1
|
Schrock AE, Grossman MR, Grebe NM, Sharma A, Freeman SM, Palumbo MC, Bales KL, Patisaul HB, Drea CM. Neuropeptide receptor distributions in male and female Eulemur vary between female-dominant and egalitarian species. Biol Lett 2025; 21:20240647. [PMID: 40105349 PMCID: PMC11921807 DOI: 10.1098/rsbl.2024.0647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
Aggression and its neurochemical modulators are typically studied in males, leaving the mechanisms of female competitive aggression or dominance largely unexplored. To better understand how competitive aggression is regulated in the primate brain, we used receptor autoradiography to compare the neural distributions of oxytocin and vasopressin receptors in male and female members of female-dominant versus egalitarian/codominant species within the Eulemur genus, wherein dominance structure is a reliable proxy of aggression in both sexes. We found that oxytocin receptor binding in the central amygdala (CeA) was predicted by dominance structure, with the members of three codominant species showing more oxytocin receptor binding in this region than their peers in four female-dominant species. Thus, both sexes in female-dominant Eulemur show a pattern consistent with the regulation of aggression in male rodents. We suggest that derived pacifism in Eulemur stems from selective suppression of ancestral female aggression over evolutionary time via a mechanism of increased oxytocin receptor binding in the CeA, rather than from augmented male aggression. This interpretation implies fitness costs to female aggression and/or benefits to its inhibition. These data establish Eulemur as a robust model for examining neural correlates of male and female competitive aggression, potentially providing novel insights into female dominance.
Collapse
Affiliation(s)
- Allie E. Schrock
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Mia R. Grossman
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Nicholas M. Grebe
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Annika Sharma
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Sara M. Freeman
- Department of Psychology, University of California Davis, Davis, CA, USA
| | | | - Karen L. Bales
- Department of Psychology, University of California Davis, Davis, CA, USA
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | | | - Christine M. Drea
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Everson KM, Donohue ME, Weisrock DW. A Pervasive History of Gene Flow in Madagascar's True Lemurs (Genus Eulemur). Genes (Basel) 2023; 14:1130. [PMID: 37372308 DOI: 10.3390/genes14061130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, it has become widely accepted that interspecific gene flow is common across the Tree of Life. Questions remain about how species boundaries can be maintained in the face of high levels of gene flow and how phylogeneticists should account for reticulation in their analyses. The true lemurs of Madagascar (genus Eulemur, 12 species) provide a unique opportunity to explore these questions, as they form a recent radiation with at least five active hybrid zones. Here, we present new analyses of a mitochondrial dataset with hundreds of individuals in the genus Eulemur, as well as a nuclear dataset containing hundreds of genetic loci for a small number of individuals. Traditional coalescent-based phylogenetic analyses of both datasets reveal that not all recognized species are monophyletic. Using network-based approaches, we also find that a species tree containing between one and three ancient reticulations is supported by strong evidence. Together, these results suggest that hybridization has been a prominent feature of the genus Eulemur in both the past and present. We also recommend that greater taxonomic attention should be paid to this group so that geographic boundaries and conservation priorities can be better established.
Collapse
Affiliation(s)
- Kathryn M Everson
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mariah E Donohue
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
3
|
Markolf M, Zinowsky M, Keller JK, Borys J, Cillov A, Schülke O. Toward Passive Acoustic Monitoring of Lemurs: Using an Affordable Open-Source System to Monitor Phaner Vocal Activity and Density. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractDeveloping new cost-effective methods for monitoring the distribution and abundance of species is essential for conservation biology. Passive acoustic monitoring (PAM) has long been used in marine mammals and has recently been postulated to be a promising method to improve monitoring of terrestrial wildlife as well. Because Madagascar’s lemurs are among the globally most threatened taxa, this study was designed to assess the applicability of an affordable and open-source PAM device to estimate the density of pale fork-marked lemurs (Phaner pallescens). Using 12 playback experiments and one fixed transect of four automated acoustic recorders during one night of the dry season in Kirindy Forest, we experimentally estimated the detection space for Phaner and other lemur vocalizations. Furthermore, we manually annotated more than 10,000 vocalizations of Phaner from a single location and used bout rates from previous studies to estimate density within the detection space. To truncate detections beyond 150 m, we applied a sound pressure level (SPL) threshold filtering out vocalizations below SPL 50 (dB re 20 μPa). During the dry season, vocalizations of Phaner can be detected with confidence beyond 150 m by a human listener. Within our fixed truncated detection area corresponding to an area of 0.07 km2 (detection radius of 150 m), we estimated 10.5 bouts per hour corresponding to a density of Phaner of 38.6 individuals/km2. Our density estimates are in line with previous estimates based on individually marked animals conducted in the same area. Our findings suggest that PAM also could be combined with distance sampling methods to estimate densities. We conclude that PAM is a promising method to improve the monitoring and conservation of Phaner and many other vocally active primates.
Collapse
|
4
|
de Winter II, Umanets A, Gort G, Nieuwland WH, van Hooft P, Heitkönig IMA, Kappeler PM, Prins HHT, Smidt H. Effects of seasonality and previous logging on faecal helminth-microbiota associations in wild lemurs. Sci Rep 2020; 10:16818. [PMID: 33033341 PMCID: PMC7544911 DOI: 10.1038/s41598-020-73827-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal helminth-microbiota associations are shaped by various ecological processes. The effect of the ecological context of the host on the bacterial microbiome and gastrointestinal helminth parasites has been tested in a number of ecosystems and experimentally. This study takes the important step to look at these two groups at the same time and to start to examine how these communities interact in a changing host environment. Fresh faecal samples (N = 335) from eight wild Eulemur populations were collected over 2 years across Madagascar. We used 16S ribosomal RNA gene sequencing to characterise the bacterial microbiota composition, and faecal flotation to isolate and morphologically identify nematode eggs. Infections with nematodes of the genera Callistoura and Lemuricola occurred in all lemur populations. Seasonality significantly contributed to the observed variation in microbiota composition, especially in the dry deciduous forest. Microbial richness and Lemuricola spp. infection prevalence were highest in a previously intensely logged site, whereas Callistoura spp. showed no such pattern. In addition, we observed significant correlations between gastrointestinal parasites and bacterial microbiota composition in these lemurs, with 0.4-0.7% of the variation in faecal bacterial microbiota composition being explained by helminth infections. With this study, we show effects of environmental conditions on gastrointestinal nematodes and bacterial interactions in wild lemurs and believe it is essential to consider the potential role of microbiome-parasite associations on the hosts' GI stability, health, and survival.
Collapse
Affiliation(s)
- I I de Winter
- Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands.
| | - A Umanets
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - G Gort
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - W H Nieuwland
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
| | - P van Hooft
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
| | - I M A Heitkönig
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
| | - P M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - H H T Prins
- Animal Sciences Group, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - H Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
5
|
Faecal DNA to the rescue: Shotgun sequencing of non-invasive samples reveals two subspecies of Southeast Asian primates to be Critically Endangered species. Sci Rep 2020; 10:9396. [PMID: 32523128 PMCID: PMC7287133 DOI: 10.1038/s41598-020-66007-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/03/2020] [Indexed: 12/04/2022] Open
Abstract
A significant number of Southeast Asian mammal species described in the 19th and 20th century were subsequently synonymized and are now considered subspecies. Many are affected by rapid habitat loss which creates an urgent need to re-assess the conservation status based on species boundaries established with molecular data. However, such data are lacking and difficult to obtain for many populations and subspecies. We document via a literature survey and empirical study how shotgun sequencing of faecal DNA is a still underutilized but powerful tool for accelerating such evaluations. We obtain 11 mitochondrial genomes for three subspecies in the langur genus Presbytis through shotgun sequencing of faecal DNA (P. femoralis femoralis, P. f. percura, P. siamensis cf. cana). The genomes support the resurrection of all three subspecies to species based on multiple species delimitation algorithms (PTP, ABGD, Objective Clustering) applied to a dataset covering 40 species and 43 subspecies of Asian colobines. For two of the newly recognized species (P. femoralis, P. percura), the results lead to an immediate change in IUCN status to Critically Endangered due to small population sizes and fragmented habitats. We conclude that faecal DNA should be more widely used for clarifying species boundaries in endangered mammals.
Collapse
|
6
|
|
7
|
de Winter II, Qurkhuli T, de Groot N, de Vos-Rouweler AJM, van Hooft P, Heitkönig IMA, Prins HHT, Bontrop RE, Doxiadis GGM. Determining Mhc-DRB profiles in wild populations of three congeneric true lemur species by noninvasive methods. Immunogenetics 2018; 71:97-107. [PMID: 30324236 PMCID: PMC6327083 DOI: 10.1007/s00251-018-1085-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic and polygenic genomic region that plays a crucial role in immune-related diseases. Given the need for comparative studies on the variability of immunologically important genes among wild populations and species, we investigated the allelic variation of MHC class II DRB among three congeneric true lemur species: the red-fronted lemur (Eulemur rufifrons), red-bellied lemur (Eulemur rubriventer), and black lemur (Eulemur macaco). We noninvasively collected hair and faecal samples from these species across different regions in Madagascar. We assessed DRB exon 2 polymorphism with a newly developed primer set, amplifying nearly all non-synonymous codons of the antigen-binding sites. We defined 26 DRB alleles from 45 individuals (17 alleles from E. rufifrons (N = 18); 5 from E. rubriventer (N = 7); and 4 from E. macaco (N = 20). All detected alleles are novel and show high levels of nucleotide (26.8%) and non-synonymous codon polymorphism (39.4%). In these lemur species, we found neither evidence of a duplication of DRB genes nor a sharing of alleles among sympatric groups or allopatric populations of the same species. The non-sharing of alleles may be the result of a geographical separation over a long time span and/or different pathogen selection pressures. We found dN/dS rates > 1 in the functionally important antigen recognition sites, providing evidence for balancing selection. Especially for small and isolated populations, quantifying and monitoring DRB variation are recommended to establish successful conservation plans that mitigate the possible loss of immunogenetic diversity in lemurs.
Collapse
Affiliation(s)
- Iris I de Winter
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands. .,Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | - Tamar Qurkhuli
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Pim van Hooft
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
| | | | - Herbert H T Prins
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.,Department of Theoretical Biology and Bioinformatics, University of Utrecht, Utrecht, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
8
|
Zhang L, Sun K, Liu T, Zhao H, Csorba G, Jin L, Thong VD, Feng J. Multilocus phylogeny and species delimitation within the philippinensis
group (Chiroptera: Rhinolophidae). ZOOL SCR 2018. [DOI: 10.1111/zsc.12308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lin Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Gábor Csorba
- Department of Zoology; Hungarian Natural History Museum; Budapest Hungary
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
| | - Vu Dinh Thong
- Graduate University of Science and Technology; Vietnam Academy of Science and Technology; Hanoi Vietnam
- Institute of Ecology and Biological Resources; Vietnam Academy of Science and Technology; Hanoi Vietnam
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization; Northeast Normal University; Changchun China
- Jilin Agricultural University; Changchun China
| |
Collapse
|
9
|
Rakotonirina H, Kappeler PM, Fichtel C. The role of facial pattern variation for species recognition in red-fronted lemurs (Eulemur rufifrons). BMC Evol Biol 2018; 18:19. [PMID: 29433448 PMCID: PMC5809826 DOI: 10.1186/s12862-018-1126-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/16/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Species recognition, i.e., the ability to distinguish conspecifics from heterospecifics, plays an essential role in reproduction. The role of facial cues for species recognition has been investigated in several non-human primate species except for lemurs. We therefore investigated the role of facial cues for species recognition in wild red-fronted lemurs (Eulemur rufifrons) at Kirindy Forest. We presented adult red-fronted lemurs pictures of male faces from five species including red-fronted lemurs, three closely related species, white-fronted lemurs (E. albifrons), brown lemurs (E. fulvus), rufous brown lemurs (E. rufus), and genetically more distant red-bellied lemurs (E. rubriventer), occurring in allopatry with the study population. We predicted that red-fronted lemurs respond stronger to conspecific than to heterospecific pictures and that females show stronger responses than males. In addition, if genetic drift has played a role in the evolution of facial color patterns in the members of this genus, we predicted that responses of red-fronted lemurs correlate negatively with the genetic distance to the different species stimuli. RESULTS Red-fronted lemurs looked significantly longer at pictures of their own species than at those of heterospecifics. Females spent less time looking at pictures of white-fronted, brown and red-bellied lemurs than males did, but not to pictures of red-bellied lemurs and a control stimulus. Individuals also exhibited sniffing behavior while looking at visual stimuli, and the time spent sniffing was significantly longer for pictures of conspecifics compared to those of heterospecifics. Moreover, the time spent looking and sniffing towards the pictures correlated negatively with the genetic distance between their own species and the species presented as stimulus. CONCLUSIONS We conclude that red-fronted lemurs have the ability for species recognition using visual facial cues, which may allow them to avoid costly interbreeding. If so, sexual selection might have influenced the evolution of facial patterns in eulemurs. Since responses also correlated with genetic distance, our findings suggest a potential role of genetic drift as well as sexual selection in influencing the evolution of facial variation in eulemurs. Because study subjects looked and sniffed towards the presented pictures, red-fronted lemurs might have the ability for multi-modal species recognition.
Collapse
Affiliation(s)
- Hanitriniaina Rakotonirina
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany.
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology, Georg-August University, Göttingen, Germany.
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology, Georg-August University, Göttingen, Germany
- Wissenschaftskolleg zu Berlin, Wallotstr. 19, 14193, Berlin, Germany
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
| |
Collapse
|
10
|
Herrera JP. The Effects of Biogeography and Biotic Interactions on Lemur Community Assembly. INT J PRIMATOL 2017. [DOI: 10.1007/s10764-017-9974-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Herrera JP. Testing the adaptive radiation hypothesis for the lemurs of Madagascar. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161014. [PMID: 28280597 PMCID: PMC5319363 DOI: 10.1098/rsos.161014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 05/12/2023]
Abstract
Lemurs, the diverse, endemic primates of Madagascar, are thought to represent a classic example of adaptive radiation. Based on the most complete phylogeny of living and extinct lemurs yet assembled, I tested predictions of adaptive radiation theory by estimating rates of speciation, extinction and adaptive phenotypic evolution. As predicted, lemur speciation rate exceeded that of their sister clade by nearly twofold, indicating the diversification dynamics of lemurs and mainland relatives may have been decoupled. Lemur diversification rates did not decline over time, however, as predicted by adaptive radiation theory. Optimal body masses diverged among dietary and activity pattern niches as lineages diversified into unique multidimensional ecospace. Based on these results, lemurs only partially fulfil the predictions of adaptive radiation theory, with phenotypic evolution corresponding to an 'early burst' of adaptive differentiation. The results must be interpreted with caution, however, because over the long evolutionary history of lemurs (approx. 50 million years), the 'early burst' signal of adaptive radiation may have been eroded by extinction.
Collapse
Affiliation(s)
- James P. Herrera
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Author for correspondence: James P. Herrera e-mail:
| |
Collapse
|
12
|
Nava S, Gerardi M, Szabó MP, Mastropaolo M, Martins TF, Labruna MB, Beati L, Estrada-Peña A, Guglielmone AA. Different lines of evidence used to delimit species in ticks: A study of the South American populations of Amblyomma parvum (Acari: Ixodidae). Ticks Tick Borne Dis 2016; 7:1168-1179. [DOI: 10.1016/j.ttbdis.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 11/29/2022]
|
13
|
Rakotonirina H, Kappeler PM, Fichtel C. The role of acoustic signals for species recognition in redfronted lemurs (Eulemur rufifrons). BMC Evol Biol 2016; 16:100. [PMID: 27175922 PMCID: PMC4866039 DOI: 10.1186/s12862-016-0677-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Signals are essential for communication and play a fundamental role in the evolution and diversification of species. Olfactory, visual and acoustic species-specific signals have been shown to function for species recognition in non-human primates, but the relative contributions of selection for species recognition driven by sexual selection, natural selection, or genetic drift for the diversification of these signals remain largely unexplored. This study investigates the importance of acoustic signals for species recognition in redfronted lemurs (Eulemur rufifrons). We conducted playback experiments in both major populations of this species separated by several hundred kilometers: Kirindy Forest in the west and Ranomafana National Park in the east of Madagascar. The playback stimuli were composed of species-specific loud calls of E. rufifrons, three closely related species (E. albifrons, E. fulvus and E. rufus) and one genetically more distant species (E. rubriventer) that occurs in sympatry with eastern redfronted lemurs. We tested the ability of redfronted lemurs to discriminate conspecific from heterospecific loud calls by measuring the time spent looking towards the speaker after presentation of each loud call. We also tested the difference between female and male responses because loud calls may play a role in mate choice and the avoidance of heterospecific mating. RESULTS Redfronted lemurs in Kirindy Forest did not discriminate their own loud calls from those of E. albifrons, E. fulvus and E. rufus, but they discriminated loud calls of E. rubriventer from their own. The Ranomafana population was tested only with three playback stimuli (E. rufifrons, E. albifrons, E. rubriventer) and did not discriminate between their own loud calls and those of E. albifrons and E. rubriventer. The response of females and males to playbacks did not differ in both populations. However, subjects in Ranomafana National Park responded more strongly to playback stimuli from E. rubriventer than subjects in Kirindy Forest. CONCLUSIONS We conclude that in both populations individuals were not able to discriminate between loud calls of closely related species living in allopatry and that responses to more distantly related congeners are likely to be modulated by experience. Subjects in Ranomafana paid more attention to loud calls of syntopic E. rubriventer in comparison to the Kirindy subjects, suggesting that experience is important in facilitating discrimination. Because acoustic and genetic distances among eulemurs are correlated, diversification in their acoustic signals might be the result of genetic drift.
Collapse
Affiliation(s)
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
- Department of Sociobiology/Anthropology, University of Göttingen, Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
| |
Collapse
|
14
|
Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree. Syst Biol 2016; 65:772-91. [DOI: 10.1093/sysbio/syw035] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 03/30/2016] [Indexed: 01/14/2023] Open
|
15
|
Catalano SA, Torres A. Phylogenetic inference based on landmark data in 41 empirical data sets. ZOOL SCR 2016. [DOI: 10.1111/zsc.12186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Santiago A. Catalano
- Consejo Nacional de Investigaciones Científicas y Técnicas; Unidad Ejecutora Lillo (UEL); FML-CONICET; Miguel Lillo 251, 4000 San Miguel de Tucumán Tucumán Argentina
| | - Ambrosio Torres
- Consejo Nacional de Investigaciones Científicas y Técnicas; Unidad Ejecutora Lillo (UEL); FML-CONICET; Miguel Lillo 251, 4000 San Miguel de Tucumán Tucumán Argentina
| |
Collapse
|
16
|
Hotaling S, Foley ME, Lawrence NM, Bocanegra J, Blanco MB, Rasoloarison R, Kappeler PM, Barrett MA, Yoder AD, Weisrock DW. Species discovery and validation in a cryptic radiation of endangered primates: coalescent‐based species delimitation in
M
adagascar's mouse lemurs. Mol Ecol 2016; 25:2029-45. [DOI: 10.1111/mec.13604] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 02/16/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Scott Hotaling
- Department of Biology University of Kentucky Lexington KY 40506 USA
| | - Mary E. Foley
- Department of Biology University of Kentucky Lexington KY 40506 USA
| | | | - Jose Bocanegra
- Department of Biology University of Kentucky Lexington KY 40506 USA
| | | | - Rodin Rasoloarison
- Département de Biologie Animale Université d'Antananarivo BP 906 Antananarivo (101) Madagascar
- Behavioral Ecology and Sociobiology Unit German Primate Center (DPZ) 37077 Göttingen Germany
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit German Primate Center (DPZ) 37077 Göttingen Germany
| | - Meredith A. Barrett
- Center for Health and Community University of California San Francisco CA 94118 USA
| | - Anne D. Yoder
- Department of Biology Duke University Durham NC 27708 USA
| | | |
Collapse
|
17
|
Little Brown Lemurs Come of Age: Summary and Perspective. INT J PRIMATOL 2016. [DOI: 10.1007/s10764-016-9895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
|
19
|
Kamilar JM, Tecot SR. Anthropogenic and Climatic Effects on the Distribution of Eulemur Species: An Ecological Niche Modeling Approach. INT J PRIMATOL 2015. [DOI: 10.1007/s10764-015-9875-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
|
21
|
Gante HF, Doadrio I, Alves MJ, Dowling TE. Semi-permeable species boundaries in Iberian barbels (Barbus and Luciobarbus, Cyprinidae). BMC Evol Biol 2015; 15:111. [PMID: 26066794 PMCID: PMC4465174 DOI: 10.1186/s12862-015-0392-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/28/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The evolution of species boundaries and the relative impact of selection and gene flow on genomic divergence are best studied in populations and species pairs exhibiting various levels of divergence along the speciation continuum. We studied species boundaries in Iberian barbels, Barbus and Luciobarbus, a system of populations and species spanning a wide degree of genetic relatedness, as well as geographic distribution and range overlap. We jointly analyze multiple types of molecular markers and morphological traits to gain a comprehensive perspective on the nature of species boundaries in these cyprinid fishes. RESULTS Intraspecific molecular and morphological differentiation is visible among many populations. Genomes of all sympatric species studied are porous to gene flow, even if they are not sister species. Compared to their allopatric counterparts, sympatric representatives of different species share alleles and show an increase in all measures of nucleotide polymorphism (S, Hd, K, π and θ). High molecular diversity is particularly striking in L. steindachneri from the Tejo and Guadiana rivers, which co-varies with other sympatric species. Interestingly, different nuclear markers introgress across species boundaries at various levels, with distinct impacts on population trees. As such, some loci exhibit limited introgression and population trees resemble the presumed species tree, while alleles at other loci introgress more freely and population trees reflect geographic affinities and interspecific gene flow. Additionally, extent of introgression decreases with increasing genetic divergence in hybridizing species pairs. CONCLUSIONS We show that reproductive isolation in Iberian Barbus and Luciobarbus is not complete and species boundaries are semi-permeable to (some) gene flow, as different species (including non-sister) are exchanging genes in areas of sympatry. Our results support a speciation-with-gene-flow scenario with heterogeneous barriers to gene flow across the genome, strengthening with genetic divergence. This is consistent with observations coming from other systems and supports the notion that speciation is not instantaneous but a gradual process, during which different species are still able to exchange some genes, while selection prevents gene flow at other loci. We also provide evidence for a hybrid origin of a barbel ecotype, L. steindachneri, suggesting that ecology plays a key role in species coexistence and hybridization in Iberian barbels. This ecotype with intermediate, yet variable, molecular, morphological, trophic and ecological characteristics is the local product of introgressive hybridization of L. comizo with up to three different species (with L. bocagei in the Tejo, with L. microcephalus and L. sclateri in the Guadiana). In spite of the homogenizing effects of ongoing gene flow, species can still be discriminated using a combination of morphological and molecular markers. Iberian barbels are thus an ideal system for the study of species boundaries, since they span a wide range of genetic divergences, with diverse ecologies and degrees of sympatry.
Collapse
Affiliation(s)
- Hugo F Gante
- School of Life Sciences, Arizona State University, 85287-4601, Tempe, AZ, USA.
- Museu Nacional de História Natural e da Ciência, Centre for Ecology, Evolution and Environmental Changes (Ce3C), Universidade de Lisboa, Rua da Escola Politécnica 58, 1250-102, Lisbon, Portugal.
- Current address: Zoological Institute, University of Basel, 4051, Basel, Switzerland.
| | - Ignacio Doadrio
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, c/José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Maria Judite Alves
- Museu Nacional de História Natural e da Ciência, Centre for Ecology, Evolution and Environmental Changes (Ce3C), Universidade de Lisboa, Rua da Escola Politécnica 58, 1250-102, Lisbon, Portugal.
| | - Thomas E Dowling
- School of Life Sciences, Arizona State University, 85287-4601, Tempe, AZ, USA.
- Current address: Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, 48202, Detroit, MI, USA.
| |
Collapse
|
22
|
Burrell AS, Disotell TR, Bergey CM. The use of museum specimens with high-throughput DNA sequencers. J Hum Evol 2015; 79:35-44. [PMID: 25532801 PMCID: PMC4312722 DOI: 10.1016/j.jhevol.2014.10.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/08/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022]
Abstract
Natural history collections have long been used by morphologists, anatomists, and taxonomists to probe the evolutionary process and describe biological diversity. These biological archives also offer great opportunities for genetic research in taxonomy, conservation, systematics, and population biology. They allow assays of past populations, including those of extinct species, giving context to present patterns of genetic variation and direct measures of evolutionary processes. Despite this potential, museum specimens are difficult to work with because natural postmortem processes and preservation methods fragment and damage DNA. These problems have restricted geneticists' ability to use natural history collections primarily by limiting how much of the genome can be surveyed. Recent advances in DNA sequencing technology, however, have radically changed this, making truly genomic studies from museum specimens possible. We review the opportunities and drawbacks of the use of museum specimens, and suggest how to best execute projects when incorporating such samples. Several high-throughput (HT) sequencing methodologies, including whole genome shotgun sequencing, sequence capture, and restriction digests (demonstrated here), can be used with archived biomaterials.
Collapse
Affiliation(s)
- Andrew S Burrell
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA.
| | - Todd R Disotell
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, USA
| | - Christina M Bergey
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, USA
| |
Collapse
|
23
|
Abstract
The answer to the proffered question, "What is a species?" is considered one of the fundamental issues of biological science, as well as one of the most polarizing and sometimes acrimonious problems. Dozens of species concepts have been defined, but none are universal for implementation across all taxa. Within the past thirty years, the ability to analyze DNA data has progressed to the point that multiple methodologies can be simultaneously applied to the same evolutionary questions. The use of restriction fragment length polymorphisms, microsatellites, and mitochondrial (mtDNA) and nuclear DNA (nucDNA) sequence data has unarguably changed how we look at diversity and intensified the concept debate through the proliferation of species descriptions. Over the past two decades, Madagascar's biodiversity has gone through a tremendous taxonomic expansion by the elevation of subspecies to species and through novel descriptions, especially within the nocturnal lemurs. With the tremendous continuous loss of habitat, exponential human population growth, and stochastic changes predicted over coming decades, elucidating the earth's biodiversity will never be more important than now. Here, we examine species concepts and their attendant criteria. We predict how technological advances will alter, improve and, we hope, fully consolidate the unity of thoughts related to this central topic of evolutionary biology and its numerous interconnected disciplines.
Collapse
|
24
|
Markolf M, Kappeler PM. Phylogeographic analysis of the true lemurs (genus Eulemur) underlines the role of river catchments for the evolution of micro-endemism in Madagascar. Front Zool 2013; 10:70. [PMID: 24228694 PMCID: PMC3835867 DOI: 10.1186/1742-9994-10-70] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/28/2013] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Due to its remarkable species diversity and micro-endemism, Madagascar has recently been suggested to serve as a biogeographic model region. However, hypothesis-based tests of various diversification mechanisms that have been proposed for the evolution of the island's micro-endemic lineages are still limited. Here, we test the fit of several diversification hypotheses with new data on the broadly distributed genus Eulemur using coalescent-based phylogeographic analyses. RESULTS Time-calibrated species tree analyses and population genetic clustering resolved the previously polytomic species relationships among eulemurs. The most recent common ancestor of eulemurs was estimated to have lived about 4.45 million years ago (mya). Divergence date estimates furthermore suggested a very recent diversification among the members of the "brown lemur complex", i.e. former subspecies of E. fulvus, during the Pleistocene (0.33-1.43 mya). Phylogeographic model comparisons of past migration rates showed significant levels of gene flow between lineages of neighboring river catchments as well as between eastern and western populations of the redfronted lemur (E. rufifrons). CONCLUSIONS Together, our results are concordant with the centers of endemism hypothesis (Wilmé et al. 2006, Science 312:1063-1065), highlight the importance of river catchments for the evolution of Madagascar's micro-endemic biota, and they underline the usefulness of testing diversification mechanisms using coalescent-based phylogeographic methods.
Collapse
Affiliation(s)
- Matthias Markolf
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, Göttingen 37077, Germany.
| | | |
Collapse
|