1
|
Indu S, Devi AN, Sahadevan M, Sengottaiyan J, Basu A, K SR, Kumar PG. Expression profiling of stemness markers in testicular germline stem cells from neonatal and adult Swiss albino mice during their transdifferentiation in vitro. Stem Cell Res Ther 2024; 15:93. [PMID: 38561834 PMCID: PMC10985951 DOI: 10.1186/s13287-024-03701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) were considered to be stem cells with limited potencies due to their existence in adult organisms. However, the production of spermatogonial stem cell colonies with broader differentiation capabilities in primary germ cell cultures from mice of select genetic backgrounds (C57BL6/Tg14, ddY, FVB and 129/Ola) indicated that SSCs from these strains were pluripotent. METHODS We established primary cultures of SSCs from neonatal and adult Swiss 3T3 Albino mice. Stemness of SSC colonies were evaluated by performing real-time PCR and immunofluorescence analysis for a panel of chosen stemness markers. Differentiation potentials of SSCs were examined by attempting the generation of embryoid bodies and evaluating the expression of ectodermal, mesodermal and endodermal markers using immunofluorescence and real-time PCR analysis. RESULTS Spermatogonial stem cells from neonatal and mature mice testes colonised in vitro and formed compact spermatogonial stem cell colonies in culture. The presence of stem cell markers ALPL, ITGA6 and CD9 indicated stemness in these colonies. The differentiation potential of these SSC colonies was demonstrated by their transformation into embryoid bodies upon withdrawal of growth factors from the culture medium. SSC colonies and embryoid bodies formed were evaluated using immunofluorescence and real-time PCR analysis. Embryoid body like structures derived from both neonatal and adult mouse testis were quite similar in terms of the expression of germ layer markers. CONCLUSION These results strongly suggest that SSC-derived EB-like structures could be used for further differentiation into cells of interest in cell-based therapeutics.
Collapse
Affiliation(s)
- Sivankutty Indu
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Anandavally N Devi
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Mahitha Sahadevan
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Jeeva Sengottaiyan
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Asmita Basu
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Shabith Raj K
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Pradeep G Kumar
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India.
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
2
|
Saumweber E, Mzoughi S, Khadra A, Werberger A, Schumann S, Guccione E, Schmeisser MJ, Kühl SJ. Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis. Front Cell Dev Biol 2024; 12:1316048. [PMID: 38444828 PMCID: PMC10912572 DOI: 10.3389/fcell.2024.1316048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Mutations in PRDM15 lead to a syndromic form of holoprosencephaly (HPE) known as the Galloway-Mowat syndrome (GAMOS). While a connection between PRDM15, a zinc finger transcription factor, and WNT/PCP signaling has been established, there is a critical need to delve deeper into their contributions to early development and GAMOS pathogenesis. We used the South African clawed frog Xenopus laevis as the vertebrate model organism and observed that prdm15 was enriched in the tissues and organs affected in GAMOS. Furthermore, we generated a morpholino oligonucleotide-mediated prdm15 knockdown model showing that the depletion of Prdm15 leads to abnormal eye, head, and brain development, effectively recapitulating the anterior neural features in GAMOS. An analysis of the underlying molecular basis revealed a reduced expression of key genes associated with eye, head, and brain development. Notably, this reduction could be rescued by the introduction of wnt4 RNA, particularly during the induction of the respective tissues. Mechanistically, our data demonstrate that Prdm15 acts upstream of both canonical and non-canonical Wnt4 signaling during anterior neural development. Our findings describe severe ocular and anterior neural abnormalities upon Prdm15 depletion and elucidate the role of Prdm15 in canonical and non-canonical Wnt4 signaling.
Collapse
Affiliation(s)
- Ernestine Saumweber
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Slim Mzoughi
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Arin Khadra
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Anja Werberger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ernesto Guccione
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne J. Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
3
|
Flach H, Geiß K, Lohse KA, Feickert M, Dietmann P, Pfeffer S, Kühl M, Kühl SJ. The neonicotinoid thiacloprid leads to multiple defects during early embryogenesis of the South African clawed frog (Xenopuslaevis). Food Chem Toxicol 2023; 176:113761. [PMID: 37028742 DOI: 10.1016/j.fct.2023.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
There is increasing concern about the health effects of pesticides that pollute natural waters. In particular, the use of neonicotinoids, such as thiacloprid (THD), is causing unease. THD is considered non-toxic to non-target vertebrates. Studies classify THD as carcinogenic, toxic to reproduction, and therefore harmful to the environment. A detailed study of possible THD effects during the amphibian embryogenesis is needed because leaching can introduce THD into aquatic environments. We incubated stage 2 embryos of the South African clawed frog in various THD concentrations (0.1-100 mg/L) at 14 °C to study the potential effects of a one-time THD contamination of waters on the early embryogenesis. We showed that THD has, indeed, negative effects on the embryonic development of the X. laevis. A treatment with THD led to a reduced embryonic body length and mobility. Furthermore, a treatment with THD resulted in smaller cranial cartilages, eyes and brains, and the embryos had shorter cranial nerves and an impaired cardiogenesis. On a molecular basis, THD led to a reduced expression of the brain marker emx1 and the heart marker mhcα. Our results underly the importance of a strict and efficient monitoring of the regulatory levels and application areas of THD.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kristina Geiß
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kim-André Lohse
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Manuel Feickert
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sarah Pfeffer
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
4
|
V KN, O KY, Yu DI. Regeneration of the digestive system in the crinoid Lamprometra palmata (Mariametridae, Comatulida). Cell Tissue Res 2023; 391:87-109. [PMID: 34633568 DOI: 10.1007/s00441-021-03526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 01/18/2023]
Abstract
The morphology and regeneration of the digestive system and tegmen after autotomy of the visceral mass in the crinoid Lamprometra palmata (Clark 1921) was studied. The gut has a five-lobed shape and is covered by a tegmen. The tegmen consists of epidermis and underlying connective tissue. The digestive tube can be divided into three parts: esophagus, intestine, and rectum. At 6 h post-autotomy, the calyx surface is covered by a layer of amoebocytes and juxtaligamental cells (JLCs). At 14-18 h, post-autotomy transdifferentiation of JLCs begins and give rise to the epidermis and cells of digestive system. On days 1-2 post-autotomy, JLCs undergo the mesenchymal-epithelial transition. Some JLCs turn into typical epidermal cells, while other JLCs form small closed epithelial structures that represent the gut anlage. On day 4 post-autotomy, the animals have a mouth opening and a small anal cone. On day 7 post-autotomy, the visceral mass and the digestive system become fully formed but are smaller than normal. A 24-h exposure of L. palmata individuals to a 10-7 M colchicine solution did not slow down regeneration, and the timing of gut formation was similar to that in the control animals. We conclude that JLCs are the major cell source for gut and epidermis regeneration in L. palmata. The main mechanisms of morphogenesis are cell migration, mesenchymal-epithelial transition, and transdifferentiation.
Collapse
Affiliation(s)
- Kalacheva Nadezhda V
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia.
| | - Kamenev Yaroslav O
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Dolmatov Igor Yu
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
5
|
Sonam S, Bangru S, Perry KJ, Chembazhi UV, Kalsotra A, Henry JJ. Cellular and molecular profiles of larval and adult Xenopus corneal epithelia resolved at the single-cell level. Dev Biol 2022; 491:13-30. [PMID: 36049533 PMCID: PMC10241109 DOI: 10.1016/j.ydbio.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
Abstract
Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for homeostasis and maintaining corneal transparency. Owing to our limited knowledge of cell fates and gene activity within the cornea, the search for unique markers to identify and isolate these cells remains crucial for ocular surface reconstruction. We performed single-cell RNA sequencing of corneal cells from larval and adult stages of Xenopus. Our results indicate that as the cornea develops and matures, there is an increase in cellular diversity, which is accompanied by a substantial shift in transcriptional profile, gene regulatory network and cell-cell communication dynamics. Our data also reveals several novel genes expressed in corneal cells and changes in gene expression during corneal differentiation at both developmental time-points. Importantly, we identify specific basal cell clusters in both the larval and adult cornea that comprise a relatively undifferentiated cell type and express distinct stem cell markers, which we propose are the putative larval and adult CESCs, respectively. This study offers a detailed atlas of single-cell transcriptomes in the frog cornea. In the future, this work will be useful to elucidate the function of novel genes in corneal epithelial homeostasis, wound healing and regeneration.
Collapse
Affiliation(s)
- Surabhi Sonam
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@Illinois, University of Illinois, Urbana-Champaign, IL, USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@Illinois, University of Illinois, Urbana-Champaign, IL, USA.
| | - Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
6
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
7
|
Functions of block of proliferation 1 during anterior development in Xenopus laevis. PLoS One 2022; 17:e0273507. [PMID: 36007075 PMCID: PMC9409556 DOI: 10.1371/journal.pone.0273507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Block of proliferation 1 (Bop1) is a nucleolar protein known to be necessary for the assembly of the 60S subunit of ribosomes. Here, we show a specific bop1 expression in the developing anterior tissue of the South African clawed frog Xenopus laevis. Morpholino oligonucleotide-mediated knockdown approaches demonstrated that Bop1 is required for proper development of the cranial cartilage, brain, and the eyes. Furthermore, we show that bop1 knockdown leads to impaired retinal lamination with disorganized cell layers. Expression of neural crest-, brain-, and eye-specific marker genes was disturbed. Apoptotic and proliferative processes, which are known to be affected during ribosomal biogenesis defects, are not hindered upon bop1 knockdown. Because early Xenopus embryos contain a large store of maternal ribosomes, we considered if Bop1 might have a role independent of de novo ribosomal biogenesis. At early embryonic stages, pax6 expression was strongly reduced in bop1 morphants and synergy experiments indicate a common signaling pathway of the two molecules, Bop1 and Pax6. Our studies imply a novel function of Bop1 independent of ribosomal biogenesis.
Collapse
|
8
|
Schreiner C, Kernl B, Dietmann P, Riegger RJ, Kühl M, Kühl SJ. The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. Front Cell Dev Biol 2022; 10:777121. [PMID: 35281111 PMCID: PMC8905602 DOI: 10.3389/fcell.2022.777121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/08/2022] [Indexed: 01/24/2023] Open
Abstract
Ribosomal biogenesis is a fundamental process necessary for cell growth and division. Ribosomal protein L5 (Rpl5) is part of the large ribosomal subunit. Mutations in this protein have been associated with the congenital disease Diamond Blackfan anemia (DBA), a so called ribosomopathy. Despite of the ubiquitous need of ribosomes, clinical manifestations of DBA include tissue-specific symptoms, e.g., craniofacial malformations, eye abnormalities, skin pigmentation failure, cardiac defects or liver cirrhosis. Here, we made use of the vertebrate model organism Xenopus laevis and showed a specific expression of rpl5 in the developing anterior tissue correlating with tissues affected in ribosomopathies. Upon Rpl5 knockdown using an antisense-based morpholino oligonucleotide approach, we showed different phenotypes affecting anterior tissue, i.e., defective cranial cartilage, malformed eyes, and microcephaly. Hence, the observed phenotypes in Xenopus laevis resemble the clinical manifestations of DBA. Analyses of the underlying molecular basis revealed that the expression of several marker genes of neural crest, eye, and brain are decreased during induction and differentiation of the respective tissue. Furthermore, Rpl5 knockdown led to decreased cell proliferation and increased cell apoptosis during early embryogenesis. Investigating the molecular mechanisms underlying Rpl5 function revealed a more than additive effect between either loss of function of Rpl5 and loss of function of c-Myc or loss of function of Rpl5 and gain of function of Tp53, suggesting a common signaling pathway of these proteins. The co-injection of the apoptosis blocking molecule Bcl2 resulted in a partial rescue of the eye phenotype, supporting the hypothesis that apoptosis is one main reason for the phenotypes occurring upon Rpl5 knockdown. With this study, we are able to shed more light on the still poorly understood molecular background of ribosomopathies.
Collapse
Affiliation(s)
- Corinna Schreiner
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm, Germany
| | - Bianka Kernl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ricarda J Riegger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Lachke SA. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Exp Eye Res 2022; 214:108889. [PMID: 34906599 PMCID: PMC8792301 DOI: 10.1016/j.exer.2021.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023]
Abstract
Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.
Collapse
Affiliation(s)
- Salil A Lachke
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
10
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
11
|
Liu Z, Wang R, Lin H, Liu Y. Lens regeneration in humans: using regenerative potential for tissue repairing. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1544. [PMID: 33313289 PMCID: PMC7729322 DOI: 10.21037/atm-2019-rcs-03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The crystalline lens is an important optic element in human eyes. It is transparent and biconvex, refracting light and accommodating to form a clear retinal image. The lens originates from the embryonic ectoderm. The epithelial cells at the lens equator proliferate, elongate and differentiate into highly aligned lens fiber cells, which are the structural basis for maintaining the transparency of the lens. Cataract refers to the opacity of the lens. Currently, the treatment of cataract is to remove the opaque lens and implant an intraocular lens (IOL). This strategy is inappropriate for children younger than 2 years, because a developing eyeball is prone to have severe complications such as inflammatory proliferation and secondary glaucoma. On the other hand, the absence of the crystalline lens greatly affects visual function rehabilitation. The researchers found that mammalian lenses possess regenerative potential. We identified lens stem cells through linear tracking experiments and designed a minimally invasive lens-content removal surgery (MILS) to remove the opaque lens material while preserving the lens capsule, stem cells and microenvironment. In infants with congenital cataract, functional lens regeneration in situ can be observed after MILS, and the prognosis of visual function is better than that of traditional surgery. Because of insufficient regenerative ability in humans, the morphology and volume of the regenerated lens cannot reach the level of a normal lens. The activation, proliferation and differentiation of lens stem cells and the alignment of lens fibers are regulated by epigenetic factors, growth factors, transcription factors, immune system and other signals and their interactions. The construction of appropriate microenvironment can accelerate lens regeneration and improve its morphology. The therapeutic concept of MILS combined with microenvironment manipulation to activate endogenous stem cells for functional regeneration of organs in situ can be extended to other tissues and organs with strong self-renewal and repair ability.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ruixin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Kha CX, Guerin DJ, Tseng KAS. Studying In Vivo Retinal Progenitor Cell Proliferation in Xenopus laevis. Methods Mol Biol 2020; 2092:19-33. [PMID: 31786778 PMCID: PMC11233400 DOI: 10.1007/978-1-0716-0175-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The efficient generation and maintenance of retinal progenitor cells (RPCs) are key goals needed for developing strategies for productive eye repair. Although vertebrate eye development and retinogenesis are well characterized, the mechanisms that can initiate RPC proliferation following injury-induced regrowth and repair remain unknown. This is partly because endogenous RPC proliferation typically occurs during embryogenesis while studies of retinal regeneration have largely utilized adult (or mature) models. We found that embryos of the African clawed frog, Xenopus laevis, successfully regrew functional eyes after ablation. The initiation of regrowth induced a robust RPC proliferative response with a concomitant delay of the endogenous RPC differentiation program. During eye regrowth, overall embryonic development proceeded normally. Here, we provide a protocol to study regrowth-dependent RPC proliferation in vivo. This system represents a robust and low-cost strategy to rapidly define fundamental mechanisms that regulate regrowth-initiated RPC proliferation, which will facilitate progress in identifying promising strategies for productive eye repair.
Collapse
Affiliation(s)
- Cindy X Kha
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Dylan J Guerin
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Kelly Ai-Sun Tseng
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
13
|
Aryal S, Anand D, Hernandez FG, Weatherbee BAT, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. MS/MS in silico subtraction-based proteomic profiling as an approach to facilitate disease gene discovery: application to lens development and cataract. Hum Genet 2019; 139:151-184. [PMID: 31797049 DOI: 10.1007/s00439-019-02095-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022]
Abstract
While the bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery) effectively identifies human cataract-associated genes, it is currently based on just transcriptome data, and thus, it is necessary to include protein-level information to gain greater confidence in gene prioritization. Here, we expand iSyTE through development of a novel proteome-based resource on the lens and demonstrate its utility in cataract gene discovery. We applied high-throughput tandem mass spectrometry (MS/MS) to generate a global protein expression profile of mouse lens at embryonic day (E)14.5, which identified 2371 lens-expressed proteins. A major challenge of high-throughput expression profiling is identification of high-priority candidates among the thousands of expressed proteins. To address this problem, we generated new MS/MS proteome data on mouse whole embryonic body (WB). WB proteome was then used as a reference dataset for performing "in silico WB-subtraction" comparative analysis with the lens proteome, which effectively identified 422 proteins with lens-enriched expression at ≥ 2.5 average spectral counts, ≥ 2.0 fold enrichment (FDR < 0.01) cut-off. These top 20% candidates represent a rich pool of high-priority proteins in the lens including known human cataract-linked genes and many new potential regulators of lens development and homeostasis. This rich information is made publicly accessible through iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), which enables user-friendly visualization of promising candidates, thus making iSyTE a comprehensive tool for cataract gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA
| | - Francisco G Hernandez
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA
| | - Bailey A T Weatherbee
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA.
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
14
|
Kumar B, Reilly MA. The Development, Growth, and Regeneration of the Crystalline Lens: A Review. Curr Eye Res 2019; 45:313-326. [DOI: 10.1080/02713683.2019.1681003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bharat Kumar
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - M. A. Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Sosa EA, Moriyama Y, Ding Y, Tejeda-Muñoz N, Colozza G, De Robertis EM. Transcriptome analysis of regeneration during Xenopus laevis experimental twinning. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 63:301-309. [PMID: 31250914 DOI: 10.1387/ijdb.190006ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Animal embryos have the remarkable property of self-organization. Over 125 years ago, Hans Driesch separated the two blastomeres of sea urchin embryos and obtained twins, in what was the foundation of experimental embryology. Since then, embryonic twinning has been obtained experimentally in many animals. In a recent study, we developed bisection methods that generate identical twins reliably from Xenopus blastula embryos. In the present study, we have investigated the transcriptome of regenerating half-embryos after sagittal and dorsal-ventral (D-V) bisections. Individual embryos were operated at midblastula (stage 8) with an eyelash hair and cultured until early gastrula (stage 10.5) or late gastrula (stage 12) and the transcriptome of both halves were analyzed by RNA-seq. Since many genes are activated by wound healing in Xenopus embryos, we resorted to stringent sequence analyses and identified genes up-regulated in identical twins but not in either dorsal or ventral fragments. At early gastrula, cell division-related transcripts such as histones were elevated, whereas at late gastrula, pluripotency genes (such as sox2) and germ layer determination genes (such as eomesodermin, ripply2 and activin receptor ACVRI) were identified. Among the down-regulated transcripts, sizzled, a regulator of Chordin stability, was prominent. These findings are consistent with a model in which cell division is required to heal damage, while maintaining pluripotency to allow formation of the organizer with a displacement of 90 0 from its original site. The extensive transcriptomic data presented here provides a valuable resource for data mining of gene expression during early vertebrate development.
Collapse
Affiliation(s)
- Eric A Sosa
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
16
|
Sonam S, Srnak JA, Perry KJ, Henry JJ. Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs. Exp Eye Res 2019; 184:107-125. [PMID: 30981716 DOI: 10.1016/j.exer.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for maintaining the integrity and transparency of the cornea. These stem cells (SCs) are widely used in corneal transplants and ocular surface reconstruction. Molecular markers are essential to identify, isolate and enrich for these cells, yet no definitive CESC marker has been established. An extensive literature survey shows variability in the expression of putative CESC markers among vertebrates; being attributed to species-specific variations, or other differences in developmental stages of these animals, approaches used in these studies and marker specificity. Here, we expanded the search for CESC markers using the amphibian model Xenopus laevis. In previous studies we found that long-term label retaining cells (suggestive of CESCs and TACs) are present throughout the larval basal corneal epithelium. In adult frogs, these cells become concentrated in the peripheral cornea (limbal region). Here, we used immunofluorescence to characterize the expression of nine proteins in the corneas of both Xenopus larvae and adults (post-metamorphic). We found that localization of some markers change between larval and adult stages. Markers such as p63, Keratin 19, and β1-integrin are restricted to basal corneal epithelial cells of the larvae. After metamorphosis their expression is found in basal and intermediate layer cells of the adult frog corneal epithelium. Another protein, Pax6 was expressed in the larval corneas, but surprisingly it was not detected in the adult corneal epithelium. For the first time we report that Tcf7l2 can be used as a marker to differentiate cornea vs. skin in frogs. Tcf7l2 is present only in the frog skin, which differs from reports indicating that the protein is expressed in the human cornea. Furthermore, we identified the transition between the inner, and the outer surface of the adult frog eyelid as a key boundary in terms of marker expression. Although these markers are useful to identify different regions and cellular layers of the frog corneal epithelium, none is unique to CESCs or TACs. Our results confirm that there is no single conserved CESC marker in vertebrates. This molecular characterization of the Xenopus cornea facilitates its use as a vertebrate model to understand the functions of key proteins in corneal homeostasis and wound repair.
Collapse
Affiliation(s)
- Surabhi Sonam
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Srnak
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
Abstract
In this review, we compare and contrast the three different forms of vertebrate lens regeneration: Wolffian lens regeneration, cornea-lens regeneration, and lens regeneration from lens epithelial cells. An examination of the diverse cellular origins of these lenses, their unique phylogenetic distribution, and the underlying molecular mechanisms, suggests that these different forms of lens regeneration evolved independently and utilize neither conserved nor convergent mechanisms to regulate these processes.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL
| | | |
Collapse
|
18
|
The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res 2018. [PMID: 29928541 DOI: 10.1038/s41413‐018‐0021‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a worldwide epidemic of skeletal diseases causing not only a public health issue but also accounting for a sizable portion of healthcare expenditures. The vertebrate skeleton is known to be formed by mesenchymal cells condensing into tissue elements (patterning phase) followed by their differentiation into cartilage (chondrocytes) or bone (osteoblasts) cells within the condensations. During the growth and remodeling phase, bone is formed directly via intramembranous ossification or through a cartilage to bone conversion via endochondral ossification routes. The canonical pathway of the endochondral bone formation process involves apoptosis of hypertrophic chondrocytes followed by vascular invasion that brings in osteoclast precursors to remove cartilage and osteoblast precursors to form bone. However, there is now an emerging role for chondrocyte-to-osteoblast transdifferentiation in the endochondral ossification process. Although the concept of "transdifferentiation" per se is not recent, new data using a variety of techniques to follow the fate of chondrocytes in different bones during embryonic and post-natal growth as well as during fracture repair in adults have identified three different models for chondrocyte-to-osteoblast transdifferentiation (direct transdifferentiation, dedifferentiation to redifferentiation, and chondrocyte to osteogenic precursor). This review focuses on the emerging models of chondrocyte-to-osteoblast transdifferentiation and their implications for the treatment of skeletal diseases as well as the possible signaling pathways that contribute to chondrocyte-to-osteoblast transdifferentiation processes.
Collapse
|
19
|
Aghajanian P, Mohan S. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res 2018; 6:19. [PMID: 29928541 PMCID: PMC6002476 DOI: 10.1038/s41413-018-0021-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
There is a worldwide epidemic of skeletal diseases causing not only a public health issue but also accounting for a sizable portion of healthcare expenditures. The vertebrate skeleton is known to be formed by mesenchymal cells condensing into tissue elements (patterning phase) followed by their differentiation into cartilage (chondrocytes) or bone (osteoblasts) cells within the condensations. During the growth and remodeling phase, bone is formed directly via intramembranous ossification or through a cartilage to bone conversion via endochondral ossification routes. The canonical pathway of the endochondral bone formation process involves apoptosis of hypertrophic chondrocytes followed by vascular invasion that brings in osteoclast precursors to remove cartilage and osteoblast precursors to form bone. However, there is now an emerging role for chondrocyte-to-osteoblast transdifferentiation in the endochondral ossification process. Although the concept of "transdifferentiation" per se is not recent, new data using a variety of techniques to follow the fate of chondrocytes in different bones during embryonic and post-natal growth as well as during fracture repair in adults have identified three different models for chondrocyte-to-osteoblast transdifferentiation (direct transdifferentiation, dedifferentiation to redifferentiation, and chondrocyte to osteogenic precursor). This review focuses on the emerging models of chondrocyte-to-osteoblast transdifferentiation and their implications for the treatment of skeletal diseases as well as the possible signaling pathways that contribute to chondrocyte-to-osteoblast transdifferentiation processes.
Collapse
Affiliation(s)
- Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California USA
- Department of Medicine, Loma Linda University, Loma Linda, California USA
- Department of Orthopedics, Loma Linda University, Loma Linda, California USA
- Department of Biochemistry, Loma Linda University, Loma Linda, California USA
| |
Collapse
|
20
|
Kha CX, Son PH, Lauper J, Tseng KAS. A model for investigating developmental eye repair in Xenopus laevis. Exp Eye Res 2018; 169:38-47. [PMID: 29357285 DOI: 10.1016/j.exer.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Vertebrate eye development is complex and requires early interactions between neuroectoderm and surface ectoderm during embryogenesis. In the African clawed frog, Xenopus laevis, individual eye tissues such as the retina and lens can undergo regeneration. However, it has been reported that removal of either the specified eye field at the neurula stage or the eye during tadpole stage does not induce replacement. Here we describe a model for investigating Xenopus developmental eye repair. We found that tailbud embryos can readily regrow eyes after surgical removal of over 83% of the specified eye and lens tissues. The regrown eye reached a comparable size to the contralateral control by 5 days and overall animal development was normal. It contained the expected complement of eye cell types (including the pigmented epithelium, retina and lens), and is connected to the brain. Our data also demonstrate that apoptosis, an early mechanism that regulates appendage regeneration, is also required for eye regrowth. Treatment with apoptosis inhibitors (M50054 or NS3694) blocked eye regrowth by inhibiting caspase activation. Together, our findings indicate that frog embryos can undergo successful eye repair after considerable tissue loss and reveals a required role for apoptosis in this process. Furthermore, this Xenopus model allows for rapid comparisons of productive eye repair and developmental pathways. It can also facilitate the molecular dissection of signaling mechanisms necessary for initiating repair.
Collapse
Affiliation(s)
- Cindy X Kha
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Philip H Son
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Julia Lauper
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States.
| |
Collapse
|
21
|
Kalacheva NV, Eliseikina MG, Frolova LT, Dolmatov IY. Regeneration of the digestive system in the crinoid Himerometra robustipinna occurs by transdifferentiation of neurosecretory-like cells. PLoS One 2017; 12:e0182001. [PMID: 28753616 PMCID: PMC5533335 DOI: 10.1371/journal.pone.0182001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022] Open
Abstract
The structure and regeneration of the digestive system in the crinoid Himerometra robustipinna (Carpenter, 1881) were studied. The gut comprises a spiral tube forming radial lateral processes, which gives it a five-lobed shape. The digestive tube consists of three segments: esophagus, intestine, and rectum. The epithelia of these segments have different cell compositions. Regeneration of the gut after autotomy of the visceral mass progresses very rapidly. Within 6 h after autotomy, an aggregation consisting of amoebocytes, coelomic epithelial cells and juxtaligamental cells (neurosecretory neurons) forms on the inner surface of the skeletal calyx. At 12 h post-autotomy, transdifferentiation of the juxtaligamental cells starts. At 24 h post-autotomy these cells undergo a mesenchymal-epithelial-like transition, resulting in the formation of the luminal epithelium of the gut. Specialization of the intestinal epithelial cells begins on day 2 post-autotomy. At this stage animals acquire the mouth and anal opening. On day 4 post-autotomy the height of both the enterocytes and the visceral mass gradually increases. Proliferation does not play any noticeable role in gut regeneration. The immersion of animals in a 10-7 M solution of colchicine neither stopped formation of the lost structures nor caused accumulation of mitoses in tissues. Weakly EdU-labeled nuclei were observed in the gut only on day 2 post-autotomy and were not detected at later regeneration stages. Single mitotically dividing cells were recorded during the same period. It is concluded that juxtaligamental cells play a major role in gut regeneration in H. robustipinna. The main mechanisms of morphogenesis are cell migration and transdifferentiation.
Collapse
Affiliation(s)
- Nadezhda V. Kalacheva
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Marina G. Eliseikina
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Lidia T. Frolova
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Yu. Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
22
|
Seigfried FA, Cizelsky W, Pfister AS, Dietmann P, Walther P, Kühl M, Kühl SJ. Frizzled 3 acts upstream of Alcam during embryonic eye development. Dev Biol 2017; 426:69-83. [PMID: 28427856 DOI: 10.1016/j.ydbio.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/09/2017] [Accepted: 04/14/2017] [Indexed: 12/18/2022]
Abstract
Formation of a functional eye during vertebrate embryogenesis requires different processes such as cell differentiation, cell migration, cell-cell interactions as well as intracellular signalling processes. It was previously shown that the non-canonical Wnt receptor Frizzled 3 (Fzd3) is required for proper eye formation, however, the underlying mechanism is poorly understood. Here we demonstrate that loss of Fzd3 induces severe malformations of the developing eye and that this defect is phenocopied by loss of the activated leukocyte cell adhesion molecule (Alcam). Promoter analysis revealed the presence of a Fzd3 responsive element within the alcam promoter, which is responsible for alcam expression during anterior neural development. In-depth analysis identified the jun N-terminal protein kinase 1 (JNK1) and the transcription factor paired box 2 (Pax2) to be important for the activation of alcam expression. Altogether our study reveals that alcam is activated through non-canonical Wnt signalling during embryonic eye development in Xenopus laevis and shows that this pathway plays a similar role in different tissues.
Collapse
Affiliation(s)
- Franziska A Seigfried
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, 89081 Ulm, Germany; Tissue Homeostasis Joint-PhD-Programme in Cooperation with the University of Oulu, Finland
| | - Wiebke Cizelsky
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, 89081 Ulm, Germany
| | - Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
23
|
Cervantes-Diaz F, Contreras P, Marcellini S. Evolutionary origin of endochondral ossification: the transdifferentiation hypothesis. Dev Genes Evol 2017; 227:121-127. [PMID: 27909803 DOI: 10.1007/s00427-016-0567-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
The vertebrate endoskeleton results from the piecemeal assembly of bone and cartilage as well as additional types of calcified extracellular matrices produced by seemingly hybrid cell types of intermediate phenotypes between osteoblasts and chondrocytes. Hence, shedding light on the emergence and subsequent diversification of skeletal tissues represents a major challenge in vertebrate evolutionary developmental biology. A 150-year-old debate in the field was recently solved by lineage tracing experiments demonstrating that, during mouse endochondral bone development, a subset of chondrocytes evades apoptosis and transdifferentiates into osteoblasts at the chondro-osseous junction. Here, we interpret these new data from a broad phylogenetic perspective, integrating fossil, histological, cellular, and genetic evidence from a wide range of vertebrates. We propose a testable scenario according to which transdifferentiation played a fundamental role in the emergence of endochondral ossification, an osteichthyan-specific evolutionary novelty. The remarkable skeletal cell plasticity might be contingent on the similar architectures of the osteoblastic and chondrocytic gene regulatory networks, thereby providing a unifying mechanism underlying both complete transdifferentiation as well as partial cell type conversions observed in intermediate skeletal tissues such as the chondroid bone or globuli ossei.
Collapse
Affiliation(s)
- Fret Cervantes-Diaz
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Pedro Contreras
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile.
| |
Collapse
|
24
|
Tseng AS. Seeing the future: usingXenopusto understand eye regeneration. Genesis 2017; 55. [DOI: 10.1002/dvg.23003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Ai-Sun Tseng
- School of Life Sciences; University of Nevada; Las Vegas, 4505 South Maryland Parkway, Box 454004 Las Vegas Nevada 89154
| |
Collapse
|
25
|
Dash S, Siddam AD, Barnum CE, Janga SC, Lachke SA. RNA-binding proteins in eye development and disease: implication of conserved RNA granule components. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:527-57. [PMID: 27133484 DOI: 10.1002/wrna.1355] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/21/2016] [Indexed: 01/16/2023]
Abstract
The molecular biology of metazoan eye development is an area of intense investigation. These efforts have led to the surprising recognition that although insect and vertebrate eyes have dramatically different structures, the orthologs or family members of several conserved transcription and signaling regulators such as Pax6, Six3, Prox1, and Bmp4 are commonly required for their development. In contrast, our understanding of posttranscriptional regulation in eye development and disease, particularly regarding the function of RNA-binding proteins (RBPs), is limited. We examine the present knowledge of RBPs in eye development in the insect model Drosophila as well as several vertebrate models such as fish, frog, chicken, and mouse. Interestingly, of the 42 RBPs that have been investigated for their expression or function in vertebrate eye development, 24 (~60%) are recognized in eukaryotic cells as components of RNA granules such as processing bodies, stress granules, or other specialized ribonucleoprotein (RNP) complexes. We discuss the distinct developmental and cellular events that may necessitate potential RBP/RNA granule-associated RNA regulon models to facilitate posttranscriptional control of gene expression in eye morphogenesis. In support of these hypotheses, three RBPs and RNP/RNA granule components Tdrd7, Caprin2, and Stau2 are linked to ocular developmental defects such as congenital cataract, Peters anomaly, and microphthalmia in human patients or animal models. We conclude by discussing the utility of interdisciplinary approaches such as the bioinformatics tool iSyTE (integrated Systems Tool for Eye gene discovery) to prioritize RBPs for deriving posttranscriptional regulatory networks in eye development and disease. WIREs RNA 2016, 7:527-557. doi: 10.1002/wrna.1355 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Carrie E Barnum
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University & Purdue University Indianapolis, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| |
Collapse
|
26
|
Hamilton PW, Sun Y, Henry JJ. Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling. Exp Eye Res 2016; 145:206-215. [PMID: 26778749 DOI: 10.1016/j.exer.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
The frog, Xenopus laevis, possesses a high capacity to regenerate various larval tissues, including the lens, which is capable of complete regeneration from the cornea epithelium. However, the molecular signaling mechanisms of cornea-lens regeneration are not fully understood. Previous work has implicated the involvement of the Wnt signaling pathway, but molecular studies have been very limited. Iris-derived lens regeneration in the newt (Wolffian lens regeneration) has shown a necessity for active Wnt signaling in order to regenerate a new lens. Here we provide evidence that the Wnt signaling pathway plays a different role in the context of cornea-lens regeneration in Xenopus. We examined the expression of frizzled receptors and wnt ligands in the frog cornea epithelium. Numerous frizzled receptors (fzd1, fzd2, fzd3, fzd4, fzd6, fzd7, fzd8, and fzd10) and wnt ligands (wnt2b.a, wnt3a, wnt4, wnt5a, wnt5b, wnt6, wnt7b, wnt10a, wnt11, and wnt11b) are expressed in the cornea epithelium, demonstrating that this tissue is transcribing many of the ligands and receptors of the Wnt signaling pathway. When compared to flank epithelium, which is lens regeneration incompetent, only wnt11 and wnt11b are different (present only in the cornea epithelium), identifying them as potential regulators of cornea-lens regeneration. To detect changes in canonical Wnt/β-catenin signaling occurring within the cornea epithelium, axin2 expression was measured over the course of regeneration. axin2 is a well-established reporter of active Wnt/β-catenin signaling, and its expression shows a significant decrease at 24 h post-lentectomy. This decrease recovers to normal endogenous levels by 48 h. To test whether this signaling decrease was necessary for lens regeneration to occur, regenerating eyes were treated with either 6-bromoindirubin-3'-oxime (BIO) or 1-azakenpaullone - both activators of Wnt signaling - resulting in a significant reduction in the percentage of cases with successful regeneration. In contrast, inhibition of Wnt signaling using either the small molecule IWR-1, treatment with recombinant human Dickkopf-1 (rhDKK1) protein, or transgenic expression of Xenopus DKK1, did not significantly affect the percentage of successful regeneration. Together, these results suggest a model where Wnt/β-catenin signaling is active in the cornea epithelium and needs to be suppressed during early lens regeneration in order for these cornea cells to give rise to a new lentoid. While this finding differs from what has been described in the newt, it closely resembles the role of Wnt signaling during the initial formation of the lens placode from the surface ectoderm during early embryogenesis.
Collapse
Affiliation(s)
- Paul W Hamilton
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave. Urbana, IL 61801, USA
| | - Yu Sun
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave. Urbana, IL 61801, USA
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave. Urbana, IL 61801, USA.
| |
Collapse
|
27
|
Rothe M, Kanwal N, Dietmann P, Seigfried F, Hempel A, Schütz D, Reim D, Engels R, Linnemann A, Schmeisser MJ, Bockmann J, Kühl M, Boeckers TM, Kühl SJ. An Epha4/Sipa1l3/Wnt pathway regulates eye development and lens maturation. Development 2016; 144:321-333. [DOI: 10.1242/dev.147462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/06/2016] [Indexed: 01/21/2023]
Abstract
The signal-induced proliferation associated family of proteins comprises four members, SIPA1 and SIPA1L1-1L3. Mutations of the human SIPA1L3 gene result in congenital cataracts. In Xenopus, loss of Sipa1l3 function led to a severe eye phenotype that was distinguished by smaller eyes and lenses including lens fiber cell maturation defects. We found a direct interaction between Sipa1l3 and Epha4, building a functional platform for proper ocular development. Epha4 deficiency phenocopied loss of Sipa1l3 and rescue experiments demonstrated that Epha4 acts up-stream of Sipa1l3 during eye development. Both, Sipa1l3 and Epha4 are required for early eye specification. The ocular phenotype, upon loss of either Epha4 or Sipa1l3, was partially mediated by rax. We demonstrated that canonical Wnt signaling is inhibited downstream of Epha4/Sipa1l3 during normal eye development. Depletion of either Sipa1l3 or Epha4 resulted in an up-regulation of axin2 expression, a direct Wnt/β-catenin target gene. In line with this, Sipa1l3 or Epha4 depletion could be rescued by blocking Wnt/β-catenin or activating non-canonical Wnt signaling. We therefore conclude that this pathomechanism prevents proper eye development and maturation of lens fiber cells resulting in congenital cataracts.
Collapse
Affiliation(s)
- Melanie Rothe
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Noreen Kanwal
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Franziska Seigfried
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Annemarie Hempel
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Desiree Schütz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, 89081 Ulm University, Ulm, Germany
| | - Rebecca Engels
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Alexander Linnemann
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Michael J. Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Susanne J. Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
28
|
El-Badawy A, El-Badri N. Regulators of pluripotency and their implications in regenerative medicine. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:67-80. [PMID: 25960670 PMCID: PMC4410894 DOI: 10.2147/sccaa.s80157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ultimate goal of regenerative medicine is to replace damaged tissues with new functioning ones. This can potentially be accomplished by stem cell transplantation. While stem cell transplantation for blood diseases has been increasingly successful, widespread application of stem cell therapy in the clinic has shown limited results. Despite successful efforts to refine existing methodologies and to develop better ones for reprogramming, clinical application of stem cell therapy suffers from issues related to the safety of the transplanted cells, as well as the low efficiency of reprogramming technology. Better understanding of the underlying mechanism(s) involved in pluripotency should accelerate the clinical application of stem cell transplantation for regenerative purposes. This review outlines the main decision-making factors involved in pluripotency, focusing on the role of microRNAs, epigenetic modification, signaling pathways, and toll-like receptors. Of special interest is the role of toll-like receptors in pluripotency, where emerging data indicate that the innate immune system plays a vital role in reprogramming. Based on these data, we propose that nongenetic mechanisms for reprogramming provide a novel and perhaps an essential strategy to accelerate application of regenerative medicine in the clinic.
Collapse
Affiliation(s)
- Ahmed El-Badawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
29
|
Thanos S, Böhm MR, Meyer zu Hörste M, Prokosch-Willing V, Hennig M, Bauer D, Heiligenhaus A. Role of crystallins in ocular neuroprotection and axonal regeneration. Prog Retin Eye Res 2014; 42:145-61. [DOI: 10.1016/j.preteyeres.2014.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/06/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
|
30
|
Dhouailly D, Pearton DJ, Michon F. The vertebrate corneal epithelium: From early specification to constant renewal. Dev Dyn 2014; 243:1226-41. [DOI: 10.1002/dvdy.24179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/06/2014] [Accepted: 08/09/2014] [Indexed: 12/30/2022] Open
Affiliation(s)
- Danielle Dhouailly
- University Joseph Fourier; AGIM FRE CNRS 3405 Site Santé Centre Jean Roget La Tronche France
| | - David J. Pearton
- Oceanographic Research Institute; Marine Parade Durban South Africa
| | - Frederic Michon
- Institute of Biotechnology; Developmental Biology Program; University of Helsinki; Helsinki Finland
| |
Collapse
|
31
|
Stepp MA, Zieske JD, Trinkaus-Randall V, Kyne BM, Pal-Ghosh S, Tadvalkar G, Pajoohesh-Ganji A. Wounding the cornea to learn how it heals. Exp Eye Res 2014; 121:178-93. [PMID: 24607489 DOI: 10.1016/j.exer.2014.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022]
Abstract
Corneal wound healing studies have a long history and rich literature that describes the data obtained over the past 70 years using many different species of animals and methods of injury. These studies have lead to reduced suffering and provided clues to treatments that are now helping patients live more productive lives. In spite of the progress made, further research is required since blindness and reduced quality of life due to corneal scarring still happens. The purpose of this review is to summarize what is known about different types of wound and animal models used to study corneal wound healing. The subject of corneal wound healing is broad and includes chemical and mechanical wound models. This review focuses on mechanical injury models involving debridement and keratectomy wounds to reflect the authors' expertise.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA; Department of Ophthalmology, The George Washington University Medical Center, Washington, DC 20037, USA.
| | - James D Zieske
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114-2500, USA
| | - Vickery Trinkaus-Randall
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Briana M Kyne
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Ahdeah Pajoohesh-Ganji
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| |
Collapse
|
32
|
Thomas AG, Henry JJ. Retinoic acid regulation by CYP26 in vertebrate lens regeneration. Dev Biol 2013; 386:291-301. [PMID: 24384390 DOI: 10.1016/j.ydbio.2013.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022]
Abstract
Xenopus laevis is among the few species that are capable of fully regenerating a lost lens de novo. This occurs upon removal of the lens, when secreted factors from the retina are permitted to reach the cornea epithelium and trigger it to form a new lens. Although many studies have investigated the retinal factors that initiate lens regeneration, relatively little is known about what factors support this process and make the cornea competent to form a lens. We presently investigate the role of Retinoic acid (RA) signaling in lens regeneration in Xenopus. RA is a highly important morphogen during vertebrate development, including the development of various eye tissues, and has been previously implicated in several regenerative processes as well. For instance, Wolffian lens regeneration in the newt requires active RA signaling. In contrast, we provide evidence here that lens regeneration in Xenopus actually depends on the attenuation of RA signaling, which is regulated by the RA-degrading enzyme CYP26. Using RT-PCR we examined the expression of RA synthesis and metabolism related genes within ocular tissues. We found expression of aldh1a1, aldh1a2, and aldh1a3, as well as cyp26a1 and cyp26b1 in both normal and regenerating corneal tissue. On the other hand, cyp26c1 does not appear to be expressed in either control or regenerating corneas, but it is expressed in the lens. Additionally in the lens, we found expression of aldh1a1 and aldh1a2, but not aldh1a3. Using an inhibitor of CYP26, and separately using exogenous retinoids, as well as RA signaling inhibitors, we demonstrate that CYP26 activity is necessary for lens regeneration to occur. We also find using phosphorylated Histone H3 labeling that CYP26 antagonism reduces cell proliferation in the cornea, and using qPCR we find that exogenous retinoids alter the expression of putative corneal stem cell markers. Furthermore, the Xenopus cornea is composed of an outer layer and inner basal epithelium, as well as a deeper fibrillar layer sparsely populated with cells. We employed antibody staining to visualize the localization of CYP26A, CYP26B, and RALDH1 within these corneal layers. Immunohistochemical staining of these enzymes revealed that all 3 proteins are expressed in both the outer and basal layers. CYP26A appears to be unique in also being present in the deeper fibrillar layer, which may contain cornea stem cells. This study reveals a clear molecular difference between newt and Xenopus lens regeneration, and it implicates CYP26 in the latter regenerative process.
Collapse
Affiliation(s)
- Alvin G Thomas
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL 61801, United States.
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL 61801, United States.
| |
Collapse
|
33
|
The structure and development of Xenopus laevis cornea. Exp Eye Res 2013; 116:109-28. [PMID: 23896054 DOI: 10.1016/j.exer.2013.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/25/2013] [Accepted: 07/17/2013] [Indexed: 12/13/2022]
Abstract
The African clawed frog, Xenopus laevis, is a widely used model organism for tissue development. We have followed the process of corneal development closely in Xenopus and examined the corneal ultrastructure at each stage during its formation. Xenopus cornea development starts at stage 25 from a simple embryonic epidermis overlying the developing optic vesicle. After detachment of the lens placode which takes place around stage 30, cranial neural crest cells start to invade the space between the lens and the embryonic epidermis to construct the corneal endothelium. At stage 41, a second wave of migratory cells containing presumptive keratocytes invades the matrix leading to the formation of inner cornea and outer cornea. Three-dimensional electron microscopic examination shows that a unique cell mass, the stroma attracting center, connects the two layers like the center pole of a tent. After stage 48, many secondary stromal keratocytes individually migrate to the center and form the stroma layer. At stage 60, the stroma space is largely filled by collagen lamellae and keratocytes, and the stroma attracting center disappears. At early metamorphosis, the embryonic epithelium gradually changes to the adult corneal epithelium, which is covered by microvilli. Around stage 62 the embryonic epithelium thickens and a massive cell death is observed in the epithelium, coinciding with eyelid opening. After metamorphosis, the frog cornea has attained the adult structure of three cellular layers, epithelium, stroma, and endothelium, and two acellular layers between the cellular layers, namely the Bowman's layer and Descemet's membrane. After initial completion, Xenopus cornea, in particular the stroma, continues to thicken and enlarge throughout the lifetime of the animal. In the adult, a p63 positive limbus-like wavy structure is observed at the peripheral edge of the cornea. Proliferation analysis shows that the basal corneal epithelial cells actively divide and there are a small number of proliferating cells among the stroma and endothelial cells. This study shows that the development and structure of Xenopus cornea is largely conserved with human although there are some unique processes in Xenopus.
Collapse
|
34
|
Henry JJ, Thomas AG, Hamilton PW, Moore L, Perry KJ. Cell signaling pathways in vertebrate lens regeneration. Curr Top Microbiol Immunol 2013; 367:75-98. [PMID: 23224710 DOI: 10.1007/82_2012_289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Certain vertebrates are capable of regenerating parts of the eye, including the lens. Depending on the species, two principal forms of in vivo lens regeneration have been described wherein the new lens arises from either the pigmented epithelium of the dorsal iris or the cornea epithelium. These forms of lens regeneration are triggered by retinal factors present in the eye. Studies have begun to illuminate the nature of the signals that support lens regeneration. This review describes evidence for the involvement of specific signaling pathways in lens regeneration, including the FGF, retinoic acid, TGF-beta, Wnt, and Hedgehog pathways.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
35
|
Burns G, Thorndyke MC, Peck LS, Clark MS. Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae. Mar Genomics 2013; 9:9-15. [DOI: 10.1016/j.margen.2012.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/27/2012] [Accepted: 05/28/2012] [Indexed: 11/25/2022]
|
36
|
Collomb E, Yang Y, Foriel S, Cadau S, Pearton DJ, Dhouailly D. The corneal epithelium and lens develop independently from a common pool of precursors. Dev Dyn 2013; 242:401-13. [PMID: 23335276 DOI: 10.1002/dvdy.23925] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/23/2012] [Accepted: 12/24/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The corneal epithelium (CE) overlays a stroma, which is derived from neural crest cells, and appears to be committed during chick development, but appears still labile in adult rabbit. Its specification was hitherto regarded as resolved and dependent upon the lens, although without experimental support. Here, we challenged CE fate by changing its environment at different stages. RESULTS Recombination with a dermis showed that CE commitment is linked to stroma formation, which results in Pax6 stabilization in both species. Surgical ablation shows that CE specification has already taken place when the lens placode invaginates, while removal of the early lens placode led to lens renewal. To block lens formation, bone morphogenetic protein (BMP) signaling, one of its last inducing factors, was inhibited by over-expression of Gremlin in the ocular ectoderm. This resulted in lens-less embryos which formed a corneal epithelium if they survived 2 weeks. CONCLUSION The corneal epithelium and lens share a common pool of precursors. The adoption of the CE fate might be dependent on the loss of a lens placode favoring environment. The corneal fate is definitively stabilized by the migration of Gremlin-expressing neural crest cells in the lens peripheral ectoderm.
Collapse
Affiliation(s)
- Elodie Collomb
- FRE CNRS 3405, AGIM, Université Joseph Fourier Grenoble, Site Santé, France
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Comparative studies of lens and retina regeneration have been conducted within a wide variety of animals over the last 100 years. Although amphibians, fish, birds and mammals have all been noted to possess lens- or retina-regenerative properties at specific developmental stages, lens or retina regeneration in adult animals is limited to lower vertebrates. The present review covers the newest perspectives on lens and retina regeneration from these different model organisms with a focus on future trends in regeneration research.
Collapse
|
38
|
Perry KJ, Thomas AG, Henry JJ. Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells. Dev Biol 2012; 374:281-94. [PMID: 23274420 DOI: 10.1016/j.ydbio.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 10/19/2012] [Accepted: 12/08/2012] [Indexed: 01/24/2023]
Abstract
Understanding the biology of somatic stem cells in self renewing tissues represents an exciting field of study, especially given the potential to harness these cells for tissue regeneration and repair in treating injury and disease. The mammalian cornea contains a population of basal epithelial stem cells involved in cornea homeostasis and repair. Research has been restricted to mammalian systems and little is known about the presence or function of these stem cells in other vertebrates. Therefore, we carried out studies to characterize frog cornea epithelium. Careful examination shows that the Xenopus larval cornea epithelium consists of three distinct layers that include an outer epithelial layer and underlying basal epithelium, in addition to a deeper fibrous layer that contains the main sensory nerve trunks that give rise to numerous branches that extend into these epithelia. These nerves convey sensory and presumably also autonomic innervation to those tissues. The sensory nerves are all derived as branches of the trigeminal nerve/ganglion similar to the situation encountered in mammals, though there appear to be some potentially interesting differences, which are detailed in this paper. We show further that numerous pluripotency genes are expressed by cells in the cornea epithelium, including: sox2, p63, various oct4 homologs, c-myc, klf4 and many others. Antibody localization revealed that p63, a well known mammalian epithelial stem cell marker, was localized strictly to all cells in the basal cornea epithelium. c-myc, was visualized in a smaller subset of basal epithelial cells and adjacent stromal tissue predominately at the periphery of the cornea (limbal zone). Finally, sox2 protein was found to be present throughout all cells of both the outer and basal epithelia, but was much more intensely expressed in a distinct subset of cells that appeared to be either multinucleate or possessed multi-lobed nuclei that are normally located at the periphery of the cornea. Using a thymidine analog (EdU), we were able to label mitotically active cells, which revealed that cell proliferation takes place throughout the cornea epithelium, predominantly in the basal epithelial layer. Species of Xenopus and one other amphibian are unique in their ability to replace a missing lens from cells derived from the basal cornea epithelium. Using EdU we show, as others have previously, that proliferating cells within the cornea epithelium do contribute to the formation of these regenerated lenses. Furthermore, using qPCR we determined that representatives of various pluripotency genes (i.e., sox2, p63 and oct60) are upregulated early during the process of lens regeneration. Antibody labeling showed that the number of sox2 expressing cells increased dramatically within 4 h following lens removal and these cells were scattered throughout the basal layer of the cornea epithelium. Historically, the process of lens regeneration in Xenopus had been described as one involving transdifferentiation of cornea epithelial cells (i.e., one involving cellular dedifferentiation followed by redifferentiation). Our combined observations provide evidence that a population of stem cells exists within the Xenopus cornea. We hypothesize that the basal epithelium contains oligopotent epithelial stem cells that also represent the source of regenerated lenses in the frog. Future studies will be required to clearly identify the source of these lenses.
Collapse
Affiliation(s)
- Kimberly J Perry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | | | |
Collapse
|
39
|
Histone deacetylases are required for amphibian tail and limb regeneration but not development. Mech Dev 2012; 129:208-18. [DOI: 10.1016/j.mod.2012.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 01/09/2023]
|
40
|
Pearl EJ, Grainger RM, Guille M, Horb ME. Development of Xenopus resource centers: the National Xenopus Resource and the European Xenopus Resource Center. Genesis 2012; 50:155-63. [PMID: 22253050 PMCID: PMC3778656 DOI: 10.1002/dvg.22013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/09/2012] [Indexed: 12/25/2022]
Abstract
Xenopus is an essential vertebrate model system for biomedical research that has contributed to important discoveries in many disciplines, including cell biology, molecular biology, physiology, developmental biology, and neurobiology. However, unlike other model systems no central repository/stock center for Xenopus had been established until recently. Similar to mouse, zebrafish, and fly communities, which have established stock centers, Xenopus researchers need to maintain and distribute rapidly growing numbers of inbred, mutant, and transgenic frog strains, along with DNA and protein resources, and individual laboratories struggle to accomplish this efficiently. In the last 5 years, two resource centers were founded to address this need: the European Xenopus Resource Center (EXRC) at the University of Portsmouth in England, and the National Xenopus Resource (NXR) at the Marine Biological Laboratory in Woods Hole, MA. These two centers work together to provide resources and support to the Xenopus research community. The EXRC and NXR serve as stock centers and acquire, produce, maintain and distribute mutant, inbred and transgenic Xenopus laevis and Xenopus tropicalis lines. Independently, the EXRC is a repository for Xenopus cDNAs, fosmids, and antibodies; it also provides oocytes and wild-type frogs within the United Kingdom. The NXR will complement these services by providing research training and promoting intellectual interchange through hosting mini-courses and workshops and offering space for researchers to perform short-term projects at the Marine Biological Laboratory. Together the EXRC and NXR will enable researchers to improve productivity by providing resources and expertise to all levels, from graduate students to experienced PIs. These two centers will also enable investigators that use other animal systems to take advantage of Xenopus' unique experimental features to complement their studies.
Collapse
Affiliation(s)
- Esther J. Pearl
- National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543, USA
| | - Robert M. Grainger
- University of Virginia Department of Biology, Gilmer Hall, University of Virginia, Charlottesville, VA 22904, USA
| | - Matthew Guille
- European Xenopus Resource Center, St Michael’s Building, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Marko E. Horb
- National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543, USA
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA USA
| |
Collapse
|