1
|
Craig O, Lee S, Pilcher C, Saoud R, Abdirahman S, Salazar C, Williams N, Ascher D, Vary R, Luu J, Cowley K, Ramm S, Li MX, Thio N, Li J, Semple T, Simpson K, Gorringe K, Holien J. A new method for network bioinformatics identifies novel drug targets for mucinous ovarian carcinoma. NAR Genom Bioinform 2024; 6:lqae096. [PMID: 39184376 PMCID: PMC11344246 DOI: 10.1093/nargab/lqae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Mucinous ovarian carcinoma (MOC) is a subtype of ovarian cancer that is distinct from all other ovarian cancer subtypes and currently has no targeted therapies. To identify novel therapeutic targets, we developed and applied a new method of differential network analysis comparing MOC to benign mucinous tumours (in the absence of a known normal tissue of origin). This method mapped the protein-protein network in MOC and then utilised structural bioinformatics to prioritise the proteins identified as upregulated in the MOC network for their likelihood of being successfully drugged. Using this protein-protein interaction modelling, we identified the strongest 5 candidates, CDK1, CDC20, PRC1, CCNA2 and TRIP13, as structurally tractable to therapeutic targeting by small molecules. siRNA knockdown of these candidates performed in MOC and control normal fibroblast cell lines identified CDK1, CCNA2, PRC1 and CDC20, as potential drug targets in MOC. Three targets (TRIP13, CDC20, CDK1) were validated using known small molecule inhibitors. Our findings demonstrate the utility of our pipeline for identifying new targets and highlight potential new therapeutic options for MOC patients.
Collapse
Affiliation(s)
- Olivia Craig
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Samuel Lee
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Carlton, VIC 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Courtney Pilcher
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| | - Rita Saoud
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Suad Abdirahman
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Carolina Salazar
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nathan Williams
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4067, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robert Vary
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Jennii Luu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Karla J Cowley
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Susanne Ramm
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Mark Xiang Li
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Jason Li
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Tim Semple
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Kaylene J Simpson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jessica K Holien
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Carlton, VIC 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| |
Collapse
|
2
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
3
|
Grochau-Wright ZI, Nedelcu AM, Michod RE. The Genetics of Fitness Reorganization during the Transition to Multicellularity: The Volvocine regA-like Family as a Model. Genes (Basel) 2023; 14:genes14040941. [PMID: 37107699 PMCID: PMC10137558 DOI: 10.3390/genes14040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The evolutionary transition from single-celled to multicellular individuality requires organismal fitness to shift from the cell level to a cell group. This reorganization of fitness occurs by re-allocating the two components of fitness, survival and reproduction, between two specialized cell types in the multicellular group: soma and germ, respectively. How does the genetic basis for such fitness reorganization evolve? One possible mechanism is the co-option of life history genes present in the unicellular ancestors of a multicellular lineage. For instance, single-celled organisms must regulate their investment in survival and reproduction in response to environmental changes, particularly decreasing reproduction to ensure survival under stress. Such stress response life history genes can provide the genetic basis for the evolution of cellular differentiation in multicellular lineages. The regA-like gene family in the volvocine green algal lineage provides an excellent model system to study how this co-option can occur. We discuss the origin and evolution of the volvocine regA-like gene family, including regA-the gene that controls somatic cell development in the model organism Volvox carteri. We hypothesize that the co-option of life history trade-off genes is a general mechanism involved in the transition to multicellular individuality, making volvocine algae and the regA-like family a useful template for similar investigations in other lineages.
Collapse
Affiliation(s)
| | - Aurora M Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Chen S, Deng X, Xiong J, He F, Yang L, Chen B, Chen C, Zhang C, Yang L, Peng J, Yin F. De novo variants of DEAF1 cause intellectual disability in six Chinese patients. Clin Chim Acta 2021; 518:17-21. [PMID: 33705764 DOI: 10.1016/j.cca.2021.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND It has been reported that de novo heterozygous variants of DEAF1 can cause DEAF1-associated neurodevelopmental disorder. The purpose of this article is to explore the clinical and genetic characteristics of Chinese patients harboring de novo DEAF1 variants. METHODS We assembled a cohort of six unrelated patients with de novo variants in DEAF1. Clinical and genetic features of these patients were summarized. RESULTS Each child showed intellectual disability (ID)/ global developmental delay (GDD). Severe language impairment was prominent. Behavior problems, seizures, sleep disturbance, and a high pain threshold were common features. DEAF1-related seizures were reported to be difficult to treat or intractable. Seizures in our cohort were almost all treatable. Valproic acid was the most commonly used drug. Five heterozygous missense mutations of DEAF1 gene were identified, three of which (p.W234C, p.L203P, p.H275Q) were not published in literature before. CONCLUSION Mutations of DEAF1 gene should be considered in ID/GDD patients with a nonspecific phenotype, comprising intellectual disability, prominent speech delay, abnormal behaviors, especially autism. In our study, DEAF1-related epilepsy is completely treatable in Eastern-Asian individuals when compared to patients in other regions, and valproic acid can be used as a first choice. The knowledge of DEAF1-related neurodevelopmental disorder and the de novo variant database of DEAF1 were expanded.
Collapse
Affiliation(s)
- Shimeng Chen
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ciliu Zhang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China; Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.
| |
Collapse
|
6
|
Ornelas-Ayala D, Garay-Arroyo A, García-Ponce B, R. Álvarez-Buylla E, Sanchez MDLP. The Epigenetic Faces of ULTRAPETALA1. FRONTIERS IN PLANT SCIENCE 2021; 12:637244. [PMID: 33719312 PMCID: PMC7947857 DOI: 10.3389/fpls.2021.637244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 05/27/2023]
Abstract
ULTRAPETALA1 (ULT1) is a versatile plant-exclusive protein, initially described as a trithorax group (TrxG) factor that regulates transcriptional activation and counteracts polycomb group (PcG) repressor function. As part of TrxG, ULT1 interacts with ARABIDOPSIS TRITHORAX1 (ATX1) to regulate H3K4me3 activation mark deposition. However, our recent studies indicate that ULT1 can also act independently of ATX1. Moreover, the ULT1 ability to interact with transcription factors (TFs) and PcG proteins indicates that it is a versatile protein with other roles. Therefore, in this work we revised recent information about the function of Arabidopsis ULT1 to understand the roles of ULT1 in plant development. Furthermore, we discuss the molecular mechanisms of ULT1, highlighting its epigenetic role, in which ULT1 seems to have characteristics of an epigenetic molecular switch that regulates repression and activation processes via TrxG and PcG complexes.
Collapse
Affiliation(s)
- Diego Ornelas-Ayala
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, Mexico
| |
Collapse
|
7
|
Impaired memory and marble burying activity in deformed epidermal autoregulatory factor 1 (Deaf1) conditional knockout mice. Behav Brain Res 2019; 380:112383. [PMID: 31783086 DOI: 10.1016/j.bbr.2019.112383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 11/24/2022]
Abstract
Deleterious mutations within the DNA binding domain of the transcription factor deformed epidermal autoregulatory factor 1 (DEAF1) result in a phenotypic spectrum of neurodevelopmental disorders including intellectual disabilities and autism spectrum disorders. While whole animal deletion of Deaf1 in mice is lethal, mice with conditional disruption of the gene in neuronal precursor cells can display memory deficits and increased anxiety-like behavior. This study aimed to further characterize learning and memory alterations and assess changes in marble burying activity and hippocampal size in mice with conditional deletion of Deaf1. Mice lacking DEAF1 in the CNS (NKO) displayed reduced memory in both contextual fear conditioning and a 3-day massed trials Morris water maze paradigm. NKO mice had reduced marble burying activity in full cage marble burying tests. Using a half-cage marble test, NKO mice again buried fewer marbles and spent significantly more time on the side of the cage away from the marbles compared to control animals. The area of the dorsal hippocampus of NKO mice was decreased compared to control and animals with a single Deaf1 allele. These results continue to establish the importance of DEAF1 in cognitive behavior and provide new evidence that DEAF1 regulates hippocampal morphology.
Collapse
|
8
|
GWAS for Meat and Carcass Traits Using Imputed Sequence Level Genotypes in Pooled F2-Designs in Pigs. G3-GENES GENOMES GENETICS 2019; 9:2823-2834. [PMID: 31296617 PMCID: PMC6723123 DOI: 10.1534/g3.119.400452] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to gain insight into the genetic architecture of economically important traits in pigs and to derive suitable genetic markers to improve these traits in breeding programs, many studies have been conducted to map quantitative trait loci. Shortcomings of these studies were low mapping resolution, large confidence intervals for quantitative trait loci-positions and large linkage disequilibrium blocks. Here, we overcome these shortcomings by pooling four large F2 designs to produce smaller linkage disequilibrium blocks and by resequencing the founder generation at high coverage and the F1 generation at low coverage for subsequent imputation of the F2 generation to whole genome sequencing marker density. This lead to the discovery of more than 32 million variants, 8 million of which have not been previously reported. The pooling of the four F2 designs enabled us to perform a joint genome-wide association study, which lead to the identification of numerous significantly associated variant clusters on chromosomes 1, 2, 4, 7, 17 and 18 for the growth and carcass traits average daily gain, back fat thickness, meat fat ratio, and carcass length. We could not only confirm previously reported, but also discovered new quantitative trait loci. As a result, several new candidate genes are discussed, among them BMP2 (bone morphogenetic protein 2), which we recently discovered in a related study. Variant effect prediction revealed that 15 high impact variants for the traits back fat thickness, meat fat ratio and carcass length were among the statistically significantly associated variants.
Collapse
|
9
|
Dodda BR, Bondi CD, Hasan M, Clafshenkel WP, Gallagher KM, Kotlarczyk MP, Sethi S, Buszko E, Latimer JJ, Cline JM, Witt-Enderby PA, Davis VL. Co-administering Melatonin With an Estradiol-Progesterone Menopausal Hormone Therapy Represses Mammary Cancer Development in a Mouse Model of HER2-Positive Breast Cancer. Front Oncol 2019; 9:525. [PMID: 31355130 PMCID: PMC6636553 DOI: 10.3389/fonc.2019.00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin has numerous anti-cancer properties reported to influence cancer initiation, promotion, and metastasis. With the need for effective hormone therapies (HT) to treat menopausal symptoms without increasing breast cancer risk, co-administration of nocturnal melatonin with a natural, low-dose HT was evaluated in mice that develop primary and metastatic mammary cancer. Individually, melatonin (MEL) and estradiol-progesterone therapy (EPT) did not significantly affect mammary cancer development through age 14 months, but, when combined, the melatonin-estradiol-progesterone therapy (MEPT) significantly repressed tumor formation. This repression was due to effects on tumor incidence, but not latency. These results demonstrate that melatonin and the HT cooperate to decrease the mammary cancer risk. Melatonin and EPT also cooperate to alter the balance of the progesterone receptor (PR) isoforms by significantly increasing PRA protein expression only in MEPT mammary glands. Melatonin significantly suppressed amphiregulin transcripts in MEL and MEPT mammary glands, suggesting that amphiregulin together with the higher PRA:PRB balance and other factors may contribute to reducing cancer development in MEPT mice. Melatonin supplementation influenced mammary morphology by increasing tertiary branching in the mouse mammary glands and differentiation in human mammary epithelial cell cultures. Uterine weight in the luteal phase was elevated after long-term exposure to EPT, but not to MEPT, indicating that melatonin supplementation may reduce estrogen-induced uterine stimulation. Melatonin supplementation significantly decreased the incidence of grossly-detected lung metastases in MEL mice, suggesting that melatonin delays the formation of metastatic lesions and/or decreases aggressiveness in this model of HER2+ breast cancer. Mammary tumor development was similar in EPT and MEPT mice until age 8.6 months, but after 8.6 months, only MEPT continued to suppress cancer development. These data suggest that melatonin supplementation has a negligible effect in young MEPT mice, but is required in older mice to inhibit tumor formation. Since melatonin binding was significantly decreased in older mammary glands, irrespective of treatment, melatonin supplementation may overcome reduced melatonin responsiveness in the aged MEPT mice. Since melatonin levels are known to decline near menopause, nocturnal melatonin supplementation may also be needed in aging women to cooperate with HT to decrease breast cancer risk.
Collapse
Affiliation(s)
- Balasunder R Dodda
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Corry D Bondi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mahmud Hasan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - William P Clafshenkel
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Katie M Gallagher
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mary P Kotlarczyk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Shalini Sethi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ethan Buszko
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jean J Latimer
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Paula A Witt-Enderby
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vicki L Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Nabais Sá MJ, Jensik PJ, McGee SR, Parker MJ, Lahiri N, McNeil EP, Kroes HY, Hagerman RJ, Harrison RE, Montgomery T, Splitt M, Palmer EE, Sachdev RK, Mefford HC, Scott AA, Martinez-Agosto JA, Lorenz R, Orenstein N, Berg JN, Amiel J, Heron D, Keren B, Cobben JM, Menke LA, Marco EJ, Graham JM, Pierson TM, Karimiani EG, Maroofian R, Manzini MC, Cauley ES, Colombo R, Odent S, Dubourg C, Phornphutkul C, de Brouwer APM, de Vries BBA, Vulto-vanSilfhout AT. De novo and biallelic DEAF1 variants cause a phenotypic spectrum. Genet Med 2019; 21:2059-2069. [PMID: 30923367 DOI: 10.1038/s41436-019-0473-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/15/2019] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To investigate the effect of different DEAF1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and on DEAF1 activity in vitro. METHODS We assembled a cohort of 23 patients with de novo and biallelic DEAF1 variants, described the genotype-phenotype correlation, and investigated the differential effect of de novo and recessive variants on transcription assays using DEAF1 and Eif4g3 promoter luciferase constructs. RESULTS The proportion of the most prevalent phenotypic features, including intellectual disability, speech delay, motor delay, autism, sleep disturbances, and a high pain threshold, were not significantly different in patients with biallelic and pathogenic de novo DEAF1 variants. However, microcephaly was exclusively observed in patients with recessive variants (p < 0.0001). CONCLUSION We propose that different variants in the DEAF1 gene result in a phenotypic spectrum centered around neurodevelopmental delay. While a pathogenic de novo dominant variant would also incapacitate the product of the wild-type allele and result in a dominant-negative effect, a combination of two recessive variants would result in a partial loss of function. Because the clinical picture can be nonspecific, detailed phenotype information, segregation, and functional analysis are fundamental to determine the pathogenicity of novel variants and to improve the care of these patients.
Collapse
Affiliation(s)
- Maria J Nabais Sá
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philip J Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Stacey R McGee
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Michael J Parker
- Sheffield Clinical Genetics Service, OPD2 Northern General Hospital, Sheffield, UK
| | - Nayana Lahiri
- Department of Clinical Genetics, St George's University Hospitals NHS Foundation Trust & St George's, University of London, London, UK
| | - Evan P McNeil
- Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Hester Y Kroes
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis School of Medicine, Sacramento, Sacramento, CA, USA.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, Sacramento, CA, USA
| | - Rachel E Harrison
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Tara Montgomery
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Miranda Splitt
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Elizabeth E Palmer
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Rani K Sachdev
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington-Seattle, Seattle, WA, USA
| | - Abbey A Scott
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Naama Orenstein
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan N Berg
- Department of Clinical Genetics, Ninewells Hospital and Medical School, Dundee, Angus, UK.,Clinical Genetics, University of Dundee, Dundee, Angus, UK
| | - Jeanne Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Delphine Heron
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Jan-Maarten Cobben
- Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,North West Thames Genetics NHS, Northwick Park Hospital, London, UK
| | - Leonie A Menke
- Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Elysa J Marco
- Department of Child Neurology, Cortica Healthcare, San Rafael, CA, USA
| | - John M Graham
- Division of Clinical Genetics and Dysmorphology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tyler Mark Pierson
- Department of Pediatrics, Department of Neurology, and the Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, UK
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, UK
| | - M Chiara Manzini
- GW Institute for Neuroscience, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Edmund S Cauley
- GW Institute for Neuroscience, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Roberto Colombo
- Faculty of Medicine"Agostino Gemelli"Catholic University of the Sacred Heart, Rome, Italy.,Center for the Study of Rare Inherited Diseases (CeSMER), Niguarda Ca' Granda Metropolitan Hospital, Milan, Italy
| | - Sylvie Odent
- Service de Génétique Clinique, CLAD-Ouest CHU Rennes, Univ Rennes, CNRS 6290 Institut de Génétique et Développement de Rennes (IGDR), Rennes, France
| | | | - Chanika Phornphutkul
- Division of Human Genetics, Department of Pediatrics, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
11
|
Nedelcu AM. Independent evolution of complex development in animals and plants: deep homology and lateral gene transfer. Dev Genes Evol 2019; 229:25-34. [PMID: 30685797 DOI: 10.1007/s00427-019-00626-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/10/2019] [Indexed: 01/25/2023]
Abstract
The evolution of multicellularity is a premier example of phenotypic convergence: simple multicellularity evolved independently many times, and complex multicellular phenotypes are found in several distant groups. Furthermore, both animal and plant lineages have independently reached extreme levels of morphological, functional, and developmental complexity. This study explores the genetic basis for the parallel evolution of complex multicellularity and development in the animal and green plant (i.e., green algae and land plants) lineages. Specifically, the study (i) identifies the SAND domain-a DNA-binding domain with important roles in the regulation of cell proliferation and differentiation, as unique to animals, green algae, and land plants; and (ii) suggests that the parallel deployment of this ancestral domain in similar regulatory roles could have contributed to the independent evolution of complex development in these distant groups. Given the deep animal-green plant divergence, the limited distribution of the SAND domain is best explained by invoking a lateral gene transfer (LGT) event from a green alga to an early metazoan. The presence of a sequence motif specifically shared by a family of SAND-containing transcription factors involved in the evolution of complex multicellularity in volvocine algae and two types of SAND proteins that emerged early in the evolution of animals is consistent with this scenario. Overall, these findings imply that (i) in addition to be involved in the evolution of similar phenotypes, deep homologous sequences can also contribute to shaping parallel evolutionary trajectories in distant lineages, and (ii) LGT could provide an additional source of latent homologous sequences that can be deployed in analogous roles and affect the evolutionary potentials of distantly related groups.
Collapse
Affiliation(s)
- Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada.
| |
Collapse
|
12
|
Shah S, Sinharay S, Matsuda K, Schreiber-Stainthorp W, Muthusamy S, Lee D, Wakim P, Hirsch V, Nath A, Di Mascio M, Hammoud DA. Potential Mechanism for HIV-Associated Depression: Upregulation of Serotonin Transporters in SIV-Infected Macaques Detected by 11C-DASB PET. Front Psychiatry 2019; 10:362. [PMID: 31178771 PMCID: PMC6543249 DOI: 10.3389/fpsyt.2019.00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: Increased incidence of depression in HIV+ patients is associated with lower adherence to treatment and increased morbidity/mortality. One possible underlying pathophysiology is serotonergic dysfunction. In this study, we used an animal model of HIV, the SIV-infected macaque, to longitudinally image serotonin transporter (SERT) expression before and after inoculation, using 11C-DASB (SERT ligand) PET imaging. Methods: We infected seven rhesus macaques with a neurovirulent SIV strain and imaged them at baseline and multiple time points after inoculation (group A). Pyrosequencing methylation analysis of the SERT promoter region was performed. We also measured SERT mRNA/protein in brain single-cell suspensions from another group (group B) of SIV-infected animals (n = 13). Results: Despite some animals showing early fluctuations, 86% of our group A animals eventually showed a net increase in midbrain/thalamus binding potential (BPND) over the course of their disease (mean increased binding between last time point and baseline = 30.2% and 32.2%, respectively). Repeated-measures mixed-model analysis showed infection duration to be predictive of midbrain BPND (p = 0.039). Thalamic BPND was statistically significantly associated with multiple CSF cytokines (P < 0.05). There was higher SERT protein levels in the second group (group B) of SIV-infected animals with SIV encephalitis (SIVE) compared to those without SIVE (p = 0.014). There were no longitudinal changes in SERT gene promoter region percentage methylation between baselines and last time points in group A animals. Conclusion: Upregulated SERT leading to lower synaptic levels of serotonin is a possible mechanism of depression in HIV+ patients, and extrapolating our conclusions from SIV to HIV should be sought using translational human studies.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kenta Matsuda
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - William Schreiber-Stainthorp
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Siva Muthusamy
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dianne Lee
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, NIH, Bethesda, MD, United States
| | - Vanessa Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Avindra Nath
- National Institute of Neurological Disorder and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Michele Di Mascio
- AIDS Imaging Research Section, Division of Clinical Research, NIAID, NIH, Rockville, MD, United States
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
13
|
Kersbergen A, Best SA, Dworkin S, Ah-Cann C, de Vries ME, Asselin-Labat ML, Ritchie ME, Jane SM, Sutherland KD. Lung morphogenesis is orchestrated through Grainyhead-like 2 (Grhl2) transcriptional programs. Dev Biol 2018; 443:1-9. [DOI: 10.1016/j.ydbio.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/17/2018] [Accepted: 09/02/2018] [Indexed: 01/04/2023]
|
14
|
Ernst C. Proliferation and Differentiation Deficits are a Major Convergence Point for Neurodevelopmental Disorders. Trends Neurosci 2016; 39:290-299. [DOI: 10.1016/j.tins.2016.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
|
15
|
Role of the Red Ginseng in Defense against the Environmental Heat Stress in Sprague Dawley Rats. Molecules 2015; 20:20240-53. [PMID: 26569207 PMCID: PMC6331845 DOI: 10.3390/molecules201119692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/21/2023] Open
Abstract
Global temperature change causes heat stress related disorders in humans. A constituent of red ginseng has been known the beneficial effect on the resistance to many diseases. However, the mechanism of red ginseng (RG) against heat stress still remains unclear. To determine the effect of RG on heat stress, we examined the effect of the RG on the gene expression profiles in rats subjected to environmental heat stress. We evaluated the transcripts associated with hepatic lipid accumulation and oxidative stress in rats subjected to heat stress. We also analyzed the reactive oxygen species (ROS) contents. Our results suggested RG inhibited heat stress mediated altering mRNA expressions include HSPA1, DEAF1, HMGCR, and FMO1. We also determined RG attenuated fat accumulation in the liver by altering C/EBPβ expression. RG promoted to repress the heat stress mediated hepatic cell death by inhibiting of Bcl-2 expression in rats subjected to heat stress. Moreover, RG administered group during heat stress dramatically decreased the malondialdehyde (MDA) contents and ROS associated genes compared with the control group. Thus, we suggest that RG might influence inhibitory effect on environmental heat stress induced abnormal conditions in humans.
Collapse
|
16
|
Jensik PJ, Vargas JD, Reardon SN, Rajamanickam S, Huggenvik JI, Collard MW. DEAF1 binds unmethylated and variably spaced CpG dinucleotide motifs. PLoS One 2014; 9:e115908. [PMID: 25531106 PMCID: PMC4274154 DOI: 10.1371/journal.pone.0115908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
DEAF1 is a transcriptional regulator associated with autoimmune and neurological disorders and is known to bind TTCG motifs. To further ascertain preferred DEAF1 DNA ligands, we screened a random oligonucleotide library containing an "anchored" CpG motif. We identified a binding consensus that generally conformed to a repeated TTCGGG motif, with the two invariant CpG dinucleotides separated by 6-11 nucleotides. Alteration of the consensus surrounding the dual CpG dinucleotides, or cytosine methylation of a single CpG half-site, eliminated DEAF1 binding. A sequence within the Htr1a promoter that resembles the binding consensus but contains a single CpG motif was confirmed to have low affinity binding with DEAF1. A DEAF1 binding consensus was identified in the EIF4G3 promoter and ChIP assay showed endogenous DEAF1 was bound to the region. We conclude that DEAF1 preferentially binds variably spaced and unmethylated CpG-containing half-sites when they occur within an appropriate consensus.
Collapse
Affiliation(s)
- Philip J. Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- * E-mail:
| | - Jesse D. Vargas
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Sara N. Reardon
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Shivakumar Rajamanickam
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Jodi I. Huggenvik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Michael W. Collard
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| |
Collapse
|
17
|
Joseph S, Kwan AH, Stokes PH, Mackay JP, Cubeddu L, Matthews JM. The structure of an LIM-only protein 4 (LMO4) and Deformed epidermal autoregulatory factor-1 (DEAF1) complex reveals a common mode of binding to LMO4. PLoS One 2014; 9:e109108. [PMID: 25310299 PMCID: PMC4195752 DOI: 10.1371/journal.pone.0109108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/27/2014] [Indexed: 12/23/2022] Open
Abstract
LIM-domain only protein 4 (LMO4) is a widely expressed protein with important roles in embryonic development and breast cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory factor-1 (DEAF1), with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1 binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners, namely LIM domain binding protein 1 (LDB1) and C-terminal binding protein interacting protein (CtIP/RBBP8). Mutagenic screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for LMO4 therefore most likely provides a level of regulation between those different pathways.
Collapse
Affiliation(s)
- Soumya Joseph
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Ann H. Kwan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Philippa H. Stokes
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Liza Cubeddu
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
- School of Science and Health, University of Western Sydney, Campbelltown, NSW Australia
| | | |
Collapse
|
18
|
Serão NVL, Matika O, Kemp RA, Harding JCS, Bishop SC, Plastow GS, Dekkers JCM. Genetic analysis of reproductive traits and antibody response in a PRRS outbreak herd. J Anim Sci 2014; 92:2905-21. [PMID: 24879764 DOI: 10.2527/jas.2014-7821] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease impacting pig production in North America, Europe, and Asia, causing reproductive losses such as increased rates of stillbirth and mummified piglets. The objective of this study was to explore the genetic basis of host response to the PRRS virus (PRRSV) in a commercial multiplier sow herd before and after a PRRS outbreak, using antibody response and reproductive traits. Reproductive data comprising number born alive (NBA), number alive at 24 h (NA24), number stillborn (NSB), number born mummified (NBM), proportion born dead (PBD), number born dead (NBD), number weaned (NW), and number of mortalities through weaning (MW) of 5,227 litters from 1,967 purebred Landrace sows were used along with a pedigree comprising 2,995 pigs. The PRRS outbreak date was estimated from rolling averages of farrowing traits and was used to split the data into a pre-PRRS phase and a PRRS phase. All 641 sows in the herd during the outbreak were blood sampled 46 d after the estimated outbreak date and were tested for anti-PRRSV IgG using ELISA (sample-to-positive [S/P] ratio). Genetic parameters of traits were estimated separately for the pre-PRRS and PRRS phase data sets. Sows were genotyped using the PorcineSNP60 BeadChip, and genome-wide association studies (GWAS) were performed using method Bayes B. Heritability estimates for reproductive traits ranged from 0.01 (NBM) to 0.12 (NSB) and from 0.01 (MW) to 0.12 (NBD) for the pre-PRRS and PRRS phases, respectively. S/P ratio had heritability (0.45) and strong genetic correlations with most traits, ranging from -0.72 (NBM) to 0.73 (NBA). In the pre-PRRS phase, regions associated with NSB and PBD explained 1.6% and 3% of the genetic variance, respectively. In the PRRS phase, regions associated with NBD, NSB, and S/P ratio explained 0.8%, 11%, and 50.6% of the genetic variance, respectively. For S/P ratio, 2 regions on SSC 7 (SSC7) separated by 100 Mb explained 40% of the genetic variation, including a region encompassing the major histocompatibility complex, which explained 25% of the genetic variance. These results indicate a significant genomic component associated with PRRSV antibody response and NSB in this data set. Also, the high heritability and genetic correlation estimates for S/P ratio during the PRRS phase suggest that S/P ratio could be used as an indicator of the impact of PRRS on reproductive traits.
Collapse
Affiliation(s)
- N V L Serão
- Department of Animal Science, Iowa State University, Ames 50011
| | - O Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - R A Kemp
- Genesus, Oakville, MB R0H 0Y0, Canada
| | - J C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A1, Canada
| | - S C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - G S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - J C M Dekkers
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
19
|
Vulto-van Silfhout AT, Rajamanickam S, Jensik PJ, Vergult S, de Rocker N, Newhall KJ, Raghavan R, Reardon SN, Jarrett K, McIntyre T, Bulinski J, Ownby SL, Huggenvik JI, McKnight GS, Rose GM, Cai X, Willaert A, Zweier C, Endele S, de Ligt J, van Bon BWM, Lugtenberg D, de Vries PF, Veltman JA, van Bokhoven H, Brunner HG, Rauch A, de Brouwer APM, Carvill GL, Hoischen A, Mefford HC, Eichler EE, Vissers LELM, Menten B, Collard MW, de Vries BBA. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems. Am J Hum Genet 2014; 94:649-61. [PMID: 24726472 DOI: 10.1016/j.ajhg.2014.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022] Open
Abstract
Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1.
Collapse
Affiliation(s)
| | - Shivakumar Rajamanickam
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J Jensik
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Nina de Rocker
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Kathryn J Newhall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ramya Raghavan
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sara N Reardon
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Kelsey Jarrett
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Tara McIntyre
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Joseph Bulinski
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Stacy L Ownby
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jodi I Huggenvik
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - G Stanley McKnight
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Gregory M Rose
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Xiang Cai
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Andy Willaert
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabine Endele
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Joep de Ligt
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Bregje W M van Bon
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Petra F de Vries
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Gemma L Carvill
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Björn Menten
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Michael W Collard
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
20
|
Joseph S, Kwan AHY, Mackay JP, Cubeddu L, Matthews JM. Backbone and side-chain assignments of a tethered complex between LMO4 and DEAF-1. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:141-144. [PMID: 23417771 DOI: 10.1007/s12104-013-9470-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
The transcriptional regulator LMO4 and the transcription factor DEAF-1 are both essential for brain and skeletal development. They are also implicated in human breast cancers; overexpression of LMO4 is an indicator of poor prognosis, and overexpression of DEAF-1 promotes epithelial breast cell proliferation. We have generated a stable LMO4-DEAF-1 complex comprising the C-terminal LIM domain of LMO4 and an intrinsically disordered LMO4-interaction domain from DEAF-1 tethered by a glycine/serine linker. Here we report the (1)H, (15)N and (13)C assignments of this construct. Analysis of the assignments indicates the presence of structure in the DEAF-1 part of the complex supporting the presence of a physical interaction between the two proteins.
Collapse
Affiliation(s)
- Soumya Joseph
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | |
Collapse
|
21
|
Ordureau A, Enesa K, Nanda S, Le Francois B, Peggie M, Prescott A, Albert PR, Cohen P. DEAF1 is a Pellino1-interacting protein required for interferon production by Sendai virus and double-stranded RNA. J Biol Chem 2013; 288:24569-80. [PMID: 23846693 PMCID: PMC3750155 DOI: 10.1074/jbc.m113.479550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Double-stranded (ds) RNA of viral origin, a ligand for Melanoma Differentiation-associated gene 5 (MDA5) and Toll-Like Receptor 3 (TLR3), induces the TANK-Binding Kinase 1 (TBK1)-dependent phosphorylation and activation of Interferon Regulatory Factor 3 (IRF3) and the E3 ubiquitin ligase Pellino1, which are required for interferon β (IFNβ) gene transcription. Here, we report that Pellino1 interacts with the transcription factor Deformed Epidermal Autoregulatory Factor 1 (DEAF1). The interaction is independent of the E3 ligase activity of Pellino1, but weakened by the phosphorylation of Pellino1. We show that DEAF1 binds to the IFNβ promoter and to IRF3 and IRF7, that it is required for the transcription of the IFNβ gene and IFNβ secretion in MEFs infected with Sendai virus or transfected with poly(I:C). DEAF1 is also needed for TLR3-dependent IFNβ production. Taken together, our results identify DEAF1 as a novel component of the signal transduction network by which dsRNA of viral origin stimulates IFNβ production.
Collapse
Affiliation(s)
- Alban Ordureau
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kateb F, Perrin H, Tripsianes K, Zou P, Spadaccini R, Bottomley M, Franzmann TM, Buchner J, Ansieau S, Sattler M. Structural and functional analysis of the DEAF-1 and BS69 MYND domains. PLoS One 2013; 8:e54715. [PMID: 23372760 PMCID: PMC3555993 DOI: 10.1371/journal.pone.0054715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
DEAF-1 is an important transcriptional regulator that is required for embryonic development and is linked to clinical depression and suicidal behavior in humans. It comprises various structural domains, including a SAND domain that mediates DNA binding and a MYND domain, a cysteine-rich module organized in a Cys(4)-Cys(2)-His-Cys (C4-C2HC) tandem zinc binding motif. DEAF-1 transcription regulation activity is mediated through interactions with cofactors such as NCoR and SMRT. Despite the important biological role of the DEAF-1 protein, little is known regarding the structure and binding properties of its MYND domain.Here, we report the solution structure, dynamics and ligand binding of the human DEAF-1 MYND domain encompassing residues 501-544 determined by NMR spectroscopy. The structure adopts a ββα fold that exhibits tandem zinc-binding sites with a cross-brace topology, similar to the MYND domains in AML1/ETO and other proteins. We show that the DEAF-1 MYND domain binds to peptides derived from SMRT and NCoR corepressors. The binding surface mapped by NMR titrations is similar to the one previously reported for AML1/ETO. The ligand binding and molecular functions of the related BS69 MYND domain were studied based on a homology model and mutational analysis. Interestingly, the interaction between BS69 and its binding partners (viral and cellular proteins) seems to require distinct charged residues flanking the predicted MYND domain fold, suggesting a different binding mode. Our findings demonstrate that the MYND domain is a conserved zinc binding fold that plays important roles in transcriptional regulation by mediating distinct molecular interactions with viral and cellular proteins.
Collapse
Affiliation(s)
- Fatiha Kateb
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Helene Perrin
- Institut National de la Santé Et de la Recherche Médicale U590, Centre Léon Bérard, Université Claude Bernard Lyon I, Lyon, France
| | - Konstantinos Tripsianes
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Peijian Zou
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Roberta Spadaccini
- Dipartimento di Chimica, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | | | - Titus M. Franzmann
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Stephane Ansieau
- Institut National de la Santé Et de la Recherche Médicale U590, Centre Léon Bérard, Université Claude Bernard Lyon I, Lyon, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
23
|
Cubeddu L, Joseph S, Richard DJ, Matthews JM. Contribution of DEAF1 structural domains to the interaction with the breast cancer oncogene LMO4. PLoS One 2012; 7:e39218. [PMID: 22723967 PMCID: PMC3378519 DOI: 10.1371/journal.pone.0039218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/17/2012] [Indexed: 12/22/2022] Open
Abstract
The proteins LMO4 and DEAF1 contribute to the proliferation of mammary epithelial cells. During breast cancer LMO4 is upregulated, affecting its interaction with other protein partners. This may set cells on a path to tumour formation. LMO4 and DEAF1 interact, but it is unknown how they cooperate to regulate cell proliferation. In this study, we identify a specific LMO4-binding domain in DEAF1. This domain contains an unstructured region that directly contacts LMO4, and a coiled coil that contains the DEAF1 nuclear export signal (NES). The coiled coil region can form tetramers and has the typical properties of a coiled coil domain. Using a simple cell-based assay, we show that LMO4 modulates the activity of the DEAF NES, causing nuclear accumulation of a construct containing the LMO4-interaction region of DEAF1.
Collapse
Affiliation(s)
- Liza Cubeddu
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (LC); (JM)
| | - Soumya Joseph
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| | - Derek J. Richard
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Jacqueline M. Matthews
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (LC); (JM)
| |
Collapse
|
24
|
Jensik PJ, Huggenvik JI, Collard MW. Deformed epidermal autoregulatory factor-1 (DEAF1) interacts with the Ku70 subunit of the DNA-dependent protein kinase complex. PLoS One 2012; 7:e33404. [PMID: 22442688 PMCID: PMC3307728 DOI: 10.1371/journal.pone.0033404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
Deformed Epidermal Autoregulatory Factor 1 (DEAF1) is a transcription factor linked to suicide, cancer, autoimmune disorders and neural tube defects. To better understand the role of DEAF1 in protein interaction networks, a GST-DEAF1 fusion protein was used to isolate interacting proteins in mammalian cell lysates, and the XRCC6 (Ku70) and the XRCC5 (Ku80) subunits of DNA dependent protein kinase (DNA-PK) complex were identified by mass spectrometry, and the DNA-PK catalytic subunit was identified by immunoblotting. Interaction of DEAF1 with Ku70 and Ku80 was confirmed to occur within cells by co-immunoprecipitation of epitope-tagged proteins, and was mediated through interaction with the Ku70 subunit. Using in vitro GST-pulldowns, interaction between DEAF1 and the Ku70 subunit was mapped to the DEAF1 DNA binding domain and the C-terminal Bax-binding region of Ku70. In transfected cells, DEAF1 and Ku70 colocalized to the nucleus, but Ku70 could not relocalize a mutant cytoplasmic form of DEAF1 to the nucleus. Using an in vitro kinase assay, DEAF1 was phosphorylated by DNA-PK in a DNA-independent manner. Electrophoretic mobility shift assays showed that DEAF1 or Ku70/Ku80 did not interfere with the DNA binding of each other, but DNA containing DEAF1 binding sites inhibited the DEAF1-Ku70 interaction. The data demonstrates that DEAF1 can interact with the DNA-PK complex through interactions of its DNA binding domain with the carboxy-terminal region of Ku70 that contains the Bax binding domain, and that DEAF1 is a potential substrate for DNA-PK.
Collapse
Affiliation(s)
| | | | - Michael W. Collard
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kuo WL, Das D, Ziyad S, Bhattacharya S, Gibb WJ, Heiser LM, Sadanandam A, Fontenay GV, Hu Z, Wang NJ, Bayani N, Feiler HS, Neve RM, Wyrobek AJ, Spellman PT, Marton LJ, Gray JW. A systems analysis of the chemosensitivity of breast cancer cells to the polyamine analogue PG-11047. BMC Med 2009; 7:77. [PMID: 20003408 PMCID: PMC2803786 DOI: 10.1186/1741-7015-7-77] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/14/2009] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Polyamines regulate important cellular functions and polyamine dysregulation frequently occurs in cancer. The objective of this study was to use a systems approach to study the relative effects of PG-11047, a polyamine analogue, across breast cancer cells derived from different patients and to identify genetic markers associated with differential cytotoxicity. METHODS A panel of 48 breast cell lines that mirror many transcriptional and genomic features present in primary human breast tumours were used to study the antiproliferative activity of PG-11047. Sensitive cell lines were further examined for cell cycle distribution and apoptotic response. Cell line responses, quantified by the GI50 (dose required for 50% relative growth inhibition) were correlated with the omic profiles of the cell lines to identify markers that predict response and cellular functions associated with drug sensitivity. RESULTS The concentrations of PG-11047 needed to inhibit growth of members of the panel of breast cell lines varied over a wide range, with basal-like cell lines being inhibited at lower concentrations than the luminal cell lines. Sensitive cell lines showed a significant decrease in S phase fraction at doses that produced little apoptosis. Correlation of the GI50 values with the omic profiles of the cell lines identified genomic, transcriptional and proteomic variables associated with response. CONCLUSIONS A 13-gene transcriptional marker set was developed as a predictor of response to PG-11047 that warrants clinical evaluation. Analyses of the pathways, networks and genes associated with response to PG-11047 suggest that response may be influenced by interferon signalling and differential inhibition of aspects of motility and epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Wen-Lin Kuo
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Egli RJ, Southam L, Wilkins JM, Lorenzen I, Pombo-Suarez M, Gonzalez A, Carr A, Chapman K, Loughlin J. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. ACTA ACUST UNITED AC 2009; 60:2055-64. [PMID: 19565498 DOI: 10.1002/art.24616] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Single-nucleotide polymorphism (SNP) rs143383 (T to C) in the 5'-untranslated region (5'-UTR) of GDF5 has recently been reported to be associated with osteoarthritis (OA) susceptibility, with lower expression of the risk-associated T allele observed in vitro and in vivo. The in vivo studies were performed on cartilage tissue from OA patients. The present study was undertaken to expand the analysis of the effect of this SNP on GDF5 allelic expression to more joint tissue types, to investigate for cis and trans factors that interact with the SNP, and to examine novel cis-acting GDF5 regulatory polymorphisms. METHODS Tissue samples were collected from OA patients undergoing joint replacement of the hip or knee. Nucleic acid was extracted, and, using rs143383 and an assay that discriminates and quantifies allelic expression, the relative amount of GDF5 expression from the T and C alleles was measured. Additional common variants in the GDF5 transcript sequence were interrogated as potential regulatory elements using allelic expression and luciferase reporter assays, and electrophoretic mobility shift assays were used to search for trans factors binding to rs143383. RESULTS We observed a consistent allelic expression imbalance of GDF5 in all tissues tested, implying that the functional effect mediated by rs143383 on GDF5 expression is joint-wide. We identified a second polymorphism, located in the 3'-UTR of GDF5, that influenced allelic expression of the gene independent of rs143383. Finally, we observed differential binding of deformed epidermal autoregulatory factor 1 (DEAF-1) to the 2 alleles of rs143383. CONCLUSION These findings show that the OA susceptibility mediated by polymorphism in GDF5 is not restricted to cartilage, emphasizing the need to consider the disease as involving the whole joint. The existence of an additional cis-acting regulatory polymorphism highlights the complexity of the regulation of expression of this important OA susceptibility locus. DEAF-1 is a trans-acting factor that merits further investigation as a potential tool for modulating GDF5 expression.
Collapse
|
27
|
Abstract
While promiscuous expression of tissue-specific antigens (TSAs) in the thymus is essential for self-tolerance, immunologically relevant TSA expression may also occur in the secondary lymphoid organs. A new study links the transcriptional regulator Deaf1 with altered TSA expression in the secondary lymphoid organs and autoimmune diabetes.
Collapse
|