responsive mesoporous silica nanoparticles for sensing of hydrogen peroxide and simultaneous treatment toward heart failure. NANOSCALE 2017; 9:2253-2261. [PMID: 28124705 DOI: 10.1039/c6nr08869d] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chronic heart failure is often characterized by the elevated amounts of reactive oxygen species such as hydrogen peroxide (H2O2) in the heart. Thus, it is of importance that selective release of therapeutic drugs occurs at the heart failure site to maximize therapeutic effects. In this work, functional mesoporous silica nanoparticles (MSNPs) were developed for detection of H2O2, selective drug release and controlled treatment toward heart failure. The H2O2-sensitive probe was attached to the surface of the MSNPs, and a therapeutic drug of heart failure, captopril, was loaded within the pores of the MSNPs and retained by the binding of α-cyclodextrin to the probe. H2O2 present in tissue could react with the probe and enable the dissociation of α-cyclodextrin present on the nanoparticle surface, so that captopril could be successfully released along with "turn-on" of the probe fluorescence. In vivo experiments using the KillerRed heart failure transgenic zebrafish model demonstrated that this therapeutic system is physiologically responsive. Captopril-loaded MSNPs showed high therapeutic efficacy, improving the heartbeat rate and cardiac output in zebrafish experiencing acute KillerRed-induced heart failure.
Collapse
Affiliation(s)
- Si Yu Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore.
| | - Chung Yen Ang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Menghuan Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore. and School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Peizhou Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology, 4 Ks. Trojena Street, 02-109 Warsaw, Poland.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore. and School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
38
|
Duboué ER, Halpern ME. Genetic and Transgenic Approaches to Study Zebrafish Brain Asymmetry and Lateralized Behavior. LATERALIZED BRAIN FUNCTIONS 2017. [DOI: 10.1007/978-1-4939-6725-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
39
|
Weber T, Namikawa K, Winter B, Müller-Brown K, Kühn R, Wurst W, Köster RW. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons. Development 2016; 143:4279-4287. [PMID: 27729409 DOI: 10.1242/dev.122721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/30/2016] [Indexed: 01/11/2023]
Abstract
The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTACTM) further expands the repertoire of genetic tools for conditional interrogation of cellular functions.
Collapse
Affiliation(s)
- Thomas Weber
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany.,Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Kazuhiko Namikawa
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Barbara Winter
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Karina Müller-Brown
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Ralf Kühn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Feodor-Lynen-Str. 17, München 81377, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, München 81377, Germany.,Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Reinhard W Köster
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| |
Collapse
|
40
|
Development of the cardiac conduction system in zebrafish. Gene Expr Patterns 2016; 21:89-96. [PMID: 27593944 DOI: 10.1016/j.gep.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 08/28/2016] [Indexed: 01/29/2023]
Abstract
The cardiac conduction system (CCS) propagates and coordinates the electrical excitation that originates from the pacemaker cells, throughout the heart, resulting in rhythmic heartbeat. Its defects result in life-threatening arrhythmias and sudden cardiac death. Understanding of the factors involved in the formation and function of the CCS remains incomplete. By transposon assisted transgenesis, we have developed enhancer trap (ET) lines of zebrafish that express fluorescent protein in the pacemaker cells at the sino-atrial node (SAN) and the atrio-ventricular region (AVR), termed CCS transgenics. This expression pattern begins at the stage when the heart undergoes looping morphogenesis at 36 h post fertilization (hpf) and is maintained into adulthood. Using the CCS transgenics, we investigated the effects of perturbation of cardiac function, as simulated by either the absence of endothelium or hemodynamic stimulation, on the cardiac conduction cells, which resulted in abnormal compaction of the SAN. To uncover the identity of the gene represented by the EGFP expression in the CCS transgenics, we mapped the transposon integration sites on the zebrafish genome to positions in close proximity to the gene encoding fibroblast growth homologous factor 2a (fhf2a). Fhf2a is represented by three transcripts, one of which is expressed in the developing heart. These transgenics are useful tools for studies of development of the CCS and cardiac disease.
Collapse
|
41
|
Abstract
Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound.
Collapse
|
42
|
Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG. Sci Rep 2016; 6:21271. [PMID: 26861262 PMCID: PMC4748272 DOI: 10.1038/srep21271] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/20/2016] [Indexed: 01/21/2023] Open
Abstract
The genetically encoded photosensitizer miniSOG (mini Singlet Oxygen Generator) can be used to kill cells in C. elegans. miniSOG generates the reactive oxygen species (ROS) singlet oxygen after illumination with blue light. Illumination of neurons expressing miniSOG targeted to the outer mitochondrial membrane (mito-miniSOG) causes neuronal death. To enhance miniSOG’s efficiency as an ablation tool in multiple cell types we tested alternative targeting signals. We find that membrane targeted miniSOG allows highly efficient cell killing. When combined with a point mutation that increases miniSOG’s ROS generation, membrane targeted miniSOG can ablate neurons in less than one tenth the time of mito-miniSOG. We extend the miniSOG ablation technique to non-neuronal tissues, revealing an essential role for the epidermis in locomotion. These improvements expand the utility and throughput of optogenetic cell ablation in C. elegans.
Collapse
|
43
|
Mayrhofer M, Mione M. The Toolbox for Conditional Zebrafish Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:21-59. [PMID: 27165348 DOI: 10.1007/978-3-319-30654-4_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we describe the conditional zebrafish cancer toolbox, which allows for fine control of the expression of oncogenes or downregulation of tumor suppressors at the spatial and temporal level. Methods such as the Gal4/UAS or the Cre/lox systems paved the way to the development of elegant tumor models, which are now being used to study cancer cell biology, clonal evolution, identification of cancer stem cells and anti-cancer drug screening. Combination of these tools, as well as novel developments such as the promising genome editing system through CRISPR/Cas9 and clever application of light reactive proteins will enable the development of even more sophisticated zebrafish cancer models. Here, we introduce this growing toolbox of conditional transgenic approaches, discuss its current application in zebrafish cancer models and provide an outlook on future perspectives.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
44
|
Shirmanova M, Yuzhakova D, Snopova L, Perelman G, Serebrovskaya E, Lukyanov K, Turchin I, Subochev P, Lukyanov S, Kamensky V, Zagaynova E. Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model. PLoS One 2015; 10:e0144617. [PMID: 26657001 PMCID: PMC4686120 DOI: 10.1371/journal.pone.0144617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/20/2015] [Indexed: 01/12/2023] Open
Abstract
The strong phototoxicity of the red fluorescent protein KillerRed allows it to be considered as a potential genetically encoded photosensitizer for the photodynamic therapy (PDT) of cancer. The advantages of KillerRed over chemical photosensitizers are its expression in tumor cells transduced with the appropriate gene and direct killing of cells through precise damage to any desired cell compartment. The ability of KillerRed to affect cell division and to induce cell death has already been demonstrated in cancer cell lines in vitro and HeLa tumor xenografts in vivo. However, the further development of this approach for PDT requires optimization of the method of treatment. In this study we tested the continuous wave (593 nm) and pulsed laser (584 nm, 10 Hz, 18 ns) modes to achieve an antitumor effect. The research was implemented on CT26 subcutaneous mouse tumors expressing KillerRed in fusion with histone H2B. The results showed that the pulsed mode provided a higher rate of photobleaching of KillerRed without any temperature increase on the tumor surface. PDT with the continuous wave laser was ineffective against CT26 tumors in mice, whereas the pulsed laser induced pronounced histopathological changes and inhibition of tumor growth. Therefore, we selected an effective regimen for PDT when using the genetically encoded photosensitizer KillerRed and pulsed laser irradiation.
Collapse
Affiliation(s)
- Marina Shirmanova
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- * E-mail:
| | - Diana Yuzhakova
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ludmila Snopova
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - Gregory Perelman
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina Serebrovskaya
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Lukyanov
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya Turchin
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Pavel Subochev
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Sergey Lukyanov
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladislav Kamensky
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| |
Collapse
|
45
|
Takehara K, Tazawa H, Okada N, Hashimoto Y, Kikuchi S, Kuroda S, Kishimoto H, Shirakawa Y, Narii N, Mizuguchi H, Urata Y, Kagawa S, Fujiwara T. Targeted Photodynamic Virotherapy Armed with a Genetically Encoded Photosensitizer. Mol Cancer Ther 2015; 15:199-208. [PMID: 26625896 DOI: 10.1158/1535-7163.mct-15-0344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive antitumor therapy that eradicates tumor cells through a photosensitizer-mediated cytotoxic effect upon light irradiation. However, systemic administration of photosensitizer often makes it difficult to avoid a photosensitive adverse effect. The red fluorescent protein KillerRed generates reactive oxygen species (ROS) upon green light irradiation. Here, we show the therapeutic potential of a novel tumor-specific replicating photodynamic viral agent (TelomeKiller) constructed using the human telomerase reverse transcriptase (hTERT) promoter. We investigated the light-induced antitumor effect of TelomeKiller in several types of human cancer cell lines. Relative cell viability was investigated using an XTT assay. The in vivo antitumor effect was assessed using subcutaneous xenografted tumor and lymph node metastasis models. KillerRed accumulation resulted in ROS generation and apoptosis in light-irradiated cancer cells. Intratumoral injection of TelomeKiller efficiently delivered the KillerRed protein throughout the tumors and exhibited a long-lasting antitumor effect with repeated administration and light irradiation in mice. Moreover, intratumorally injected TelomeKiller could spread into the regional lymph node area and eliminate micrometastasis with limited-field laser irradiation. Our results suggest that KillerRed has great potential as a novel photosensitizer if delivered with a tumor-specific virus-mediated delivery system. TelomeKiller-based PDT is a promising antitumor strategy to efficiently eradicate tumor cells.
Collapse
Affiliation(s)
- Kiyoto Takehara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan. Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Naohiro Okada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuuri Hashimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuhiro Narii
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
46
|
Kuznetsova DS, Shirmanova MV, Dudenkova VV, Subochev PV, Turchin IV, Zagaynova EV, Lukyanov SA, Shakhov BE, Kamensky VA. Photobleaching and phototoxicity of KillerRed in tumor spheroids induced by continuous wave and pulsed laser illumination. JOURNAL OF BIOPHOTONICS 2015; 8:952-960. [PMID: 25648724 DOI: 10.1002/jbio.201400130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/18/2014] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to evaluate photobleaching of the genetically encoded photosensitizer KillerRed in tumor spheroids upon pulsed and continuous wave (CW) laser irradiation and to analyze the mechanisms of cancer cell death after the treatment. We observed the light-dose dependent mechanism of KillerRed photobleaching over a wide range of fluence rates. Loss of fluorescence was limited to 80% at light doses of 150 J/cm(2) and more. Based on the bleaching curves, six PDT regimes were applied for irradiation using CW and pulsed regimes at a power density of 160 mW/cm(2) and light doses of 140 J/cm(2) , 170 J/cm(2) and 200 J/cm(2). Irradiation of KillerRed-expressing spheroids in the pulsed mode (pulse duration 15 ns, pulse repetition rate 10 Hz) induced predominantly apoptotic cell death, while in the case of CW mode the cancer cells underwent necrosis. In general, these results improve our understanding of photobleaching mechanisms in GFP-like proteins and show the importance of appropriate selection of treatment mode for PDT with KillerRed. Representative fluorescence image of two KillerRed-expressing spheroids before and immediately after CW irradiation.
Collapse
Affiliation(s)
- Daria S Kuznetsova
- Nizhny Novgorod State Medical Academy, 603005, Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia.
- Lobachevsky State University of Nizhny Novgorod, 603950, Gagarin Ave., 23, Nizhny Novgorod, Russia.
| | - Marina V Shirmanova
- Nizhny Novgorod State Medical Academy, 603005, Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, 603950, Gagarin Ave., 23, Nizhny Novgorod, Russia
| | - Varvara V Dudenkova
- Nizhny Novgorod State Medical Academy, 603005, Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, 603950, Gagarin Ave., 23, Nizhny Novgorod, Russia
| | - Pavel V Subochev
- Institute of Applied Physics RAS, 603950, Ulyanov St., 46, Nizhny Novgorod, Russia
| | - Ilya V Turchin
- Institute of Applied Physics RAS, 603950, Ulyanov St., 46, Nizhny Novgorod, Russia
| | - Elena V Zagaynova
- Nizhny Novgorod State Medical Academy, 603005, Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, 603950, Gagarin Ave., 23, Nizhny Novgorod, Russia
| | - Sergey A Lukyanov
- Nizhny Novgorod State Medical Academy, 603005, Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Miklukho-Maklaya St., 16/10, Moscow, Russia
- Pirogov Russian National Research Medical University, 117997, Ostrovitianova St. 1, Moscow, Russia
| | - Boris E Shakhov
- Nizhny Novgorod State Medical Academy, 603005, Minin and Pozharsky Sq., 10/1, Nizhny Novgorod, Russia
| | - Vladislav A Kamensky
- Institute of Applied Physics RAS, 603950, Ulyanov St., 46, Nizhny Novgorod, Russia
| |
Collapse
|
47
|
Abstract
Photodynamic therapy (PDT) is a cancer treatment modality in which a photosensitizing dye is administered and exposed to light to kill tumor cells via the production of reactive oxygen species (ROS). A fundamental obstacle for PDT is the low specificity for staining solid tumors with dyes. Recently, a tumor targeting system guided by anaerobic bacteria was proposed for tumor imaging and treatment. Here, we explore the feasibility of the genetically encoded photosensitizer KillerRed, which is expressed in Escherichia coli, to treat tumors. Using nitroblue tetrazolium (NBT), we detected a lengthy ROS diffusion from the bodies of KillerRed-expressing bacteria in vitro, which demonstrated the feasibility of using bacteria to eradicate cells in their surroundings. In nude mice, Escherichia coli (E. coli) expressing KillerRed (KR-E. coli) were subcutaneously injected into xenografts comprising CNE2 cells, a human nasopharyngeal carcinoma cell line, and HeLa cells, a human cervical carcinoma cell line. KR-E. coli seemed to proliferate rapidly in the tumors as observed under an imaging system. When the intensity of fluorescence increased and the fluorescent area became as large as the tumor one day after KR-E. coli injection, the KR-E. coli-bearing tumor was irradiated with an orange light (λ = 540 − 580 nm). In all cases, the tumors became necrotic the next day and were completely eliminated in a few days. No necrosis was observed after the irradiation of tumors injected with a vehicle solution or a vehicle carrying the E. coli without KillerRed. In successfully treated mice, no tumor recurrence was observed for more than two months. E. coli genetically engineered for KillerRed expression are highly promising for the diagnosis and treatment of tumors when the use of bacteria in patients is cleared for infection safety.
Collapse
Affiliation(s)
- Libo Yan
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Japan
| | - Masamitsu Kanada
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Japan
| | - Jinyan Zhang
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Japan
| | - Shigetoshi Okazaki
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Japan
| | - Susumu Terakawa
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Japan
- * E-mail:
| |
Collapse
|
48
|
Wyatt C, Bartoszek EM, Yaksi E. Methods for studying the zebrafish brain: past, present and future. Eur J Neurosci 2015; 42:1746-63. [PMID: 25900095 DOI: 10.1111/ejn.12932] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience.
Collapse
Affiliation(s)
- Cameron Wyatt
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Ewelina M Bartoszek
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
49
|
BDNF-TrkB axis regulates migration of the lateral line primordium and modulates the maintenance of mechanoreceptor progenitors. PLoS One 2015; 10:e0119711. [PMID: 25751404 PMCID: PMC4353718 DOI: 10.1371/journal.pone.0119711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/16/2015] [Indexed: 12/12/2022] Open
Abstract
BDNF and its specialized receptor TrkB are expressed in the developing lateral line system of zebrafish, but their role in this organ is unknown. To tackle this problem in vivo, we used transgenic animals expressing fluorescent markers in different cell types of the lateral line and combined a BDNF gain-of-function approach by BDNF mRNA overexpression and by soaking embryos in a solution of BDNF, with a loss-of-function approach by injecting the antisence ntrk2b-morpholino and treating embryos with the specific Trk inhibitor K252a. Subsequent analysis demonstrated that the BDNF-TrkB axis regulates migration of the lateral line primordium. In particular, BDNF-TrkB influences the expression level of components of chemokine signaling including Cxcr4b, and the generation of progenitors of mechanoreceptors, at the level of expression of Atoh1a-Atp2b1a.
Collapse
|
50
|
Williams DC, Bejjani RE, Ramirez PM, Coakley S, Kim SA, Lee H, Wen Q, Samuel A, Lu H, Hilliard MA, Hammarlund M. Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed. Cell Rep 2015; 5:553-63. [PMID: 24209746 DOI: 10.1016/j.celrep.2013.09.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/01/2013] [Accepted: 09/13/2013] [Indexed: 12/28/2022] Open
Abstract
Inactivation of selected neurons in vivo can define their contribution to specific developmental outcomes, circuit functions, and behaviors. Here, we show that the optogenetic tool KillerRed selectively, rapidly, and permanently inactivates different classes of neurons in C. elegans in response to a single light stimulus, through the generation of reactive oxygen species (ROS). Ablation scales from individual neurons in single animals to multiple neurons in populations and can be applied to freely behaving animals. Using spatially restricted illumination, we demonstrate that localized KillerRed activation in either the cell body or the axon triggers neuronal degeneration and death of the targeted cell. Finally, targeting KillerRed to mitochondria results in organelle fragmentation without killing the cell, in contrast to the cell death observed when KillerRed is targeted to the plasma membrane. We expect this genetic tool to have wide-ranging applications in studies of circuit function and subcellular responses to ROS.
Collapse
|