1
|
Fisher AB, Zani B, Han T, Dodia C, Melidone R, Keller S. Decreased LPS-induced lung injury in pigs treated with a lung surfactant protein A-derived nonapeptide that inhibits peroxiredoxin 6 activity and subsequent NOX1,2 activation. Am J Physiol Lung Cell Mol Physiol 2024; 326:L458-L467. [PMID: 38349117 PMCID: PMC11281806 DOI: 10.1152/ajplung.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/28/2024] Open
Abstract
This study addressed the efficacy of a liposome-encapsulated nine amino acid peptide [peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2)] for the prevention or treatment of acute lung injury (ALI) +/- sepsis. PIP-2 inhibits the PLA2 activity of peroxiredoxin 6 (Prdx6), thereby preventing rac release and activation of NADPH oxidases (NOXes), types 1 and 2. Female Yorkshire pigs were infused intravenously with lipopolysaccharide (LPS) + liposomes (untreated) or LPS + PIP-2 encapsulated in liposomes (treated). Pigs were mechanically ventilated and continuously monitored; they were euthanized after 8 h or earlier if preestablished humane endpoints were reached. Control pigs (mechanical ventilation, no LPS) were essentially unchanged over the 8 h study. LPS administration resulted in systemic inflammation with manifestations of clinical sepsis-like syndrome, decreased lung compliance, and a marked decrease in the arterial Po2 with vascular instability leading to early euthanasia of 50% of untreated animals. PIP-2 treatment significantly reduced the requirement for supportive vasopressors and the manifestations of lung injury so that only 25% of animals required early euthanasia. Bronchoalveolar lavage fluid from PIP-2-treated versus untreated pigs showed markedly lower levels of total protein, cytokines (TNF-α, IL-6, IL-1β), and myeloperoxidase. Thus, the porcine LPS-induced sepsis-like model was associated with moderate to severe lung pathophysiology compatible with ALI, whereas treatment with PIP-2 markedly decreased lung injury, cardiovascular instability, and early euthanasia. These results indicate that inhibition of reactive oxygen species (ROS) production via NOX1/2 has a beneficial effect in treating pigs with LPS-induced ALI plus or minus a sepsis-like syndrome, suggesting a potential role for PIP-2 in the treatment of ALI and/or sepsis in humans.NEW & NOTEWORTHY Currently available treatments that can alter lung inflammation have failed to significantly alter mortality of acute lung injury (ALI). Peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2) targets the liberation of reactive O2 species (ROS) that is associated with adverse cell signaling events, thereby decreasing the tissue oxidative injury that occurs early in the ALI syndrome. We propose that treatment with PIP-2 may be effective in preventing progression of early disease into its later stages with irreversible lung damage and relatively high mortality.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
- Peroxitech, Inc., Philadelphia, Pennsylvania, United States
| | - Brett Zani
- CBSET, Inc., Lexington, Massachusetts, United States
| | - Thomas Han
- Peroxitech, Inc., Philadelphia, Pennsylvania, United States
| | - Chandra Dodia
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | | | - Steven Keller
- CBSET, Inc., Lexington, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Cardarelli S, Biglietto M, Orsini T, Fustaino V, Monaco L, de Oliveira do Rêgo AG, Liccardo F, Masciarelli S, Fazi F, Naro F, De Angelis L, Pellegrini M. Modulation of cAMP/cGMP signaling as prevention of congenital heart defects in Pde2A deficient embryos: a matter of oxidative stress. Cell Death Dis 2024; 15:169. [PMID: 38395995 PMCID: PMC10891154 DOI: 10.1038/s41419-024-06549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Phosphodiesterase 2A (Pde2A) is a dual-specific PDE that breaks down both cAMP and cGMP cyclic nucleotides. We recently highlighted a direct relationship between Pde2A impairment, a consequent increase of cAMP, and the appearance of mouse congenital heart defects (CHDs). Here we aimed to characterize the pathways involved in the development of CHDs and in their prevention by pharmacological approaches targeting cAMP and cGMP signaling. Transcriptome analysis revealed a modulation of more than 500 genes affecting biological processes involved in the immune system, cardiomyocyte development and contractility, angiogenesis, transcription, and oxidative stress in hearts from Pde2A-/- embryos. Metoprolol and H89 pharmacological administration prevented heart dilatation and hypertabeculation in Pde2A-/- embryos. Metoprolol was also able to partially impede heart septum defect and oxidative stress at tissue and molecular levels. Amelioration of cardiac defects was also observed by using the antioxidant NAC, indicating oxidative stress as one of the molecular mechanisms underpinning the CHDs. In addition, Sildenafil treatment recovered cardiac defects suggesting the requirement of cAMP/cGMP nucleotides balance for the correct heart development.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Martina Biglietto
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Valentina Fustaino
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Luciana De Angelis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
3
|
Kumar S, Suman S, Moon BH, Fornace AJ, Datta K. Low dose radiation upregulates Ras/p38 and NADPH oxidase in mouse colon two months after exposure. Mol Biol Rep 2023; 50:2067-2076. [PMID: 36542238 PMCID: PMC10119992 DOI: 10.1007/s11033-022-08186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Exposure to ionizing is known to cause persistent cellular oxidative stress and NADPH oxidase (Nox) is a major source of cellular oxidant production. Chronic oxidative stress is associated with a myriad of human diseases including gastrointestinal cancer. However, the roles of NADPH oxidase in relation of long-term oxidative stress in colonic epithelial cells after radiation exposure are yet to be clearly established. METHODS AND RESULTS Mice were exposed either to sham or to 0.5 Gy γ radiation, and NADPH oxidase, oxidative stress, and related signaling pathways were assessed in colon samples 60 days after exposure. Radiation exposure led to increased expression of colon-specific NADPH oxidase isoform, Nox1, as well as upregulation of its modifiers such as Noxa1 and Noxo1 at the mRNA and protein level. Co-immunoprecipitation experiments showed enhanced binding of Rac1, an activator of NADPH oxidase, to Nox1. Increased 4-hydroxynonenal, 8-oxo-dG, and γH2AX along with higher protein carbonylation levels suggest increased oxidative stress after radiation exposure. Immunoblot analysis demonstrates upregulation of Ras/p38 pathway, and Gata6 and Hif1α after irradiation. Increased staining of β-catenin, cyclinD1, and Ki67 after radiation was also observed. CONCLUSIONS In summary, data show that exposure to a low dose of radiation was associated with upregulation of NADPH oxidase and its modifiers along with increased Ras/p38/Gata6 signaling in colon. When considered along with oxidative damage and proliferative markers, our observations suggest that the NADPH oxidase pathway could be playing a critical role in propagating long-term oxidative stress after radiation with implications for colon carcinogenesis.
Collapse
Affiliation(s)
- Santosh Kumar
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Shubhankar Suman
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Bo-Hyun Moon
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Albert J Fornace
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Research Building, Room E518, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA
| | - Kamal Datta
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Research Building, Room E518, 3970 Reservoir Rd., NW, Washington, DC, 20057, USA.
| |
Collapse
|
4
|
Oxidative Injury in Ischemic Stroke: A Focus on NADPH Oxidase 4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1148874. [PMID: 35154560 PMCID: PMC8831073 DOI: 10.1155/2022/1148874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide. Thus, it is urgent to explore its pathophysiological mechanisms and find new therapeutic strategies for its successful treatment. The relationship between oxidative stress and ischemic stroke is increasingly appreciated and attracting considerable attention. ROS serves as a source of oxidative stress. It is a byproduct of mitochondrial metabolism but primarily a functional product of NADPH oxidases (NOX) family members. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is most closely related to the formation of ROS during ischemic stroke. Its expression is significantly upregulated after cerebral ischemia, making it a promising target for treating ischemic stroke. Several drugs targeting NOX4, such as SCM-198, Iso, G-Rb1, betulinic acid, and electroacupuncture, have shown efficacy as treatments of ischemic stroke. MTfp-NOX4 POC provides a novel insight for the treatment of stroke. Combinations of these therapies also provide new approaches for the therapy of ischemic stroke. In this review, we summarize the subcellular location, expression, and pathophysiological mechanisms of NOX4 in the occurrence and development of ischemic stroke. We also discuss the therapeutic strategies and related regulatory mechanisms for treating ischemic stroke. We further comment on the shortcomings of current NOX4-targeted therapy studies and the direction for improvement.
Collapse
|
5
|
Siregar TAP, Prombutara P, Kanjanasirirat P, Kunkaew N, Tubsuwan A, Boonmee A, Palaga T, Khumpanied T, Borwornpinyo S, Chaiprasert A, Utaisincharoen P, Ponpuak M. The autophagy-resistant Mycobacterium tuberculosis Beijing strain upregulates KatG to evade starvation-induced autophagic restriction. Pathog Dis 2022; 80:6509485. [PMID: 35038342 PMCID: PMC8829027 DOI: 10.1093/femspd/ftac004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
Abstract
Mycobacterium tuberculosis utilizes several mechanisms to block phagosome–lysosome fusion to evade host cell restriction. However, induction of host cell autophagy by starvation was shown to overcome this block, resulting in enhanced lysosomal delivery to mycobacterial phagosomes and the killing of the M. tuberculosis reference strain H37Rv. Nevertheless, our previous studies found that strains belonging to the M. tuberculosis Beijing genotype can resist starvation-induced autophagic elimination, though the mycobacterial factors involved remain unclear. In this study, we showed that KatG expression is upregulated in the autophagy-resistant M. tuberculosis Beijing strain (BJN) during autophagy induction by the starvation of host macrophages, while such increase was not observed in the H37Rv. KatG depletion using the CRISPR-dCas9 interference system in the BJN resulted in increased lysosomal delivery to its phagosome and decreased its survival upon autophagy induction by starvation. As KatG functions by catabolizing ROS, we determined the source of ROS contributing to the starvation-induced autophagic elimination of mycobacteria. Using siRNA-mediated knockdown, we found that Superoxide dismutase 2, which generates mitochondrial ROS but not NADPH oxidase 2, is important for the starvation-induced lysosomal delivery to mycobacterial phagosomes. Taken together, these findings showed that KatG is vital for the BJN to evade starvation-induced autophagic restriction.
Collapse
Affiliation(s)
- Tegar Adriansyah Putra Siregar
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine, University of Muhammadiyah Sumatera Utara, Medan, Indonesia
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Nawapol Kunkaew
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Campos-Sánchez JC, Mayor-Lafuente J, Guardiola FA, Esteban MÁ. In silico and gene expression analysis of the acute inflammatory response of gilthead seabream (Sparus aurata) after subcutaneous administration of carrageenin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1623-1643. [PMID: 34448108 PMCID: PMC8478728 DOI: 10.1007/s10695-021-00999-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
Inflammation is one of the main causes of loss of homeostasis at both the systemic and molecular levels. The aim of this study was to investigate in silico the conservation of inflammation-related proteins in the gilthead seabream (Sparus aurata L.). Open reading frames of the selected genes were used as input in the STRING database for protein-protein interaction network analysis, comparing them with other teleost protein sequences. Proteins of the large yellow croaker (Larimichthys crocea L.) presented the highest percentages of identity with the gilthead seabream protein sequence. The gene expression profile of these proteins was then studied in gilthead seabream specimens subcutaneously injected with carrageenin (1%) or phosphate-buffered saline (control) by analyzing skin samples from the injected zone 12 and 24 h after injection. Gene expression analysis indicated that the mechanisms necessary to terminate the inflammatory response to carrageenin and recover skin homeostasis were activated between 12 and 24 h after injection (at the tested dose). The gene analysis performed in this study could contribute to the identification of the main mechanisms of acute inflammatory response and validate the use of carrageenin as an inflammation model to elucidate these mechanisms in fish.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Javier Mayor-Lafuente
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain.
| |
Collapse
|
7
|
Campos-Sánchez JC, Guardiola FA, García Beltrán JM, Ceballos-Francisco D, Esteban MÁ. Effects of subcutaneous injection of λ/κ-carrageenin on the immune and liver antioxidant status of gilthead seabream (Sparus aurata). JOURNAL OF FISH DISEASES 2021; 44:1449-1462. [PMID: 34032302 DOI: 10.1111/jfd.13452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the acute inflammatory response induced by subcutaneous injection of carrageenin (1%) or phosphate-buffered saline (control) in gilthead seabream (Sparus aurata). Skin mucus, serum, head kidney (HK) and liver were sampled at 1.5, 3 and 6 hr post-injection (p.i.) to determine the immune and antioxidant status of this fish species. The skin mucus of the carrageenin group showed increased superoxide dismutase and peroxidase activities, lysozyme abundance, bactericidal activity against Vibrio anguillarum and Photobacterium damselae, and total immunoglobulins compared with those of the control group. However, the carrageenin-injected fish sampled at 6 hr p.i. showed decreased protease activity in the skin mucus and peroxidase activity in the HK leucocytes compared with the control. Moreover, the carrageenin injection had no effects on the systemic immune system, but it reduced the liver catalase activities at both 3 and 6 hr in the carrageenin group relative to those in the control group. The expression levels of several proinflammatory and cell marker genes in the HK and liver were also determined. In the HK, the expression levels of interleukin-1β and prostaglandin D synthase 1 were upregulated at 1.5 and 3 hr, respectively, in the carrageenin group compared with those in the control group. Contrarily, the expression of the NADPH oxidase subunit phox40 (an acidophilic granulocyte marker) in the carrageenin group at 6 hr was downregulated compared with that in the control group. These results suggested that subcutaneous injection of κ/λ-carrageenin in gilthead seabream triggered an acute skin inflammation characterized by the rapid recruitment of acidophilic granulocytes and the release of humoral mediators into the skin mucus.
Collapse
Affiliation(s)
- José Carlos Campos-Sánchez
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Francisco A Guardiola
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - José María García Beltrán
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Diana Ceballos-Francisco
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
8
|
Xing YM, Li B, Zeng X, Zhou LS, Lee TS, Lee MW, Chen XM, Guo SX. Use of transcriptomic profiling to identify candidate genes involved in Polyporus umbellatus sclerotial formation affected by oxalic acid. Sci Rep 2021; 11:17326. [PMID: 34462479 PMCID: PMC8405643 DOI: 10.1038/s41598-021-96740-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
Polyporus umbellatus is a precious medicinal fungus. Oxalic acid was observed to affect sclerotial formation and sclerotia possessed more medicinal compounds than mycelia. In this study, the transcriptome of P. umbellatus was analysed after the fungus was exposed to various concentrations of oxalic acid. The differentially expressed genes (DEGs) encoding a series of oxidases were upregulated, and reductases were downregulated, in the low-oxalic-acid (Low OA) group compared to the control (No OA) group, while the opposite phenomenon was observed in the high-oxalic-acid (High OA) group. The detection of reactive oxygen species (ROS) in P. umbellatus mycelia was performed visually, and Ca2+ and H2O2 fluxes were measured using non-invasive micro-test technology (NMT). The sclerotial biomass in the Low OA group increased by 66%, however, no sclerotia formed in the High OA group. The ROS fluorescence intensity increased significantly in the Low OA group but decreased considerably in the High OA group. Ca2+ and H2O2 influx significantly increased in the Low OA group, while H2O2 exhibited efflux in the High OA group. A higher level of oxidative stress formed in the Low OA group. Different concentrations of oxalic acid were determined to affect P. umbellatus sclerotial formation in different ways.
Collapse
Affiliation(s)
- Yong-Mei Xing
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Bing Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xu Zeng
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Li-Si Zhou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Tae-Soo Lee
- Division of Life Sciences, University of Incheon, Incheon, 22012, Korea
| | - Min-Woong Lee
- Department of Life Science, Dongguk University, Seoul, 04620, Korea
| | - Xiao-Mei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Shun-Xing Guo
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Ko YH, Jeong M, Jang DS, Choi JH. Gomisin L1, a Lignan Isolated from Schisandra Berries, Induces Apoptosis by Regulating NADPH Oxidase in Human Ovarian Cancer Cells. Life (Basel) 2021; 11:life11080858. [PMID: 34440602 PMCID: PMC8398161 DOI: 10.3390/life11080858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023] Open
Abstract
The fruits of Schisandra chinensis (Schisandra berries) are used as health food supplements and popular food ingredients in East Asia. Lignans, major and characteristic polyphenol compounds of Schisandra berries, possess various biological activities, including hepatoprotective and anticancer effects. However, the biological activities of gomisin L1, a lignan isolated from Schisandra berries, are less to be investigated. In this study, the antitumor activity of gomisin L1 and its underlying molecular mechanism in human ovarian cancer cells were investigated. Gomisin L1 exhibited potent cytotoxic activity against A2780 and SKOV3 ovarian cancer cells. Flow cytometry analysis revealed that the growth inhibitory effects of gomisin L1 were mediated by the induction of apoptosis. Furthermore, gomisin L1 induced an increase in intracellular reactive oxygen species (ROS) levels, and the antioxidant N-acetyl cysteine significantly negated gomisin L1-induced cell death. Moreover, inhibition of NADPH oxidase (NOX) using an inhibitor and siRNA attenuated gomisin L1-induced death of, and ROS production in, human ovarian cancer cells. Taken together, these data indicate that the lignan gomisin L1 from Schisandra berries induces apoptotic cell death by regulating intracellular ROS production via NOX.
Collapse
Affiliation(s)
- Young Hyun Ko
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (Y.H.K.); (M.J.)
| | - Miran Jeong
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (Y.H.K.); (M.J.)
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea;
| | - Jung-Hye Choi
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (Y.H.K.); (M.J.)
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea;
- Correspondence:
| |
Collapse
|
10
|
Ayoup MS, Abu-Serie MM, Abdel-Hamid H, Teleb M. Beyond direct Nrf2 activation; reinvestigating 1,2,4-oxadiazole scaffold as a master key unlocking the antioxidant cellular machinery for cancer therapy. Eur J Med Chem 2021; 220:113475. [PMID: 33901898 DOI: 10.1016/j.ejmech.2021.113475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 01/22/2023]
Abstract
Harnessing the antioxidant cellular machinery has sparked considerable interest as an efficient anticancer strategy. Activating Nrf2, the master switch of the cellular redox system, suppresses ROS, alleviates oxidative stress, and halts cancer progression. 1,2,4-oxadiazoles are iconic direct Nrf2 activators that disrupt Nrf2 interaction with its endogenous repressor Keap1. This study introduces rationally designed 1,2,4-oxadiazole derivatives that inhibit other Nrf2 suppressors (TrxR1, IKKα, and NF-kB) thus enhancing Nrf2 activation for preventing oxidative stress and carcinogenesis. Preliminary screening showed that the phenolic oxadiazoles 11, 15, and 19 were comparable to ascorbic acid (ROS scavenging) and EDTA (iron chelation), and superior to doxorubicin against HepG-2, MDA-MB231, and Caco-2 cells. They suppressed ROS by 3 folds and activated Nrf2 by 2 folds in HepG-2 cells. Mechanistically, they inhibited TrxR1 (IC50; 13.19, 17.89, and 9.21 nM) and IKKα (IC50; 11.0, 15.94, and 19.58 nM), and downregulated NF-κB (7.6, 1.4 and 1.9 folds in HepG-2), respectively. They inhibited NADPH oxidase (IC50; 16.4, 21.94, and 10.71 nM, respectively) that potentiates their antioxidant activities. Docking studies predicted their important structural features. Finally, they recorded drug-like in silico physicochemical properties, ADMET, and ligand efficiency metrics.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, SRTA-City, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
11
|
Hu CF, Wu SP, Lin GJ, Shieh CC, Hsu CS, Chen JW, Chen SH, Hong JS, Chen SJ. Microglial Nox2 Plays a Key Role in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:638381. [PMID: 33868265 PMCID: PMC8050344 DOI: 10.3389/fimmu.2021.638381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
While oxidative stress has been linked to multiple sclerosis (MS), the role of superoxide-producing phagocyte NADPH oxidase (Nox2) in central nervous system (CNS) pathogenesis remains unclear. This study investigates the impact of Nox2 gene ablation on pro- and anti-inflammatory cytokine and chemokine production in a mouse experimental autoimmune encephalomyelitis (EAE) model. Nox2 deficiency attenuates EAE-induced neural damage and reduces disease severity, pathogenic immune cells infiltration, demyelination, and oxidative stress in the CNS. The number of autoreactive T cells, myeloid cells, and activated microglia, as well as the production of cytokines and chemokines, including GM-CSF, IFNγ, TNFα, IL-6, IL-10, IL-17A, CCL2, CCL5, and CXCL10, were much lower in the Nox2-/- CNS tissues but remained unaltered in the peripheral lymphoid organs. RNA-seq profiling of microglial transcriptome identified a panel of Nox2 dependent proinflammatory genes: Pf4, Tnfrsf9, Tnfsf12, Tnfsf13, Ccl7, Cxcl3, and Cxcl9. Furthermore, gene ontology and pathway enrichment analyses revealed that microglial Nox2 plays a regulatory role in multiple pathways known to be important for MS/EAE pathogenesis, including STAT3, glutathione, leukotriene biosynthesis, IL-8, HMGB1, NRF2, systemic lupus erythematosus in B cells, and T cell exhaustion signaling. Taken together, our results provide new insights into the critical functions performed by microglial Nox2 during the EAE pathogenesis, suggesting that Nox2 inhibition may represent an important therapeutic target for MS.
Collapse
Affiliation(s)
- Chih-Fen Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Sin Hsu
- Genomics Center for Clinical and Biotechnological Applications of Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jing-Wun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Shyi-Jou Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
12
|
Moghadam ZM, Henneke P, Kolter J. From Flies to Men: ROS and the NADPH Oxidase in Phagocytes. Front Cell Dev Biol 2021; 9:628991. [PMID: 33842458 PMCID: PMC8033005 DOI: 10.3389/fcell.2021.628991] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
The cellular formation of reactive oxygen species (ROS) represents an evolutionary ancient antimicrobial defense system against microorganisms. The NADPH oxidases (NOX), which are predominantly localized to endosomes, and the electron transport chain in mitochondria are the major sources of ROS. Like any powerful immunological process, ROS formation has costs, in particular collateral tissue damage of the host. Moreover, microorganisms have developed defense mechanisms against ROS, an example for an arms race between species. Thus, although NOX orthologs have been identified in organisms as diverse as plants, fruit flies, rodents, and humans, ROS functions have developed and diversified to affect a multitude of cellular properties, i.e., far beyond direct antimicrobial activity. Here, we focus on the development of NOX in phagocytic cells, where the so-called respiratory burst in phagolysosomes contributes to the elimination of ingested microorganisms. Yet, NOX participates in cellular signaling in a cell-intrinsic and -extrinsic manner, e.g., via the release of ROS into the extracellular space. Accordingly, in humans, the inherited deficiency of NOX components is characterized by infections with bacteria and fungi and a seemingly independently dysregulated inflammatory response. Since ROS have both antimicrobial and immunomodulatory properties, their tight regulation in space and time is required for an efficient and well-balanced immune response, which allows for the reestablishment of tissue homeostasis. In addition, distinct NOX homologs expressed by non-phagocytic cells and mitochondrial ROS are interlinked with phagocytic NOX functions and thus affect the overall redox state of the tissue and the cellular activity in a complex fashion. Overall, the systematic and comparative analysis of cellular ROS functions in organisms of lower complexity provides clues for understanding the contribution of ROS and ROS deficiency to human health and disease.
Collapse
Affiliation(s)
- Zohreh Mansoori Moghadam
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. Int J Mol Sci 2020; 21:ijms21218117. [PMID: 33143131 PMCID: PMC7663256 DOI: 10.3390/ijms21218117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.
Collapse
|
14
|
Bechor E, Zahavi A, Berdichevsky Y, Pick E. p67 phox -derived self-assembled peptides prevent Nox2 NADPH oxidase activation by an auto-inhibitory mechanism. J Leukoc Biol 2020; 109:657-673. [PMID: 32640488 DOI: 10.1002/jlb.4a0620-292r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/13/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Activation of the Nox2-dependent NADPH oxidase is the result of a conformational change in Nox2 induced by interaction with the cytosolic component p67phox . In preliminary work we identified a cluster of overlapping 15-mer synthetic peptides, corresponding to p67phox residues 259-279, which inhibited oxidase activity in an in vitro, cell-free assay, but the results did not point to a competitive mechanism. We recently identified an auto-inhibitory intramolecular bond in p67phox , one extremity of which was located within the 259-279 sequence, and we hypothesized that inhibition by exogenous peptides might mimic intrinsic auto-inhibition. In this study, we found that: (i) progressive N- and C-terminal truncation of inhibitory p67phox peptides, corresponding to residues 259-273 and 265-279, revealed that inhibitory ability correlated with the presence of residues 265 NIVFVL270 , exposed at either the N- or C-termini of the peptides; (ii) inhibition of oxidase activity was associated exclusively with self-assembled peptides, which pelleted upon centrifugation at 12,000 ×g; (iii) self-assembled p67phox peptides inhibited oxidase activity by specific binding of p67phox and the ensuing depletion of this component, essential for interaction with Nox2; and (iv) peptides subjected to scrambling or reversing the order of residues in NIVFVL retained the propensity for self-assembly, oxidase inhibitory ability, and specific binding of p67phox , indicating that the dominant parameter was the hydrophobic character of five of the six residues. This appears to be the first description of inhibition of oxidase activity by self-assembled peptides derived from an oxidase component, acting by an auto-inhibitory mechanism.
Collapse
Affiliation(s)
- Edna Bechor
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Zahavi
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Terzi A, Suter DM. The role of NADPH oxidases in neuronal development. Free Radic Biol Med 2020; 154:33-47. [PMID: 32370993 DOI: 10.1016/j.freeradbiomed.2020.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionary conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate variety of biological processes including hormone synthesis, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. Here, we review the role of Nox-mediated ROS during CNS development. Specifically, we focus on how individual Nox isoforms contribute to signaling in neural stem cell maintenance and neuronal differentiation, as well as neurite outgrowth and guidance. We also discuss how ROS regulates the organization and dynamics of the actin cytoskeleton in the neuronal growth cone. Finally, we review recent evidence that Nox-derived ROS modulate axonal regeneration upon nervous system injury.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother 2019; 111:1478-1498. [DOI: 10.1016/j.biopha.2018.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
17
|
Sarkar J, Chakraborti T, Chowdhury A, Bhuyan R, Chakraborti S. Protective role of epigallocatechin-3-gallate in NADPH oxidase-MMP2-Spm-Cer-S1P signalling axis mediated ET-1 induced pulmonary artery smooth muscle cell proliferation. J Cell Commun Signal 2019; 13:473-489. [PMID: 30661173 DOI: 10.1007/s12079-018-00501-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
The signalling pathway involving MMP-2 and sphingosine-1-phosphate (S1P) in endothelin-1 (ET-1) induced pulmonary artery smooth muscle cell (PASMC) proliferation is not clearly known. We, therefore, investigated the role of NADPH oxidase derived O2.--mediated modulation of MMP2-sphingomyeline-ceramide-S1P signalling axis in ET-1 induced increase in proliferation of PASMCs. Additionally, protective role of the tea cathechin, epigallocatechin-3-gallate (EGCG), if any, in this scenario has also been explored. ET-1 markedly increased NADPH oxidase and MMP-2 activities and proliferation of bovine pulmonary artery smooth muscle cells (BPASMCs). ET-1 also caused significant increase in sphingomyelinase (SMase) activity, ERK1/2 and sphingosine kinase (SPHK) phosphorylations, and S1P level in the cells. EGCG inhibited ET-1 induced increase in SMase activity, ERK1/2 and SPHK phosphorylations, S1P level and the SMC proliferation. EGCG also attenuated ET-1 induced activation of MMP-2 by inhibiting NADPH oxidase activity upon inhibiting the association of the NADPH oxidase components, p47phox and p67phox in the cell membrane. Molecular docking study revealed a marked binding affinity of p47phox with the galloyl group of EGCG. Overall, our study suggest that ET-1 induced proliferation of the PASMCs occurs via NADPH oxidase-MMP2- Spm- Cer-S1P signalling axis, and EGCG attenuates ET-1 induced increase in proliferation of the cells by inhibiting NADPH oxidase activity.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Rajabrata Bhuyan
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
18
|
Zhong J, Olsson LM, Urbonaviciute V, Yang M, Bäckdahl L, Holmdahl R. Association of NOX2 subunits genetic variants with autoimmune diseases. Free Radic Biol Med 2018. [PMID: 29526808 DOI: 10.1016/j.freeradbiomed.2018.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A single nucleotide polymorphism in Ncf1 has been found with a major effect on chronic inflammatory autoimmune diseases in the rat with the surprising observation that a lower reactive oxygen response led to more severe diseases. This finding was subsequently reproduced in the mouse and the effect operates in many different murine diseases through different pathogenic pathways; like models for rheumatoid arthritis, encephalomyelitis, lupus, gout, psoriasis and psoriatic arthritis. The human gene is located in an unstable region with many variable sequence repetitions, which means it has not been included in any genome wide associated screens so far. However, identification of copy number variations and single nucleotide polymorphisms has now clearly shown that major autoimmune diseases are strongly associated with the Ncf1 locus. In systemic lupus erythematosus the associated Ncf1 polymorphism (leading to an amino acid substitution at position 90) is the strongest locus and is associated with a lower reactive oxidative burst response. In addition, more precise mapping analysis of polymorphism of other NOX2 genes reveals that these are also associated with autoimmunity. The identified genetic association shows the importance of redox control and that ROS regulate chronic inflammation instead of promoting it. The genetic identification of Ncf1 polymorphisms now opens for relevant studies of the regulatory mechanisms involved, effects that will have severe consequences in many different pathogenic pathways and understanding of the origin of autoimmune diseases.
Collapse
Affiliation(s)
- Jianghong Zhong
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Lina M Olsson
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Vilma Urbonaviciute
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Min Yang
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Liselotte Bäckdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
19
|
Montezano AC, De Lucca Camargo L, Persson P, Rios FJ, Harvey AP, Anagnostopoulou A, Palacios R, Gandara ACP, Alves-Lopes R, Neves KB, Dulak-Lis M, Holterman CE, de Oliveira PL, Graham D, Kennedy C, Touyz RM. NADPH Oxidase 5 Is a Pro-Contractile Nox Isoform and a Point of Cross-Talk for Calcium and Redox Signaling-Implications in Vascular Function. J Am Heart Assoc 2018; 7:e009388. [PMID: 29907654 PMCID: PMC6220544 DOI: 10.1161/jaha.118.009388] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/07/2018] [Indexed: 12/02/2022]
Abstract
BACKGROUND NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. METHODS AND RESULTS Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N-acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). CONCLUSIONS Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | - Patrik Persson
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Adam P Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | - Roberto Palacios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Ana Caroline P Gandara
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo De Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Maria Dulak-Lis
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Chet E Holterman
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Pedro Lagerblad de Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo De Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Christopher Kennedy
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
20
|
nox2/cybb Deficiency Affects Zebrafish Retinotectal Connectivity. J Neurosci 2018; 38:5854-5871. [PMID: 29793976 DOI: 10.1523/jneurosci.1483-16.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 04/30/2018] [Accepted: 05/13/2018] [Indexed: 01/28/2023] Open
Abstract
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) have been linked to neuronal polarity, axonal outgrowth, cerebellar development, regeneration of sensory axons, and neuroplasticity. However, the specific roles that individual Nox isoforms play during nervous system development in vivo remain unclear. To address this problem, we investigated the role of Nox activity in the development of retinotectal connections in zebrafish embryos. Zebrafish broadly express four nox genes (nox1, nox2/cybb, nox5, and duox) throughout the CNS during early development. Application of a pan-Nox inhibitor, celastrol, during the time of optic nerve (ON) outgrowth resulted in significant expansion of the ganglion cell layer (GCL), thinning of the ON, and a decrease in retinal axons reaching the optic tectum (OT). With the exception of GCL expansion, these effects were partially ameliorated by the addition of H2O2, a key ROS involved in Nox signaling. To address isoform-specific Nox functions, we used CRISPR/Cas9 to generate mutations in each zebrafish nox gene. We found that nox2/cybb chimeric mutants displayed ON thinning and decreased OT innervation. Furthermore, nox2/cybb homozygous mutants (nox2/cybb-/-) showed significant GCL expansion and mistargeted retinal axons in the OT. Neurite outgrowth from cultured zebrafish retinal ganglion cells was reduced by Nox inhibitors, suggesting a cell-autonomous role for Nox in these neurons. Collectively, our results show that Nox2/Cybb is important for retinotectal development in zebrafish.SIGNIFICANCE STATEMENT Most isoforms of NADPH oxidase (Nox) only produce reactive oxygen species (ROS) when activated by an upstream signal, making them ideal candidates for ROS signaling. Nox enzymes are present in neurons and their activity has been shown to be important for neuronal development and function largely by in vitro studies. However, whether Nox is involved in the development of axons and formation of neuronal connections in vivo has remained unclear. Using mutant zebrafish embryos, this study shows that a specific Nox isoform, Nox2/Cybb, is important for the establishment of axonal connections between retinal ganglion cells and the optic tectum.
Collapse
|
21
|
Li TB, Zhang YZ, Liu WQ, Zhang JJ, Peng J, Luo XJ, Ma QL. Correlation between NADPH oxidase-mediated oxidative stress and dysfunction of endothelial progenitor cell in hyperlipidemic patients. Korean J Intern Med 2018; 33:313-322. [PMID: 28899085 PMCID: PMC5840593 DOI: 10.3904/kjim.2016.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/19/2016] [Accepted: 10/13/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/AIMS NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (NOX)-mediated oxidative stress plays a key role in promotion of oxidative injury in the cardiovascular system. The aim of this study is to evaluate the status of NOX in endothelial progenitor cells (EPCs) of hyperlipidemic patients and to assess the correlation between NOX activity and the functions EPCs. METHODS A total of 30 hyperlipidemic patients were enrolled for this study and 30 age-matched volunteers with normal level of plasma lipids served as controls. After the circulating EPCs were isolated, the EPC functions (migration, adhesion and tube formation) were evaluated and the status of NOX (expression and activity) was examined. RESULTS Compared to the controls, hyperlipidemic patients showed an increase in plasma lipids and a reduction in EPC functions including the attenuated abilities in adhesion, migration and tube formation, concomitant with an increase in NOX expression (NOX2 and NOX4), NOX activity, and reactive oxygen species production. The data analysis showed negative correlations between NOX activity and EPC functions. CONCLUSIONS There is a positive correlation between the NOX-mediated oxidative stress and the dysfunctions of circulating EPCs in hyperlipidemic patients, and suppression of NOX might offer a novel strategy to improve EPCs functions in hyperlipidemia.
Collapse
Affiliation(s)
- Ting-Bo Li
- Department of Laboratory Medicine, Xiangya School of Medicine, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yin-Zhuang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Qi Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Jie Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Changsha, China
- Correspondence to Xiu-Ju Luo, Ph.D. Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, 172 Tong Zi Po Rd, Changsha 410013, China Tel: +86-731-82650348 Fax: +86-731-82650348 E-mail:
| | - Qi-Lin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Abstract
Tyrosine kinase substrate (Tks) adaptor proteins are considered important regulators of various physiological and/or pathological processes, particularly cell migration and invasion, and cancer progression. These proteins contain PX and SH3 domains, and act as scaffolds, bringing membrane and cellular components in close proximity in structures known as invadopodia or podosomes. Tks proteins, analogous to the related proteins p47phox, p40phox and NoxO1, also facilitate local generation of reactive oxygen species (ROS), which aid in signaling at invadopodia and/or podosomes to promote their activity. As their name suggests, Tks adaptor proteins are substrates for tyrosine kinases, especially Src. In this Cell Science at a Glance article and accompanying poster, we discuss the known structural and functional aspects of Tks adaptor proteins. As the science of Tks proteins is evolving, this article will point out where we stand and what still needs to be explored. We also underscore pathological conditions involving these proteins, providing a basis for future research to develop therapies for treatment of these diseases.
Collapse
Affiliation(s)
- Priyanka Saini
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Sara A Courtneidge
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
23
|
Lin SC, Chang IW, Hsieh PL, Lin CY, Sun DP, Sheu MJ, Yang CC, Lin LC, He HL, Tian YF. High Immunoreactivity of DUOX2 Is Associated With Poor Response to Preoperative Chemoradiation Therapy and Worse Prognosis in Rectal Cancers. J Cancer 2017; 8:2756-2764. [PMID: 28928864 PMCID: PMC5604207 DOI: 10.7150/jca.19545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/25/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose: Colorectal cancer is the third most common cancer and also the fourth most common cause of cancer mortality worldwide. For rectal cancer, neoadjuvant concurrent chemoradiotherapy (CCRT) followed by radical proctectomy is gold standard treatment for patients with stage II/III rectal cancer. By data mining a documented database of rectal cancer transcriptome (GSE35452) from Gene Expression Omnibus, National Center of Biotechnology Information, we recognized that DUOX2 was the most significantly up-regulated transcript among those related to cytokine and chemokine mediated signaling pathway (GO:0019221). Hence, the aim of this study was to assess the DUOX2 expression level and its clinicopathological correlation and prognostic significance in patients of rectal cancer. Materials and Methods: DUOX2 immunostain was performed in 172 rectal adenocarcinomas treated with preoperative CCRT followed by radical proctectomy, which were divided into high- and low-expression subgroups. Furthermore, statistical analyses were examined to correlate the relationship between DUOX2 immunoreactivity and important clinical and pathological characteristics, as well as three survival indices: disease-specific survival (DSS), local recurrence-free survival (LRFS) and metastasis-free survival (MeFS). Results: DUOX2 overexpression was linked to post-CCRT tumor advancement, pre- and post-CCRT nodal metastasis and poor response to CCRT (all P ≤ 0.021). Furthermore, DUOX2 high expression was significantly associated with inferior DSS, LRFS and MeFS in univariate analysis (P ≤ 0.0097) and also served as an independent prognosticator indicating shorter DSS and LRFS interval in multivariate analysis (hazard ratio (HR) = 3.413, 95% confidence interval (CI): 1.349-8.633; HR = 4.533, 95% CI: 1.499-13.708, respectively). Conclusion: DUOX2 may play a pivotal role in carcinogenesis, tumor progression and response to neoadjuvant CCRT in rectal cancers, and serve as a novel prognostic biomarker. Additional researches to clarify the molecular and biochemical pathways are essential for developing promising DUOX2-targeted therapies for patients with rectal cancers.
Collapse
Affiliation(s)
- Shih-Chun Lin
- Division of Clinical Pathology, Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - I-Wei Chang
- Division of Clinical Pathology, Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Ling Hsieh
- Department of Medical Image, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Yih Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan.,Department of Leisure, Recreation, and Tourism Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ding-Ping Sun
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ming-Jen Sheu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Hong-Lin He
- Division of Anatomical Pathology, Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.,Department of Health & Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
24
|
Kim E, Kim W, Lee S, Chun J, Kang J, Park G, Han I, Yang HJ, Youn H, Youn B. TRAF4 promotes lung cancer aggressiveness by modulating tumor microenvironment in normal fibroblasts. Sci Rep 2017; 7:8923. [PMID: 28827764 PMCID: PMC5566719 DOI: 10.1038/s41598-017-09447-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Normal fibroblasts surrounding tumor cells play a crucial role in cancer progression through formation of the tumor microenvironment. Because factors secreted from normal fibroblasts can modulate the tumor microenvironment, it is necessary to identify key factors associated with regulation of secreted factors and to investigate the molecular mechanisms contributing to the tumor microenvironment formation process. In this study, we found that radiation induced the expression and K63-linkage poly-ubiquitination of TRAF4 in normal lung fibroblasts. The K63-linkage poly-ubiquitinated TRAF4 formed complexes with NOX2 or NOX4 by mediating phosphorylated p47-phox in normal lung fibroblasts. Moreover, we showed that TRAF4 stabilized NOX complexes by decreasing lysosomal degradation of NOX2 and NOX4 after irradiation. NOX complexes increased endosomal ROS levels that were permeable into cytoplasm, leading to NF-κB-mediated ICAM1 up-regulation. Soluble ICAM1 was subsequently secreted into conditioned media of radiation-activated normal lung fibroblasts. The conditioned media from irradiated normal fibroblasts enhanced proliferation and epithelial-mesenchymal transition of non-small cell lung cancer cells both in vitro and in vivo. These results demonstrate that TRAF4 in irradiated fibroblasts is positively associated with aggressiveness of adjacent cancer cells by altering the tumor microenvironment. Thus, we suggest that regulation of TRAF4 might be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- EunGi Kim
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Department of Biology Education, Korea National University of Education, Cheongju, 28173, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Jahyun Chun
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - JiHoon Kang
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Gaeul Park
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - IkJoon Han
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee Jung Yang
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
25
|
Gandara ACP, Torres A, Bahia AC, Oliveira PL, Schama R. Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase. BMC Evol Biol 2017; 17:92. [PMID: 28356077 PMCID: PMC5372347 DOI: 10.1186/s12862-017-0940-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropod genes. In arthropods, only NOX5 and DUOX genes have been found and a gene called NOXm was found in mosquitoes but its origin and function has not been examined. In this study, we analyzed the evolution of this gene family in arthropods. A thorough search of genomes and transcriptomes was performed enabling us to browse most branches of arthropod phylogeny. RESULTS We have found that the subfamilies NOX5 and DUOX are present in all arthropod groups. We also show that a NOX gene, closely related to NOX4 and previously found only in mosquitoes (NOXm), can also be found in other taxonomic groups, leading us to rename it as NOX4-art. Although the accessory protein p22-phox, essential for NOX1-4 activation, was not found in any of the arthropods studied, NOX4-art of Aedes aegypti encodes an active protein that produces H2O2. Although NOX4-art has been lost in a number of arthropod lineages, it has all the domains and many signature residues and motifs necessary for ROS production and, when silenced, H2O2 production is considerably diminished in A. aegypti cells. CONCLUSIONS Combining all bioinformatic analyses and laboratory work we have reached interesting conclusions regarding arthropod NOX gene family evolution. NOX5 and DUOX are present in all arthropod lineages but it seems that a NOX2-like gene was lost in the ancestral lineage leading to Ecdysozoa. The NOX4-art gene originated from a NOX4-like ancestor and is functional. Although no p22-phox was observed in arthropods, there was no evidence of neo-functionalization and this gene probably produces H2O2 as in other metazoan NOX4 genes. Although functional and present in the genomes of many species, NOX4-art was lost in a number of arthropod lineages.
Collapse
Affiliation(s)
- Ana Caroline Paiva Gandara
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - André Torres
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Cristina Bahia
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
| | - Renata Schama
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Peng JJ, Liu B, Xu JY, Peng J, Luo XJ. NADPH oxidase: its potential role in promotion of pulmonary arterial hypertension. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:331-338. [PMID: 28190244 DOI: 10.1007/s00210-017-1359-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/03/2017] [Indexed: 12/27/2022]
Abstract
NADPH oxidases (NOXs) are a group of enzymes for superoxide anion (O2·- ) generation through transferring electrons from NADPH to molecular oxygen, which is rapidly converted into hydrogen peroxide (H2O2). There are seven members in NOX family, including NOX1 to NOX5, dual oxidase1, and dual oxidase 2. Recent studies have demonstrated that NOX subtypes may have different functions in different types of pulmonary arterial hypertension (PAH). The NOX-derived reactive oxygen species (ROS) are key factors that are involved in promoting the processes of pulmonary vascular remodeling, such as endothelial dysfunction, proliferation of pulmonary arterial smooth muscle cells (PASMCs), and cellular trans-differentiation, which are the basic pathologic characteristics of PAH. Inhibition of NOX shows beneficial effect on prevention of PAH development. Thus, NOX might be a potential target for PAH therapy. The main purpose of this review is to summarize recent findings on the role of NOX, particularly the NOX subtypes, in promotion of PAH development and to list recent progress regarding the NOX-based intervention for PAH.
Collapse
Affiliation(s)
- Jing-Jie Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Bin Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jin-Yun Xu
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
27
|
Heppner DE, Janssen-Heininger YMW, van der Vliet A. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies. Arch Biochem Biophys 2017; 616:40-46. [PMID: 28126370 DOI: 10.1016/j.abb.2017.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
Abstract
The reversible oxidation of protein cysteine residues is well recognized as an important regulatory mechanism in redox-dependent cell signaling. Cysteine oxidation is diverse in nature and involves various post-translational modifications (sulfenic acids, disulfides, etc.) and the specific functional or structural impact of these specific oxidative events is still poorly understood. The proximal product of protein cysteine oxidation by biological reactive oxygen species (ROS) is sulfenic acid (Cys-SOH), and experimental evidence is accruing for the formation of Cys-SOH as intermediate in protein cysteine oxidation in various biological settings. However, the plausibility of protein Cys-SH oxidation by ROS has often been put in question because of slow reaction kinetics compared to more favorable reactions with abundant thiol-based reductants such as peroxiredoxins (Prx) or glutathione (GSH). This commentary aims to address this controversy by highlighting the unique physical properties in cells that may restrict ROS diffusion and allow otherwise less favorable cysteine oxidation of proteins. Some limitations of analytical tools to assess Cys-SOH are also discussed. We conclude that formation of Cys-SOH in biological systems cannot always be predicted based on kinetic analyses in homogenous solution, and may be facilitated by unique structural and physical properties of Cys-containing proteins within e.g. signaling complexes.
Collapse
Affiliation(s)
- David E Heppner
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, United States
| | | | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
28
|
DUOX2 Expression Is Increased in Barrett Esophagus and Cancerous Tissues of Stomach and Colon. Gastroenterol Res Pract 2015; 2016:1835684. [PMID: 26839536 PMCID: PMC4709674 DOI: 10.1155/2016/1835684] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Aim. To detect the expression of dual oxidase (DUOX) 2 in Barrett esophagus, gastric cancer, and colorectal cancer (CRC). Materials and Methods. The endoscopic biopsies were collected from patients with Barrett esophagus, while the curative resection tissues were obtained from patients with gastric cancer, CRC, or hepatic carcinoma. The DUOX2 protein and mRNA levels were detected with immunohistochemistry (IHC) and real-time quantitative PCR (qPCR). The correlation of DUOX2 expression with clinicopathological parameters of tumors was identified. Results. Low levels of DUOX2 mRNA were detected in Barrett esophagus and the adjacent normal tissues, and there was no difference between these two groups. DUOX2 protein was found in Barrett esophagus and undetectable in the normal epithelium. The DUOX2 mRNA and protein levels in the gastric cancer and CRC were increased compared to the adjacent nonmalignant tissues. The elevated DUOX2 in the gastric cancer was significantly associated with smoking history. In CRC tissues, the DUOX2 protein expression level in stages II–IV was significantly higher than that in stage I. In both hepatic carcinoma and the adjacent nonmalignant tissue, the DUOX2 was virtually undetectable. Conclusion. DUOX2 in Barrett esophagus, gastric cancer, and CRC may be involved in the tumorigenesis of these tissues.
Collapse
|
29
|
Havixbeck JJ, Barreda DR. Neutrophil Development, Migration, and Function in Teleost Fish. BIOLOGY 2015; 4:715-34. [PMID: 26561837 PMCID: PMC4690015 DOI: 10.3390/biology4040715] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
It is now widely recognized that neutrophils are sophisticated cells that are critical to host defense and the maintenance of homeostasis. In addition, concepts such as neutrophil plasticity are helping to define the range of phenotypic profiles available to cells in this group and the physiological conditions that contribute to their differentiation. Herein, we discuss key features of the life of a teleost neutrophil including their development, migration to an inflammatory site, and contributions to pathogen killing and the control of acute inflammation. The potent anti-microbial mechanisms elicited by these cells in bony fish are a testament to their long-standing evolutionary contributions in host defense. In addition, recent insights into their active roles in the control of inflammation prior to induction of apoptosis highlight their importance to the maintenance of host integrity in these early vertebrates. Overall, our goal is to summarize recent progress in our understanding of this cell type in teleost fish, and to provide evolutionary context for the contributions of this hematopoietic lineage in host defense and an efficient return to homeostasis following injury or infection.
Collapse
Affiliation(s)
- Jeffrey J Havixbeck
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada.
| | - Daniel R Barreda
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada.
| |
Collapse
|
30
|
He W, Shi F, Zhou ZW, Li B, Zhang K, Zhang X, Ouyang C, Zhou SF, Zhu X. A bioinformatic and mechanistic study elicits the antifibrotic effect of ursolic acid through the attenuation of oxidative stress with the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in human hepatic stellate cells and rat liver. Drug Des Devel Ther 2015; 9:3989-4104. [PMID: 26347199 PMCID: PMC4529259 DOI: 10.2147/dddt.s85426] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NADPH oxidases (NOXs) are a predominant mediator of redox homeostasis in hepatic stellate cells (HSCs), and oxidative stress plays an important role in the pathogenesis of liver fibrosis. Ursolic acid (UA) is a pentacyclic triterpenoid with various pharmacological activities, but the molecular targets and underlying mechanisms for its antifibrotic effect in the liver remain elusive. This study aimed to computationally predict the molecular interactome and mechanistically investigate the antifibrotic effect of UA on oxidative stress, with a focus on NOX4 activity and cross-linked signaling pathways in human HSCs and rat liver. Drug-drug interaction via chemical-protein interactome tool, a server that can predict drug-drug interaction via chemical-protein interactome, was used to predict the molecular targets of UA, and Database for Annotation, Visualization, and Integrated Discovery was employed to analyze the signaling pathways of the predicted targets of UA. The bioinformatic data showed that there were 611 molecular proteins possibly interacting with UA and that there were over 49 functional clusters responding to UA. The subsequential benchmarking data showed that UA significantly reduced the accumulation of type I collagen in HSCs in rat liver, increased the expression level of MMP-1, but decreased the expression level of TIMP-1 in HSC-T6 cells. UA also remarkably reduced the gene expression level of type I collagen in HSC-T6 cells. Furthermore, UA remarkably attenuated oxidative stress via negative regulation of NOX4 activity and expression in HSC-T6 cells. The employment of specific chemical inhibitors, SB203580, LY294002, PD98059, and AG490, demonstrated the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in the regulatory effect of UA on NOX4 activity and expression. Collectively, the antifibrotic effect of UA is partially due to the oxidative stress attenuating effect through manipulating NOX4 activity and expression. The results suggest that UA may act as a promising antifibrotic agent. More studies are warranted to evaluate the safety and efficacy of UA in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Wenhua He
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Feng Shi
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Bimin Li
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Kunhe Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Xinhua Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Canhui Ouyang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xuan Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
31
|
Abstract
Endothelial progenitor cells (EPCs) play a critical role in maintenance of the endothelial integrity and vascular homeostasis, as well as in neovascularization. Dysfunctional EPCs are believed to contribute to the endothelial dysfunction and are closely related to the development of various cardiovascular diseases, such as hypertension, hyperlipidemia, and stroke. However, the underlying mechanisms of EPC dysfunction are complicated and remain largely elusive. Recent studies have demonstrated that reactive oxygen species (ROS) are key factors that involve in modulation of stem and progenitor cell function under various physiologic and pathologic conditions. It has been shown that NADPH oxidase (NOX)-derived ROS are the major sources of ROS in cardiovascular system. Accumulating evidence suggests that NOX-mediated oxidative stress can modulate EPC bioactivities, such as mobilization, migration, and neovascularization, and that inhibition of NOX has been shown to improve EPC functions. This review summarized recent progress in the studies on the correlation between NOX-mediated EPC dysfunction and cardiovascular diseases.
Collapse
|
32
|
Lee JS, Ahn JH, Cho YJ, Kim HY, Yang YI, Lee KT, Jang DS, Choi JH. α-Terthienylmethanol, isolated from Eclipta prostrata, induces apoptosis by generating reactive oxygen species via NADPH oxidase in human endometrial cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:426-34. [PMID: 25940205 DOI: 10.1016/j.jep.2015.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 04/11/2015] [Accepted: 04/18/2015] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta prostrate L. (syn. E. alba Hassk), commonly known as False Daisy, has been used in traditional medicine in Asia to treat a variety of diseases, including cancer. Although an anti-tumor effect has been suggested for E. prostrata, the exact anti-tumor effects and underlying molecular mechanisms of its bioactive compounds are poorly understood. The aim of this study was to identify compounds with anti-cancer activity from E. prostrata and to investigate their mechanism of action. MATERIALS AND METHODS To assess cell viability, cell cycle progression, and apoptosis, we performed MTT assays and FACS analysis using Annexin and PI staining. We also investigated reactive oxygen species (ROS) production and caspase activation using flow cytometry and Western blot analysis, respectively. Cytosolic translocation of cytochrome c was measured using an ELISA kit. Antioxidants, MAPK signaling inhibitors, NADPH oxidase inhibitors, and siRNA were used to elucidate the molecular mechanism of action of the compound. RESULTS We isolated five terthiophenes from the n-hexane fraction of E. prostrata; of these, α-terthienylmethanol possessed potent cytotoxic activity against human endometrial cancer cells (Hec1A and Ishikawa) (IC50<1μM). The growth inhibitory effect of α-terthienylmethanol was mediated by the induction of apoptosis, as shown by the accumulation of sub-G1 and apoptotic cells. In addition, α-terthienylmethanol triggered caspase activation and cytochrome c release into the cytosol in a time-dependent manner. Moreover, α-terthienylmethanol increased the intracellular level of ROS and decreased that of GSH, and the antioxidants N-acetyl-l-cysteine and catalase significantly attenuated α-terthienylmethanol-induced apoptosis. We further demonstrated that inhibition of the NADPH oxidase attenuated α-terthienylmethanol-induced cell death and ROS accumulation in endometrial cancer cells. CONCLUSION Overall, these results suggest that α-terthienylmethanol, a naturally occurring terthiophene isolated from E. prostrata, induces apoptosis in human endometrial cancer cells by ROS production, partially via NADPH oxidase.
Collapse
Affiliation(s)
- Jae-Seung Lee
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Ji-Hye Ahn
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Yoon-Jin Cho
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Ha-Yeong Kim
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Yeong-In Yang
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Kyung-Tae Lee
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea
| | - Dae-Sik Jang
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Jung-Hye Choi
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
33
|
Breitenbach M, Weber M, Rinnerthaler M, Karl T, Breitenbach-Koller L. Oxidative stress in fungi: its function in signal transduction, interaction with plant hosts, and lignocellulose degradation. Biomolecules 2015; 5:318-42. [PMID: 25854186 PMCID: PMC4496675 DOI: 10.3390/biom5020318] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 12/29/2022] Open
Abstract
In this review article, we want to present an overview of oxidative stress in fungal cells in relation to signal transduction, interaction of fungi with plant hosts, and lignocellulose degradation. We will discuss external oxidative stress which may occur through the interaction with other microorganisms or plant hosts as well as internally generated oxidative stress, which can for instance originate from NADPH oxidases or “leaky” mitochondria and may be modulated by the peroxiredoxin system or by protein disulfide isomerases thus contributing to redox signaling. Analyzing redox signaling in fungi with the tools of molecular genetics is presently only in its beginning. However, it is already clear that redox signaling in fungal cells often is linked to cell differentiation (like the formation of perithecia), virulence (in plant pathogens), hyphal growth and the successful passage through the stationary phase.
Collapse
Affiliation(s)
- Michael Breitenbach
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Manuela Weber
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Thomas Karl
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Lore Breitenbach-Koller
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
34
|
Rehan VK, Torday JS. The lung alveolar lipofibroblast: an evolutionary strategy against neonatal hyperoxic lung injury. Antioxid Redox Signal 2014; 21:1893-904. [PMID: 24386954 PMCID: PMC4202930 DOI: 10.1089/ars.2013.5793] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/05/2014] [Indexed: 01/28/2023]
Abstract
SIGNIFICANCE Oxygen, the main mode of support for premature infants with immature lungs, can cause toxicity by producing reactive oxygen species (ROS) that disrupt homeostasis; yet, these same molecules were entrained to promote vertebrate lung phylogeny. By providing a deeper understanding of this paradox, we propose physiologically rational strategies to prevent chronic lung disease (CLD) of prematurity. RECENT ADVANCES To prevent neonatal hyperoxic lung damage biologically, we have exploited the alveolar defense mechanism(s) that evolutionarily evolved to combat increased atmospheric oxygen during the vertebrate water to land transition. CRITICAL ISSUES Over the course of vertebrate lung evolution, ROS promoted the formation of lipofibroblasts, specialized adepithelial cells, which protect the alveoli against oxidant injury; peroxisome proliferator-activated receptor gamma (PPARγ), the master switch for lipofibroblast differentiation, prevents such oxidant lung injury, both by directly promoting mesodermal differentiation and its antioxidant defenses, and indirectly by stimulating the developmental epithelial-mesenchymal paracrine interactions that have physiologically determined lung surfactant production in accord with the lung's phylogenetic adaptation to atmospheric oxygen, preventing Respiratory Distress Syndrome at birth. FUTURE DIRECTIONS The molecular strategy (PPARγ agonists) to prevent CLD of prematurity, proposed by us, although seems to be robust, effective, and safe under experimental conditions, it awaits detailed pharmacokinetic and pharmacodynamic studies for its safe and effective clinical translation to human infants. Antioxid. Redox Signal. 21, 1893-1904. "I have procured air [oxygen]…between five and six times as good as the best common air that I have ever met with." -Joseph Priestley, 1775.
Collapse
Affiliation(s)
- Virender K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, California
| | | |
Collapse
|
35
|
Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon. Nat Commun 2014; 5:4627. [PMID: 25115909 PMCID: PMC4143918 DOI: 10.1038/ncomms5627] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/08/2014] [Indexed: 12/19/2022] Open
Abstract
Controlled release of chromatin from the nuclei of inflammatory cells is a process that entraps and kills microorganisms in the extracellular environment. Now termed ETosis, it is important for innate immunity in vertebrates. Paradoxically, however, in mammals, it can also contribute to certain pathologies. Here we show that ETosis occurs in several invertebrate species, including, remarkably, an acoelomate. Our findings reveal that the phenomenon is primordial and predates the evolution of the coelom. In invertebrates, the released chromatin participates in defence not only by ensnaring microorganisms and externalizing antibacterial histones together with other haemocyte-derived defence factors, but crucially, also provides the scaffold on which intact haemocytes assemble during encapsulation; a response that sequesters and kills potential pathogens infecting the body cavity. This insight into the early origin of ETosis identifies it as a very ancient process that helps explain some of its detrimental effects in mammals. The process of controlled chromatin release from the nuclei of inflammatory cells to entrap and kill bacteria, termed ETosis, is important in innate immunity in vertebrates. Here the authors demonstrate that ETosis, mediated by hematocytes, also contributes to defence mechanisms in invertebrates.
Collapse
|
36
|
Olavarría VH, Valdivia S, Salas B, Villalba M, Sandoval R, Oliva H, Valdebenito S, Yañez A. ISA virus regulates the generation of reactive oxygen species and p47phox expression in a p38 MAPK-dependent manner in Salmo salar. Mol Immunol 2014; 63:227-34. [PMID: 25124144 DOI: 10.1016/j.molimm.2014.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/01/2014] [Accepted: 07/05/2014] [Indexed: 10/24/2022]
Abstract
Several viruses, including Orthomyxovirus, utilize cellular reactive oxygen species (ROS) for viral genomic replication and survival within host cells. However, the role of ROS in early events of viral entry and signal induction has not been elucidated. Here, we show that ISA virus (ISAV) induces ROS production very early during infection of CHSE-214 and SHK-1Ycells, and that production is sustained over the observed 24h post-infection. The mitogen-activated protein kinase (MAPK) family is responsible for important signaling pathways. In this study, we report that ISAV activates ERK and p38 in Salmo salar. In salmonid macrophages, while ERK was required for SOD, GLURED, p47phox expression, p38 regulated the ROS production by the NADPH oxidase complex activation. These results, together with the presence of several consensus target motifs for p38 MAPK in the promoter of the S. salar p47phox gene, suggest that p38 MAPK regulates p47phox gene expression in fish through the activation of this key transcription factor.
Collapse
Affiliation(s)
- Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| | - Sharin Valdivia
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Boris Salas
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Rodrigo Sandoval
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Harold Oliva
- Veterquímica, Lonquén10.387, Maipú, Santiago Chile
| | | | - Alejandro Yañez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
37
|
Oxygen radicals elicit paralysis and collapse of spinal cord neuron growth cones upon exposure to proinflammatory cytokines. BIOMED RESEARCH INTERNATIONAL 2014; 2014:191767. [PMID: 25050325 PMCID: PMC4090484 DOI: 10.1155/2014/191767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 11/27/2022]
Abstract
A persistent inflammatory and oxidative stress is a hallmark of most chronic CNS pathologies (Alzheimer's (ALS)) as well as the aging CNS orchestrated by the proinflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β). Loss of the integrity and plasticity of neuronal morphology and connectivity comprises an early step in neuronal degeneration and ultimate decline of cognitive function. We examined in vitro whether TNFα or IL-1β impaired morphology and motility of growth cones in spinal cord neuron cultures. TNFα and IL-1β paralyzed growth cone motility and induced growth cone collapse in a dose-dependent manner reflected by complete attenuation of neurite outgrowth. Scavenging reactive oxygen species (ROS) or inhibiting NADPH oxidase activity rescued loss of neuronal motility and morphology. TNFα and IL-1β provoked rapid, NOX-mediated generation of ROS in advancing growth cones, which preceded paralysis of motility and collapse of morphology. Increases in ROS intermediates were accompanied by an aberrant, nonproductive reorganization of actin filaments. These findings suggest that NADPH oxidase serves as a pivotal source of oxidative stress in neurons and together with disruption of actin filament reorganization contributes to the progressive degeneration of neuronal morphology in the diseased or aging CNS.
Collapse
|
38
|
Pacini N, Borziani F. Cancer stem cell theory and the warburg effect, two sides of the same coin? Int J Mol Sci 2014; 15:8893-930. [PMID: 24857919 PMCID: PMC4057766 DOI: 10.3390/ijms15058893] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Over the last 100 years, many studies have been performed to determine the biochemical and histopathological phenomena that mark the origin of neoplasms. At the end of the last century, the leading paradigm, which is currently well rooted, considered the origin of neoplasms to be a set of genetic and/or epigenetic mutations, stochastic and independent in a single cell, or rather, a stochastic monoclonal pattern. However, in the last 20 years, two important areas of research have underlined numerous limitations and incongruities of this pattern, the hypothesis of the so-called cancer stem cell theory and a revaluation of several alterations in metabolic networks that are typical of the neoplastic cell, the so-called Warburg effect. Even if this specific “metabolic sign” has been known for more than 85 years, only in the last few years has it been given more attention; therefore, the so-called Warburg hypothesis has been used in multiple and independent surveys. Based on an accurate analysis of a series of considerations and of biophysical thermodynamic events in the literature, we will demonstrate a homogeneous pattern of the cancer stem cell theory, of the Warburg hypothesis and of the stochastic monoclonal pattern; this pattern could contribute considerably as the first basis of the development of a new uniform theory on the origin of neoplasms. Thus, a new possible epistemological paradigm is represented; this paradigm considers the Warburg effect as a specific “metabolic sign” reflecting the stem origin of the neoplastic cell, where, in this specific metabolic order, an essential reason for the genetic instability that is intrinsic to the neoplastic cell is defined.
Collapse
Affiliation(s)
- Nicola Pacini
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| | - Fabio Borziani
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| |
Collapse
|
39
|
Abstract
The first animals arose more than six hundred million years ago, yet they left little impression in the fossil record. Nonetheless, the cell biology and genome composition of the first animal, the Urmetazoan, can be reconstructed through the study of phylogenetically relevant living organisms. Comparisons among animals and their unicellular and colonial relatives reveal that the Urmetazoan likely possessed a layer of epithelium-like collar cells, preyed on bacteria, reproduced by sperm and egg, and developed through cell division, cell differentiation, and invagination. Although many genes involved in development, body patterning, immunity, and cell-type specification evolved in the animal stem lineage or after animal origins, several gene families critical for cell adhesion, signaling, and gene regulation predate the origin of animals. The ancestral functions of these and other genes may eventually be revealed through studies of gene and genome function in early-branching animals and their closest non-animal relatives.
Collapse
Affiliation(s)
- Daniel J Richter
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200; ,
| | | |
Collapse
|
40
|
Rose SL, Fulton JM, Brown CM, Natale F, Van Mooy BAS, Bidle KD. Isolation and characterization of lipid rafts inEmiliania huxleyi: a role for membrane microdomains in host-virus interactions. Environ Microbiol 2014; 16:1150-66. [DOI: 10.1111/1462-2920.12357] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/05/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Suzanne L. Rose
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - James M. Fulton
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA USA
| | - Christopher M. Brown
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - Frank Natale
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA USA
| | - Kay D. Bidle
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| |
Collapse
|
41
|
Kim SH, Lee WJ. Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Front Cell Infect Microbiol 2014; 3:116. [PMID: 24455491 PMCID: PMC3887270 DOI: 10.3389/fcimb.2013.00116] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/23/2013] [Indexed: 02/06/2023] Open
Abstract
It is well-known that certain bacterial species can colonize the gut epithelium and induce inflammation in the mucosa, whereas other species are either benign or beneficial to the host. Deregulation of the gut-microbe interactions may lead to a pathogenic condition in the host, such as chronic inflammation, tissue injuries, and even cancer. However, our current understanding of the molecular mechanisms that underlie gut-microbe homeostasis and pathogenesis remains limited. Recent studies have used Drosophila as a genetic model to provide novel insights into the causes and consequences of bacterial-induced colitis in the intestinal mucosa. The present review discusses the interactions that occur between gut-associated bacteria and host gut immunity, particularly the bacterial-induced intestinal dual oxidase (DUOX) system. Several lines of evidence showed that the bacterial-modulated DUOX system is involved in microbial clearance, intestinal epithelial cell renewal (ECR), redox-dependent modulation of signaling pathways, cross-linking of biomolecules, and discrimination between symbionts and pathogens. Further genetic studies on the Drosophila DUOX system and on gut-associated bacteria with a distinct ability to activate DUOX may provide critical information related to the homeostatic inflammation as well as etiology of chronic inflammatory diseases, which will enhance our understanding on the mucosal inflammatory diseases frequently observed in the microbe-contacting epithelia of humans.
Collapse
Affiliation(s)
- Sung-Hee Kim
- School of Biological Science and Institute of Molecular Biology and Genetics, Seoul National University Seoul, South Korea ; National Creative Research Initiative Center for Symbiosystem, Seoul National University Seoul, South Korea
| | - Won-Jae Lee
- School of Biological Science and Institute of Molecular Biology and Genetics, Seoul National University Seoul, South Korea ; National Creative Research Initiative Center for Symbiosystem, Seoul National University Seoul, South Korea
| |
Collapse
|
42
|
New insights into the roles of NADPH oxidases in sexual development and ascospore germination in Sordaria macrospora. Genetics 2014; 196:729-44. [PMID: 24407906 DOI: 10.1534/genetics.113.159368] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NADPH oxidase (NOX)-derived reactive oxygen species (ROS) act as signaling determinants that induce different cellular processes. To characterize NOX function during fungal development, we utilized the genetically tractable ascomycete Sordaria macrospora. Genome sequencing of a sterile mutant led us to identify the NADPH oxidase encoding nox1 as a gene required for fruiting body formation, regular hyphal growth, and hyphal fusion. These phenotypes are shared by nor1, lacking the NOX regulator NOR1. Further phenotypic analyses revealed a high correlation between increased ROS production and hyphal fusion deficiencies in nox1 and other sterile mutants. A genome-wide transcriptional profiling analysis of mycelia and isolated protoperithecia from wild type and nox1 revealed that nox1 inactivation affects the expression of genes related to cytoskeleton remodeling, hyphal fusion, metabolism, and mitochondrial respiration. Genetic analysis of nox2, lacking the NADPH oxidase 2 gene, nor1, and transcription factor deletion mutant ste12, revealed a strict melanin-dependent ascospore germination defect, indicating a common genetic pathway for these three genes. We report that gsa3, encoding a G-protein α-subunit, and sac1, encoding cAMP-generating adenylate cyclase, act in a separate pathway during the germination process. The finding that cAMP inhibits ascospore germination in a melanin-dependent manner supports a model in which cAMP inhibits NOX2 activity, thus suggesting a link between both pathways. Our results expand the current knowledge on the role of NOX enzymes in fungal development and provide a frame to define upstream and downstream components of the NOX signaling pathways in fungi.
Collapse
|
43
|
Schürmann J, Buttermann D, Herrmann A, Giesbert S, Tudzynski P. Molecular characterization of the NADPH oxidase complex in the ergot fungus Claviceps purpurea: CpNox2 and CpPls1 are important for a balanced host-pathogen interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1151-64. [PMID: 23777432 DOI: 10.1094/mpmi-03-13-0064-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species producing NADPH oxidase (Nox) complexes are involved in defense reactions in animals and plants while they trigger infection-related processes in pathogenic fungi. Knowledge about the composition and localization of these complexes in fungi is limited; potential components identified thus far include two to three catalytical subunits, a regulatory subunit (NoxR), the GTPase Rac, the scaffold protein Bem1, and a tetraspanin-like membrane protein (Pls1). We showed that, in the biotrophic grass-pathogen Claviceps purpurea, the catalytical subunit CpNox1 is important for infection. Here, we present identification of major Nox complex partners and a functional analysis of CpNox2 and the tetraspanin CpPls1. We show that, as in other fungi, Nox complexes are important for formation of sclerotia; CpRac is, indeed, a complex partner because it interacts with CpNoxR, and CpNox1/2 and CpPls1 are associated with the endoplasmatic reticulum. However, unlike in all other fungi, Δcppls1 is more similar to Δcpnox1 than to Δcpnox2, and CpNox2 is not essential for infection. In contrast, Δcpnox2 shows even more pronounced disease symptoms, indicating that Cpnox2 controls the infection process and moderates damage to the host. These data confirm that fungal Nox complexes have acquired specific functions dependent of the lifestyle of the pathogen.
Collapse
|
44
|
Jiang J, Kang H, Song X, Huang S, Li S, Xu J. A model of interaction between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and apocynin analogues by docking method. Int J Mol Sci 2013; 14:807-17. [PMID: 23344042 PMCID: PMC3565292 DOI: 10.3390/ijms14010807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/11/2012] [Accepted: 12/24/2012] [Indexed: 12/04/2022] Open
Abstract
Some apocynin analogues have exhibited outstanding inhibition to NADPH oxidase. In this study, the key interactions between apocynin analogues and NADPH oxidase were analyzed by the docking method. The potential active site was first identified by the SiteID program combining with the key residue CYS378. Afterwards, the compounds in the training set were docked into NADPH oxidase (1K4U) under specific docking constraints to discuss the key interactions between ligands and the receptor. These key interactions were then validated by the consistence between the docking result and the experimental result of the test set. The result reveals that the Pi interaction between apocynin analogues and NADPH oxidase has a direct contribution to inhibition activities, except for H-bond formation and docking score. The key interactions might be valuable to discover and screen apocynin analogues as potent inhibitors of NADPH oxidase.
Collapse
Affiliation(s)
- Jie Jiang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (J.J.); (H.K.); (X.S.); (S.H.)
| | - Hongjun Kang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (J.J.); (H.K.); (X.S.); (S.H.)
| | - Xiaoliang Song
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (J.J.); (H.K.); (X.S.); (S.H.)
| | - Sichao Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (J.J.); (H.K.); (X.S.); (S.H.)
| | - Sha Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (J.J.); (H.K.); (X.S.); (S.H.)
- Authors to whom correspondence should be addressed; E-Mails: (S.L.); (J.X.); Tel.: +86-020-8522-3784 (S.L.); +86-020-8522-3704 (J.X.)
| | - Jun Xu
- College of Medicine, Jinan University, Guangzhou 510632, China
- Authors to whom correspondence should be addressed; E-Mails: (S.L.); (J.X.); Tel.: +86-020-8522-3784 (S.L.); +86-020-8522-3704 (J.X.)
| |
Collapse
|
45
|
Tudzynski P, Heller J, Siegmund U. Reactive oxygen species generation in fungal development and pathogenesis. Curr Opin Microbiol 2012; 15:653-9. [PMID: 23123514 DOI: 10.1016/j.mib.2012.10.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) generated by NADPH-dependent oxidases (Nox) have been shown to function as signaling molecules and to be essential for many differentiation processes in mammals and plants. There is growing evidence that ROS are important for many aspects of fungal life including vegetative hyphal growth, differentiation of conidial anastomosis tubes, fruiting body and infection structure formation, and for induction of apoptosis. Recent results from studies in fungal saprophytic and pathogenic model systems have shed new light on the role of Nox in cytoskeleton organization, the structure of Nox complexes and links to components of the apical complex, and the localization of Nox to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms Universitaet, Schlossplatz 8, D-48143 Muenster, Germany.
| | | | | |
Collapse
|
46
|
Cosentino-Gomes D, Rocco-Machado N, Meyer-Fernandes JR. Cell signaling through protein kinase C oxidation and activation. Int J Mol Sci 2012; 13:10697-10721. [PMID: 23109817 PMCID: PMC3472709 DOI: 10.3390/ijms130910697] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/02/2012] [Accepted: 08/13/2012] [Indexed: 01/15/2023] Open
Abstract
Due to the growing importance of cellular signaling mediated by reactive oxygen species (ROS), proteins that are reversibly modulated by these reactant molecules are of high interest. In this context, protein kinases and phosphatases, which act coordinately in the regulation of signal transduction through the phosphorylation and dephosphorylation of target proteins, have been described to be key elements in ROS-mediated signaling events. The major mechanism by which these proteins may be modified by oxidation involves the presence of key redox-sensitive cysteine residues. Protein kinase C (PKC) is involved in a variety of cellular signaling pathways. These proteins have been shown to contain a unique structural feature that is susceptible to oxidative modification. A large number of scientific studies have highlighted the importance of ROS as a second messenger in numerous cellular processes, including cell proliferation, gene expression, adhesion, differentiation, senescence, and apoptosis. In this context, the goal of this review is to discuss the mechanisms by which PKCs are modulated by ROS and how these processes are involved in the cellular response.
Collapse
Affiliation(s)
- Daniela Cosentino-Gomes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; E-Mails: (N.R.-M.); (J.R.M.-F.)
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-21-2562-6781; Fax: +55-21-2270-8647
| | - Nathália Rocco-Machado
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; E-Mails: (N.R.-M.); (J.R.M.-F.)
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; E-Mails: (N.R.-M.); (J.R.M.-F.)
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
47
|
The NADPH oxidase family and its inhibitors. Arch Immunol Ther Exp (Warsz) 2012; 60:277-94. [PMID: 22696046 DOI: 10.1007/s00005-012-0176-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/27/2012] [Indexed: 12/16/2022]
Abstract
The classical nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was originally detected in neutrophils as a multicomponent enzyme that catalyzes the generation of superoxide from oxygen and the reduced form of NADPH. This enzyme is composed of two membrane-bound subunits (p22phox and gp91phox), three cytosolic subunits (p67phox, p47phox, and p40phox) and a small G-protein Rac (Rac1 and Rac2). Recently, it has been demonstrated that there are several isoforms of nonphagocytic NADPH oxidase. Endothelial cells, vascular smooth muscle cells or adventitial fibroblasts possess multiple isoforms of this enzyme. The new homologs, along with gp91phox are now designated the Nox family of NADPH oxidases and are key sources of reactive oxygen species in the vasculature. Reactive oxygen species play a significant role in regulating endothelial function and vascular tone. However, besides the participation in the processes of physiological cell, these enzymes can also be the perpetrator of oxidative stress that causes endothelial dysfunction. This review summarizes the current state of knowledge of the structure and functions of NADPH oxidase and NADPH oxidase inhibitors in the treatment of disorders with endothelial damage.
Collapse
|
48
|
Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proc Natl Acad Sci U S A 2012; 109:8658-63. [PMID: 22586098 DOI: 10.1073/pnas.1201629109] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The large protein superfamily of NADPH oxidases (NOX enzymes) is found in members of all eukaryotic kingdoms: animals, plants, fungi, and protists. The physiological functions of these NOX enzymes range from defense to specialized oxidative biosynthesis and to signaling. In filamentous fungi, NOX enzymes are involved in signaling cell differentiation, in particular in the formation of fruiting bodies. On the basis of bioinformatics analysis, until now it was believed that the genomes of unicellular fungi like Saccharomyces cerevisiae and Schizosaccharomyces pombe do not harbor genes coding for NOX enzymes. Nevertheless, the genome of S. cerevisiae contains nine ORFs showing sequence similarity to the catalytic subunits of mammalian NOX enzymes, only some of which have been functionally assigned as ferric reductases involved in iron ion transport. Here we show that one of the nine ORFs (YGL160W, AIM14) encodes a genuine NADPH oxidase, which is located in the endoplasmic reticulum (ER) and produces superoxide in a NADPH-dependent fashion. We renamed this ORF YNO1 (yeast NADPH oxidase 1). Overexpression of YNO1 causes YCA1-dependent apoptosis, whereas deletion of the gene makes cells less sensitive to apoptotic stimuli. Several independent lines of evidence point to regulation of the actin cytoskeleton by reactive oxygen species (ROS) produced by Yno1p.
Collapse
|
49
|
Liu F, Gomez Garcia AM, Meyskens FL. NADPH oxidase 1 overexpression enhances invasion via matrix metalloproteinase-2 and epithelial-mesenchymal transition in melanoma cells. J Invest Dermatol 2012; 132:2033-41. [PMID: 22513785 DOI: 10.1038/jid.2012.119] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
NADPH oxidase 1 (Nox1) is a member of the NADPH oxidase family that has not been well characterized in the melanocytic cell lineage. Here we demonstrated that Nox1 and Nox4 were detected in melanocytic lineage, with only Nox1 detected in normal human melanocytes and Nox4 in a subset of metastatic melanoma cell lines. The protein level and enzymatic activity of Nox1 was elevated in all melanoma cells as compared with normal melanocytes. Overexpression of GFP-Nox1 protein in Wm3211 primary melanoma cells increased invasion rate by 4- to 6-fold as measured by Matrigel invasion assay, whereas knocking down or inhibiting Nox1 decreased invasion by approximately 40-60% in Wm3211 and SK-Mel-28 cells. Matrix metalloproteinase-2 (MMP-2) was increased by Nox1 overexpression at the mRNA, protein, and activity levels, and decreased by Nox1 knockdown. MMP-2 promoter activity was also regulated by Nox1 knockdown. In addition, stable clones overexpressing Nox1 exhibited an epithelial-mesenchymal transition (EMT) as examined by cell morphology and EMT markers; knockdown or inhibiting Nox1 led to a reversal of EMT. Supplementing MMP-2 to culture media did not induce EMT, suggesting that EMT induction by Nox1 was not through MMP-2 upregulation. In summary, Nox1 was overexpressed in all melanoma cell lines examined, and enhanced cell invasion by MMP-2 upregulation and EMT induction.
Collapse
Affiliation(s)
- Feng Liu
- Department of Medicine, University of California, Irvine, Irvine, California 92697, USA.
| | | | | |
Collapse
|
50
|
Roesler J, Segerer F, Morbach H, Kleinert S, Thieme S, Rösen-Wolff A, Liese JG. P67-phox (NCF2) lacking exons 11 and 12 is functionally active and leads to an extremely late diagnosis of chronic granulomatous disease (CGD). PLoS One 2012; 7:e34296. [PMID: 22514628 PMCID: PMC3326000 DOI: 10.1371/journal.pone.0034296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/27/2012] [Indexed: 01/23/2023] Open
Abstract
Two brothers in their fifties presented with a medical history of suspected fungal allergy, allergic bronchopulmonary aspergillosis, alveolitis, and invasive aspergillosis and pulmonary fistula, respectively. Eventually, after a delay of 50 years, chronic granulomatous disease (CGD) was diagnosed in the index patient. We found a new splice mutation in the NCF2 (p67-phox) gene, c.1000+2T→G, that led to several splice products one of which lacked exons 11 and 12. This deletion was in frame and allowed for remarkable residual NADPH oxidase activity as determined by transduction experiments using a retroviral vector. We conclude that p67-phox which lacks the 34 amino acids encoded by the two exons can still exert considerable functional activity. This activity can partially explain the long-term survival of the patients without adequate diagnosis and treatment, but could not prevent progressing lung damage.
Collapse
Affiliation(s)
- Joachim Roesler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|