1
|
Huang Z, Dai C, Gong L, Shi P, Bai J, Shen Q, Pan H, Zhong S, Chen L, Chu Y, Xu J, Qiu X, Liao B, Lin H. Diversified quantity, gene structure, and expression profile of OPR gene family of A. annua. Int J Biol Macromol 2025; 306:141490. [PMID: 40015404 DOI: 10.1016/j.ijbiomac.2025.141490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Artemisia annua, the source of artemisinin production, is a traditional herb used for treating malaria for thousand years. The genetic background is of high heterozygosity and traits (plant height, biomass, artemisinin content, etc.) are diverse across different germplasms. Unraveling the key genes associated with growth and secondary metabolism is essential for the efficient production of artemisinin. The 12-oxo-phytodienoic acid reductase (OPR) genes, crucial for plant growth and development and stress resistance, remain unexplored in A. annua. In this study, nine OPR genes (named as AaOPR1 to AaOPR9) were identified in A. annua, including two pairs of genes formed from recent tandem duplications. The number of OPRs varied among different haplotype genomes, and each OPR gene exhibiting distinct expression pattern. Moreover, the OPR family displayed evolutionarily activity with significant variations in numbers and gene structures observed across different plant species. Widespread gene duplication of OPRs, observed in the majority of analyzed plant genomes, brought evolutionary potential. DBR2, a member of AaOPRs involved in artemisinin biosynthesis, had two copies (AaOPR1/DBR2.1 and AaOPR2/DBR2.2) with different expression patterns, one of which was a recently generated copy with a significant 7-amino acids truncation. Heterologous protein expression and functional characterization of the two copies of DBR2 yielded multiple isomers with identical molecular weights but different arrangements, indicating neofunctionalization of the newly generated copy. The polymorphism within the OPR gene family merely scratches the surface of the genetic diversity in A. annua, and further investigation of genetic features is needed for the screening of elite germplasm resources.
Collapse
Affiliation(s)
- Zhihai Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chunyan Dai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Pharmacy, Yuexi Hospital of the Sixth Affiliated Hospital, Sun Yat-sen University (Xinyi People's Hospital), Xinyi 525300, China
| | - Lu Gong
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peiqi Shi
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Junqi Bai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hengyu Pan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shan Zhong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Linming Chen
- Guangzhou Huibiao Testing Technology Center, Guangzhou 510700, China
| | - Yang Chu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Baosheng Liao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Hua Lin
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
2
|
Wang J, Fan F, Zhao Y, Li H, Liu S, Li G, Zhang P. PnOPR6 from Antarctic moss mediates JA-ABA crosstalk and enhances abiotic stress tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109730. [PMID: 40080970 DOI: 10.1016/j.plaphy.2025.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/17/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
Jasmonates (JAs) and abscisic acid (ABA) are vital plant hormones that are integral to the plant's response mechanisms against various abiotic stresses. These hormones also function in an antagonistic manner to regulate seed germination and dormancy. However, little is known about the molecular mechanism underlying the interaction between ABA and JA signaling. Here, seven 12-oxo-phytodienoic acid reductase genes (PnOPR1-7), a key enzyme in the JA biosynthesis pathway, were identified in the Antarctic moss Pohlia nutans transcriptome, and their expressions in response to abiotic stress were examined. Among these, PnOPR6 expression levels rose most under cold and UV-B stresses. Transgenic Arabidopsis overexpressing PnOPR6 demonstrated increased tolerance to salt, cold, dehydration, glucose, and ABA, but also greater sensitivity to methyl jasmonate (MeJA) during seed germination or early root growth. Furthermore, in the transgenic Arabidopsis, PnOPR6 suppressed the expression of genes involved in the ABA pathway and ABI3/5-responsive JA receptor COI1. Additionally, phytohormone metabolomics investigations revealed a significant rise in JA precursor (OPDA, OPC-6, and OPC-4), JA, and its derivative 12-OH-JA in PnOPR6-overexpressing line. Moreover, the accumulation of flavonoid in Arabidopsis was enhanced by heterologous expression of PnOPR6. These findings imply that PnOPR6 functions as a signaling regulator, improving plant resistance to abiotic stress through flavonoid accumulation and JA-ABA antagonistic crosstalk, therefore aiding P. nutans in adjusting to polar climates.
Collapse
Affiliation(s)
- Jing Wang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, Shandong Province, PR China; Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, PR China
| | - Fenghua Fan
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, Shandong Province, PR China; School of Basic Medical Sciences, Qilu Medical University, Zibo, 255300, Shandong Province, PR China
| | - Yu Zhao
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, Shandong Province, PR China
| | - Han Li
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, Shandong Province, PR China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China
| | - Guangyao Li
- Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, PR China
| | - Pengying Zhang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, Shandong Province, PR China.
| |
Collapse
|
3
|
You SH, Chen YP, Shi WJ, Li X, Wu Z, Yao QH. Genome-wide analysis of OPR family genes in Vitis vinifera and the role of VvOPR1 in copper, zinc tolerance. FRONTIERS IN PLANT SCIENCE 2025; 16:1509472. [PMID: 40078634 PMCID: PMC11897507 DOI: 10.3389/fpls.2025.1509472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
12-oxo-phytodienoic acid reductase (OPR) is one of the key enzymes in the octadecanoid pathway, and it controls the last step of jasmonic acid (JA) biosynthesis. Although multiple isoforms and functions of OPRs have been identified in various plants, no OPR genes have been identified, and their possible roles in grapevine development and defense mechanisms remain unknown. In this study, nine VvOPR genes were identified from grapevine genome and classified into two subfamilies. Systematic analyses of the physical and chemical properties, the expression and structure of the VvOPR genes, promoter elements, and chromosome locations were performed via bioinformatics and molecular biology methods. In addition, we described the characterization of the OPRI gene VvOPR1, which was synthesized via a PCR-based two-step DNA synthesis quantification reverse-transcription (PTDS) method. VvOPR1 expression is tissue-specific and induced by various stresses. The overexpression of VvOPR1 in Arabidopsis and rice (OT) significantly increased tolerance to Cu, Zn stress, and Cu, Zn stress-induced restriction of the germination rate, root/shoot length and fresh weight was significantly alleviated in OT. In OT, VvOPR1 enhanced the photosynthetic capacity, promoted ABA synthesis and the ABA-dependent stress response pathway, improved the antioxidation capacity by increasing the activities of ROS scavengers and the expression level of the related genes, while enhancing the accumulation of proline, AsA, GSH and reducing MDA and H2O2 levels. Moreover, VvOPR1 reduced Cu2+, Zn2+ accumulation and translocation. Together, we first systematically characterized the grapevine OPR gene family and reported that VvOPR1 responded to Cu, Zn stress in an ABA-dependent manner, and was quite independent of JA synthesis and signaling. All of the above results provide an important research basis and theoretical basis for further revealing the functions of VvOPR in grapevines in the future.
Collapse
Affiliation(s)
- Shuang-Hong You
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yuan-Ping Chen
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Wen-Jing Shi
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Xue Li
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zheng Wu
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Li W, Li Y, Xu Y, Kumar S, Liu Y, Zhu G. Genome-wide identification, gene cloning, subcellular location and expression analysis of the OPR gene family under salt stress in sweetpotato. BMC PLANT BIOLOGY 2024; 24:1171. [PMID: 39643880 PMCID: PMC11622663 DOI: 10.1186/s12870-024-05887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The 12-oxo-phytodienoic acid reductase (OPR) enzyme is crucial for the synthesis of jasmonates (JAs), and is involved in the plant stress response. However, the OPR gene family in sweetpotato, an important horticultural crop, remains unidentified. RESULTS In this study, we employed bioinformatics techniques to identify nine IbOPR genes. Phylogenetic analysis revealed that these genes could be divided into Group I and Group II. Synteny analysis indicated that IbOPR evolution was driven by tandem duplication, whole-genome duplication (WGD), and segmental duplication events. The promoter sequences of IbOPRs were found to be associated with stress and hormonal responses. Additionally, we successfully cloned four IbOPRs from "Haida HD7791" and "Haida HD7798" using homologous cloning technology. These sequences were 1203 bp, 1200 bp, 1134 bp, and 1137 bp in length and encoded 400, 399, 377, and 378 amino acids, respectively. The protein sequence similarity between the salt-tolerant variety "Haida HD7791" and the salt-sensitive variety "Haida HD7798" was determined to be 96.75% for IbOPR2, 99.75% for IbOPR3, 92.06% for IbOPR6, and 98.68% for IbOPR7. Phylogenetic analysis categorized IbOPR2 and IbOPR3 proteins into Group II, while IbOPR6 and IbOPR7 proteins belonged to Group I. Subcellular localization experiments showed IbOPR2 protein present in the peroxisome, while IbOPR3, IbOPR6, and IbOPR7 proteins were found in the cytoplasm and nucleus. Salt stress induction experiments demonstrated that IbOPR2, IbOPR3, and IbOPR7 were significantly upregulated only in 'Haida HD7791' after 6 h. In contrast, IbOPR6 was induced in 'Haida HD7798' at 6 h but inhibited in 'Haida HD7791' at later time points (12, 24, 48, and 72 h), highlighting functional differences in salt stress responses. CONCLUSIONS Our findings suggest that IbOPR2 may play a crucial role in sweetpotato's response to salt stress by participating in JAs synthesis. These results provide a foundation for future functional analyses of OPR genes in sweetpotato.
Collapse
Affiliation(s)
- Wenxing Li
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yongping Li
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yuan Xu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Sunjeet Kumar
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yi Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| | - Guopeng Zhu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Nanda K, Singh M, Yadav T, Tiwari VK, Singh V, Singh VP, Sawant SV, Singh SP. Genome-wide identification and expression analysis of ferric reductase oxidase (FRO) genes in Gossypium spp. reveal their crucial role in iron homeostasis under abiotic and biotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109281. [PMID: 39561681 DOI: 10.1016/j.plaphy.2024.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Ferric Reductase Oxidase (FRO) genes are pivotal in iron uptake and homeostasis in plants, yet they are not studied in cotton. Here, we identify and analyze 65 FRO homologs (21 GhFRO, 21 GbFRO, 11 GaFRO, 12 GrFRO) across four Gossypium species (G. hirsutum, G. barbadense, G. arboreum, G. raimondii). FRO exhibit conserved ferric reductase activity and conserved domain structures; Ferric_reduct (PF01794), FAD_binding_8 (PF08022), and NAD_binding_6 (PF08030) across species. Physicochemical properties and subcellular localization analysis provided insights into FRO proteins' functional characteristics, mainly localized to the plasma membrane. Phylogenetic analysis delineates 11 groups, indicating both conserved and divergent evolutionary patterns. Gene structure analysis unveils varying exon-intron compositions. Chromosomal localization shows distribution across A and D genomes, suggesting evolutionary dynamics. Synteny analysis reveals paralogous and orthologous gene pairs subjected to purifying selection. The cis-regulatory elements analysis implicates diverse regulatory mechanisms. Expression profiling highlights dynamic regulation across developmental stages, abiotic and biotic stress conditions. GhFRO interacts with Ca++-dependent protein kinases-10/28-like (CDPKs10/28-like) and metal transporter Natural resistance-associated macrophage protein 6 (Nramp6) to regulate metal ion transport and iron homeostasis. The three-dimensional protein structure prediction suggests potential ligand-binding sites in FRO proteins. Moreover, qRT-PCR analysis of selected eight GhFROs in leaves treated with stress elicitors, MeJA, SA, NaCl, and PEG for 1h, 2h, 4h, and 6h revealed significant downregulation. Overall, this comprehensive study provides insights into FRO gene diversity, evolution, structure, regulation, and function in cotton, with implications for understanding plant iron homeostasis and stress responses.
Collapse
Affiliation(s)
- Kavita Nanda
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Maninder Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Tikshana Yadav
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Vipin Kumar Tiwari
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Varsha Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Samir V Sawant
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
6
|
Yang M, Yang S, Wang W, Wei X, Lou F, He G, He T. Multiomics Combined with Expression Pattern Analysis Reveals the Regulatory Response of Key Genes in Potato Jasmonic Acid Signaling Pathways to Cadmium Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22369-22384. [PMID: 39329331 DOI: 10.1021/acs.jafc.4c04883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Jasmonic acid (JA) is an endogenous phytohormone that regulates plant physiological metabolism and stress response processes, either independently or through hormone crosstalk. Our phytohormone assay and transcriptome-metabolome analysis revealed the key genes and metabolites involved in the JA pathway in response to 0-250 μM cadmium (Cd) in potato seedlings. Transcriptome gene set enrichment and gene ontology analysis indicated that JA-related genes were significantly enriched. Specifically, members from the StOPR and StJAZ gene families showed pronounced responses to Cd stress and methyl jasmonate treatment. As a negative regulatory transcription factor of the JA signaling pathway, StJAZ14 exhibited a decreasing trend under Cd stress. Yeast two-hybrid assay identified an interaction between StJAZ14 and StBZR1, which is located on the brassinolide pathway. In addition to unveiling the critical role of the JA pathway in regulating potato response to Cd stress, the functional mechanism was preliminarily explored.
Collapse
Affiliation(s)
- Mingfang Yang
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Big Data Application and Economics College, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P.R. China
| | - Sanwei Yang
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Weidong Wang
- Guizhou Mountain Livestock and Poultry Breeding Pollution Control and Resource Utilization Technology Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Xiaoliao Wei
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Fei Lou
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - GuanDi He
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Guizhou Mountain Livestock and Poultry Breeding Pollution Control and Resource Utilization Technology Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
7
|
Li R, Tang Y, Wang Q, Zhao B, Su W, Wang B, Li Q. Inactivation of a Wheat Ribosomal Silencing Factor Gene TaRsfS Confers Resistance to Both Powdery Mildew and Stripe Rust. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39323023 DOI: 10.1111/pce.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Powdery mildew and stripe rust are major diseases on wheat worldwide that cause significant reductions in wheat production. The ribosomal silencing factor (RsfS) has been proven to regulate protein biosynthesis by inhibiting the translation process in bacterial response to stress. However, the role of RsfS in plant resistance to biotic stresses remains unclear. In this study, the RsfS homolog, TaRsfS was isolated from wheat. Overexpression of TaRsfS (TaRsfS-OE) reduces wheat resistance to powdery mildew and stripe rust and TaRsfS knockout (TaRsfS-KO) increases wheat resistance to both diseases without affecting key agronomic traits. The interaction protein of TaRsfS, 12-oxo-phytodienoic acid reductase 1 (TaOPR1), a key enzyme in the biosynthesis of jasmonic acid (JA), was screened and identified. Knocking-down and overexpression of TaOPR1 indicated that TaOPR1 positively regulates wheat resistance to powdery mildew and stripe rust. TaRsfS may regulate TaOPR1 at upstream, bind to the enzyme activity pocket of TaOPR1 and affect TaOPR1 enzyme activity, resulting in a reduced JA biosynthesis and wheat susceptible to powdery mildew and stripe rust. Collectively, TaRsfS is a susceptibility gene and negatively regulates wheat resistance to powdery mildew and stripe rust, and it has good potential for improving wheat resistance by genetic modifications.
Collapse
Affiliation(s)
- Ruobing Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaqi Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiao Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bingjie Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenwen Su
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Jiang T, Jiao T, Hu Y, Li T, Liu C, Liu Y, Jiang X, Xia T, Gao LP. Evolutionarily conserved 12-oxophytodienoate reductase trans-lncRNA pair affects disease resistance in tea ( Camellia sinensis) via the jasmonic acid signaling pathway. HORTICULTURE RESEARCH 2024; 11:uhae129. [PMID: 38966865 PMCID: PMC11220176 DOI: 10.1093/hr/uhae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/25/2024] [Indexed: 07/06/2024]
Abstract
Long non-coding RNAs (lncRNAs) have gathered significant attention due to their pivotal role in plant growth, development, and biotic and abiotic stress resistance. Despite this, there is still little understanding regarding the functions of lncRNA in these domains in the tea plant (Camellia sinensis), mainly attributable to the insufficiencies in gene manipulation techniques for tea plants. In this study, we designed a novel strategy to identify evolutionarily conserved trans-lncRNA (ECT-lncRNA) pairs in plants. We used highly consistent base sequences in the exon-overlapping region between trans-lncRNAs and their target gene transcripts. Based on this method, we successfully screened 24 ECT-lncRNA pairs from at least two or more plant species. In tea, as observed in model plants such as Arabidopsis, alfalfa, potatoes, and rice, there exists a trans-lncRNA capable of forming an ECT-lncRNA pair with transcripts of the 12-oxophytodienoate reductase (OPR) family, denoted as the OPRL/OPR pair. Considering evolutionary perspectives, the OPRL gene cluster in each species likely originates from a replication event of the OPR gene cluster. Gene manipulation and gene expression analysis revealed that CsOPRL influences disease resistance by regulating CsOPR expression in tea plants. Furthermore, the knockout of StOPRL1 in Solanum tuberosum led to aberrant growth characteristics and strong resistance to fungal infection. This study provides insights into a strategy for the screening and functional verification of ECT-lncRNA pairs.
Collapse
Affiliation(s)
- Ting Jiang
- School of Life Science, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Tianming Jiao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Yingbang Hu
- School of Life Science, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Tongtong Li
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Cheng Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Xiaolan Jiang
- School of Life Science, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Li-Ping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036 Anhui, China
| |
Collapse
|
9
|
Wang Y, Jin G, Song S, Jin Y, Wang X, Yang S, Shen X, Gan Y, Wang Y, Li R, Liu JX, Hu J, Pan R. A peroxisomal cinnamate:CoA ligase-dependent phytohormone metabolic cascade in submerged rice germination. Dev Cell 2024; 59:1363-1378.e4. [PMID: 38579719 DOI: 10.1016/j.devcel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The mechanism underlying the ability of rice to germinate underwater is a largely enigmatic but key research question highly relevant to rice cultivation. Moreover, although rice is known to accumulate salicylic acid (SA), SA biosynthesis is poorly defined, and its role in underwater germination is unknown. It is also unclear whether peroxisomes, organelles essential to oilseed germination and rice SA accumulation, play a role in rice germination. Here, we show that submerged imbibition of rice seeds induces SA accumulation to promote germination in submergence. Two submergence-induced peroxisomal Oryza sativa cinnamate:CoA ligases (OsCNLs) are required for this SA accumulation. SA exerts this germination-promoting function by inducing indole-acetic acid (IAA) catabolism through the IAA-amino acid conjugating enzyme GH3. The metabolic cascade we identified may potentially be adopted in agriculture to improve the underwater germination of submergence-intolerant rice varieties. SA pretreatment is also a promising strategy to improve submerged rice germination in the field.
Collapse
Affiliation(s)
- Yukang Wang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Gaochen Jin
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shuyan Song
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Yijun Jin
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaowen Wang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shuaiqi Yang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xingxing Shen
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yinbo Gan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuexing Wang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China.
| |
Collapse
|
10
|
Wu L, Wang R, Li M, Du Z, Jin Y, Shi Y, Jiang W, Chen J, Jiao Y, Hu B, Huang J. Functional analysis of a rice 12-oxo-phytodienoic acid reductase gene (OsOPR1) involved in Cd stress tolerance. Mol Biol Rep 2024; 51:198. [PMID: 38270739 DOI: 10.1007/s11033-023-09159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The accumulation of cadmium (Cd) in plants may compromise the growth and development of plants, thereby endangering human health through the food chain. Understanding how plants respond to Cd is important for breeding low-Cd rice cultivars. METHODS In this study, the functions of 12-oxo-phytodienoic acid reductase 1 (OsOPR1) were predicted through bioinformatics analysis. The expression levels of OsOPR1 under Cd stress were analyzed by using qRT-PCR. Then, the role that OsOPR1 gene plays in Cd tolerance was studied in Cd-sensitive yeast strain (ycf1), and the Cd concentration of transgenic yeast was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Bioinformatics analysis revealed that OsOPR1 was a protein with an Old yellow enzyme-like FMN (OYE_like_FMN) domain, and the cis-acting elements which regulate hormone synthesis or responding abiotic stress were abundant in the promoter region, which suggested that OsOPR1 may exhibit multifaceted biological functions. The expression pattern analysis showed that the expression levels of OsOPR1 were induced by Cd stress both in roots and roots of rice plants. However, the induced expression of OsOPR1 by Cd was more significant in the roots compared to that in roots. In addition, the overexpression of OsOPR1 improved the Cd tolerance of yeast cells by affecting the expression of antioxidant enzyme related genes and reducing Cd content in yeast cells. CONCLUSION Overall, these results suggested that OsOPR1 is a Cd-responsive gene and may has a potential for breeding low-Cd or Cd-tolerant rice cultivars and for phytoremediation of Cd-contaminated in farmland.
Collapse
Affiliation(s)
- Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ruolin Wang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yufan Jin
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China.
| | - Yuan Jiao
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Sichuan, 610066, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China.
| |
Collapse
|
11
|
Lu M, Chen Z, Dang Y, Li J, Wang J, Zheng H, Li S, Wang X, Du X, Sui N. Identification of the MYB gene family in Sorghum bicolor and functional analysis of SbMYBAS1 in response to salt stress. PLANT MOLECULAR BIOLOGY 2023; 113:249-264. [PMID: 37964053 DOI: 10.1007/s11103-023-01386-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023]
Abstract
Salt stress adversely affects plant growth and development. It is necessary to understand the underlying salt response mechanism to improve salt tolerance in plants. MYB transcription factors can regulate plant responses to salt stress. However, only a few studies have explored the role of MYB TFs in Sorghum bicolor (L.) Moench. So we decided to make a systematic analysis and research on the sorghum MYB family. A total of 210 MYB genes in sorghum were identified in this study. Furthermore, 210 MYB genes were distributed across ten chromosomes, named SbMYB1-SbMYB210. To study the phylogeny of the identified TFs, 210 MYB genes were divided into six subfamilies. We further demonstrated that SbMYB genes have evolved under strong purifying selection. SbMYBAS1 (SbMYB119) was chosen as the study object, which the expression decreased under salt stress conditions. Further study of the SbMYBAS1 showed that SbMYBAS1 is located in the nucleus. Under salt stress conditions, Arabidopsis plants overexpressed SbMYBAS1 showed significantly lower dry/fresh weight and chlorophyll content but significantly higher membrane permeability, MDA content, and Na+/K+ ratio than the wild-type Arabidopsis plants. Yeast two-hybrid screening result showed that SbMYBAS1 might interact with proteins encoded by SORBI_302G184600, SORBI_3009G247900 and SORBI_3004G59600. Results also showed that SbMYBAS1 could regulate the expression of AtGSTU17, AtGSTU16, AtP5CS2, AtUGT88A1, AtUGT85A2, AtOPR2 and AtPCR2 under salt stress conditions. This work laid a foundation for the study of the response mechanism of sorghum MYB gene family to salt stress.
Collapse
Affiliation(s)
- Mei Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
12
|
Chao J, Wu S, Shi M, Xu X, Gao Q, Du H, Gao B, Guo D, Yang S, Zhang S, Li Y, Fan X, Hai C, Kou L, Zhang J, Wang Z, Li Y, Xue W, Xu J, Deng X, Huang X, Gao X, Zhang X, Hu Y, Zeng X, Li W, Zhang L, Peng S, Wu J, Hao B, Wang X, Yu H, Li J, Liang C, Tian WM. Genomic insight into domestication of rubber tree. Nat Commun 2023; 14:4651. [PMID: 37532727 PMCID: PMC10397287 DOI: 10.1038/s41467-023-40304-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Understanding the genetic basis of rubber tree (Hevea brasiliensis) domestication is crucial for further improving natural rubber production to meet its increasing demand worldwide. Here we provide a high-quality H. brasiliensis genome assembly (1.58 Gb, contig N50 of 11.21 megabases), present a map of genome variations by resequencing 335 accessions and reveal domestication-related molecular signals and a major domestication trait, the higher number of laticifer rings. We further show that HbPSK5, encoding the small-peptide hormone phytosulfokine (PSK), is a key domestication gene and closely correlated with the major domestication trait. The transcriptional activation of HbPSK5 by myelocytomatosis (MYC) members links PSK signaling to jasmonates in regulating the laticifer differentiation in rubber tree. Heterologous overexpression of HbPSK5 in Russian dandelion (Taraxacum kok-saghyz) can increase rubber content by promoting laticifer formation. Our results provide an insight into target genes for improving rubber tree and accelerating the domestication of other rubber-producing plants.
Collapse
Affiliation(s)
- Jinquan Chao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shaohua Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Minjing Shi
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xia Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Qi Biodesign, Life Science Park, Beijing, 100101, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dong Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shuguang Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shixin Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yan Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiuli Fan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Hai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhiwei Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wenbo Xue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaomin Deng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiao Huang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xinsheng Gao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiaofei Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yanshi Hu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xia Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Weiguo Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shiqing Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jilin Wu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Bingzhong Hao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xuchu Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei-Min Tian
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
13
|
Hu Y, Li Q, Chen Z, Xu Z, Li H, Wen C, Duan L, Yang H, Liu L. Axenic in vitro cultivation and genome diploidization of the moss Vesicularia montagnei for horticulture utilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1137214. [PMID: 37021318 PMCID: PMC10067734 DOI: 10.3389/fpls.2023.1137214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Mosses are widely used in the establishment of greenery. However, little research has been conducted to choose a suitable species or improve their performance for this application. In our study, we examined Vesicularia montagnei (V. montagnei), a robust moss that is widely distributed in temperate, subtropical, and tropical Asia with varying environmental conditions. Axenic cultivation system of V. montagnei was developed on modified BCD medium, which enabled its propagation and multiplication in vitro. In this axenic cultivation environment, several diploid V. montagnei lines with enhancement of rhizoid system were generated through artificial induction of diploidization. Transcriptomic analysis revealed that several genes responsible for jasmonic acid (JA) biosynthesis and signaling showed significant higher expression levels in the diploid lines compared to the wild type. These results are consistent with the increasement of JA content in the diploid lines. Our establishment of the axenic cultivation method may provide useful information for further study of other Vesicularia species. The diploid V. montagnei lines with improved rhizoid system may hold promising potential for greenery applications. Additionally, our study sheds light on the biosynthesis and functions of JA in the early landed plants.
Collapse
Affiliation(s)
- Yong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Qing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zexi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zhanwu Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Hongyu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Congfa Wen
- Lishui Runsheng Moss Technology Co., Ltd. Green Valley Information Industrial Park, Lishui, Zhejiang, China
| | - Liu Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nat Commun 2023; 14:539. [PMID: 36725858 PMCID: PMC9892559 DOI: 10.1038/s41467-023-36248-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Wheat, an essential crop for global food security, is well adapted to a wide variety of soils. However, the gene networks shaping different root architectures remain poorly understood. We report here that dosage differences in a cluster of monocot-specific 12-OXOPHYTODIENOATE REDUCTASE genes from subfamily III (OPRIII) modulate key differences in wheat root architecture, which are associated with grain yield under water-limited conditions. Wheat plants with loss-of-function mutations in OPRIII show longer seminal roots, whereas increased OPRIII dosage or transgenic over-expression result in reduced seminal root growth, precocious development of lateral roots and increased jasmonic acid (JA and JA-Ile). Pharmacological inhibition of JA-biosynthesis abolishes root length differences, consistent with a JA-mediated mechanism. Transcriptome analyses of transgenic and wild-type lines show significant enriched JA-biosynthetic and reactive oxygen species (ROS) pathways, which parallel changes in ROS distribution. OPRIII genes provide a useful entry point to engineer root architecture in wheat and other cereals.
Collapse
|
15
|
Cheng X, Liu X, He J, Tang M, Li H, Li M. The genome wide analysis of Tryptophan Aminotransferase Related gene family, and their relationship with related agronomic traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1098820. [PMID: 36618649 PMCID: PMC9811149 DOI: 10.3389/fpls.2022.1098820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) proteins are the enzymes that involved in auxin biosynthesis pathway. The TAA1/TAR gene family has been systematically characterized in several plants but has not been well reported in Brassica napus. In the present study, a total of 102 BnTAR genes with different number of introns were identified. It was revealed that these genes are distributed unevenly and occurred as clusters on different chromosomes except for A4, A5, A10 and C4 in B. napus. Most of the these BnTAR genes are conserved despite of existing of gene loss and gene gain. In addition, the segmental replication and whole-genome replication events were both play an important role in the BnTAR gene family formation. Expression profiles analysis indicated that the expression of BnTAR gene showed two patterns, part of them were mainly expressed in roots, stems and leaves of vegetative organs, and the others were mainly expressed in flowers and seeds of reproductive organs. Further analysis showed that many of BnTAR genes were located in QTL intervals of oil content or seed weight, for example BnAMI10 was located in cqOC-C5-4 and cqSW-A2-2, it indicated that some of the BnTAR genes might have relationship with these two characteristics. This study provides a multidimensional analysis of the TAA1/TAR gene family and a new insight into its biological function in B. napus.
Collapse
Affiliation(s)
- Xin Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinmin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjie He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Tang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, the Ministry of Education of China, Wuhan, China
| |
Collapse
|
16
|
Nie WF, Chen Y, Tao J, Li Y, Liu J, Zhou Y, Yang Y. Identification of the 12-oxo-phytoeienoic acid reductase (OPR) gene family in pepper (Capsicum annuum L.) and functional characterization of CaOPR6 in pepper fruit development and stress response. Genome 2022; 65:537-545. [PMID: 35944282 DOI: 10.1139/gen-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 12-oxo-phytoeienoic acid reductase (OPR) is a kind of enzyme in octadecanoid biosynthesis pathway, which determines the biosynthesis of jasmonic acid. Although the roles of OPRs have been extensively studied in several crop plants, little is known about the biological functions of OPR encoding genes in Capsicum annuum plants. In this study, seven OPR family genes (CaOPR1-7) were identified from the C. annuum genome. The physical and chemical properties of CaOPR1-7 were further analyzed, including gene expression patterns, promoter elements and chromosomal locations. The results showed that the seven CaOPR homologous could be divided into two subgroups, and CaOPR6 was highly similar to AtOPR3 in Arabidopsis. The expression of CaOPR6 was significantly induced by various stresses such as cold, salt and pathogen infection, indicating that CaOPR6 plays important roles in response to abiotic and biotic stresses. Overall, these findings improve the understanding of the biological functions of CaOPR6 in the development of pepper fruit and stress response of pepper plants, and facilitate further studies on the molecular biology of OPR proteins in Solanaceae vegetables.
Collapse
Affiliation(s)
| | - Yue Chen
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Junjie Tao
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Yu Li
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Jianping Liu
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Yong Zhou
- Jiangxi Agricultural University, Nanchang, China;
| | - Youxin Yang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| |
Collapse
|
17
|
Fang Y, Jiang J, Hou X, Guo J, Li X, Zhao D, Xie X. Plant protein-coding gene families: Their origin and evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:995746. [PMID: 36160967 PMCID: PMC9490259 DOI: 10.3389/fpls.2022.995746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Steady advances in genome sequencing methods have provided valuable insights into the evolutionary processes of several gene families in plants. At the core of plant biodiversity is an extensive genetic diversity with functional divergence and expansion of genes across gene families, representing unique phenomena. The evolution of gene families underpins the evolutionary history and development of plants and is the subject of this review. We discuss the implications of the molecular evolution of gene families in plants, as well as the potential contributions, challenges, and strategies associated with investigating phenotypic alterations to explain the origin of plants and their tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Degang Zhao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Ministry of Education, College of Life Sciences, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Degang Zhao,
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- Xin Xie,
| |
Collapse
|
18
|
Guillory A, Bonhomme S. Phytohormone biosynthesis and signaling pathways of mosses. PLANT MOLECULAR BIOLOGY 2021; 107:245-277. [PMID: 34245404 DOI: 10.1007/s11103-021-01172-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Most known phytohormones regulate moss development. We present a comprehensive view of the synthesis and signaling pathways for the most investigated of these compounds in mosses, focusing on the model Physcomitrium patens. The last 50 years of research have shown that most of the known phytohormones are synthesized by the model moss Physcomitrium patens (formerly Physcomitrella patens) and regulate its development, in interaction with responses to biotic and abiotic stresses. Biosynthesis and signaling pathways are best described in P. patens for the three classical hormones auxins, cytokinins and abscisic acid. Furthermore, their roles in almost all steps of development, from early filament growth to gametophore development and sexual reproduction, have been the focus of much research effort over the years. Evidence of hormonal roles exist for ethylene and for CLE signaling peptides, as well as for salicylic acid, although their possible effects on development remain unclear. Production of brassinosteroids by P. patens is still debated, and modes of action for these compounds are even less known. Gibberellin biosynthesis and signaling may have been lost in P. patens, while gibberellin precursors such as ent-kaurene derivatives could be used as signals in a yet to discover pathway. As for jasmonic acid, it is not used per se as a hormone in P. patens, but its precursor OPDA appears to play a corresponding role in defense against abiotic stress. We have tried to gather a comprehensive view of the biosynthesis and signaling pathways for all these compounds in mosses, without forgetting strigolactones, the last class of plant hormones to be reported. Study of the strigolactone response in P. patens points to a novel signaling compound, the KAI2-ligand, which was likely employed as a hormone prior to land plant emergence.
Collapse
Affiliation(s)
- Ambre Guillory
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Sandrine Bonhomme
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
19
|
Siddique MH, Babar NI, Zameer R, Muzammil S, Nahid N, Ijaz U, Masroor A, Nadeem M, Rashid MAR, Hashem A, Azeem F, Fathi Abd_Allah E. Genome-Wide Identification, Genomic Organization, and Characterization of Potassium Transport-Related Genes in Cajanus cajan and Their Role in Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:2238. [PMID: 34834601 PMCID: PMC8619154 DOI: 10.3390/plants10112238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 05/10/2023]
Abstract
Potassium is the most important and abundant inorganic cation in plants and it can comprise up to 10% of a plant's dry weight. Plants possess complex systems of transporters and channels for the transport of K+ from soil to numerous parts of plants. Cajanus cajan is cultivated in different regions of the world as an economical source of carbohydrates, fiber, proteins, and fodder for animals. In the current study, 39 K+ transport genes were identified in C. cajan, including 25 K+ transporters (17 carrier-like K+ transporters (KUP/HAK/KTs), 2 high-affinity potassium transporters (HKTs), and 6 K+ efflux transporters (KEAs) and 14 K+ channels (9 shakers and 5 tandem-pore K+ channels (TPKs). Chromosomal mapping indicated that these genes were randomly distributed among 10 chromosomes. A comparative phylogenetic analysis including protein sequences from Glycine max, Arabidopsis thaliana, Oryza sativa, Medicago truncatula Cicer arietinum, and C. cajan suggested vital conservation of K+ transport genes. Gene structure analysis showed that the intron/exon organization of K+ transporter and channel genes is highly conserved in a family-specific manner. In the promoter region, many cis-regulatory elements were identified related to abiotic stress, suggesting their role in abiotic stress response. Abiotic stresses (salt, heat, and drought) adversely affect chlorophyll, carotenoids contents, and total soluble proteins. Furthermore, the activities of catalase, superoxide, and peroxidase were altered in C. cajan leaves under applied stresses. Expression analysis (RNA-seq data and quantitative real-time PCR) revealed that several K+ transport genes were expressed in abiotic stress-responsive manners. The present study provides an in-depth understanding of K+ transport system genes in C. cajan and serves as a basis for further characterization of these genes.
Collapse
Affiliation(s)
- Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Naeem Iqbal Babar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Roshan Zameer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Usman Ijaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Ashir Masroor
- Sub-Campus Burewala-Vehari, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Majid Nadeem
- Wheat Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan;
| | - Muhammad Abdul Rehman Rashid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
20
|
Guang Y, Luo S, Ahammed GJ, Xiao X, Li J, Zhou Y, Yang Y. The OPR gene family in watermelon: Genome-wide identification and expression profiling under hormone treatments and root-knot nematode infection. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:80-88. [PMID: 33275831 DOI: 10.1111/plb.13225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 05/26/2023]
Abstract
The enzyme 12-oxo-phytodienoic acid reductase (OPR) is important in the jasmonic acid (JA) biosynthesis pathway and thus plays a vital role in plant defence. However, systematic and comprehensive analyses of OPR genes in watermelon and their roles in defence responses are extremely limited. The physicochemical properties, phylogenetic tree, gene structure and cis-acting elements of watermelon OPR genes were analysed using bioinformatics, and qRT-PCR and RNA-Seq were applied to assay expression of OPR genes in watermelon. A total of five OPR family genes were identified in watermelon, which were unevenly distributed across the four chromosomes. Phylogenetic analysis assigned OPR members from different plant species to five subfamilies (OPRI-OPRV). The motif compositions of OPR members were relatively conserved. Expression analysis using qRT-PCR revealed that ClOPR genes, except for ClOPR5, were highly expressed in the flower and fruit. RNA-seq analysis showed that the ClOPR genes had different expression patterns during flesh and rind development. Furthermore, the ClOPR genes, particularly ClOPR2 and ClOPR4, were significantly upregulated by exogenous JA, salicylic acid (SA) and ethylene (ET) treatments. In addition, red light induced expression of ClOPR2 and ClOPR4 in leaves and roots of root-knot nematode (RKN)-infected watermelon plants, suggesting their involvement in red light-induced defence against RKN. These results provide a theoretical basis for elucidating the diverse functions of OPR family genes in watermelon.
Collapse
Affiliation(s)
- Y Guang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - S Luo
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - G J Ahammed
- College of Horticulture and Plant Proection, Henan University of Science and Technology, Luoyang, 471023, China
| | - X Xiao
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - J Li
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y Zhou
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
21
|
Wang R, Han T, Sun J, Xu L, Fan J, Cao H, Liu C. Genome-wide identification and characterization of the OFP gene family in Chinese cabbage ( Brassica rapa L. ssp. pekinensis). PeerJ 2021; 9:e10934. [PMID: 33717690 PMCID: PMC7938782 DOI: 10.7717/peerj.10934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Ovate family proteins (OFPs) are a class of proteins with a conserved OVATE domain that contains approximately 70 amino acid residues. OFP proteins are plant-specific transcription factors that participate in regulating plant growth and development and are widely distributed in many plants. Little is known about OFPs in Brassica rapa to date. We identified 29 OFP genes in Brassica rapa and found that they were unevenly distributed on 10 chromosomes. Intron gain events may have occurred during the structural evolution of BraOFP paralogues. Syntenic analysis verified Brassica genome triplication, and whole genome duplication likely contributed to the expansion of the OFP gene family. All BraOFP genes had light responsive- and phytohormone-related cis-acting elements. Expression analysis from RNA-Seq data indicated that there were obvious changes in the expression levels of six OFP genes in the Brassica rapa hybrid, which may contribute to the formation of heterosis. Finally, we found that the paralogous genes had different expression patterns among the hybrid and its parents. These results provide the theoretical basis for the further analysis of the biological functions of OFP genes across the Brassica species.
Collapse
Affiliation(s)
- Ruihua Wang
- Biological and Agricultural College, Weifang University, Weifang, China
| | - Taili Han
- Vegetable Research Institute, Weifang Academy of Agricultural Sciences, Weifang, China
| | - Jifeng Sun
- Vegetable Research Institute, Weifang Academy of Agricultural Sciences, Weifang, China
| | - Ligong Xu
- Vegetable Research Institute, Weifang Academy of Agricultural Sciences, Weifang, China
| | - Jingjing Fan
- Biological and Agricultural College, Weifang University, Weifang, China
| | - Hui Cao
- Biological and Agricultural College, Weifang University, Weifang, China
| | - Chunxiang Liu
- Biological and Agricultural College, Weifang University, Weifang, China
| |
Collapse
|
22
|
Comprehensive analysis of polygalacturonase genes offers new insights into their origin and functional evolution in land plants. Genomics 2020; 113:1096-1108. [PMID: 33171205 DOI: 10.1016/j.ygeno.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/21/2022]
Abstract
Polygalacturonase (PG) is a hydrolase that participates in pectin degradation, pod shattering and fruit softening. Here, we identified 2786 PG genes across 54 plants, which could be divided into three groups. Evolutionary analysis suggested that PG family originated from the charophyte green algae, and Subgroups A2-A4 evolved from the Subgroup A1 after the tracheophyte-angiosperm split. Whole-genome duplication was the major force leading to PG gene expansion. Interestingly, the PG genes continuously expanded in eudicots, whereas it contracted in monocots after the eudicot-monocot split. PG genes in Group A are expressed at high levels in floral organs, whereas genes in Groups B and C are expressed at high levels in various tissues. Moreover, three BnaPG15 members were found for their potential possibility in pod shattering in Brassica napus. Our results provide new insight into the evolutionary history of PG family, and their potentially functional role in plants.
Collapse
|
23
|
Liu S, Sun R, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Zhu L, Feng H, Zhu H. Genome-Wide Analysis of OPR Family Genes in Cotton Identified a Role for GhOPR9 in Verticillium dahliae Resistance. Genes (Basel) 2020; 11:E1134. [PMID: 32992523 PMCID: PMC7600627 DOI: 10.3390/genes11101134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023] Open
Abstract
The 12-oxo-phytodienoic acid reductases (OPRs) have been proven to play a major role in plant development and growth. Although the classification and functions of OPRs have been well understood in Arabidopsis, tomato, rice, maize, and wheat, the information of OPR genes in cotton genome and their responses to biotic and abiotic stresses have not been reported. In this study, we found 10 and 9 OPR genes in Gossypium hirsutum and Gossypium barbadense, respectively. They were classified into three groups, based on the similar gene structure and conserved protein motifs. These OPR genes just located on chromosome 01, chromosome 05, and chromosome 06. In addition, the whole genome duplication (WGD) or segmental duplication events contributed to the evolution of the OPR gene family. The analyses of cis-acting regulatory elements of GhOPRs showed that the functions of OPR genes in cotton might be related to growth, development, hormone, and stresses. Expression patterns showed that GhOPRs were upregulated under salt treatment and repressed by polyethylene glycol 6000 (PEG6000). The expression patterns of GhOPRs were different in leaf, root, and stem under V. dahliae infection. GhOPR9 showed a higher expression level than other OPR genes in cotton root. The virus-induced gene silencing (VIGS) analysis suggested that knockdown of GhOPR9 could increase the susceptibility of cotton to V. dahliae infection. Furthermore, GhOPR9 also modulated the expressions of jasmonic acid (JA) pathway-regulated genes under the V. dahliae infection. Overall, our results provided the evolution and potential functions of the OPR genes in cotton. These findings suggested that GhOPR9 might play an important role in cotton resistance to V. dahliae.
Collapse
Affiliation(s)
- Shichao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ruibin Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Xiaojian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Longfu Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
24
|
Böhmer S, Marx C, Gómez-Baraibar Á, Nowaczyk MM, Tischler D, Hemschemeier A, Happe T. Evolutionary diverse Chlamydomonas reinhardtii Old Yellow Enzymes reveal distinctive catalytic properties and potential for whole-cell biotransformations. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Hazra A, Dasgupta N, Sengupta C, Das S. MIPS: Functional dynamics in evolutionary pathways of plant kingdom. Genomics 2019; 111:1929-1945. [DOI: 10.1016/j.ygeno.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/22/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
26
|
Alam I, Liu CC, Ge HL, Batool K, Yang YQ, Lu YH. Genome wide survey, evolution and expression analysis of PHD finger genes reveal their diverse roles during the development and abiotic stress responses in Brassica rapa L. BMC Genomics 2019; 20:773. [PMID: 31651238 PMCID: PMC6814106 DOI: 10.1186/s12864-019-6080-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Plant homeodomain (PHD) finger proteins are widely present in all eukaryotes and play important roles in chromatin remodeling and transcriptional regulation. The PHD finger can specifically bind a number of histone modifications as an "epigenome reader", and mediate the activation or repression of underlying genes. Many PHD finger genes have been characterized in animals, but only few studies were conducted on plant PHD finger genes to this day. Brassica rapa (AA, 2n = 20) is an economically important vegetal, oilseed and fodder crop, and also a good model crop for functional and evolutionary studies of important gene families among Brassica species due to its close relationship to Arabidopsis thaliana. RESULTS We identified a total of 145 putative PHD finger proteins containing 233 PHD domains from the current version of B. rapa genome database. Gene ontology analysis showed that 67.7% of them were predicted to be located in nucleus, and 91.3% were predicted to be involved in protein binding activity. Phylogenetic, gene structure, and additional domain analyses clustered them into different groups and subgroups, reflecting their diverse functional roles during plant growth and development. Chromosomal location analysis showed that they were unevenly distributed on the 10 B. rapa chromosomes. Expression analysis from RNA-Seq data showed that 55.7% of them were constitutively expressed in all the tested tissues or organs with relatively higher expression levels reflecting their important housekeeping roles in plant growth and development, while several other members were identified as preferentially expressed in specific tissues or organs. Expression analysis of a subset of 18 B. rapa PHD finger genes under drought and salt stresses showed that all these tested members were responsive to the two abiotic stress treatments. CONCLUSIONS Our results reveal that the PHD finger genes play diverse roles in plant growth and development, and can serve as a source of candidate genes for genetic engineering and improvement of Brassica crops against abiotic stresses. This study provides valuable information and lays the foundation for further functional determination of PHD finger genes across the Brassica species.
Collapse
Affiliation(s)
- Intikhab Alam
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cui-Cui Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong-Liu Ge
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Khadija Batool
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan-Qing Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yun-Hai Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
27
|
Kang C, Sun F, Yan L, Li R, Bai J, Caetano-Anollés G. Genome-Wide Identification and Characterization of the Vacuolar H +-ATPase Subunit H Gene Family in Crop Plants. Int J Mol Sci 2019; 20:ijms20205125. [PMID: 31623139 PMCID: PMC6829547 DOI: 10.3390/ijms20205125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) plays many important roles in cell growth and in response to stresses in plants. The V-ATPase subunit H (VHA-H) is required to form a stable and active V-ATPase. Genome-wide analyses of VHA-H genes in crops contribute significantly to a systematic understanding of their functions. A total of 22 VHA-H genes were identified from 11 plants representing major crops including cotton, rice, millet, sorghum, rapeseed, maize, wheat, soybean, barley, potato, and beet. All of these VHA-H genes shared exon-intron structures similar to those of Arabidopsis thaliana. The C-terminal domain of VHA-H was shorter and more conserved than the N-terminal domain. The VHA-H gene was effectively used as a genetic marker to infer the phylogenetic relationships among plants, which were congruent with currently accepted taxonomic groupings. The VHA-H genes from six species of crops (Gossypium raimondii, Brassica napus, Glycine max, Solanum tuberosum, Triticum aestivum, and Zea mays) showed high gene structural diversity. This resulted from the gains and losses of introns. Seven VHA-H genes in six species of crops (Gossypium raimondii, Hordeum vulgare, Solanum tuberosum, Setaria italica, Triticum aestivum, and Zea mays) contained multiple transcript isoforms arising from alternative splicing. The study of cis-acting elements of gene promoters and RNA-seq gene expression patterns confirms the role of VHA-H genes as eco-enzymes. The gene structural diversity and proteomic diversity of VHA-H genes in our crop sampling facilitate understanding of their functional diversity, including stress responses and traits important for crop improvement.
Collapse
Affiliation(s)
- Chen Kang
- College of Biology Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
- Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China.
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA.
| | - Lei Yan
- Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China.
| | - Rui Li
- Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China.
| | - Jianrong Bai
- Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China.
| | - Gustavo Caetano-Anollés
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
28
|
Zhang Z, Li Y, Luo Z, Kong S, Zhao Y, Zhang C, Zhang W, Yuan H, Cheng L. Expansion and Functional Divergence of Inositol Polyphosphate 5-Phosphatases in Angiosperms. Genes (Basel) 2019; 10:genes10050393. [PMID: 31121965 PMCID: PMC6562803 DOI: 10.3390/genes10050393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022] Open
Abstract
Inositol polyphosphate 5-phosphatase (5PTase), a key enzyme that hydrolyzes the 5` position of the inositol ring, has essential functions in growth, development, and stress responses in plants, yeasts, and animals. However, the evolutionary history and patterns of 5PTases have not been examined systematically. Here, we report a comprehensive molecular evolutionary analysis of the 5PTase gene family and define four groups. These four groups are different from former classifications, which were based on in vitro substrate specificity. Most orthologous groups appear to be conserved as single or low-copy genes in all lineages in Groups II-IV, whereas 5PTase genes in Group I underwent several duplication events in angiosperm, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for 5PTase duplications in angiosperm. Plant 5PTases have more members than that of animals, and most plant 5PTase genes appear to have evolved under strong purifying selection. The paralogs have diverged in substrate specificity and expression pattern, showing evidence of selection pressure. Meanwhile, the increase in 5PTases and divergences in sequence, expression, and substrate might have contributed to the divergent functions of 5PTase genes, allowing the angiosperms to successfully adapt to a great number of ecological niches.
Collapse
Affiliation(s)
- Zaibao Zhang
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, Henan, China.
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China.
| | - Yuting Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China.
| | - Zhaoyi Luo
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China.
| | - Shuwei Kong
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China.
| | - Yilin Zhao
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China.
| | - Chi Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China.
| | - Wei Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China.
| | - Hongyu Yuan
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, Henan, China.
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China.
| | - Lin Cheng
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China.
| |
Collapse
|
29
|
Mou Y, Liu Y, Tian S, Guo Q, Wang C, Wen S. Genome-Wide Identification and Characterization of the OPR Gene Family in Wheat ( Triticum aestivum L.). Int J Mol Sci 2019; 20:ijms20081914. [PMID: 31003470 PMCID: PMC6514991 DOI: 10.3390/ijms20081914] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
The 12-oxo-phytodienoic acid reductases (OPRs), which belong to the old yellow enzyme (OYE) family, are flavin mononucleotide (FMN)-dependent oxidoreductases with critical functions in plants. Despite the clear characteristics of growth and development, as well as the defense responses in Arabidopsis, tomato, rice, and maize, the potential roles of OPRs in wheat are not fully understood. Here, forty-eight putative OPR genes were found and classified into five subfamilies, with 6 in sub. I, 4 in sub. II, 33 in sub. III, 3 in sub. IV, and 2 in sub. V. Similar gene structures and conserved protein motifs of TaOPRs in wheat were identified in the same subfamilies. An analysis of cis-acting elements in promoters revealed that the functions of OPRs in wheat were mostly related to growth, development, hormones, biotic, and abiotic stresses. A total of 14 wheat OPR genes were identified as tandem duplicated genes, while 37 OPR genes were segmentally duplicated genes. The expression patterns of TaOPRs were tissue- and stress-specific, and the expression of TaOPRs could be regulated or induced by phytohormones and various stresses. Therefore, there were multiple wheat OPR genes, classified into five subfamilies, with functional diversification and specific expression patterns, and to our knowledge, this was the first study to systematically investigate the wheat OPR gene family. The findings not only provide a scientific foundation for the comprehensive understanding of the wheat OPR gene family, but could also be helpful for screening more candidate genes and breeding new varieties of wheat, with a high yield and stress resistance.
Collapse
Affiliation(s)
- Yifei Mou
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuanyuan Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shujun Tian
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qiping Guo
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chengshe Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shanshan Wen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
30
|
Metabolomic and transcriptomic changes underlying cold and anaerobic stresses after storage of table grapes. Sci Rep 2019; 9:2917. [PMID: 30814549 PMCID: PMC6393478 DOI: 10.1038/s41598-019-39253-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
The currently accepted paradigm is that fruits and vegetables should be consumed fresh and that their quality deteriorates during storage; however, there are indications that some metabolic properties can, in fact, be improved. We examined the effects of low temperature and high-CO2 conditions on table grapes, Vitis vinifera L. cv. 'Superior Seedless'. Berries were sampled at harvest (T0) and after low-temperature storage for 6 weeks under either normal atmosphere conditions (TC) or under an O2 level of 5 kPa and elevated CO2 levels of 5, 10 or 15 kPa (T5, T10, T15). Accumulation of 10 stilbenes, including E-ε-viniferin, E-miyabenol C and piceatannol, significantly increased under TC treatment as compared to T0 or T15. Sensory analysis demonstrated that elevated CO2 elicited dose-dependent off-flavor accumulation. These changes were accompanied by an accumulation of 12 volatile metabolites, e.g., ethyl acetate and diacetyl, that imparted disagreeable flavors to fresh fruit. Transcriptome analysis revealed enrichment of genes involved in pyruvate metabolism and the phenylpropanoid pathway. One of the transcription factors induced at low temperature but not under high CO2 was VvMYB14, which regulates stilbene biosynthesis. Our findings reveal the potential to alter the levels of targeted metabolites in stored produce through understanding the effects of postharvest treatments.
Collapse
|
31
|
Zhang W, Liu S, Li C, Zhang P, Zhang P. Transcriptome sequencing of Antarctic moss under salt stress emphasizes the important roles of the ROS-scavenging system. Gene 2019; 696:122-134. [PMID: 30790651 DOI: 10.1016/j.gene.2019.02.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 01/06/2023]
Abstract
Mosses are predominant terrestrial vegetation in Antarctica. Their distributions appear to be controlled more by water and salinity. The Antarctic moss Pohlia nutans can tolerate high salt stress. Here, high-throughput sequencing was employed to study the transcriptional characteristics of P. nutans under salt stress. Differentially expressed genes (DEGs) analysis showed that 1340 genes were significantly upregulated and 831 genes were markedly downregulated. The expression of representative DEGs including abscisic acid (ABA) and Jasmonates (JAs) pathway-related genes, antioxidant enzyme genes, and flavonoid biosynthesis-related genes were analyzed by real-time PCR and most were upregulated after salt stress. Furthermore, malondialdehyde (MDA) content was significantly increased after salt treatment. The levels of hydroxyl free radical (∙OH) first rose then quickly decreased. In addition, the activities of antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), and the flavonoid content were enhanced after salt stress. Exogenous application of ABA, Methyl jasmonate (MeJA) or proanthocyanidins (PA) improved the performance of P. nutans in response to high salt stress. Furthermore, real-time PCR showed that ABA or MeJA treatment upregulated the gene expression of antioxidant and flavonoid biosynthesis-related enzymes. These results suggest that the responses of P. nutans under salt stress are involved in activating phytohormone signaling pathways which trigger two main antioxidant defense systems (i.e., antioxidant enzymes and flavonoids) for protecting cell and scavenging reactive oxygen species.
Collapse
Affiliation(s)
- Wei Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, Shangdong, China
| | - Shenghao Liu
- Key Laboratory of Marine Bioactive Substance, the First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China.
| | - Chengcheng Li
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Peiyu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, Shangdong, China
| |
Collapse
|
32
|
Adal AM, Sarker LS, Malli RPN, Liang P, Mahmoud SS. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula). PLANTA 2019; 249:271-290. [PMID: 29948128 DOI: 10.1007/s00425-018-2935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/01/2018] [Indexed: 05/07/2023]
Abstract
Using RNA-Seq, we cloned and characterized a unique monoterpene synthase responsible for the formation of a scent-determining S-linalool constituent of lavender oils from Lavandula × intermedia. Several species of Lavandula produce essential oils (EOs) consisting mainly of monoterpenes including linalool, one of the most abundant and scent-determining oil constituents. Although R-linalool dominates the EOs of lavenders, varying amounts (depending on the species) of the S-linalool enantiomer can also be found in these plants. Despite its relatively low abundance, S-linalool contributes a sweet, pleasant scent and is an important constituent of lavender EOs. While several terpene synthase genes including R-linalool synthase have been cloned from lavenders many important terpene synthases including S-linalool synthase have not been described from these plants. In this study, we employed RNA-Seq and other complementary sequencing data to clone and functionally characterize the sparsely expressed S-linalool synthase cDNA (LiS-LINS) from Lavandula × intermedia. Recombinant LiS-LINS catalyzed the conversion of the universal monoterpene precursor geranyl diphosphate to S-linalool as the sole product. Intriguingly, LiS-LINS exhibited very low (~ 30%) sequence similarity to other Lavandula terpene synthases, including R-linalool synthase. However, the predicted 3D structure of this protein, including the composition and arrangement of amino acids at the active site, is highly homologous to known terpene synthase proteins. LiS-LINS transcripts were detected in flowers, but were much less abundant than those corresponding to LiR-LINS, paralleling enantiomeric composition of linalool in L. × intermedia oils. These data indicate that production of S-linalool is at least partially controlled at the level of transcription from LiS-LINS. The cloned LiS-LINS cDNA may be used to enhance oil composition in lavenders and other plants through metabolic engineering.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Radesh P N Malli
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
33
|
Thal B, Braun HP, Eubel H. Proteomic analysis dissects the impact of nodulation and biological nitrogen fixation on Vicia faba root nodule physiology. PLANT MOLECULAR BIOLOGY 2018; 97:233-251. [PMID: 29779088 DOI: 10.1007/s11103-018-0736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/08/2018] [Indexed: 05/25/2023]
Abstract
Symbiotic nitrogen fixation in root nodules of legumes is a highly important biological process which is only poorly understood. Root nodule metabolism differs from that of roots. Differences in root and nodule metabolism are expressed by altered protein abundances and amenable to quantitative proteome analyses. Differences in the proteomes may either be tissue specific and related to the presence of temporary endosymbionts (the bacteroids) or related to nitrogen fixation activity. An experimental setup including WT bacterial strains and strains not able to conduct symbiotic nitrogen fixation as well as root controls enables identification of tissue and nitrogen fixation specific proteins. Root nodules are specialized plant organs housing and regulating the mutual symbiosis of legumes with nitrogen fixing rhizobia. As such, these organs fulfill unique functions in plant metabolism. Identifying the proteins required for the metabolic reactions of nitrogen fixation and those merely involved in sustaining the rhizobia:plant symbiosis, is a challenging task and requires an experimental setup which allows to differentiate between these two physiological processes. Here, quantitative proteome analyses of nitrogen fixing and non-nitrogen fixing nodules as well as fertilized and non-fertilized roots were performed using Vicia faba and Rhizobium leguminosarum. Pairwise comparisons revealed altered enzyme abundance between active and inactive nodules. Similarly, general differences between nodules and root tissue were observed. Together, these results allow distinguishing the proteins directly involved in nitrogen fixation from those related to nodulation. Further observations relate to the control of nodulation by hormones and provide supportive evidence for the previously reported correlation of nitrogen and sulfur fixation in these plant organs. Additionally, data on altered protein abundance relating to alanine metabolism imply that this amino acid may be exported from the symbiosomes of V. faba root nodules in addition to ammonia. Data are available via ProteomeXchange with identifier PXD008548.
Collapse
Affiliation(s)
- Beate Thal
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany.
| |
Collapse
|
34
|
Muhammad I, Jing XQ, Shalmani A, Ali M, Yi S, Gan PF, Li WQ, Liu WT, Chen KM. Comparative in Silico Analysis of Ferric Reduction Oxidase (FRO) Genes Expression Patterns in Response to Abiotic Stresses, Metal and Hormone Applications. Molecules 2018; 23:molecules23051163. [PMID: 29757203 PMCID: PMC6099960 DOI: 10.3390/molecules23051163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.
Collapse
Affiliation(s)
- Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Shi Yi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Peng-Fei Gan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
35
|
Monte I, Ishida S, Zamarreño AM, Hamberg M, Franco-Zorrilla JM, García-Casado G, Gouhier-Darimont C, Reymond P, Takahashi K, García-Mina JM, Nishihama R, Kohchi T, Solano R. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat Chem Biol 2018; 14:480-488. [PMID: 29632411 DOI: 10.1038/s41589-018-0033-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/21/2018] [Indexed: 11/09/2022]
Abstract
The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates defense, growth and developmental responses in vascular plants. Bryophytes have conserved sequences for all JA-Ile signaling pathway components but lack JA-Ile. We show that, in spite of 450 million years of independent evolution, the JA-Ile receptor COI1 is functionally conserved between the bryophyte Marchantia polymorpha and the eudicot Arabidopsis thaliana but COI1 responds to different ligands in each species. We identified the ligand of Marchantia MpCOI1 as two isomeric forms of the JA-Ile precursor dinor-OPDA (dinor-cis-OPDA and dinor-iso-OPDA). We demonstrate that AtCOI1 functionally complements Mpcoi1 mutation and confers JA-Ile responsiveness and that a single-residue substitution in MpCOI1 is responsible for the evolutionary switch in ligand specificity. Our results identify the ancestral bioactive jasmonate and clarify its biosynthetic pathway, demonstrate the functional conservation of its signaling pathway, and show that JA-Ile and COI1 emergence in vascular plants required co-evolution of hormone biosynthetic complexity and receptor specificity.
Collapse
Affiliation(s)
- Isabel Monte
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Angel M Zamarreño
- Environmental Biology Department, University of Navarra, Navarra, Spain
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Gloria García-Casado
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | | | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Kosaku Takahashi
- Research Faculty of Agriculture, Division of Applied Bioscience, Hokkaido University, Sapporo, Japan
| | | | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
36
|
Li X, Wang Y, Duan E, Qi Q, Zhou K, Lin Q, Wang D, Wang Y, Long W, Zhao Z, Cheng Z, Lei C, Zhang X, Guo X, Wang J, Wu C, Jiang L, Wang C, Wan J. OPEN GLUME1: a key enzyme reducing the precursor of JA, participates in carbohydrate transport of lodicules during anthesis in rice. PLANT CELL REPORTS 2018; 37:329-346. [PMID: 29177846 DOI: 10.1007/s00299-017-2232-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
OG1 is involved in JA-regulated anthesis by modulating carbohydrate transport of lodicules in rice. Flowering plants have evolved a sophisticated regulatory network to coordinate anthesis and maximize reproductive success. In addition to various environmental conditions, the plant hormone jasmonic acid and its derivatives (JAs) are involved in anthesis. However, the underlying mechanism remains largely unexplored. Here, we report a JA-defective mutant in rice (Oryza sativa), namely open glume 1, which has dysfunctional lodicules that lead to open glumes following anthesis. Map-based cloning and subsequent complementation tests confirmed that OG1 encodes a peroxisome-localized 12-oxo-phytodienoic acid reductase-a key enzyme that reduces the precursor of JA. Loss-of-function of OG1 resulted in almost no JA accumulation. Exogenous JA treatment completely rescued the defects caused by the og1 mutation. Further studies revealed that intracellular metabolism was disrupted in the lodicules of og1 mutant. At the mature plant stage, most seeds of the mutant were malformed with significantly reduced starch content. We speculate that JA or JA signaling mediates the carbohydrate transport of lodicules during anthesis, and signal the onset of cell degradation in lodicules after anthesis. We conclude that the OPEN GLUME 1 gene that produces a key enzyme involved in reducing the precursor of JA in JA biosynthesis and is involved in carbohydrate transport underlying normal lodicule function during anthesis in rice.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qi Qi
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Kunneng Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiuyun Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhigang Zhao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
37
|
Chini A, Monte I, Zamarreño AM, Hamberg M, Lassueur S, Reymond P, Weiss S, Stintzi A, Schaller A, Porzel A, García-Mina JM, Solano R. An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat Chem Biol 2018; 14:171-178. [PMID: 29291349 DOI: 10.1038/nchembio.2540] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/09/2017] [Indexed: 01/16/2023]
Abstract
Biosynthesis of the phytohormone jasmonoyl-isoleucine (JA-Ile) requires reduction of the JA precursor 12-oxo-phytodienoic acid (OPDA) by OPDA reductase 3 (OPR3). Previous analyses of the opr3-1 Arabidopsis mutant suggested an OPDA signaling role independent of JA-Ile and its receptor COI1; however, this hypothesis has been challenged because opr3-1 is a conditional allele not completely impaired in JA-Ile biosynthesis. To clarify the role of OPR3 and OPDA in JA-independent defenses, we isolated and characterized a loss-of-function opr3-3 allele. Strikingly, opr3-3 plants remained resistant to necrotrophic pathogens and insect feeding, and activated COI1-dependent JA-mediated gene expression. Analysis of OPDA derivatives identified 4,5-didehydro-JA in wounded wild-type and opr3-3 plants. OPR2 was found to reduce 4,5-didehydro-JA to JA, explaining the accumulation of JA-Ile and activation of JA-Ile-responses in opr3-3 mutants. Our results demonstrate that in the absence of OPR3, OPDA enters the β-oxidation pathway to produce 4,5-ddh-JA as a direct precursor of JA and JA-Ile, thus identifying an OPR3-independent pathway for JA biosynthesis.
Collapse
Affiliation(s)
- Andrea Chini
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Isabel Monte
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Angel M Zamarreño
- Environmental Biology Department, University of Navarra, Navarre, Spain
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Steve Lassueur
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Sally Weiss
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | | | - Roberto Solano
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
38
|
Bao W, Wang D, Chen Y. Classification of Protein Structure Classes on Flexible Neutral Tree. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1122-1133. [PMID: 28113983 DOI: 10.1109/tcbb.2016.2610967] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurate classification on protein structural is playing an important role in Bioinformatics. An increase in evidence demonstrates that a variety of classification methods have been employed in such a field. In this research, the features of amino acids composition, secondary structure's feature, and correlation coefficient of amino acid dimers and amino acid triplets have been used. Flexible neutral tree (FNT), a particular tree structure neutral network, has been employed as the classification model in the protein structures' classification framework. Considering different feature groups owing diverse roles in the model, impact factors of different groups have been put forward in this research. In order to evaluate different impact factors, Impact Factors Scaling (IFS) algorithm, which aim at reducing redundant information of the selected features in some degree, have been put forward. To examine the performance of such framework, the 640, 1189, and ASTRAL datasets are employed as the low-homology protein structure benchmark datasets. Experimental results demonstrate that the performance of the proposed method is better than the other methods in the low-homology protein tertiary structures.
Collapse
|
39
|
Kou X, Qi K, Qiao X, Yin H, Liu X, Zhang S, Wu J. Evolution, expression analysis, and functional verification of Catharanthus roseus RLK1-like kinase (CrRLK1L) family proteins in pear (Pyrus bretchneideri). Genomics 2017; 109:290-301. [DOI: 10.1016/j.ygeno.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/28/2022]
|
40
|
Liang Y, Wan N, Cheng Z, Mo Y, Liu B, Liu H, Raboanatahiry N, Yin Y, Li M. Whole-Genome Identification and Expression Pattern of the Vicinal Oxygen Chelate Family in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:745. [PMID: 28536594 PMCID: PMC5422514 DOI: 10.3389/fpls.2017.00745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/20/2017] [Indexed: 05/25/2023]
Abstract
Vicinal oxygen chelate proteins (VOC) are members of the metalloenzyme superfamily, which plays roles in many biological reactions. Some members of the VOC superfamily have been systematically characterized but not in Brassica napus. In this study, 38 VOC genes were identified based on their conserved domains. The present results revealed that most of the BnaVOC genes have few introns, and all contained the typical VOC structure of βαβββ modules. The BnaVOC genes are distributed unevenly across 15 chromosomes in B. napus and occur as gene clusters on chromosomes C5 and A6. The synteny and phylogenetic analyses revealed that the VOC gene family is a consequence of mesopolyploidy events that occurred in Brassica evolution, and whole-genome duplication and segmental duplication played a major role in the expansion of the BnaVOC gene family. The expression profile analysis indicated that the expression of most BnaVOCs was increased in the leaves and late stage seeds. Further results indicated that seeds of B. napus with a high oil content show higher expression levels under drought stress conditions, suggesting that BnaVOCs not only respond to abiotic stress but may also affect lipid metabolism in drought stress. This present study provides a comprehensive overview of the VOC gene family and provides new insights into their biological function in B. napus evolution.
Collapse
Affiliation(s)
- Yu Liang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Neng Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Zao Cheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yufeng Mo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Baolin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Hui Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| |
Collapse
|
41
|
Pratiwi P, Tanaka G, Takahashi T, Xie X, Yoneyama K, Matsuura H, Takahashi K. Identification of Jasmonic Acid and Jasmonoyl-Isoleucine, and Characterization of AOS, AOC, OPR and JAR1 in the Model Lycophyte Selaginella moellendorffii. PLANT & CELL PHYSIOLOGY 2017; 58:789-801. [PMID: 28340155 DOI: 10.1093/pcp/pcx031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/16/2017] [Indexed: 05/24/2023]
Abstract
Jasmonic acid (JA) is involved in a variety of physiological responses in seed plants. However, the detection and role of JA in lycophytes, a group of seedless vascular plants, have remained elusive until recently. This study provides the first evidence of 12-oxo-phytodienoic acid (OPDA), JA and jasmonoyl-isoleucine (JA-Ile) in the model lycophyte Selaginella moellendorffii. Mechanical wounding stimulated the accumulation of OPDA, JA and JA-Ile. These data were corroborated by the detection of enzymatically active allene oxide synthase (AOS), allene oxide cyclase (AOC), 12-oxo-phytodienoic acid reductase 3 (OPR3) and JA-Ile synthase (JAR1) in S. moellendorffii. SmAOS2 is involved in the first committed step of JA biosynthesis. SmAOC1 is a crucial enzyme for generating the basic structure of jasmonates and is actively involved in the formation of OPDA. SmOPR5, a functionally active OPR3-like enzyme, is also vital for the reduction of (+)-cis-OPDA, the only isomer of the JA precursor. The conjugation of JA to Ile by SmJAR1 demonstrates that S. moellendorffii produces JA-Ile. Thus, the four active enzymes have characteristics similar to those in seed plants. Wounding and JA treatment induced the expression of SmAOC1 and SmOPR5. Furthermore, JA inhibited the growth of shoots in S. moellendorffii, which suggests that JA functions as a signaling molecule in S. moellendorffii. This study proposes that JA evolved as a plant hormone for stress adaptation, beginning with the emergence of vascular plants.
Collapse
Affiliation(s)
- Putri Pratiwi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Genta Tanaka
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tomohiro Takahashi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Koichi Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Hideyuki Matsuura
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kosaku Takahashi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
A putative 12-oxophytodienoate reductase gene CsOPR3 from Camellia sinensis, is involved in wound and herbivore infestation responses. Gene 2017; 615:18-24. [PMID: 28322995 DOI: 10.1016/j.gene.2017.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022]
Abstract
12-Oxophytodienoate reductase (OPR) is a key enzyme in the biosynthesis of jasmonic acid (JA), which plays an important role in plant defense responses. Although multiple isoforms of OPRs have been identified in various annual herbaceous plants, genes encoding these enzymes in perennial woody plants have yet to be fully investigated. In the tea plant, Camellia sinensis (L.), no OPR genes have been isolated, and their possible roles in tea plant development and defense mechanism remain unknown. In this study, a putative OPR gene, designated as CsOPR3, was isolated from tea plants for the first time through the rapid amplification of cDNA ends. The open reading frame of CsOPR3 is 1197bp in length, and encodes a protein of 398 amino acids. Real-time qPCR analysis revealed that CsOPR3 was expressed in different organs. In particular, CsOPR3 was highly expressed in flowers, leaves and stems but was weakly expressed in roots and seeds. CsOPR3 expression could be rapidly induced by mechanical wounding, and increased JA levels were correlated with the wound-induced CsOPR3 expression. The infestation of the tea geometrid (TG) Ectropis obliqua Prout, regurgitant derived from TG and exogenous JA application could enhance the CsOPR3 expression. Our study is the first to report that CsOPR3 plays an important role in JA biosynthesis and tea plant defense against herbivorous insects.
Collapse
|
43
|
Han GZ. Evolution of jasmonate biosynthesis and signaling mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1323-1331. [PMID: 28007954 DOI: 10.1093/jxb/erw470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Jasmonates are phytohormones that modulate a wide spectrum of plant physiological processes, especially defense against herbivores and necrotrophs. The molecular mechanisms of jasmonate biosynthesis and signaling have been well characterized in model plants. In this review, we provide an in-depth analysis and overview of the origin and evolution of the jasmonate biosynthesis and signaling pathways. Furthermore, we discuss the striking parallels between jasmonate and auxin signaling mechanisms, which reveals a common ancestry of these signaling mechanisms. Finally, we highlight the importance of studying jasmonate biosynthesis and signaling in lower plants.
Collapse
Affiliation(s)
- Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
44
|
Phytochelatin 2 accumulates in roots of the seagrass Enhalus acoroides collected from sediment highly contaminated with lead. Biometals 2017; 30:249-260. [DOI: 10.1007/s10534-017-9998-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/02/2017] [Indexed: 11/25/2022]
|
45
|
Abstract
Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Genomics Division, Department of Agricultural Bio-resource, National Academy of Agricultural Science, Rural Development Administration (RDA), Jeonju, South Korea
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Junah Kim
- Genomics Division, Department of Agricultural Bio-resource, National Academy of Agricultural Science, Rural Development Administration (RDA), Jeonju, South Korea
| | - Jon S Robertson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
46
|
Iijima M, Kenmoku H, Takahashi H, Lee JB, Toyota M, Asakawa Y, Kurosaki F, Taura F. Characterization of 12-Oxophytodienoic Acid Reductases from Rose-scented Geranium (Pelargonium graveolens). Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pelargonium graveolens L'Hér, also referred to as rose geranium, is a popular herbal plant with typical rosy fragrance largely based on the blend of monoterpenoid constituents. Among them, citronellol, which is biosynthesized from geraniol via double bond reduction, is the most abundant scent compound. In this study, three 12-oxophytodienoic acid reductases (PgOPR1–3) have been cloned from P. graveolens, as possible candidates for the double-bond reductase involved in citronellol biosynthesis. The bacterially expressed recombinant PgOPRs did not reduce geraniol to citronellol, but stereoselectively converted citral into ( S)-citronellal in the presence of NADPH. Thus, the α,β-unsaturated carbonyl moiety in the substrate is essential for the catalytic activity of PgOPRs, as reported for OPRs from other plants and structurally related yeast old yellow enzymes. PgOPRs promiscuously accepted linear and cyclic α,β-unsaturated carbonyl substrates, including methacrolein, a typical reactive carbonyl compound. The possible biotechnological applications for PgOPRs in plant metabolic engineering, based on their catalytic properties, are discussed herein.
Collapse
Affiliation(s)
- Miu Iijima
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Hiromichi Kenmoku
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hironobu Takahashi
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Jung-Bum Lee
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Masao Toyota
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshinori Asakawa
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Fumiya Kurosaki
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Futoshi Taura
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
47
|
Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ. Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:25-53. [PMID: 26735063 DOI: 10.1146/annurev-arplant-043015-111854] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chloroplast can act as an environmental sensor, communicating with the cell during biogenesis and operation to change the expression of thousands of proteins. This process, termed retrograde signaling, regulates expression in response to developmental cues and stresses that affect photosynthesis and yield. Recent advances have identified many signals and pathways-including carotenoid derivatives, isoprenes, phosphoadenosines, tetrapyrroles, and heme, together with reactive oxygen species and proteins-that build a communication network to regulate gene expression, RNA turnover, and splicing. However, retrograde signaling pathways have been viewed largely as a means of bilateral communication between organelles and nuclei, ignoring their potential to interact with hormone signaling and the cell as a whole to regulate plant form and function. Here, we discuss new findings on the processes by which organelle communication is initiated, transmitted, and perceived, not only to regulate chloroplastic processes but also to intersect with cellular signaling and alter physiological responses.
Collapse
Affiliation(s)
- Kai Xun Chan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Su Yin Phua
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Peter Crisp
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Ryan McQuinn
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia; , , , ,
| |
Collapse
|
48
|
Chang YL, Li WY, Miao H, Yang SQ, Li R, Wang X, Li WQ, Chen KM. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants. Genome Biol Evol 2016; 8:791-810. [PMID: 26907500 PMCID: PMC4824067 DOI: 10.1093/gbe/evw035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants.
Collapse
Affiliation(s)
- Yan-Li Chang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Wen-Yan Li
- Guangdong Academy of Agricultural Sciences, Argo-Biological Gene Research Center, Guangzhou, Guangdong, P. R. China
| | - Hai Miao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Shuai-Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Ri Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
49
|
Wang Y, Yuan G, Yuan S, Duan W, Wang P, Bai J, Zhang F, Gao S, Zhang L, Zhao C. TaOPR2 encodes a 12-oxo-phytodienoic acid reductase involved in the biosynthesis of jasmonic acid in wheat (Triticum aestivum L.). Biochem Biophys Res Commun 2016; 470:233-238. [PMID: 26778003 DOI: 10.1016/j.bbrc.2016.01.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
The 12-oxo-phytodienoic acid reductases (OPRs) are involved in the various processes of growth and development in plants, and classified into the OPRⅠ and OPRⅡ subgroups. In higher plants, only OPRⅡ subgroup genes take part in the biosynthesis of endogenous jasmonic acid. In this study, we isolated a novel OPRⅡ subgroup gene named TaOPR2 (GeneBank accession: KM216389) from the thermo-sensitive genic male sterile (TGMS) wheat cultivar BS366. TaOPR2 was predicted to encode a protein with 390 amino acids. The encoded protein contained the typical oxidored_FMN domain, the C-terminus peroxisomal-targeting signal peptide, and conserved FMN-binding sites. TaOPR2 was mapped to wheat chromosome 7B and located on peroxisome. Protein evolution analysis revealed that TaOPR2 belongs to the OPRⅡ subgroup and shares a high degree of identity with other higher plant OPR proteins. The quantitative real-time PCR results indicated that the expression of TaOPR2 is inhibited by abscisic acid (ABA), salicylic acid (SA), gibberellic acid (GA3), low temperatures and high salinity. In contrast, the expression of TaOPR2 can be induced by wounding, drought and methyl jasmonate (MeJA). Furthermore, the transcription level of TaOPR2 increased after infection with Puccinia striiformis f. sp. tritici and Puccinia recondite f. sp. tritici. TaOPR2 has NADPH-dependent oxidoreductase activity. In addition, the constitutive expression of TaOPR2 can rescue the male sterility phenotype of Arabidopsis mutant opr3. These results suggest that TaOPR2 is involved in the biosynthesis of jasmonic acid (JA) in wheat.
Collapse
Affiliation(s)
- Yukun Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Guoliang Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Shaohua Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Wenjing Duan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China; College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Peng Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jianfang Bai
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Fengting Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Shiqing Gao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Liping Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China.
| | - Changping Zhao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| |
Collapse
|
50
|
Zhang L, You J, Chan Z. Identification and characterization of TIFY family genes in Brachypodium distachyon. JOURNAL OF PLANT RESEARCH 2015; 128:995-1005. [PMID: 26423998 DOI: 10.1007/s10265-015-0755-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/30/2015] [Indexed: 05/05/2023]
Abstract
The TIFY family is a plant-specific gene family encoding proteins characterized by a conserved TIFY domain. This family encodes four subfamilies of proteins, including ZIM-like (ZML), TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. TIFY proteins play important roles in plant development and stress responses. In this study, 21 BdTIFYs were identified in Brachypodium distachyon through genome-wide analysis, including 15 JAZ and 6 ZML genes. Analysis of the distribution of conserved domains showed that there are three additional domains (CCT domain, GATA domain and Jas domain) in the BdTIFY proteins besides the TIFY domain. Phylogenetic analysis indicated that these 21 proteins were classified into two major groups. Expression profile of BdTIFY genes in response to abiotic stresses and phytohormones was analyzed using quantitative real-time RT-PCR. Among 21 BdTIFY genes, 12 of them were induced by JA treatment, and 4 of them were induced by ABA treatment. Most of BdTIFY genes were responsive to one or more abiotic stresses including drought, salinity, low temperature and heat. Especially, BdTIFY5, 9a, 9b, 10c and 11a were significantly up-regulated by multiple abiotic stresses. These results provided important clues for functional analysis of TIFY family genes in B. distachyon.
Collapse
Affiliation(s)
- Lihua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jun You
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|